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Abstract: Measurements of the production of electrons from heavy-flavour hadron de-
cays in pp collisions at

√
s = 13TeV at midrapidity with the ALICE detector are presented

down to a transverse momentum (pT) of 0.2GeV/c and up to pT = 35GeV/c, which is
the largest momentum range probed for inclusive electron measurements in ALICE. In p-
Pb collisions, the production cross section and the nuclear modification factor of electrons
from heavy-flavour hadron decays are measured in the pT range 0.5 < pT < 26GeV/c
at √sNN = 8.16TeV. The nuclear modification factor is found to be consistent with unity
within the statistical and systematic uncertainties. In both collision systems, first measure-
ments of the yields of electrons from heavy-flavour hadron decays in different multiplicity
intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapid-
ity are reported as a function of the self-normalised charged-particle multiplicity estimated
at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear
with the self-normalised multiplicity. A strong pT dependence is observed in pp collisions,
where the yield of high-pT electrons increases faster as a function of multiplicity than the
one of low-pT electrons. The measurement in p-Pb collisions shows no pT dependence
within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared
with measurements of other heavy-flavour, light-flavour, and strange particles, and with
Monte Carlo simulations.
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1 Introduction

In high-energy hadronic collisions, heavy quarks are mainly produced in hard parton scat-
tering processes. Due to their large masses, their production cross sections can be calculated
in the framework of perturbative quantum chromodynamics (pQCD) down to low trans-
verse momenta [1–4]. Measurements of production cross sections of open heavy-flavour
hadrons and their decay products in pp and Pb-Pb collisions were performed by the AL-
ICE, CMS, ATLAS and LHCb Collaborations at the LHC at both mid and forward rapid-
ity [5–28]. These measurements are described by theoretical predictions based on pQCD
calculations with the collinear factorisation approach at next-to-leading order with next-
to-leading log resummation e.g. in the GM-VFNS (general-mass variable-flavour-number
scheme) [29–33]) or the FONLL (fixed order with next-to-leading-log resummation) [34]
frameworks, within theoretical uncertainties. Measurements of charm-baryon production
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at midrapidity in pp collisions show an enhancement of the Λ+
c /D0 [14, 35–38], Ξ+,0

c /D0 [39–
41], Σ+,0

c /D0 [42], and Ω+,0
c /D0 [43] ratios with respect to those measured in e+e− and ep

collisions [44]. A multiplicity dependence measurement of the Λ+
c /D0 ratio [14] has re-

vealed a significant increase from the lowest to the highest multiplicity. These observations
indicate that the hadronisation of charm quarks into charm hadrons is not a universal
process among different collision systems. These findings are similar to those obtained
in the beauty sector by the CDF Collaboration at the Tevatron [45] and by the LHCb
Collaboration at the LHC [46, 47].

In proton-nucleus collisions, the so-called cold nuclear matter (CNM) effects occur due
to the presence of a nucleus in the colliding system and to the large density of produced
particles. In particular, the parton distribution functions (PDFs) of nucleons bound in
nuclei are modified with respect to those of free nucleons, which can be described by phe-
nomenological parameterisations referred to as nuclear PDFs (nPDFs) [48–51]. When the
production process is dominated by gluons at low Bjorken-x, the nucleus can be described
by the Colour Glass Condensate (CGC) effective theory as a coherent and saturated glu-
onic system [52–55]. The kinematics of the partons in the initial state can be affected by
multiple scatterings [56, 57] or by gluon radiation (energy loss) before or after the heavy-
quark pair is produced [58]. Measurements of heavy-flavour production in p-Pb collisions
at the LHC will allow a study of the above mentioned effects. Previous measurements
of the nuclear modification factor of leptons from heavy-flavour hadron decays in p-Pb
collisions at √sNN = 5.02TeV by the ALICE Collaboration indicate no significant mod-
ification of their yields due to CNM effects in the measured transverse momentum (pT)
region within uncertainties [19, 59]. For a nucleus-nucleus collisions (AA), the nuclear
modification factor (RAA) is the ratio of the yield in nucleus-nucleus collisions with respect
to the yield in proton-proton collisions scaled by the number of binary nucleon-nucleon col-
lision in AA. It quantifies the interaction of a particle and its energy loss while traversing
through a medium formed in AA collisions with respect to pp collisions. Measurements of
the nuclear modification factor of open heavy flavour and quarkonia at mid, forward, and
backward rapidity in p-Pb collisions were performed by the ALICE [60–65], ATLAS [66],
CMS [67, 68], and LHCb [69–72] collaborations. The results can be described qualitatively
by the various theoretical calculations mentioned above.

Recent measurements of light-flavour [73–88] and heavy-flavour hadrons [89–93] in
high-multiplicity pp, p-A, and d-A collisions at different energies have revealed strong flow-
like effects in these small systems [94]. The origin of this phenomenon is debated. Models
that incorporate hydrodynamical evolution of the system [95–98], overlapping strings [99],
string percolation [100], or multiple-parton interactions together with colour reconnec-
tion [101, 102] can describe qualitatively the observed features in high-multiplicity events.
A multiphase transport model [103], as well as calculations based on the fragmentation of
saturated gluon states [104, 105], are also able to describe some features of the data. The
measurement of heavy-flavour production in small systems as a function of the charged-
particle multiplicity produced in the collision could thus provide further insight into the
processes occurring in the collision at the partonic level and the interplay between the hard
and soft mechanisms in particle production in pp and p-Pb collisions.
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Measurements of charm and beauty productions [106–111] indicate an increase of
heavy-flavour production with charged-particle multiplicity measured at midrapidity. The
D meson [106] and J/ψ [107] productions normalised to their corresponding multiplicity-
integrated yields in minimum bias events (self-normalised yields), as a function of self-
normalised event multiplicities, (i.e., normalised to the average multiplicity in minimum
bias collisions) are measured in pp collisions at

√
s = 7TeV and

√
s = 13TeV by the

ALICE Collaboration at the LHC, and at
√
s = 0.2TeV by the STAR Collaboration at

RHIC [108]. These measurements show a stronger than linear increase of self-normalised
yields as a function of self-normalised multiplicity. Measurements of the Υ(nS) production
in pp collisions at

√
s = 2.76TeV and

√
s = 7TeV by the CMS Collaboration at midrapidity

indicate a linear increase with the event activity, when measuring it at forward rapidity, and
a stronger than linear increase with the event activity measured at midrapidity [109]. A
comprehensive review of the connection between the Υ(nS) production and the underlying
event, is presented by the CMS Collaboration in pp collisions at

√
s = 2.76TeV [112]. Mea-

surements of multiplicity dependence of Υ(nS) production at forward rapidity, is presented
by the ALICE Collaboration in pp collisions at

√
s = 13TeV [113]. In p-Pb collisions, the

self-normalised D meson yield at midrapidity increases with a faster than linear trend as a
function of the self-normalised charged-particle multiplicity at midrapidity and is consistent
with a linear growth for multiplicity measured at large rapidities [111]. The self-normalised
J/ψ yield at larger rapidities also exhibits an increase with increasing normalised charged-
particle pseudorapidity density, where the yield at backward rapidity grows faster than the
forward rapidity one [110]. A possible correlation with the event multiplicity (and event
shape) is also observed for the inclusive charged-particle production [114], and for identi-
fied particles, including multi-strange hyperons [115]. The trends are qualitatively, and for
some of the calculations quantitatively, reproduced by QCD-inspired event generators such
as PYTHIA 8 [116], and EPOS LHC and EPOS 3 [117, 118]. But a critical evaluation of
the similarities and differences between the physics mechanisms at play in various models
is yet to be performed. More stringent tests of the models would be important in this
direction. A comparison of the multiplicity-dependent measurements for different particle
species would also provide insight into the origin of the observed phenomena [14, 119].

In this article, measurements of the production cross section of electrons from heavy-
flavour hadron decays at midrapidity in pp collisions at

√
s = 13TeV and p-Pb collisions at

√
sNN = 8.16TeV are presented. The cross section of electrons from heavy-flavour hadron

decays was measured as a function of transverse momentum down to 0.2GeV/c and up
to 35GeV/c in pp collisions, which is the lowest and highest pT-reach attained for elec-
trons from heavy-flavour hadron decays with the ALICE detector. Results of the nuclear
modification factor (RpPb) of electrons from heavy-flavour hadron decays at midrapidity
in p-Pb collisions at √sNN = 8.16TeV are reported as well. The self-normalised yields of
electrons from heavy-flavour hadron decays measured for the first time as a function of
charged-particle multiplicity estimated at midrapidity (|η| < 1) in pp and p-Pb collisions
are also presented. The comparison of the self-normalised yields of electrons from heavy-
flavour hadron decays with other particles measured using the ALICE detector and with
Monte Carlo (MC) simulations is discussed.
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The article is structured as follows. In section 2, the ALICE apparatus, its main detec-
tors and the data samples used for the analysis are reported. The definition of multiplicity
and the calculation of the charged-particle pseudorapidity density is addressed in section 3.
In section 4, the procedure employed to obtain the production cross sections of electrons
from heavy-flavour hadron decays is explained. Section 5 describes the systematic uncer-
tainties associated with the measurements. The results of the analysis are presented and
discussed in section 6. Finally, the article is summarised in section 7.

2 Experimental apparatus and data sample

In LHC Run 2, the ALICE apparatus consisted of a central barrel, covering the pseudora-
pidity region |η| < 0.9, a muon spectrometer with −4 < η < −2.5 coverage, and forward-
and backward-pseudorapidity detectors employed for triggering, background rejection, and
event characterisation. A complete description of the detector and an overview of its per-
formance are presented in refs. [94, 120, 121].

The central barrel detectors used in the analysis are the Inner Tracking System
(ITS) [122], the Time Projection Chamber (TPC) [123], the Time-Of-Flight detector
(TOF) [124, 125], and the Electromagnetic Calorimeters (EMCal and DCal) [126, 127].
They are embedded in a large solenoidal magnet that provides a magnetic field parallel
to the beams axis. The ITS consists of six layers of silicon detectors, with the innermost
two composed of Silicon Pixel Detectors (SPD). The ITS is used to reconstruct the pri-
mary vertex and to track charged particles. The TPC is the main tracking detector of the
central barrel. It is a gas detector placed co-axially with the beam axis next to the ITS
radially. It also enables charged-particle identification via the measurement of the particle
specific energy loss (dE/dx) in the detector gas. The particle identification capabilities
of the TPC are supplemented with the TOF detector, which provides a measurement of
the time-of-flight of charged particles. The TOF is a gas detector which uses Multigap
Resistive Plate Chamber (MRPC) [128] as its basic detecting element. The TOF detector
has the capability to distinguish the electrons from pions, kaons, and protons up to pT ≈
1GeV/c, pT ≈ 2.5GeV/c, and pT ≈ 4GeV/c, respectively. The EMCal and DCal detectors
are shashlik-type sampling calorimeters consisting of alternate layers of lead absorber and
scintillator material. The EMCal covers |η| < 0.7 in pseudorapidity and ∆ϕ = 107◦ in az-
imuth. The DCal is located azimuthally opposite to the EMCal covering 0.22 < |η| < 0.7
and ∆ϕ = 60◦ plus |η| < 0.7 and ∆ϕ = 7◦. In the following, EMCal and DCal will be
together referred to as EMCal, as they are part of the same detector system. The small-
est segmentation of the EMCal is a cell, which has a dimension of 6 × 6 cm2 (0.0143 rad
× 0.0143 rad) in its base placed in the η × ϕ direction. The electromagnetic calorimeters
were used for electron identification and for triggering on rare events with high momentum
particles in their acceptance.

The detectors at forward rapidity used in the analysis are the V0 [129] and T0 [129]
detectors. The V0 detector, composed of two scintillator arrays placed on either side
of the interaction point along the beam axis (with pseudorapidity coverage 2.8 < η <

5.1 and −3.7 < η < −1.7), was utilised for triggering and for offline rejection of beam-
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induced background events. In p-Pb collisions, the contamination from beam-background
interactions and electromagnetic interactions was further removed using the information
from the Zero Degree Calorimeters (ZDC) [130] located at 112.5 m on both sides of the
interaction point along the beam axis. The T0 detector, composed of two arrays of quartz
Cherenkov counters, covers an acceptance of 4.6 < η < 4.9 and −3.3 < η < −3.0, and is
used to provide the start time for the TOF detector. The V0 and T0 detectors were also
employed to determine the integrated luminosity.

The results presented in this article were obtained using data recorded by ALICE
during the LHC Run 2 data taking periods between the years 2016 and 2018 for pp collisions
at
√
s = 13TeV, and in 2016 for p-Pb collisions at √sNN = 8.16TeV. While the nominal

magnetic field used during the data taking is 0.5 T, for a subset of periods in pp collisions
the magnetic field was reduced to 0.2 T (will be referred to as low-B field data set in the
following sections), allowing for the measurement of electrons down to a pT of 0.2 GeV/c. In
p-Pb collisions, a centre-of-mass energy per nucleon-nucleon collision of √sNN = 8.16TeV
was obtained by delivering proton and lead beams with energies of 6.5TeV and 2.56TeV
per nucleon, respectively. Due to this asymmetry of the beam energy per nucleon, the
proton-nucleon centre-of-mass rapidity frame is shifted by ∆y = 0.465 in the direction of
the proton beam.

Events used in the analyses were obtained using the minimum bias (MB) trigger pro-
vided by the V0 detector, and two single shower triggers based on the energy deposited
in the EMCal [121, 131]. The MB trigger condition requires coincident signals in both
scintillator arrays of the V0 detector. The EMCal trigger is based on the sum of energy
in a sliding window of 4 × 4 cells above a given threshold. The energy thresholds of the
two EMCal triggers were set to 4GeV (EG2) and 9GeV (EG1) for the pp data sets, and
5.5GeV (EG2) and 8GeV (EG1) for the p-Pb data sets.

In order to obtain a uniform acceptance of the detectors, only events with a recon-
structed primary vertex within ±10 cm from the centre of the detector along the beam
line (zvtx) were considered for both pp and p-Pb collisions. The number of selected events
in pp and p-Pb collisions for different triggers, and the corresponding integrated luminosi-
ties [132, 133] are listed in table 1. In-bunch pileup events, where more than one collision
occurs in the same bunch crossing and are recorded as a single event, were rejected using an
algorithm based on track segments reconstructed with the SPD to detect multiple primary
vertices. Out-of-bunch pileup events, where one or more collisions occur in bunch crossings
different from the one that triggered the data acquisition, were then rejected based on the
timing information provided by the V0 detector.

3 Multiplicity definition and corrections

The production of electrons from heavy-flavour hadron decays was investigated as a func-
tion of charged-particle pseudorapidity density (dNch/dη) in pp and p-Pb collisions. The
dNch/dη was measured in the pseudorapidity range |η| < 1. It was evaluated using the
number of tracklets (Ntracklets) in the SPD [134, 135], defined as track segments pointing
to the primary vertex and formed by joining pairs of hits in the two SPD layers.
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pp
√
s = 13TeV p-Pb √sNN = 8.16TeV

Magnetic field (T) 0.2 0.5 0.5

Trigger MB MB EG2 EG1 MB EG2 EG1

Number of events (106) 438 1755 116 96 39 0.6 3.4

Luminosity (nb−1) 7.6 30.3 811.3 8214.5 0.0190 0.0860 1.65

±0.2 ±0.7 ±30.7 ±378.7 ±0.0005 ±0.0025 ±0.05

Table 1. Number of selected events in pp and p-Pb collisions for different triggers, and the
corresponding integrated luminosities and their uncertainties.

The number of raw tracklets (Ntracklets) in an event were corrected (N corr
tracklets) for the

variation of the detector conditions with time (fraction of active SPD channels) and its
limited acceptance as a function of zvtx using a data-driven event-by-event correction,
following the procedure discussed in refs. [136]. The corrections were done by applying
a zvtx and time-dependent correction factor such that the measured average multiplicity
is equalised to a reference value, which was chosen to be the largest mean SPD tracklet
multiplicity observed over time. The correction factor for each event was randomly smeared
using a Poisson distribution to take into account event-by-event fluctuations. The number
of events, sliced in N corr

tracklets intervals, were corrected for the trigger and primary vertex
finding efficiencies, following the procedure discussed in [107]. The former was estimated
from MC simulations and the latter with a data-driven approach. The efficiencies were
close to unity for all multiplicity classes except for the lowest multiplicity class interval,
where the efficiency was close to 90%.

Detector inefficiencies, production of secondary particles due to interactions with the
detector material, and particle decays give a different number of reconstructed tracklets
compared to the true primary charged-particle multiplicity value Nch [137]. MC simulations
using the PYTHIA 8.2 [116] and the DPMJET [138] event generators, for pp and p-Pb col-
lisions respectively, and the GEANT 3 [139] transport code were used to estimate Nch from
N corr

tracklets and later dNch/dη. A second-order polynomial correlation was assumed between
the two quantities, Nch and N corr

tracklets, for the full N corr
tracklets range. To estimate the system-

atic uncertainties on dNch/dη, possible deviations from the second-order polynomial corre-
lation between Nch andN corr

tracklets were estimated using a linear function. The systematic un-
certainty on the residual zvtx dependence due to differences between data and MC amounts
to about 1% in pp collisions and is negligible in p-Pb collisions. The total systematic uncer-
tainty on dNch/dη is about 5% in all multiplicity intervals for both pp and p-Pb collisions.

The average charged-particle pseudorapidity density was normalised to its average
value in INEL > 0 events in pp and p-Pb collisions. The INEL > 0 event class contains
all events with at least one charged particle within |η| < 1. The average charged-particle
pseudorapidity densities (〈dNch/dη〉) for INEL > 0 were found to be in agreement with
the previous published ALICE measurements [107, 110, 140]. The resulting values of the
self-normalised charged-particle pseudorapidity density (dNch/dη/ 〈dNch/dη〉) for the event
classes considered in the analyses presented here are summarised in table 2.
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pp
√
s = 13TeV p-Pb √sNN = 8.16TeV

Multiplicity class N corr
tracklets dNch/dη/ 〈dNch/dη〉 N corr

tracklets dNch/dη/ 〈dNch/dη〉

I 1–14 0.48 1–38 0.51

II 15–24 1.63 39–55 1.32

III 25–34 2.50 56–95 2.03

IV 35–44 3.34 96–121 3.01

V 45–54 4.16 122–300 3.85

VI 55–64 4.97

VII 65–120 6.05

Table 2. Average self-normalised charged-particle pseudorapidity density (dNch/dη/ 〈dNch/dη〉)
in |η| < 1.0 for each event class selected in pp and p-Pb collisions.

4 Analysis overview

Measurements of electrons from heavy-flavour hadron decays were obtained by selecting
an inclusive electron sample and subtracting electrons which do not originate from heavy-
flavour hadron decays. The measurements were performed by identifying electrons using
the TPC and TOF detectors at low pT (pT < 4 GeV/c) and the TPC and EMCal detectors
at higher pT (pT > 3 GeV/c) offering the largest pT reach. In particular, this ensures
that the systematic uncertainties and the hadron contamination are small over the whole
transverse momentum range. In the interval 3 < pT < 4 GeV/c, where the heavy-flavour
decay electron production was measured with both techniques, the TPC-TOF analysis was
used for the final results, while the TPC-EMCal analysis was utilised as a consistency check.
This choice was motivated by the precision of the measurements based on the statistical
and systematic uncertainties, as will be further discussed in section 6. Throughout the
article, the term ‘electron’ is used for electrons and positrons.

4.1 Electron identification

Reconstructed tracks were selected based on the criteria listed in table 3, which are similar
to those used in the analysis described in [141, 142]. These requirements were applied
depending on the data sample as well as the transverse momentum region of the analysis.
The rapidity ranges used in the nominal-B field TPC-TOF analysis and the TPC-EMCal
analysis were limited to |y| < 0.8 and |y| < 0.6, respectively, to avoid the edges of the
detectors, where the systematic uncertainties related to the particle identification increase.
In the low-B field TPC-TOF analyses for pp collisions, the rapidity interval was restricted
to |y| < 0.5, to ensure a stable estimation of the photonic electron background (section 4.2),
which significantly increases in the low-B field sample for small pT and large rapidities,
resulting in a small signal over background ratio. A charged particle passing through the
TPC deposits energy inducing signals in the pad rows of the detector. The reconstructed

– 7 –



J
H
E
P
0
8
(
2
0
2
3
)
0
0
6

space points are known as clusters. The number of crossed rows which is equivalent to
the effective cluster track length is used as a criteria for selecting tracks. A threshold of
a minimum of 70 out of the total 159 crossed rows of the TPC for track reconstruction
and 80 clusters for particle identification were used. The χ2 of the Kalman fit of the
reconstructed track in the TPC, normalised to the number of TPC clusters (χ2/N cls

TPC),
had to be smaller than 4 to select tracks with good quality and reduce the contribution
from wrongly attached clusters to the reconstructed track. Only tracks with a distance of
closest approach (DCA) to the primary vertex smaller than 1 cm in the transverse plane
and 2 cm in the longitudinal direction were selected in order to reject background and non-
primary tracks. In the TPC-TOF analyses, all tracks were required to have an associated
hit in each of the two innermost layers of the ITS to reduce the background electrons
from photon conversions in the material, and to reduce wrong assignations of hits in the
first layer of the ITS. For the TPC-EMCal analyses, the tracks were required to have at
least one hit in one of the two innermost layers of the ITS. This reduces the impact of
the inactive channels in the first ITS layer in the acceptance window of the EMCal. As
the photon conversion background decreases with increasing pT, the relaxed requirement
does not affect the signal over background ratio significantly in the pT range where the
TPC-EMCal analyses were performed. Moreover, it is important to note that the track
selection criteria on SPD, TOF, and EMCAL detectors sufficiently suppress background
tracks originating from out-of-bunch pileup.

To identify electrons at low pT (pT < 4GeV/c), the specific energy deposition (dE/dx)
in the TPC and the time-of-flight measurement in the TOF detector were used. The dis-
criminant variable used for the TPC (TOF) detector is the deviation of dE/dx (particle
time-of-flight) from the parameterised electron Bethe-Bloch (electron time-of-flight) ex-
pectation value [143], expressed in terms of the dE/dx (time-of-flight) resolution, nTPC

σ,e
(nTOF
σ,e ). In the left panel of figure 1, nTPC

σ,e is shown as a function of the momentum of the
track (p) after TOF selection. For 0.2 < pT < 4GeV/c, electron candidates were selected
by requiring |nTOF

σ,e | < 3 and −1 < nTPC
σ,e < 3, resulting in a 100% pure electron sample at

pT ≈ 0.2 GeV/c, and a sample with a purity of about 90% at 4 GeV/c. The remaining
hadron contamination in the sample, after TOF selection, was estimated and subtracted
by parameterising the TPC dE/dx distribution for each particle species with an analytical
function in different momentum regions as shown in the right panel of figure 1, and as
performed in previous analyses [141, 142].

Analyses using TPC and EMCal detectors were performed by spatially matching re-
constructed charged tracks in the ITS and TPC with EMCal clusters. This is implemented
by extrapolating the reconstructed charged tracks with ITS and TPC to the EMCal, taking
into account the energy loss of the particle when it traverses the detector materials, and
matching within the ∆η and ∆ϕ as given by eq. (4.1). At low pT, the position resolution of
tracks and the EMCal clusters gets worse which leads to a pT-dependent matching criteria.
The pT-dependent selection window is approximately one EMCal cell size at high pT and
few cell sizes below 1 GeV/c [131]. This matching criterion removes the contribution from
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pp
√
s = 13TeV p-Pb √sNN = 8.16TeV

pT interval (GeV/c) 0.2–4.0 0.5–4.0 3.0–35.0 0.5–4.0 3.0–26.0

Track selection
criteria

Low-B
TPC-TOF

Nominal-B
TPC-TOF

Nominal-B
TPC-EMCal

Nominal-B
TPC-TOF

Nominal-B
TPC-EMCal

|y| < 0.5 < 0.8 < 0.6 < 0.8 < 0.6

No. of TPC
crossed rows ≥ 70 ≥ 70 ≥ 70 ≥ 70 ≥ 70

No. of TPC dE/dx
clusters for PID ≥ 80 ≥ 80 ≥ 80 ≥ 80 ≥ 80

Number of ITS hits ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3

χ2/N cls
TPC < 4 < 4 < 4 < 4 < 4

Minimum number of
hits in the SPD 2 2 1 2 1

|DCAxy| < 1 cm < 1 cm < 1 cm < 1 cm < 1 cm

|DCAz| < 2 cm < 2 cm < 2 cm < 2 cm < 2 cm

Table 3. Summary of the track selection criteria imposed on the inclusive electron candidates for
different data sets and electron identification strategies. Details can be found in section 4.1.
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loss as a function of momentum (left panel) and fit of the measured nTPC
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σ,e requirement in the momentum range 2.9 < p < 3.0 GeV/c (right panel) in pp collisions at√
s = 13TeV for the low-B field data set.
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Figure 2. The E/p distribution measured in pp collisions at
√
s = 13TeV for EG1 triggered events.

photon signals and from wrong associations of EMCal clusters to charged-particle tracks.

|∆η| ≤ 0.010 + (pT,track(GeV/c) + 4.07)−2.5,

|∆ϕ| ≤ 0.015 + (pT,track(GeV/c) + 3.65)−2.
(4.1)

Candidate tracks matched with EMCal clusters with −1 < nTPC
σ,e < 3 were selected. Elec-

trons were identified and separated from hadrons using the E/p information, where, E is
the energy deposited by the particle in the EMCal detector and p is the momentum of the
track. It was required that the measured E/p is around unity, 0.85 < E/p < 1.2, as ex-
pected for electrons, while hadrons have lower E/p values. To further reduce the amount of
hadron contamination, a condition on the shape of the electromagnetic shower, σ2

long, [144]
was applied. The quantity σ2

long stands for the eigenvalues of the dispersion matrix of the
shower shape ellipse defined by the energy distribution within the EMCal cluster [145, 146].
A pT-dependent selection criterion was applied, 0.02 < σ2

long < 0.9 at low pT and a more
stringent selection up to 0.02 < σ2

long < 0.5 at higher pT, in both pp and p-Pb collisions.
The lower threshold on σ2

long removes contamination caused by neutrons hitting the readout
electronics. The remaining hadron contamination in the electron sample was estimated by
fitting the measured E/p distributions of electron candidates in momentum slices. For this
purpose, the shape of the E/p spectrum for hadrons was obtained by selecting hadrons
in the TPC with nTPC

σ,e < −3.5. The obtained hadron E/p distribution was then scaled
to match the E/p distribution of electron candidates in a region within E/p < 0.7, as
shown in figure 2. The electron yield was calculated by integrating the E/p distributions
of electron candidates in the range 0.85 < E/p < 1.2 after the subtraction of the hadron
contamination. In the pp (p-Pb) analysis, the hadron contamination was negligible at low
pT, increasing up to 23% (25%) at pT = 35 (26) GeV/c.
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4.2 Subtraction of electrons from non heavy-flavour sources

The selected inclusive electron sample contains electrons from open heavy-flavour hadron
decays and from different sources of background:

• dielectrons originating from Dalitz decays of light-neutral mesons such as π0, η as
well as conversions of photons in the detector material, named as photonic electrons
in the text,

• dielectrons from decays of J/ψ (J/ψ → e+e−) and low-mass vector mesons (ρ →
e+e−, ω → e+e−, φ → e+e−),

• electrons from kaon weak decays K0,± → e± π∓,0 (−)
νe (Ke3),

• electrons from W and Z decays.

The dominant sources of background electrons are photon conversions in the detector
material and Dalitz decays of light-neutral mesons. These contributions were estimated
using an invariant mass technique [59] of electron-positron pairs. Unlike-signed electron-
positron pairs (ULS) were defined by pairing the selected electrons with opposite-charge
electron partners. To increase the efficiency of finding the partner, associated electrons were
selected applying similar but looser track quality and particle identification criteria than
those used for selecting signal electrons. The selection criteria are summarised in table 4.
The electron-positron pairs from photonic background have a small invariant mass (me+e−).
Heavy-flavour decay electrons can form ULS pairs mainly through random combinations
with other electrons. The combinatorial contribution was estimated from the invariant mass
distribution of like-signed electron (LS) pairs. The photonic background contribution was
then evaluated by subtracting the LS distribution from the ULS one in the invariant mass
region me+e− < 0.14GeV/c. The efficiency of finding the partner electron, called tagging
efficiency (εtag) from hereon, was estimated using MC simulations. In the pp and p-Pb
analyses, the MC sample was obtained using PYTHIA 6 [116] and HIJING [147] generators,
respectively. The generated particles were propagated through the ALICE apparatus using
GEANT 3 [139]. In order to increase the statistical precision of εtag using the invariant
mass method, π0 and η mesons were embedded in the simulated events. The simulated π0

and η pT distributions were reweighted to match the measured spectra. For pp collisions,
the π0 spectrum was estimated as the average of the spectra of π+ and π− [148], whereas
the η spectrum was obtained using mT scaling, as in [149–151]. For the p-Pb analysis, the
measured transverse momentum spectra of π0 and η were used [152]. In the pp analysis, the
tagging efficiency at low pT (pT < 1.0GeV/c) is 55–65% for the low-B field data set, whereas
for the nominal-B field data set it is around 45–55% at low pT (pT < 1.0GeV/c) increasing
to about 85% at high pT (pT > 15GeV/c). In the p-Pb analysis, the tagging efficiency
varies between 40% at low pT (pT < 3.0GeV/c) and 80% at high pT (pT > 7.0GeV/c).

Due to the requirement of hits in the SPD layers, the contribution of electrons from
Ke3 decays was found to be negligible with respect to the heavy-flavour signal for pT >

0.5GeV/c. At lower pT, the relative contribution of electrons from Ke3 decays becomes non-
negligible and hence it was subtracted from the pT-differential cross section of electrons from
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pp
√
s = 13TeV p-Pb √sNN = 8.16TeV

pT interval (GeV/c) 0.2–4.0 0.5–4.0 3.0–35.0 0.5–4.0 3.0–26.0

Track and PID
cuts

Low-B
TPC-TOF

Nominal-B
TPC-TOF

Nominal-B
TPC-EMCal

Nominal-B
TPC-TOF

Nominal-B
TPC-EMCal

pmin
T 0.0GeV/c 0.1GeV/c 0.1GeV/c 0.1GeV/c 0.1GeV/c

|y| < 0.8 < 0.9 <0.9 < 0.8 < 0.8

No. of TPC
dE/dx clusters for PID ≥ 60 ≥ 60 ≥ 60 ≥ 60 ≥ 60

Number of ITS hits ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2

χ2/N cls
TPC < 4 < 4 < 4 < 4 < 4

|DCAxy| < 1 cm < 1 cm < 1 cm < 1 cm < 1 cm

|DCAz| < 2 cm < 2 cm < 2 cm < 2 cm < 2 cm

Table 4. Summary of the track selection criteria imposed on the associated electron candidates
for different data sets and electron identification strategies.

heavy-flavour hadron decays. The Ke3 contribution was estimated using a parameterisation
of the ratio of Ke3 to photonic electrons obtained from previous analyses using the so-called
cocktail approach [9, 153, 154]. The same parametrisation was used in the analysis of pp
collisions at

√
s = 13 TeV and in p-Pb collisions at √sNN = 8.16TeV.

Other background contributions of e+e− pairs from J/ψ and low-mass vector mesons
were negligible [153, 155] compared to the signal and were therefore not subtracted.
Electrons from W± and Z0 boson decays form a significant background at high pT
(pT > 20GeV/c), which was estimated with the next-to-leading order event generator
POWHEG [156], interfaced with PYTHIA as a decayer, and subtracted from the pT-
differential cross section of electrons from heavy-flavour hadron decays. This contribution
increases from 1% at pT = 15GeV/c to about 3% at pT = 20GeV/c and up to 25% at
pT = 35GeV/c with respect to the heavy-flavour decay electron yield in both pp and p-Pb
collisions.

In pp collisions, the ratio of signal over background electrons is about 0.08 at pT =
0.2GeV/c, 3 at pT = 0.5 GeV/c increasing to ∼ 10.5 at pT = 25 GeV/c and reaches 12.3 at
pT = 35GeV/c, whereas in p-Pb collisions it is about 2.65 at pT = 0.5GeV/c and increases
up to 8.39 at pT = 26GeV/c.

4.3 EMCal trigger rejection factor

The EMCal triggered events are reported in terms of Nevt×RF, where Nevt is the number
of triggered collisions and the Rejection Factor (RF) is the average number of rejected MB
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Figure 3. Trigger RF for EG2 and EG1 triggers in pp collisions at
√
s = 13TeV (left panel) and

in p-Pb collisions at √sNN = 8.16TeV (right panel).

pp
√
s = 13 TeV p-Pb √sNN = 8.16 TeV

Trigger EG2 EG1 EG2 EG1
RF value 406 4985 283.4 1020.7

± 1 (stat.) ± 12 (syst.) ± 11 (stat.) ± 200 (syst.) ± 1.5 (stat.) ± 5.9 (syst.) ± 3.6 (stat.) ± 30.4 (syst.)

Table 5. Multiplicity-integrated values of the EMCal trigger RF with their uncertainties for the
EG2 and EG1 triggered data sets in pp and p-Pb collisions.

events per EMCal triggered event. The RFs were estimated with a data-driven method.
For the EG2 trigger the RF was calculated as the ratio of the cluster energy distribution
in EG2 triggered data to the one in MB triggered data (f cl

EG2/f
cl
MB), which gives the EG2

turn-on curve. In order to reduce the effect of poor statistics in the MB sample at high
pT, the EG1 trigger turn-on curve was obtained using the ratio of the EG1 triggered data
cluster energy distribution to the one in EG2 triggered data (f cl

EG1/f
cl
EG2). The RF of EG1

trigger is then the product of f cl
EG2/f

cl
MB and f cl

EG1/f
cl
EG2. The turn-on curve was determined

for the multiplicity-integrated interval and for different multiplicity intervals in pp and p-
Pb collisions. The turn-on curves are shown for both trigger energy thresholds (EG1 and
EG2) in multiplicity integrated pp and p-Pb collisions in figure 3.

A Fermi function [157, 158] was used to fit the trigger turn-on curves and determine
the RF above the trigger threshold. The fit range is from the beginning of the turn-on
region i.e. near trigger threshold to the highest energy where the distribution remains flat.
The EG2/MB and the EG1/EG2 values correspond to the constant values determined by
the plateau of the fitted Fermi function above the trigger thresholds. The final values of
the RF used in the analyses are summarised in table 5. The systematic uncertainty on the
trigger RF was estimated by varying the fit region of the trigger turn-on curve and the fit
function, i.e. using a linear function in the plateau region. A systematic uncertainty of 3%
(2%) for the EG2 trigger and 4% (3%) for EG1 trigger was obtained for pp (p-Pb) collisions.
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4.4 Efficiency correction and normalisation

The raw number of electrons and positrons from heavy-flavour hadron decays, Nraw, was
obtained by subtracting the hadron contamination, photonic electrons, and the other back-
ground electron contributions. The pT-differential cross section of electrons from heavy-
flavour hadron decays at midrapidity was then calculated using the formula

d2σ

dpTdy = 1
2

1
∆y∆pT

Nraw
εgeo × εreco × εeID

1
Lint

, (4.2)

where Lint is the integrated luminosity, and ∆pT and ∆y the width of the pT and rapidity
intervals, respectively. The integrated luminosity was calculated using the number of anal-
ysed events and the measured MB trigger cross sections (σMB), as Nevt/σMB for minimum
bias triggered events and Nevt × RF/σMB for EMCal triggered events, and are listed in
table 1. The trigger bias was studied in MC simulations and was found to be negligible for
the selections applied to tracks and clusters. The measured σMB values are 58.44 ± 1.11
mb, 58.10 ± 1.57 mb, and 57.52 ± 1.21 mb for the pp collisions at

√
s = 13 TeV collected

in the years 2016, 2017, and 2018, respectively [159], and 2100 ± 60 mb [133] in p-Pb
collisions at √sNN = 8.16TeV. The raw number of electrons from heavy-flavour hadron
decays was corrected for the geometrical acceptance (εgeo), the track reconstruction (εreco),
and electron identification (εeID) efficiencies. The factor of two accounts for the charged
averaged contribution of electrons and positrons. The trigger and event selection criteria
were found to be fully efficient for electrons from heavy-flavour hadron decays.

The above mentioned acceptance and track reconstruction efficiencies are computed by
means of MC simulations using PYTHIA 6 [116] and HIJING [147] event generators for pp
and p-Pb collisions, respectively. For pp simulations PYTHIA 6 generated events with at
least one cc or bb pair were selected for propagation through the apparatus with GEANT
3 [139] and subsequent reconstruction. In the case of p-Pb collisions, to have an efficient
generation of heavy-flavour signals and reproduce the detector occupancy, one PYTHIA 6
event with a cc or bb pair was embedded in each HIJING simulated event.

The electron identification (eID) efficiencies for the TOF, TPC, and EMCal detectors
were obtained separately, and then multiplied according to the detectors used in the analysis
to compute the full electron identification efficiency εeID. The TPC-TOF track matching
and electron identification efficiency of the TOF detector was calculated with the above
mentioned MC sample and was found to be 60–70% (40–65%) for 0.5 < pT < 1.5GeV/c
increasing up to 75% (70%) at 4GeV/c in the low (nominal)-B field analysis. A better
track matching between the TPC and the TOF detectors is achieved at a given pT with the
low-B field compared to the nominal-B field, due to the smaller curvature of the tracks.
Therefore, a higher reconstruction efficiency is observed in the low-B field data compared
to the nominal-B field sample. The TPC electron identification efficiency was determined
using a data-driven approach based on the nTPC

σ,e distribution [9]. It is about 88% at
pT = 0.2GeV/c and increases to 89% for pT > 0.5GeV/c, for the low-B field data sample.

In the nominal-B field data set, it was found to be around 86% at pT = 0.5GeV/c
increasing to 88% for pT > 4GeV/c. The electron identification efficiency with EMCal was
estimated using MC simulations and was found to be about 60% at 3GeV/c, increasing up
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Figure 4. Total reconstruction efficiency of electrons from heavy-flavour hadron decays using the
TPC and TOF or the TPC and EMCal detectors in pp collisions at

√
s = 13TeV with nominal and

low magnetic field (left panel) and in p-Pb collisions at √sNN = 8.16TeV (right panel).

to 80% for pT larger than 10GeV/c for pp collisions. The total reconstruction efficiency
(εgeo×εreco×εeID) for different data sets and with different detectors is presented in figure 4.

The production of electrons from heavy-flavour hadron decays was further studied as
a function of the charged-particle pseudorapidity density in pp or p-Pb collisions using
the self-normalised yield of heavy-flavour hadron decay electrons. The differential yield
measured in a given multiplicity class was divided by its average over all INEL > 0 events
(d2N/dpTdη/〈d2N/dpTdη〉INEL>0) in pp or p-Pb collisions. All efficiency were obtained as
a function of multiplicity. At low pT, the tagging efficiency and the total reconstruction
efficiency of electrons from heavy-flavour hadron decays were observed to be multiplicity
dependent, while no dependencies were seen at high pT, so the efficiencies cancelled out in
the self-normalised ratios at high pT.

5 Systematic uncertainties

The systematic uncertainties on the measured cross sections in pp and p-Pb collisions were
obtained separately for the different pT intervals and for the different analyses performed
using the TPC-TOF and TPC-EMCal detector combinations. For the self-normalised yield
measurements, the systematic uncertainties were estimated directly on the self-normalised
yield for each multiplicity class and pT interval. The different sources of systematic
uncertainties are discussed in this section and the assigned values are summarised in
tables 6, 7, and 8.

The systematic uncertainty on the track reconstruction and selection efficiency was
obtained by multiple variations of the track selection criteria, namely, the minimum number
of space points in the TPC, the number of TPC crossed rows, the number of TPC dE/dx
clusters and the number of hits in the ITS.

The uncertainty due to an imperfect description in the simulation of the TPC-TOF
(and the TPC-ITS) track matching was estimated by calculating the difference between
efficiencies of the TPC-TOF (and the TPC-ITS) track matching in data and MC. To obtain
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Sources of systematic
uncertainties

0.2 <pT < 0.5 GeV/c 0.5 <pT < 4 GeV/c 4 <pT < 35 GeV/c
low-B

TPC-TOF
nominal-B
TPC-TOF

nominal-B
TPC-EMCal

Track selection negl. 1% 3%

TPC-TOF matching 4%–2% 2% N/A

TPC-ITS matching 2% 3% 3%

TPC-EMCal matching N/A N/A negl.

SPD hit requirement 25%–15% 10%–3% 5%–negl.

Electron identification 5% 5%–negl. 6%–12%

Hadron contamination negl. negl.–2% negl.–7%

Photonic electron subtraction 20%–11% 7%–1% negl.

Ke3 subtraction 15%–1% N/A N/A

W±/Z0→ e N/A N/A negl.–8%

π0, η weights 3%–1% negl. negl.

RF N/A N/A 3%–4%

Luminosity 2.3% 2.3% 2.3%–5%

Total systematic 36%–20% 14%–7% 11%–18%

Table 6. Sources of systematic uncertainties and their assigned values in pp collisions at
√
s =

13 TeV for B = 0.2 T (0.2 < pT < 0.5 GeV/c) and B = 0.5 T (0.5 < pT < 4 GeV/c) data sets with
the TPC and TOF detectors, as well as with the TPC and EMCal detectors (4 < pT < 35 GeV/c).
The values presented as a range correspond to the lowest- and highest-pT intervals.

the matching efficiency, the abundances of primary and secondary particles in data were
estimated via template fits to the track impact-parameter distributions, and the relative
abundances in the simulation were weighted to match those in data [160, 161]. For the low-
B field sample in pp collisions, the uncertainty on the track matching between the ITS and
TPC is 2% at pT = 0.2 GeV/c increasing up to 4% at 4 GeV/c, whereas, the uncertainty
on the track matching between the TPC and the TOF detector is 4% at pT = 0.2 GeV/c
and 2% at 4 GeV/c. In case of the nominal-B field data set, the uncertainty is about 2%
for the TPC-TOF track matching and about 3% for the TPC-ITS track matching in the
whole pT range. In the p-Pb analysis, the uncertainty for the TPC-TOF track matching,
as well as the TPC-ITS track matching, was found to be around 2% in the whole pT range.

The systematic uncertainty on the SPD hit requirement was obtained by varying the
condition on the minimum number of hits and the specific layer of the SPD on which a hit
was required for both the TPC-TOF and the TPC-EMCal analyses. For the low-B field
sample in pp collisions, the systematic uncertainty due to the SPD hit requirement was
about 25% at pT = 0.2 GeV/c decreasing to 15% at 0.5 GeV/c, whereas for nominal-B
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Sources of systematic
uncertainties

0.5 < pT < 4 GeV/c 4 < pT < 26 GeV/c
nominal-B
TPC-TOF

nominal-B
TPC-EMCal

Track selection 1% 5%–1%

TPC-TOF matching 2% N/A

TPC-EMCal matching N/A negl.

TPC-ITS matching 2% 2%

SPD hit requirement 10%–3% 5%–negl.

Electron identification 3%–1% 1%–5%

Hadron contamination negl. negl.–5%

Photonic electron subtraction 7%–1% negl.

Ke3 subtraction N/A N/A

W±/Z0 → e N/A negl.–1%

π0, η weights negl. negl.

RF N/A 2%–4%

Luminosity 3% 3%

Total systematic 13%–5% 8%–9%

Table 7. Sources of systematic uncertainties and their assigned values in p-Pb collisions at√
sNN = 8.16TeV with TPC and TOF detectors (0.5 < pT < 4 GeV/c), as well as with the TPC

and EMCal detectors (4 < pT < 26 GeV/c). The values presented as a range correspond to the
lowest- and highest-pT intervals.

field data sets in pp and p-Pb collisions, the uncertainty is about 10% at pT = 0.5 GeV/c
decreasing to 5% at 4GeV/c and becomes negligible in the highest-pT interval.

The uncertainty on the procedure of track matching to EMCal clusters was obtained
by varying the ∆η −∆ϕ selection using pT-independent thresholds ranging from 0.015 to
0.05 rad in η and ϕ. The resulting uncertainty was found to be negligible.

The uncertainty on the electron identification originates from imprecisions in the de-
scription of the detector response in the MC, as well as from potential biases in the pro-
cedure employed to select electron candidates and to estimate the hadron contamination.
It was studied by varying the electron identification selection criteria on nTPC

σ,e , E/p, and
σ2

long. The assigned systematic uncertainties are listed as “Electron identification” in the
tables 6, 7, and 8. The assigned systematic uncertainties vary from 5% to 12% depending
on the pT and the analysis method.

Additionally, the robustness of the fit procedure used to extract the hadron contam-
ination in both electron identification strategies was checked. In the TPC-TOF analysis,
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different analytical functions were utilised to parameterise the TPC dE/dx, which had
negligible effects on the estimated hadron contamination up to a pT of 3 GeV/c. In the
TPC-EMCal analysis, the scaling region of the hadron E/p distribution was varied. The re-
sulting uncertainties were found to be negligible at low pT and of the order of 5% at high pT.

The uncertainty on the subtraction of photonic electrons is related to the efficiency of
finding the partner electron and was studied by varying the selection of partner tracks, i.e.
the number of TPC clusters used for (dE/dx) calculation and the minimum pT requirement,
as well as the selection on the invariant mass of e+e− pairs.

The subtraction of Ke3 decay electrons in pp collisions for pT < 0.5GeV/c can be
affected by the uncertainty on the parameterisation of the ratio of Ke3 to photonic electrons,
and was found to result in an uncertainty of 15% at pT = 0.2 GeV/c and to be negligible
at pT ≥ 0.5GeV/c.

The uncertainty on the contribution of electrons from W± and Z0 boson decays was
estimated by varying the yield of electrons from W± and Z0 boson decays by 25%. The
strategy is imported from the most recent measurements from ALICE [16, 141]. The
resulting uncertainty was found to be negligible for p-Pb collisions and only relevant at
very high pT for pp collisions, where it amounts to about 8%.

In the MC simulations, the π0 and η meson pT distributions were weighted such that
their measured pT spectra are reproduced. The uncertainty from the measurements was
propagated to the efficiency of finding the partner electron by parameterising the data
along the upper and lower ends of their statistical and systematic uncertainties added in
quadrature. The uncertainty was found to be about 3% at pT = 0.2 GeV/c in pp collisions
and to be negligible at pT ≥ 0.5GeV/c in both pp and p-Pb collisions.

The systematic uncertainty on the trigger RF, as explained in section 4.3, was prop-
agated on the pT-differential cross section of electrons from heavy-flavour hadron decays.
The uncertainty was of the order of 4% at the highest pT.

The systematic uncertainty on the luminosity was propagated on the pT-differential
cross section of electrons from heavy-flavour hadron decays. The uncertainty was 2.3% to
5% in pp collisions depending on the pT, as the uncertainty from the rejection factors for
triggered samples were taken into consideration, and 3% in p-Pb collisions, where the un-
certainty from the rejection factors contributed negligibly to the uncertainty on luminosity.

As the geometrical acceptance and reconstruction efficiencies are essentially indepen-
dent of dNch/dη in the measured multiplicity range, these corrections and their correspond-
ing systematic uncertainties largely cancel in the ratio to the multiplicity-integrated yield,
thus resulting in a lower systematic uncertainty for self-normalised yields compared to the
one for the pT spectra.

The total systematic uncertainties on the pT spectra and the self-normalised yields were
calculated by summing the different contributions in quadrature, as they are considered to
be uncorrelated.
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pp,
√

s = 13TeV p-Pb, √sNN = 8.16TeV

Multiplicity pT interval (GeV/c) pT interval (GeV/c)

intervals 0.5–6 6–12 15–30 0.5–6 6–8 14–26

Track selection

I negl. 2% 2% negl. 3% 3%

III negl. 2% 2% negl. 3% 3%

V negl. 2% 2% negl. 4% 4%

SPD hit requirement

I 10% 6% 14% 10% 2% 10%

III 3% 6% 6% 2% 2% 2%

V 4% 6% 6% 2% 2% 2%

Electron identification

I 1% 3% 3% 1% 2% 2%

III 1% 3% 3% 1% 2% 2%

V 1% 3% 3% 1% 4% 4%

Photonic electron
subtraction

I 1% 1% 2% 1% 1% 1%

III 1% 2% 2% 1% 1% 1%

V 1% 2% 2% 1% 1% 1%

Total systematics

I 10% 7% 15% 10% 4% 11%

III 3% 7% 7% 2% 4% 4%

V 4% 7% 7% 2% 6% 6%

Table 8. Systematic uncertainty on self-normalised yield in pp collisions at
√
s = 13 TeV and p-Pb

collisions at √sNN = 8.16 TeV.

6 Results

6.1 pT-differential cross section of heavy-flavour hadron decay electrons in pp
and p-Pb collisions

The pT-differential production cross section of electrons from semileptonic decays of
heavy-flavour hadrons at midrapidity in pp collisions at

√
s = 13TeV measured in the

transverse momentum interval 0.2 < pT < 35GeV/c is shown in figure 5. The statistical
uncertainties are represented as vertical lines while the total systematic uncertainties are
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displayed as boxes. In the top left panel of figure 5, the cross sections measured with
the TPC-TOF detectors and the two different data sets collected with different magnetic
fields are plotted together with the spectra obtained using the TPC-EMCal detectors with
MB triggered events, as well as with EMCal triggered events, EG1, and EG2. The ratios
of the different analyses in the overlapping pT intervals are shown in the bottom left panel
of figure 5. For 0.5 < pT < 4 GeV/c, the ratio of the result from the TPC-TOF analyses
with B = 0.5 T to the one obtained with B = 0.2 T is displayed. In 3 < pT < 4 GeV/c,
the ratio of the cross section obtained from the TPC-TOF analysis to that obtained from
the TPC-EMCal analysis is shown for MB triggered events. At higher pT, namely 6 <
pT < 10 GeV/c (12 < pT < 18 GeV/c), the ratio of the TPC-EMCal results for MB and
EG2 (EG2 and EG1) triggered events is reported. All ratios are consistent with unity
within statistical and systematic uncertainties, which demonstrates that the different
analyses are in agreement with each other. The final cross section in the pT intervals
0.2–0.5GeV/c, 0.5–4GeV/c, 4–6GeV/c, 6–12GeV/c, and 12–35GeV/c was obtained from
the TPC-TOF low-B field analysis, the TPC-TOF nominal-B field analysis, and from
the results obtained with the TPC-EMCal detectors using MB, EG2 and EG1 triggered
events, respectively. In this way, for each pT range, the measurement with the smallest
total uncertainty (quadratic sum of statistical and systematic uncertainty) is used.

The pT-differential cross section measurement was compared with FONLL [34] and
GM-VFNS [32] pQCD calculations,1 as shown in the right panel of figure 5. The uncer-
tainties of the FONLL calculations reflect different choices for the charm- and beauty-quark
masses, and for the factorisation and renormalisation scales as well as the uncertainty on
the set of parton distribution functions (PDF) (CTEQ6.6 [162]). The FONLL calculations
describe the measurements within the uncertainties, although the theoretical uncertainties
are large, up to a factor of two. The data are found to be close to the upper edge of the
FONLL prediction, which can be clearly seen in the right bottom panel of figure 5, where
the ratio of the data points to the FONLL calculations is shown. Similar observations were
made for the measurements of electrons from heavy-flavour hadron decays in pp collisions
at lower energies at the LHC [9, 142, 153, 154] and at RHIC [163, 164]. The measurement
of the cross section of D mesons is also consistent with upper bound of FONLL pQCD
calculations in pp collisions at LHC [5, 6, 8, 12, 13, 160, 165] and RHIC [166], as well
as in pp̄ collisions at Tevatron energies [167]. The FONLL calculations use fragmenta-
tion functions tuned on e+e− data and assume that all charm quarks fragment only into
D+ and D0 mesons (and their antiparticles). Recent measurements of charm-baryon pro-
duction at midrapidity in pp and p-Pb collisions from ALICE show a baryon-to-meson
ratio significantly higher than that in e+e− collisions, suggesting that the fragmentation of
charm quark is not universal across different collision systems [14, 168]. As a consequence,
calculations taking properly into account the latest open-cham baryon measurements at
midrapidity to constrain the charm fragmentation are expected to predict a smaller yield of

1Central values : FONLL : µF = µR =
√
m2

Q + p2
T, mb = 4.75 GeV, mc = 1.5 GeV;

GM − VFNS : µF = 0.49 µR, µR =
√

4m2
Q + p2

T, mb = 4.5 GeV, mc = 1.5 GeV;
where µR = renormalization scale, µF = factorisation scale.
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Figure 5. Left, top: pT-differential cross section of electrons from heavy-flavour hadron decays in
pp collisions at

√
s = 13TeV measured at midrapidity with different detectors and data sets. Left,

bottom: ratios of the different measurements in the overlapping pT intervals. Right: pT-differential
cross section compared with Fixed Order with Next-to-Leading-Log resummation (FONLL) [34]
and General-mass-variable-flavour-number-Scheme (GM-VFNS) [33] predictions and its ratios with
respect to FONLL and GM-VFNS central values in the two lower panels. Vertical bars and boxes
denote statistical and systematical uncertainties, respectively.

heavy-flavour hadron decays by about 9% compared to the FONLL spectrum. The largest
source of uncertainties in the GM-VFNS prediction is due to scale variation, and hence
PDF related uncertainties and variations of the bottom and charm mass are not considered.
The GM-VFNS framework includes leptoproduction from the following three steps: beauty
quark to beauty hadrons (b → B), transition from beauty quark to charm hadrons (b → B
→ D), and charm quark to charm hadrons (c → D). The GM-VFNS calculations describe
the data within the uncertainties for pT greater than 5 GeV/c, but largely underestimate
the cross section for lower pT, up to a factor of five at 1 GeV/c, as seen in the right middle
panel of figure 5. Similar observations were reported for the non-prompt D meson measure-
ments at

√
s = 5.02 TeV [165]. For prompt D mesons at

√
s = 5.02 TeV, however, the

GM-VFNS predictions describe the cross section within the uncertainties [165]. Electrons
from heavy-flavour hadron decays are dominated by semileptonic decays of beauty hadrons
for pT > 5 GeV/c [28, 169]. Therefore, the cross section measured up to 35GeV/c can
provide important information to beauty hadron production.

The pT-differential production cross section of electrons from semileptonic heavy-
flavour hadron decays at midrapidity in p-Pb collisions at √sNN = 8.16TeV measured
in the transverse momentum interval 0.5 < pT < 26GeV/c is shown in figure 6. In the
upper panel of figure 6, the cross sections measured with the TPC-TOF detectors are
plotted together with the measurements obtained using the TPC-EMCal detectors with
MB and EMCal EG2 and EG1 triggered events. On the bottom left panel of figure 6, the
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Figure 6. Top: pT-differential cross section of electrons from heavy-flavour hadron decays in p-Pb
collisions at √sNN = 8.16 TeV measured at midrapidity with different detectors. Bottom: ratios of
the different measurements in the overlapping pT intervals.

ratios of the cross sections obtained from the different measurements are calculated in the
overlapping pT intervals. For 3 < pT < 5 GeV/c, the ratio of the result obtained from the
TPC-TOF analysis with respect to that from the TPC-EMCal is shown for MB triggered
events. For 6 < pT < 10 GeV/c (12 < pT < 14 GeV/c) the ratio of the TPC-EMCal results
obtained with MB and EG2 triggered events (EG2 and EG1) is reported. All ratios are
consistent with unity within statistical and systematic uncertainties. The same strategy as
in pp collisions was used to get the final cross section in p-Pb collisions. The final cross sec-
tion in the pT intervals 0.5–4GeV/c, 4–6GeV/c, 6–9GeV/c, and 9–26GeV/c was obtained
from the TPC-TOF nominal-B field analysis and from the results using the TPC-EMCal
detectors with MB, EG2, and EG1 triggered events, respectively.

6.2 Nuclear modification factor of electrons from heavy-flavour hadron decays
in p-Pb collisions

The nuclear modification factor of electrons from heavy-flavour hadron decays, RpPb, is
defined as

RpPb(pT, y) = 1
A

d2σpPb/dpTdy
d2σpp/dpTdy , (6.1)

where d2σpPb/dpTdy is the cross section of electrons from heavy-flavour hadron decays
measured in p-Pb collisions at √sNN = 8.16 TeV and d2σpp/dpTdy is the cross section
of electrons from heavy-flavour hadron decays in pp collisions at the same centre-of-mass
energy, scaled with the number of nucleons (A) in the lead ion. The reference cross section
in pp collisions was obtained using the measurement at

√
s = 13 TeV, presented here. The

cross section at
√
s = 13 TeV was scaled to

√
s = 8.16 TeV using pQCD calculations. The

pT-dependent scaling factor was obtained by calculating the ratio of the production cross
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sections of electrons from heavy-flavour hadron decays from FONLL calculations [34] at√
s = 8.16TeV to

√
s = 13TeV. The systematic uncertainty on the pp reference includes

the systematic uncertainties on the measured cross section at
√
s = 13TeV, which was

described above, and the ones on the pT-dependent scaling factor. The uncertainty on the
scaling factor ranges between 11% and 1% going from pT = 0.2 GeV/c to pT = 26 GeV/c.
This includes the uncertainties on the PDFs, quark masses, and factorisation and renor-
malisation scales, as described in ref. 170. The two contributions were added in quadrature
leading to a total systematic uncertainty of 5-15%, depending on pT. In addition, a global
normalisation systematic uncertainty of 2.3% from the pp analysis at

√
s = 13TeV was

also considered. The pT-differential cross section of electrons from heavy-flavour hadron
decays in pp collisions at

√
s = 13 TeV scaled to

√
s = 8.16 TeV using the aforementioned

procedure is shown together with the pT-differential cross section of electrons from
heavy-flavour hadron decays in p-Pb collisions at √sNN = 8.16 TeV in figure 7.

The nuclear modification factor of electrons from heavy-flavour hadron decays as a
function of transverse momentum at √sNN = 8.16TeV is presented in figure 8. The statis-
tical and systematic uncertainties of the spectra in p-Pb and pp collisions were propagated
as uncorrelated. The normalisation uncertainties are shown as a solid box at RpPb = 1.
The RpPb is consistent with unity within statistical and systematic uncertainties over the
whole pT range of the measurement. Modifications of the cross section of electrons from
heavy-flavour hadron decays in p-Pb collisions due to different cold nuclear matter ef-
fects, are small compared to the current uncertainties of the measurement in the probed
pT range. The sample of electrons from heavy-flavour hadron decays is dominated by
beauty-hadron decays for pT > 5GeV/c [28, 171]. The RpPb was fitted with a constant
function above 5 GeV/c and the value was 0.95 ± 0.02(stat.) ± 0.13(sys.), thus consistent
with unity within 13%. The RpPb of unity indicates that the beauty production is not
modified in p-Pb collisions within the kinematic range of this measurement, which is also
consistent with the measurement of RpPb of beauty-decay electrons up to pT = 8GeV/c
at √sNN = 5.02TeV [19]. In the right panel of figure 8, the RpPb at √sNN = 8.16TeV
is compared with that at √sNN = 5.02TeV and different theoretical models provided for
√
sNN = 5.02TeV [141]. The RpPb is observed to be independent of the centre-of-mass

energy. The data disfavour the enhancement trend at low pT predicted by the model cal-
culations which are based on incoherent multiple scatterings [172]. Model predictions which
are based on coherent multiple scattering and energy loss in the CNM, pQCD calculations
using FONLL framework and EPS09NLO for the nuclear modification of the PDF, as well
as calculations which assume the formation of a hydrodynamical expanding medium in p-
Pb collisions at √sNN = 5.02TeV within the Blast wave framework predict an RpPb close
to unity and are in agreement with the measurements.

6.3 Self-normalised yield of electrons from heavy-flavour hadron decays
vs. normalised multiplicity in pp and p-Pb collisions

The self-normalised yield of electrons from heavy-flavour hadron decays as a func-
tion of the self-normalised charged-particle pseudorapidity density at midrapidity, i.e.,
d2N/dpTdy/〈d2N/dpTdy〉INEL>0 vs. dNch/dη/ 〈dNch/dη〉, in pp collisions at

√
s = 13TeV
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Figure 7. pT-differential cross section of electrons from heavy-flavour hadron decays measured in
p-Pb collisions at √sNN = 8.16 TeV compared with the pp reference at the same centre-of-mass
energy obtained from the measurement in pp collisions at

√
s = 13 TeV scaled to

√
s = 8.16 TeV.
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Figure 8. The nuclear modification factor RpPb of electrons from heavy-flavour hadron decays in
p-Pb collisions at √sNN = 8.16 TeV (left) compared with that at √sNN = 5.02 TeV and theoretical
models at √sNN = 5.02 TeV (right) [141].

is presented in figure 9. The results are self-normalised to the INEL > 0 event class. The
measurements were performed in five pT intervals from 0.5 to 30GeV/c. The dashed line
shown in the figure is a linear function with a slope of unity. The available data sam-
ples allow us to examine events with a multiplicity more than six times larger than the
average multiplicity in pp collisions. The self-normalised yield of electrons from heavy-
flavour hadron decays grows faster than linear with the self-normalised multiplicity. The
measurement in intervals of pT shows that this increase is more pronounced for high-pT
electrons. The yield of heavy-flavour decay electrons increases by approximately a factor
of nine with respect to its multiplicity-integrated value for the lowest measured pT in-
terval (0.5 < pT < 1.5 GeV/c) and a factor of 29 for the highest measured pT interval
(20 < pT < 35 GeV/c) for multiplicities of six times the average multiplicity.
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Figure 9. Self-normalised yield of electrons from heavy-flavour hadron decays as a function of
normalised charged-particle pseudorapidity density at midrapidity computed in pp collisions at

√
s

= 13 TeV in different pT intervals.
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Figure 10. Ratio of the self-normalised yields in different pT intervals with respect to that in the
6 < pT < 12 GeV/c interval (left) and double ratio of the self-normalised yields of electrons to the
self-normalised multiplicity (right) in pp collisions at

√
s = 13TeV for three pT ranges.

In the left panel of figure 10, the ratios of the self-normalised yields of electrons from
heavy-flavour hadron decays in various pT intervals with respect to the one measured in
the 6 < pT < 12GeV/c interval are shown. The yield of lower-pT electrons is higher in
low multiplicity events, while it decreases in higher multiplicity events. An opposite trend
is observed for electrons at higher pT, where the yield is lower in low multiplicity events
and increases at higher multiplicities. The increase of the slope with pT is influenced
by the momentum dependence of jet fragmentation affecting the measured multiplicity
at midrapidity, and the momentum dependence of the fraction of electrons from charm
and beauty hadron decays. The relative fraction of electrons from beauty hadron decays
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Figure 11. Comparison of the self-normalised yield of electrons from heavy-flavour hadron decays
as a function of multiplicity measured in pp collisions at

√
s = 13 TeV for different pT intervals

with PYTHIA 8.2 Monash tune (left) and PYTHIA 8.2 with CR mode 2 (right). The width of
the band is the statistical uncertainty from PYTHIA simulations. The bottom panel shows the
ratio of data with respect to the MC predictions. The vertical bars correspond to the propagated
statistical error from the data and the MC predictions, and the boxes correspond to systematical
uncertainties from the data.

increases with pT and becomes the main source of heavy-flavour hadron decay electrons at
high pT (pT > 5GeV/c) [106, 107, 173].

In the right panel of figure 10, the double ratio of the self-normalised electron yield to
the self-normalised multiplicity in pp collisions is presented. The double ratio is observed
to increase with multiplicity. The increase is weaker for low-pT electrons than for high-
pT electrons. A linear function was used to fit the multiplicity dependence of the double
ratio, which was found to describe the data reasonably well for all pT intervals. This
indicates that in the measured pT range the yield grows approximately with the square of
the multiplicity with a slope increasing with pT.

The self-normalised yield of electrons from heavy-flavour hadron decays is compared in
figure 11 with PYTHIA 8.2 simulations using different tunes. In the PYTHIA 8.2 frame-
work, multiparton interactions (MPI) and the colour reconnection (CR) mechanism are
implemented, which reproduce the charged-particle multiplicity distribution measured at
the LHC [111, 174]. These mechanisms are important in order to describe the stronger than
linear increase of charm and beauty production with multiplicity as demonstrated in [106].
The charged-particle multiplicity also includes particles directly produced in the same hard
partonic scattering process in which the heavy quark is created, making them strongly re-
lated. These dependencies come from the initial- and final-state radiations, decays of heavy-
flavour hadrons, and charged particles produced in the jet fragmentation and are known

– 26 –



J
H
E
P
0
8
(
2
0
2
3
)
0
0
6

Figure 12. Comparison of self-normalised yield of electrons from heavy-flavour hadron decays
as a function of multiplicity measured in pp collisions at

√
s = 13 TeV for different pT intervals

with EPOS 3 hydro calculations. The width of the band is the statistical uncertainty from EPOS
simulations. The bottom panel shows the ratio of data with respect to the MC predictions. The
vertical bars correspond to the propagated statistical error from the data and the MC predictions,
and the boxes correspond to systematical uncertainties from the data. The ratio for the lowest
multiplicity point for 15 < pT < 30 GeV/c (not shown in the figure) is 13±18.

as auto-correlation effects. A study of the self-normalised yield of heavy-flavour particles
using the PYTHIA 8.2 generator shows that the stronger than linear increase of the yield of
heavy-flavour particles is mainly driven by auto-correlation effects. In the absence of auto-
correlation effects the increase of the yield of particles produced in hard scattering processes
is weaker than linear for multiplicities exceeding about three times the mean multiplic-
ity [173]. In PYTHIA 8.2, the pT dependence of the increase of the self-normalised yield
with multiplicity is also due to auto-correlation effects introduced by the parton fragmen-
tation because high momentum partons are accompanied by a larger number of fragments
which contribute to the multiplicity. In the case of electrons from heavy-flavour hadron
decays, the high-pT part of the spectra is dominated by beauty decay electrons, whose
yield was demonstrated to have a more pronounced increase with multiplicity due to the
larger jet activity [173]. In the left panel of figure 11, the measured self-normalised yield of
electrons from heavy-flavour hadron decays is compared to calculations with the PYTHIA
8.2 Monash tune that describe the overall trend in data, but the slope is overestimated at
high pT. In the right panel of figure 11, an improved tune which includes string formation
beyond the leading-colour approximation i.e. PYTHIA 8.2 with CR mode 2 [101, 175], is
shown to reproduce the pT dependence, however the slope is underestimated at high pT.

Calculations with the EPOS 3 event generator [117] are able to reproduce the data
well, except for the highest measured pT interval, as can be seen in figure 12. In the
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Figure 13. Comparison of the self-normalised yield of electrons from heavy-flavour hadron decays
measured in pp collisions at

√
s = 13 TeV with the self-normalised yields of J/ψ in pp collisions at√

s = 13 TeV (top left), charged particles in pp collisions at
√
s = 13 TeV (top right), D mesons

in pp collisions at
√
s = 7 TeV (bottom left) and strange particles in pp collisions at

√
s = 13 TeV

(bottom right), in comparable pT bins.

EPOS 3 model, the elementary scattering objects are pomerons, which are exchanged
between the partons participating in the collision. The pomerons consist of a hard pQCD
scattering vertex, accompanied by initial (space-like) and final (time-like) state parton
emission. The production of a hard probe is more likely from events with hard pomeron
exchanges. This implies that for a given charged-particle multiplicity the presence of heavy-
flavour hadrons favours events with fewer but harder pomerons, which leads to a stronger
than linear increase of heavy-flavour production with charged-particle multiplicity. The
increase also gets stronger with the increasing pT, which, as discussed above for the case
of PYTHIA 8.2 simulations, is related to the hardness of the partonic scattering and the
accompanying jet activity in the event. The subsequent hydrodynamic evolution of the
system then amplifies the increase because the charged-particle multiplicity is reduced by
the hydrodynamic expansion, in contrast to the heavy-flavour production. The charged-
particle multiplicity is reduced because part of the available energy goes into flow rather
than particle production [176].
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The trend of the self-normalised yield of electrons in pp collisions as a function of
self-normalised multiplicity is compared in figure 13 with the self-normalised yield of other
particles measured by the ALICE Collaboration, namely J/ψ [107], charged particles [114],
strange hadrons [177] in pp collisions at

√
s = 13 TeV, and D mesons [106] in pp

collisions at
√
s = 7 TeV. The self-normalised yields for strange hadrons were calculated

using the multiplicity-dependent cross section measurements reported in [177]. These
self-normalised yields allow a direct comparison of multiplicity-dependent production of
different particle species, with the advantage that the charged-particle pseudorapidity
density is measured using the same detector and procedure. The pT ranges of electrons
are selected to be similar to the measured pT range of the compared particles, with a
caveat that the pT interval of electron parents (heavy-flavour hadrons) is considerably
broader and shifted towards higher pT values compared to the one of the electrons. The
slope of the increase of the self-normalised yield of electrons from heavy-flavour hadron
decays as a function of self-normalised multiplicity at midrapidity is similar to that
measured for J/ψ, charged particles, strange mesons, and D mesons in similar pT ranges.
At high and intermediate pT, the production of hadrons is dominated by hard partonic
scattering processes, independent of the particle species, accompanied by jet activity in
the event. For heavy-flavour particles this is also true at low pT due to the large charm and
beauty quark masses. As it was discussed above, in PYTHIA 8.2, the particle production
associated with jet activity leads to strong auto-correlation effects, which give rise to the
observed stronger than linear increase of particle yields, making the self-normalised yield
of the different particles reported here compatible with each other.

The self-normalised yield of electrons from heavy-flavour hadron decays as a func-
tion of the self-normalised charged-particle pseudorapidity density for p-Pb collisions at
√
sNN = 8.16 TeV is presented in figure 14. The results are self-normalised to the INEL> 0

event class, similarly to pp collisions. The dashed line is a linear function with a slope of
unity as shown in the figure. The measurements were performed in five pT intervals from
0.5 GeV/c to 26 GeV/c. Events with multiplicity more than four times larger than the
average multiplicity in p-Pb collisions are studied. The self-normalised yield of electrons
from heavy-flavour hadron decays grows faster than linear with the self-normalised multi-
plicity. The measurements in pT intervals show no pT dependence within the uncertainties
of the measurement. The yield increase is approximately a factor of seven for multiplicities
four times larger than the average multiplicity.

In the left panel of figure 15, the ratios of the self-normalised yield of electrons from
heavy-flavour hadron decays in various pT intervals with respect to the one measured in
the 3 < pT < 6 GeV/c interval are shown. Contrary to the pp collision case, within the
uncertainties no pT dependence is observed. The right panel of figure 15 shows the double
ratio of the self-normalised heavy-flavour hadron decay electron yield to the self-normalised
multiplicity. The double ratio increases with multiplicity, with no dependence on pT. The
double ratio was fitted with a linear function, which reasonably describes the data for all pT
intervals. This indicates that in the measured pT range the yield increases approximately
with the square of the multiplicity with a similar coefficient for all pT intervals.
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Figure 14. Self-normalised yield of electrons from heavy-flavour hadron decays as a function of
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at √sNN = 8.16 TeV in different pT intervals. The position of the points on the x-axis are shifted
horizontally by δx to improve the visibility.

0.5 1 1.5 2 2.5 3 3.5 4
<1|η|

INEL>0
〉 η/d

ch
N d〈 / η/dchNd

0

0.5

1

1.5

2

2.5

 
c

 <
 6

 G
e
V

/
T

p
 i
n
 3

 <
 

y
d

T
p

/d
N

2
R

a
ti
o
 t
o
 d

      ALICE
 = 8.16 TeV

NN
sPb, −p

 e →c,b 

c < 3 GeV/
T

p0.5 < 

c < 14 GeV/
T

p9 < 

c < 26 GeV/
T

p14 < 

 5 % uncertainty on± 
 multiplicity not shown 

0.5 1 1.5 2 2.5 3 3.5 4
<1|η|

INEL>0
〉 η/d

ch
N d〈 / η/dchNd

0.5

1

1.5

2

2.5

 
〉

η
/d

c
h

N
d〈

 /
 

η
/d

c
h

N
d

〉
y

d
T

p
/d

N
2

d〈
 /
  

y
d

T
p

/d
N

2
d  

ALICE 
 = 8.16 TeV

NN
sPb, −p

 e →c,b 

 a 

0.62

0.47
0.49

 b

0.33

0.44
0.42

 + b,xFit Function: a

c < 3 GeV/
T

p0.5 < 

c < 14 GeV/
T

p  9 < 
c < 26 GeV/

T
p14 < 

 5 % uncertainty on± 
multiplicity not shown 

Figure 15. Ratio of the self-normalised yield in different pT intervals with respect to that in the
3 < pT < 6 GeV/c interval (left). Double ratio of the self-normalised yield of heavy-flavour hadron
decay electrons to the self-normalised multiplicity in p-Pb collisions at √sNN = 8.16 TeV in three
pT ranges (right).

Though the self-normalised yields of electrons from heavy-flavour hadron decays in pp
and p-Pb collisions show similar features in their increase with multiplicity, a quantitative
comparison of the measurements between the two systems is not straightforward. In pp
collisions, a high multiplicity event arises mostly from hard events, with multiparton in-
teractions and jets fragmenting in multiple hadrons. In p-Pb collisions, the multiplicity
dependence of heavy-flavour production is also driven by the presence of multiple binary
nucleon-nucleon interactions, which make the contribution from possible auto-correlation
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Figure 16. Self-normalised yields of electrons from heavy-flavour hadron decays as a function of
self-normalised charged-particle pseudorapidity density at midrapidity measured in p-Pb collisions
at √sNN = 8.16 TeV compared with EPOS 2.592 without-hydrodynamics in two pT intervals 0.5
< pT < 3 GeV/c and 3 < pT < 6 GeV/c. The width of the band is the statistical uncertainty from
EPOS simulations. The bottom panel shows the ratio of data with respect to the MC predictions.
The vertical bars correspond to the propagated statistical uncertainties from the data and the MC
predictions, and the boxes correspond to systematical uncertainties from the data.

effects smaller in such collisions. In p-Pb collisions, an event with a high multiplicity value
similar to those in pp collisions can come from the superposition of a few soft nucleon-
nucleon collisions. Therefore, for similar multiplicity, the hardness of the event is not the
same in the two systems.

The self-normalised yield of electrons from heavy-flavour hadron decays is compared
in figure 16 with EPOS 2.592 simulations [117, 178]. The measurements in two pT intervals
are compared with the EPOS model without the hydrodynamic component, as provided by
the authors. The EPOS model shows no pT dependence similar to the observations in the
data, but underpredicts the data at high multiplicity, showing an almost linear increase.

The self-normalised electron yields in p-Pb collisions in different pT ranges are also
compared with the normalised yields of D mesons [111] in p-Pb collisions at √sNN =
5.02 TeV in figure 17. Similar to the observation in pp collisions, the self-normalised
yield of electrons from heavy-flavour hadron decays as a function of the self-normalised
multiplicity shows a trend compatible with the one of D mesons. Also the multiplicity
dependence of D meson yields in p-Pb collisions does not show a pT dependence, which
gives a hint that the production mechanisms of charm and beauty as a function of the
multiplicity in p-Pb collisions are similar.

7 Summary

Heavy-flavour production at midrapidity was studied using electrons from heavy-flavour
hadron decays in pp collisions at

√
s = 13 TeV and in p-Pb collisions at √sNN = 8.16 TeV
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Figure 17. Self-normalised yields of electrons from heavy-flavour hadron decays measured in p-Pb
collisions at √sNN = 8.16 TeV for different pT intervals compared with self-normalised yields of D
mesons in p-Pb collisions at √sNN = 5.02 TeV. The position of the points for p-Pb collisions at√
sNN = 5.02 TeV on the x-axis are shifted horizontally by δx to improve the visibility.

with the ALICE detector at the LHC. The pT-differential production cross section of elec-
trons from heavy-flavour hadron decays in pp collisions was compared with FONLL and
GM-VFNS (b → B → D → e, b → B → e, c → D → e) pQCD calculations. The data are
observed to lie on the upper edge of the FONLL uncertainties. The GM-VFNS calculation
underestimates the cross section at low pT but describes the data within the uncertainties
for pT > 5 GeV/c. The nuclear modification factor in p-Pb collisions, RpPb, was computed
and is consistent with unity within the statistical and systematic uncertainties. The RpPb
measurement shows no effects that could signal the formation of a hot medium and no sig-
nificant cold nuclear matter effects within the uncertainties of the data in the measured pT
range. The RpPb at√sNN = 8.16 TeV is consistent with that measured at√sNN = 5.02 TeV.

The multiplicity-dependent production of electrons from heavy-flavour hadron decays
was measured using the self-normalised yield as a function of self-normalised charged-
particle pseudorapidity density at midrapidity in pp and p-Pb collisions as a function of
transverse momentum. A faster than linear increase was observed in both pp and p-Pb
collisions. While in p-Pb collisions, no pT dependence is observed within uncertainties, in pp
collisions a strong pT dependence is seen with high-pT electrons showing a faster increase as
a function of the self-normalised multiplicity. The measurement of self-normalised yield of
electrons from heavy-flavour hadron decays in pp collisions was compared with PYTHIA 8.2
and EPOS 3 simulations, which describe the data. The measurement in p-Pb collisions was
compared with the EPOS 2.592 model without hydrodynamics, which underestimates the
data. The comparison of self-normalised yields of heavy-flavour and light-flavour particles
show a similar stronger than linearly increasing trend in both colliding systems. In pp
collisions the stronger than linear increase of heavy-flavour particles is mainly driven by
auto-correlation effects which are independent of particle species, whereas in the case of
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p-Pb collisions, it is difficult to draw any conclusion since the multiplicity dependence of
heavy-flavour production is also largely affected by the presence of multiple binary nucleon-
nucleon interactions.
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