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Second gradient Green-Naghdi type thermo-elasticity and viscoelasticity

Mauro Fabrizioa, Franca Franchia,∗, Roberta Nibbia

aDepartment of Mathematics, University of Bologna, 5 Piazza di Porta S. Donato, 40126 Bologna, Italy

Abstract

In this paper we perform a thermodynamically consistent theory for second gradient Green-Naghdi revisited type
thermo-elasticity and viscoelasticity by developing a non-standard version of the virtual powers method. We empha-
size the incontrovertible effectiveness of variational arguments to approach non local continuum structures. Notably,
non local Kelvin-Voigt type viscoelastic models and non local/local revised Green-Naghdi rigid heat conduction the-
ories are recovered as special constitutive settings, also providing a fruitful comparison with pre-existent modelings.

Keywords: Virtual powers, second gradient thermo-viscoelasticity, Green-Naghdi and Kelvin-Voigt theories.

Devoted to Prof. Brian Straughan on the occasion of
his 75th birthday: a great researcher, but above all a
great lifelong friend!

1. Introduction

We face some issues related to the thermodynamic de-
scription of non local thermo-elastic materials, within
the small deformations approach, with the aim of en-
hancing the strategy of the virtual powers format.
Specifically, we focus on second gradient linear elas-
ticity in the presence of analogous non local thermal
properties, within a revisited Green-Naghdi (shortly G-
N) type heat theory. We observe that G-N heat theories
(see e.g. [13, 14, 15]) have aroused the great attention
of many researchers, also for constructive criticisms,
see e.g. [4, 17]. There is also awareness that, due to
their employment in many areas of continuum mechan-
ics with interesting applications to micro- and nano-
thermal devices, a reexamination of their local/non local
constitutive features is worthwhile, see [16, 17, 18]

The introduction of suitable retardation parameters,
responsible for memory effects, leads to a non local
thermo-viscoelastic theory of Kelvin-Voigt (shortly K-
V) type, which might be easily generalized by incorpo-
rating the dependence on past histories. Nowadays, K-
V type viscoelasticity has been increasingly occupying
attention in literature, also within generalized theories

∗Corresponding author
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(see e.g [20, 10] and references therein). Our constitu-
tive theories are going to allow for memory effects at
micro- and nano-scales interacting phenomena, where
different size effects on heat conduction and elastic de-
formations become essential and standard local theories
are proven to fail [22].

Moreover, non local theories have acquired a fun-
damental importance in very different research fields,
ranging from physics and engineering to biology and
medicine, even mixing the phenomena together and
hence assessing multidisciplinary scale effects.

As well known, the so called Rational Thermody-
namics approach (see [8] and references therein) ad-
dresses only simple (local) materials, therefore the two
Laws must be re-adapted for describing non local struc-
tures. In our opinion the virtual powers method repre-
sents the most efficient strategy to face such complex
materials: besides weak formulations, which need less
smoothness requirements, it guarantees a universal and
a priori tool since it is based on the rheological aspects
under study and furnishes all the (balance and imbal-
ance) local equations together with the appropriate con-
stitutive boundary conditions (see e.g. [12, 5] and ref-
erences therein). In this paper we just follow the guide-
lines of this method, within a non-standard version.

The outline of the paper is as follows. In Section 2,
besides some preliminary notations and definitions, we
develop a revised version of the virtual powers method,
based on the notion of the coldness displacement, and
perform novel non isothermal second order gradients
elastic/viscoelastic settings, under analogous non local
thermal properties through a revisitation of G-N heat
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theories. In Section 3 non local K-V type viscoelas-
tic models and non local/local revisited G-N type rigid
heat theory are recovered as special constitutive set-
tings. generalizable to further hereditary effects, also
furnishing some comparisons with pre-existent litera-
ture modelings.

2. Second gradient thermo-elastic and viscoelastic
models: preliminaries, the guidelines of the gen-
eral virtual powers scheme and thermodynamic
restrictions

As a brief review of kinematical aspects, let a typical
simple/non simple body be pointwise identified with the
initial configuration B(0) of the ordinary 3D Euclidean
space. Let P(0) be an arbitrary body part (sub-body) of
B(0), with outward unit normal n on its boundary. So
we work on the space-time cylinder P(0) × (0,T ). In
what follows, we address the Lagrangian description of
Continuum Mechanics, within the small deformations
approach, using the standard notations but granting us
some slight nomenclature changes to avoid “writing dis-
tractions”.

A simple dot stands for the scalar product between
vectors or tensors of any order, independently of con-
tracted index pair. As usual, the material position X is
related to the current position x(t), via the material dis-
placement vector u, as u = x(t) − X, and, for brevity,
henceforth the space dependence of the fields is gener-
ally omitted. Further an upper dot over a symbol de-
notes the time derivative, so that the velocity field is
v = u̇. The tensor E = sym(∇u) represents the lin-
earized form of the Green-St-Venant strain tensor to de-
note the infinitesimal strain tensor, and ρ0 stands for the
(positive and constant) reference mass density. Without
any misunderstanding the first Piola-Kirchhoff stress
tensor will be still denoted by T, likewise we use the
notation θ for the material temperature, q for the heat
flux vector in its material form and so on for the inter-
nal energy density e and the entropy density η, the body
force density b and the heat supply density r.

In analogy with the displacement vector u, we intro-
duce the coldness displacement, denoted by k̂, defined
as a time primitive of the coldness k = 1/θ, so that ˙̂k = k.

The “kinetics” of our thermo-elastic behavior is char-
acterized by the pair (u, k̂), so that the pair (u̇, ˙̂k) repre-
sents the real “velocities”, whereas the virtual (test) “ve-
locities” will be given by (δu, δk̂). As usual, the virtual
velocities are supposed sufficiently smooth with com-
pact support on the space-time cylinder in study.

Let us also define the modified Helmholtz free energy
per unit mass

ψ̃ = kψ = ke − η , (1)

replacing the standard free energy ψ = e−θη. Therefore,
dealing with thermal properties, the natural variable be-
comes the coldness rather than the temperature.

We conclude the first part of this section, with some
useful considerations over the strategic notion of the
state σ and the associated process P within a local/non
local constitutive theory. On the Lagrangian point of
view, for simple isothermal linearly elastic materials
one has σ = ∇u with process P = ∇u̇. The first Piola-
Kirchhoff stress tensor T depends on the present value
of ∇u, so that the internal mechanical power density has
form T · ∇u̇.

More generally, the deformation can be better ap-
proximated considering higher order strain gradients.
Herein we focus on second strain gradient materials, so
the effective stress tensor splits as follows:

T = T2 − ∇ · T3 , (2)

where the hyper-stress T3 is a third order tensor, which
is supposed to be symmetric with respect to the last two
indices. In a simplified constitutive setting, T3 may be
chosen proportional to the gradient of T2, via a param-
eter representing an internal length modulo able to cap-
ture different size-dependent effects [9, 1]. Meanwhile
one may propose a non isothermal simple/non simple
elastic theory, within the classical (Fourier, Cattaneo,
Green-Naghdi) simple heat theories: the state is then
re-defined to incorporate thermal variables, like, by way
of our idea, the coldness and the coldness displacement
gradient, whereas the process expands to include their
time derivatives. Nevertheless, it is not unrealistic to ar-
gue on a complex heat theory, for which it is possible to
give a suitable definition of higher order thermal effects.
Henceforth, for our aims, we concentrate on second gra-
dient thermo-elastic materials.

To better understand, in the case of a rigid heat con-
ductor of grade 2, the effective heat flux vector splits
as

q = q1 − ∇ ·Q , (3)

where the second order symmetric tensor Q plays the
role of a hyper-heat flux tensor, so that its divergence ac-
counts for the flux exchanging between bulk and surface
points. Again, as before, in a simplified frame, it may be
chosen proportional to the gradient of the classical heat
flux vector q1. So, only one additional parameter, with
the role of an internal length, enters to address micro- to
nano-devices and the simple stationary/rate constitutive
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setting for q1 affects the non local thermal features. As
a consequence, the state σ and the process P broaden
due to non local behaviors.

We now propose a non standard version of the virtual
powers method, based on the notion of the coldness dis-
placement, to derive all the balance and imbalance laws,
together with the appropriate boundary conditions, for
the non local thermo-mechanical structures we have in
mind.

Let us first begin to work with the weak formulation
of the momentum equation

ρ0ü = ∇ · T + ρ0b (4)

for all reference sub-bodies P(0) ⊂ B(0) and for any
sufficiently smooth virtual velocity field δu.

Henceforth, following [11], the virtual and the real
internal mechanical powers are expressed as

P(i)
m (P(0); δu) =

∫
P(0)

T · ∇δu d V =

∫
P(0)

p̃(i)
m d V (5)

P(i)
m (P(0)) =

∫
P(0)

T · ∇u̇ d V =

∫
P(0)

p(i)
m d V (6)

where δu is replaced by the the real velocity u̇ and p(i)
m

represents the density of the global internal mechani-
cal power. By denoting the external virtual mechan-
ical power with P(e)

m (P(0); δu), the weak momentum
equation becomes a physical balance in the d’Alembert
form, as follows∫
P(0)

ρ0ü · δu d V = P(e)
m (P(0); δu)−P(i)

m (P(0); δu) (7)

where the left-hand side represents the virtual power of
acceleration forces and

P(e)
m (P(0); δu) =

∫
P(0)

(∇ · (Tδu) + ρ0b · δu) d V

=

∫
∂P(0)

Tn · δu d a +

∫
P(0)

ρ0b · δu d V .

Hence the Kinetic Energy Theorem can be written as

d
dt

∫
P(0)

ρ0
u̇2

2
d V = P(e)

m (P(0)) − P(i)
m (P(0)) , (8)

where the external mechanical power is

P(e)
m (P(0)) =

∫
∂P(0)

Tn · u̇ d a +

∫
P(0)

ρ0b · u̇ d V . (9)

Within this approach, the local form of the First Law of
Thermodynamics becomes

ρ0ė − p(i)
m = ρ0h (10)

where, from the heat balance equation, the right-hand
side satisfies

ρ0h = −∇ · q + ρ0r , (11)

(q, ρ0r) being the internal energy thermal inflow.
This last equation, multiplied by δk̂ and integrated

over P(0), leads to

P(i)
en(P(0); δk̂) = P(e)

en (P(0); δk̂) (12)

where the virtual internal and external entropy powers
(actions) write

P(i)
en(P(0); δk̂) =

∫
P(0)

(
ρ0hδk̂ − q · ∇δk̂

)
d V

P(e)
en (P(0); δk̂) =

∫
P(0)

(
−∇ ·

(
q δk̂

)
+ ρ0rδk̂

)
d V

(13)

which, in a complete analogy with the mechanical back-
ground, lead to the definitions

P(i)
en(P(0)) =

∫
P(0)

(ρ0hk − q · ∇k) d V =

∫
P(0)

p(i)
en d V

P(e)
en (P(0)) =

∫
P(0)

(−∇ · (q k) + ρ0rk) d V ,

p(i)
en being the density of the real internal entropy power.

So, under suitable hypotheses of smoothness, the Sec-
ond Law of Thermodynamics can be locally written as

ρ0η̇ ≥ ρ0hk − ∇k · q = p(i)
en . (14)

The interlacement between (10), multiplied by k, and
(14) yields

ρ0η̇ ≥ ρ0ėk − p(i)
m k − ∇k · q (15)

which, via the definition of the modified free energy ψ̃,
defined in (1), leads to the Clausius-Duhem inequality

−ρ0
˙̃ψ + ρ0ek̇ + p(i)

m k + ∇k · q ≥ 0 . (16)

It is worth to observe that this inequality holds also
for non local thermo-mechanical structures by suitably
updating the internal mechanical and entropic densi-
ties. The universality of this thermodynamic approach
just stands on different expressions of the internal vir-
tual/real powers according to the non local properties of
the material under study.

For a second-gradient elastic structure, the effective
stress tensor has the form (2) so the internal mechanical
powers writes

P(i)
m (P(0)) =

∫
P(0)

(T2 · ∇u̇ + T3 · ∇∇u̇) d V

=

∫
P(0)

p(i)
m d V ,

(17)
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exhibiting a linear dependence on the mechanical pro-
cess Pm = (∇u̇,∇∇u̇). Correspondently, in view of stan-
dard identities, the external mechanical power becomes

P(e)
m (P(0)) =

∫
∂P(0)

(Tn · u̇ + T3n · ∇u̇) d a

+

∫
P(0)

ρ0b · u̇ d V ,

(18)

in which the classical traction problem is to be im-
plemented by higher order boundary conditions due to
the presence of the hyper-stress tensor, yielding the so
called constitutive boundary conditions (see e.g. [11]),
responsible for those surface effects typical of micro-
and nano-scales phenomena.

Likewise, for a non local thermal behavior of grade
2, where the effective heat flux vector has the form (3),
the expression for the internal entropic power becomes

P(i)
en(P(0)) =

∫
P(0)

p(i)
en d V

=

∫
P(0)

(
ρ0hk − q1 · ∇

˙̂k −Q · ∇∇ ˙̂k
)

d V ,

(19)

just showing a linear dependence on the thermal pro-
cess Pen = (∇ ˙̂k,∇∇ ˙̂k). Obviously, for the fully coupled
thermo-elastic theory of grade 2, the process is given by
P = (∇u̇,∇ ˙̂k,∇∇u̇,∇∇ ˙̂k) and the internal coupled power
is just the sum of (17) and (19).

Inequality (15) generalizes as follows

ρ0η̇ ≥ ρ0ėk − p(i)
m k − q1 · ∇

˙̂k −Q · ∇∇ ˙̂k ,

whereas, from (16), we recover the general Clausius-
Duhem inequality for our theory

−ρ0
˙̃ψ + ρ0ek̇ + (T2 · ∇u̇ + T3 · ∇∇u̇) k

+q1 · ∇k + Q · ∇∇k ≥ 0 .
(20)

It is interesting to note that (20) is trivially generalizable
to incorporate higher-order gradients.

The next step of this Section is the application of
the classical Coleman-Noll arguments towards the ther-
modynamic restrictions on our constitutive setting. In
order to describe non local anisotropic G-N thermo-
elastic and viscoelastic effects, we let ψ̃ be continu-
ously differentiable with respect to all the independent
variables at the current time t, representing the state
σ = (k,∇u,∇∇u,∇k̂,∇∇k̂). Upon evaluation of ˙̃ψ and
substitution in (20), also generalizing the standard ther-
modynamics arguments, we immediately find

e =
∂ψ̃

∂k
, η = k2 ∂ψ

∂k
.

From the split residual dissipation inequality, we re-
cover the further restrictions

k
(
T2 − ρ0

∂ψ

∂∇u

)
· ∇u̇ ≥ 0 , k

(
T3 − ρ0

∂ψ

∂∇∇u

)
· ∇∇u̇ ≥ 0(

q1 − ρ0
∂ψ̃

∂∇k̂

)
· ∇k ≥ 0 ,

(
Q − ρ0

∂ψ̃

∂∇∇k̂

)
· ∇∇k ≥ 0 .

Therefore we propose the constitutive relations

T2 = ρ0
∂ψ

∂∇u
+ D1∇u̇ , T3 = ρ0

∂ψ

∂∇∇u
+ D2∇∇u̇ , (21)

q1 = ρ0
∂ψ̃

∂∇k̂
+ K1∇k , Q = ρ0

∂ψ̃

∂∇∇k̂
+ K2∇∇k , (22)

where D1,D2,K1,K2 are non-negative tensorial valued
functions, possibly dependent on the coldness. The co-
efficients D1,D2 may be interpreted as viscoelastic and
hyper-viscoelastic tensorial moduli; likewise the addi-
tional K1 and K2 play the role of conductivity and
hyper-conductivity tensors, respectively.

By summarizing, different non local GN thermo-
viscoelastic theories depend on different expressions for
the free energy potentials. Notably, a significant num-
ber of additional constitutive parameters enter due to the
complex structure under study.

To better clarify, in linearly isotropic frameworks,
it is known that fourth-order viscoelastic or hyper-
conductivity tensors can be written in terms of two non
negative phenomenological parameters. On the other
hand, the isotropic decomposition of the sixth-order
isotropic hyper-viscoelastic (or elastic) tensor accounts
for five additional constitutive moduli, playing the role
of hyper-viscoelasticities (elasticities) ([7, 12]). Indeed,
on a mechanical point of view, a further simplified case
comes out under the constraint ∇·u = 0; following [11],
the hyper-viscoelasticities (elasticities) reduce to three.
Hence the part of the effective stress tensor, independent
on the choice the free energy ψ, has the following form

(D1∇u̇)i j−(D2∇∇u̇)i jk,k = µ̂(u̇i, j +u̇ j,i)−(η̂1 + η̂3)(∆u̇i, j) ,

where the two positive coefficients (λ̂, µ̂) play the role
of the viscoelastic constants, while η̂1 and η̂3 represent
the hyper-viscoelasticities. As a consequence, its diver-
gence becomes

∇ · [D1∇u̇ − ∇ · (D2∇∇u̇)] = µ̂∆u̇ − (η̂1 + η̂3)∆2u̇ .

Now, in this isotropic frame, let us choose a quadratic
form for ψ with respect to its dependence both on the
gradient and the double gradient of u, accounting for the
standard Hookean law, (λ, µ) being the Lamé constants.
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So, in view of (21), the effective stress tensor for this
second gradient viscoelasticity reads

T = 2µ
(
1 +

µ̂

µ

∂

∂t

)
E− (η1 +η3)

(
1 +

(η̂1 + η̂3)
(η1 + η3)

∂

∂t

)
∆∇u ,

where η1 and η3 represent the hyper-elastic Lamé con-
stants. In this way, usual dimensional arguments lead to
the definition of two natural parameters, referred to as
gradient- gradient rate-lengths

L2
1 = (η1 + η3)/µ , L2

2 = (η̂1 + η̂3)/µ̂ ,

which, in turn, play a relevant role for future appli-
cations, since these non local theories are generally
employed in predicting the size-dependent behavior of
micro- and nano-structures, at both mechanical and
thermal scales, see e.g. [21].

It is worth to infer that, besides the standard condi-
tions µ > 0 and µ̂ > 0, the thermodynamics restrictions
guarantee the non negativeness of both (η1 + η3) and
(η̂1 + η̂3) and that the right-hand side of the momentum
equation (4), in the absence of body forces and thermal
interaction terms, would become

∇ · T = µ(1 − L2
1∆)∆u + µ̂(1 − L2

2∆)∆u̇ .

3. Special settings

In this section some special quadratic type Helmholtz
free energies, already introduced for simple thermo-
viscoelasticity under G-N type heat properties, are suit-
ably adapted to address simplified non local thermo-
mechanical structures of grade 2.

3.1. A non local viscoelastic theory of K-V type

As a special example of a purely mechanical setting
we address a non local isotropic linear elastic material.

Our thermodynamic development yields a second-
order strain and strain rate K-V type linear viscoelas-
ticity, where, following the simplified proposal by [2],
the third order hyper-stress T3 is supposed to be propor-
tional to the gradients of the Hookean and viscoelastic
parts of T2 via the material parameters L2

1 and L2
2, with

the role of deformation and deformation rate induced
internal lengths, respectively. In this simplified context
the elastic/viscoelastic Lamé constants are just the stan-
dard Lamé elastic/viscoelastic ones multiplied by L2

1/L2
2,

which corresponds to the relations between sixth- and
fourth-order tensors

Di jklmn = L2Ci jlmδkn ,

within the isotropic formulation, δkn being the Kro-
necker symbol.

In this way only two internal length parameters are
needed, in addition to the four elastic/viscoelastic Lamé
constants, and the effective stress tensor has form

T =T2 − ∇ · T3

=2µ(1 − L2
1∆)E + λ(1 − L2

1∆)(trE)I
+2µ̂(1 − L2

2∆)Ė + λ̂(1 − L2
2∆)(trĖ)I .

Let us now propose a quick comparison with a dual-
phase-lag elasticity theory by Tzou (see in [19]), in its
reduction to a single-phase-lag one via a temporal shift-
ing, leading to a small difference delay time τ > 0 with
the role of a retardation time. By performing the usual
first-order Taylor series expansion, which is responsible
of short memory effects, we point out that due to the
following identifications

µ̂ = τµ , λ̂ = τλ , L2
2 = L2

1 ,

within the above constitutive relation, our non-local K-
V type viscoelasticity becomes a dual-phase-lag non-
local elasticity.

Hence, in the simplest case only one gradient coef-
ficient appears, in addition to the standard Lamé con-
stants and τ. Therefore, for a non local second-order
strain and strain rate K-V viscoelasticity, the momen-
tum equation (4), in terms of the displacement vector u,
reads

ρ0ü = µ(1 − L2
1∆)∆u

+ (λ + µ)(1 − L2
1∆)∇∇ · u + µτ(1 − L2

1∆)∆u̇

+ τ(λ + µ)(1 − L2
1∆)∇∇ · u̇ + ρ0b .

(23)

It is worth to observe that an interaction term, account-
ing for temperature driven motions, might be added on
the right-hand side of (23) [3].

3.2. Non local/local revisited G-N rigid heat theories
In this subsection we focus on a non local rigid heat

conduction theory by re-examining the G-N type ther-
mal properties, within an isotropic frame. In view of
(22), by choosing for the modified free energy ψ̃ a
quadratic dependence on the coldness displacement gra-
dient and its double gradient, let m = m(k) > 0 be the
G-N coefficient, whereas g1 and g2, depending on k too,
may be referred to as the hyper-G-N coefficients; like-
wise the scalar valued function K1 = K1(k) > 0 de-
fines the classical conductivity, whereas χ1 and χ2 rep-
resent the hyper-conductivity coefficients depending on
at most k, such that

K2∇∇k = 2χ1∇∇k + χ2∆kI .
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Hence the constitutive relation for the total heat flux
vector reads

q = m∇k̂ + K1∇k

− ∇ ·
(
2g1∇∇k̂ + g2∆k̂I + 2χ1∇∇k + χ2∆kI

)
.

So, limiting ourselves for easiness to the constant co-
efficients case, at the right-hand side of (11) we would
have

−∇ · q = −m
[
1 − L2

3∆
]
∆k̂ − K1

[
1 − L2

4∆
]
∆k ,

where, by using the same dimensional arguments as
in the mechanical structure, L2

3 = (2g1 + g2)/m and
L2

4 = (2χ1 + χ2)/K1 may be referred to as the cold-
ness displacement and the coldness displacement rate
gradient lengths, respectively. Besides the simple G-
N type and conductivity coefficients, the non locality
needs therefore the additional presence of only two in-
ternal length parameters, which will be relevant for the
description of thermal devices at small lengths [1, 11].

Also, restricting now our attention to a local ther-
mal structure of a revisited G-N type but assuming that
the coefficients depend on the coldness, we propose the
modified free energy

ψ̃2(k,∇k̂) = ψ̃E(k) +
1

2ρ0
m(k)∇k̂ · ∇k̂ (24)

with m = m(k) being a positive valued scalar function.
Thus, from (22), the heat flux satisfies the constitutive
relation

q = q1 = m(k)∇k̂ + K1(k)∇k ,

which, in turn, yields the classical Fourier Law, with
possibly constant/non constant thermal conductivity, in
the limit case m(k)→ 0.

By adopting the G-N form for ψ̃E , i.e. ψ̃E = c(1 +

log k) with c > 0 constant, the internal energy density

e =
∂ψ̃2

∂k
becomes

e =
c
k

+
1

2ρ0
m′(k)∇k̂ · ∇k̂ ,

namely e = e(k,∇k̂). So, the thermal equation (10)-(11)
for this simple theory reads(

−ρ0
c
k2 +

1
2

m′′(k)∇k̂ · ∇k̂
)

k̇

= −m(k)∆k̂ − K1(k)∆k − 2m′(k)∇k̂ · ∇k

− K′1(k)∇k · ∇k̇ + ρ0r .

However, in order to perform a fruitful comparison with
other simple G-N type heat theories, we furnish a brief

reformulation of our thermodynamics developments in
terms of the temperature θ and the standard temperature
displacement α, recalling that its time derivative is just
the temperature θ = 1/k ([4, 17]).

As a first step we avoid the last term in (20) due to
the non local behavior and rewrite the fourth addendum
as −

1
θ2∇θ · q. Finally, we neglect the terms due to the

mechanical structure and we focus on a modified free
energy potential, now depending on θ and ∇α.

Taking into account the link between the free energy
ψ and the modified free energy ψ̃, inequality (20) reads
as follows

ρ0

θ

[
ψ − θ

∂ψ

∂θ
− e

]
θ̇ − ρ0

∂ψ

∂∇α
· ∇θ −

1
θ
∇θ · q ≥ 0 .

So, standard thermodynamics arguments yield the clas-

sical relations e = ψ − θ
∂ψ

∂θ
, η = −

∂ψ

∂θ
, together with

the residual inequality(
q
θ

+ ρ0
∂ψ

∂∇α

)
· ∇θ ≤ 0 .

Therefore, for the entropy influx [4] we have

q
θ

= −ρ0
∂ψ

∂∇α
− K̂(θ)∇θ ,

K̂ being a positive valued scalar function depending on
the temperature. If we choose the following free energy

ψ3 = c(θ − θ log θ) +
m̂(θ)
2ρ0
∇α · ∇α ,

where m̂ is a positive scalar valued function and, as be-
fore, the positive constant c stands for the specific heat,
our constitutive assumption for the entropy influx be-
comes q

θ
= −m̂(θ)∇α − K̂(θ)∇θ .

As a consequence, we have that the heat flux and the
internal energy density have form

q = −θm̂(θ)∇α − θK̂(θ)∇θ ,

e =
1

2ρ0

(
m̂(θ) − θm̂′(θ)

)
∇α · ∇α + cθ .

Finally, by setting

cα = cα(θ,∇α) = c −
θ

2ρ0
m̂′′(θ)∇α · ∇α

with the role of the modified G-N type specific heat and
m(θ) = θm̂(θ), K(θ) = θK̂(θ), for this constitutive the-
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ory, we recover the general quasi-linear parabolic ther-
mal equation

ρ0cαθ̇ = −2
(

m(θ)
θ
− m′(θ)

)
∇α · ∇θ

+ m(θ)∆α + K(θ)∆θ + K′(θ)∇θ · ∇θ + ρ0r .
(25)

The expression of the modified specific heat in terms of
the new function m is

cα = c −
1

2ρ0

(
m′′(θ) −

2
θ

m′(θ) +
2
θ2 m(θ)

)
∇α · ∇α .

The local energy equation (25) may be easily compared
with the classical heat equation under the Fourier’s Law,
when the new function m tends to zero. As a special case
we have a constant conductivity whenever K̂ = K0/θ
(K0 being constant), as in Section 2 of [17], whereas
a porous medium equation (shortly PME) with expo-
nent 2 is recoverable for K̂ = K0/θ0, θ0 being a refer-
ence temperature, as in the pioneering constitutive as-
sumption by Green and Naghdi. In fact, in absence of
external sources and by means of the temporal scaling
t′ = tK̂/2ρ0c, (25) reduces to the non linear degenerate

parabolic equation
d

dt′
θ = ∆θ2, which, as well known

(see e.g. [10]), exhibits the mathematical property of
finite wave propagation, in the framework of character-
istic surfaces. Moreover, when m and K are both con-
stants, namely m̂ = m0/θ and K̂ = K0/θ, (25) becomes
the heat conduction equation performed in Section 4
of [17] when constrained to static rigid conduction, ac-
cording to their alternative strategy. In this case, the m′-
and K′-terms disappear and hence

cα = c −
1

ρ0θ2 m0∇α · ∇α .

In fact, our heat equation appears more complicated to
deal with from a purely mathematical point of view,
but the generalization to non constant functions m(θ)
and K(θ) allows applications in physical/astrophysical
settings, in the presence of very low-/very high-
temperature ranges.

As a final comment, just thinking of the thermo-
elastic description of ice at cryogenic temperatures, see
e.g. references in [17], one may include an interaction
term on the right-hand side of (25), due to the thermo-
elastic coupling.

4. Concluding remarks

The primary idea of this paper consists in stating the
universal validity of the virtual powers format to derive

thermodynamically consistent nonlocal continuum the-
ories. In our opinion, the key support points are

• a variational topic towards the weak formulation of
initial-boundary value problems with less smooth-
ness requirements;

• higher-order constitutive boundary conditions jus-
tified by higher-order gradient continuum theories;

• the a priori role played by the concepts of state and
process to assess non local behaviors;

• internal mechanical and entropic powers formu-
lated through a linear dependence on the quantities
within the process and hence easily generalizable
to assess different non local behaviors.

We achieve these conclusions by developing an ex-
tended virtual powers scheme based on the notion of the
coldness displacement, in order to perform novel non
isothermal second order gradients elastic/viscoelastic
settings, under analogous non local thermal properties
through a revisitation of G-N heat theories.

Notably, non local K-V type viscoelastic models
and nonlocal/local revised G-N type rigid heat conduc-
tion theories are recovered as special constitutive set-
tings and fruitful comparisons with pre-existent litera-
ture modelings are provided.

Also, the need of taking a minimum number of con-
stitutive/internal length scale parameters in triggering
size-dependent effects is underlined.

Finally we think that, to improve memory aspects,
our frameworks might be implemented by involving the
Caputo-Fabrizio fractional calculus [6].
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