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DEEP NEURAL NETWORKS FOR INVERSE PROBLEMS
WITH PSEUDODIFFERENTIAL OPERATORS:

AN APPLICATION TO LIMITED-ANGLE TOMOGRAPHY ∗

TATIANA A. BUBBA† , MATHILDE GALINIER‡ , MATTI LASSAS† , MARCO PRATO‡ ,

LUCA RATTI† , AND SAMULI SILTANEN†

Abstract. We propose a novel convolutional neural network (CNN), called ΨDONet, designed
for learning pseudodifferential operators (ΨDOs) in the context of linear inverse problems. Our
starting point is the Iterative Soft Thresholding Algorithm (ISTA), a well-known algorithm to solve
sparsity-promoting minimization problems. We show that, under rather general assumptions on the
forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a
CNN, which in turn provides fairly general network architectures that, for a specific choice of the
parameters involved, allow to reproduce ISTA, or a perturbation of ISTA for which we can bound
the coefficients of the filters. Our case study is the limited-angle X-ray transform and its application
to limited-angle computed tomography (LA-CT). In particular, we prove that, in the case of LA-
CT, the operations of upscaling, downscaling and convolution, which characterize our ΨDONet and
most deep learning schemes, can be exactly determined by combining the convolutional nature of the
limited angle X-ray transform and basic properties defining an orthogonal wavelet system. We test
two different implementations of ΨDONet on simulated data from limited angle geometry, generated
from the ellipse data set. Both implementations provide equally good and noteworthy preliminary
results, showing the potential of the approach we propose and paving the way to applying the same
idea to other convolutional operators which are ΨDOs or Fourier integral operators.

Key words. X-ray transform, limited angle tomography, deep neural networks, convolutional
neural networks, wavelets, sparse regularization, Fourier integral operators, pseudodifferential oper-
ators, microlocal analysis

AMS subject classifications. 44A12, 68T07, 35S30, 58J40, 92C55

1. Introduction. In the context of microlocal analysis, the theory of pseudodif-
ferential operators (ΨDOs), introduced by Kohn and Nirenberg in 1965, and Fourier
integral operators (FIOs), defined by Hörmander in 1971, finds remarkable applica-
tions in many fields of Mathematics, from spectral theory to general relativity, from
the study of the behavior of chaotic systems to scattering theory and inverse prob-
lems [26]. A prominent example in the inverse problem field is given by the X-ray
transform or, in the two-dimensional case, Radon transform:

(1.1) R(u)(s, ω) =

∫ ∞

−∞
u(sω⊥ + tω) dt s ∈ R, ω, ω⊥ ∈ S1

where ω⊥ denotes the vector in the unit sphere S1 obtained by rotating ω counter-
clockwise by 90◦ [38]. It is possible to show (see, e.g., [43]) that the normal operator
R∗R of the Radon transform R is an elliptic ΨDO of order −1 and a convolutional
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operator associated with the Calderón-Zygmund kernel K(x, y) = 1
|x−y| for x 6= y.

When the direction vector ω is restricted within a limited angular range [−Γ,Γ], the
normal operator R∗ΓRΓ of the limited angle Radon transform RΓ is a convolutional
operator associated with the kernel

K(x, y) =
1

|x− y| χΓ(x− y) for x 6= y,(1.2)

where χΓ denotes the indicator function of the cone in R2 between the angles −Γ and
Γ. The operator R∗ΓRΓ is no longer a ΨDO, but it belongs to a wider class of FIOs,
which includes operators associated with a kernel showing some discontinuities along
lines [26].

The inverse problem arising from the limited angle Radon transform, i.e., limited-
angle computed tomography (LA-CT), appears frequently in practical applications,
such as dental tomography [31], damage detection in concrete structures [24], breast
tomosynthesis [55] or electron tomography [15].

Microlocal analysis has been widely applied on the Radon transform, especially in
the case of incomplete data, with the purpose to characterize its behavior with respect
to singularities in the images (see, e.g., [20, 44, 45, 29, 28, 16]). In particular, some
recent works are focused on the treatment of artifacts appearing in reconstructions
from limited-angle data (see [39, 40, 7]). In this framework, microlocal analysis can be
used to predict which singularities can be reconstructed in a stable way from limited
angle measurements [7, 18, 32, 42]. In practice, thanks to microlocal analysis, we
are able to identify the part of the wavefront set of the target corresponding to the
missing wedge from the measurement geometry.

Even with this fundamental information, the task of robustly recovering the un-
known quantity of interest from such partial indirect measurement is a challenging
one, due to the ill-posedness of the CT problem, which is even more severe because
of the limited angular range [13]. As a result, classical methods, such as the filtered
backprojection (FBP) [38], yield poor performances. Traditional inversion methods
of the form (2.3)-(2.5), based on complementing the insufficient measurements by im-
posing a priori information on the solution, define effective regularization methods
which generally allow for accurate reconstructions from fewer tomographic measure-
ments than usually required by standard methods like FBP. In more recent years,
machine learning approaches, in particular, deep learning, with convolutional neural
networks (CNNs) being the most prominent design in the context of imaging, are
increasingly impacting the field of inverse problems [4], and (LA-)CT is no excep-
tion (see, in particular, [4, section 4] for an overview of learning approaches from a
functional analytic regularization perspective and [4, section 7] for their applicability
to prototypical examples of inverse problems, including CT). The majority of recent
data-driven approaches for LA-CT focuses on recovering or inpainting the missing
part of the wavefront set from the measured data (see, e.g., [9, 48] and the references
therein for a thorough review of model-based and data-driven approaches based on
sparsifying transforms and edge-preserving regularizers in the context of LA-CT).

In this paper, we are not interested in designing an(other) approach for inferring
the missing wedge in LA-CT, but rather we aim at investigating neural networks
inspired by FIOs and ΨDOs, for which LA-CT is a case study. Our starting point is
the traditional sparsity-based minimization problem of the form (2.3)-(2.5). A well-
known technique for its solution is the Iterative Soft Thresholding Algorithm (ISTA),
introduced in 2004 in the seminal paper by Daubechies, Defrise and De Mol [12]. The
convergence result in the paper relies on the assumption that the sparsifying system
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forms an orthogonal basis, as it is the case for many families of wavelets [35]. ISTA
iteratively creates the sequence {w(n)}Nn=1 as follows:

(1.3) w(n) = Sλ/L
(
w(n−1) − 1

L
K(n)w(n−1) +

1

L
b(n)

)
,

where, in our case, K(n) = WR∗ΓRΓW
∗, with W wavelet transform associated with an

orthogonal family, b(n) = WR∗Γm and Sβ(w) is the (component-wise) soft-thresholding
operator (see equations (2.7) and (3.1) for all the details). It is well-known that the un-
rolled iterations of ISTA can be considered as the layers of a neural network. Learned
ISTA (LISTA), introduced in [22], and ISTA-Net, introduced in [53], are examples of
neural networks obtained by laying out the operations of ISTA for a few iterations.
The major difference with our approach is that LISTA and ISTA-Net are not CNNs.
Unrolled schemes coming from proximal primal-dual optimization method are also
proposed in [2, 3], where the proximal operators are replaced with CNNs. While
in [2, 3] the goal is to learn a proximal operator, in the approach we propose the
regularization term is fixed and we learn a correction of the normal operator R∗ΓRΓ.
Deep unfolded schemes for problems other than CT are introduced, for instance,
in [25, 54]. In [34] the authors propose an unsupervised approach, combined with un-
rolled schemes, to learn adversarial regularizers and apply it to the case of full-angle
CT. In [27] the authors investigate the relationship between CNNs and iterative op-
timization methods, including ISTA, for the case of normal operators associated with
a forward model which is a convolution. However, the resulting U-net, FBPConvNet,
does not aim at imitating an unrolled version of an iterative method, which makes it
fundamentally different in spirit to the methodology we propose. Indeed, the goal of
our work is to show that, under some assumptions on the operator RΓW

∗, it is pos-
sible to interpret the operations in (1.3) as a layer of a CNN, which in turn provides
fairly general network architectures that allow to recover standard ISTA for a specific
choice of the parameters involved.

Motivated by this, we propose a new CNN, which we name ΨDONet, aimed
at learning convolutional FIOs and ΨDOs. The key feature of ΨDONet is that we
split the convolutional kernel into K = K0 + K1 where K0 is the known part of
the model (in the limited angle case, K0 = R∗ΓRΓ) and K1 is an unknown ΨDO
to be determined or, better, to be learned. Basically, in K1 lays the potential to
add information in the reconstruction process with respect to the known part of the
model K0. ΨDONet takes advantage of the possibility to use small filters encoding
a combination of upscaling, downscaling and convolution operations, as it is common
practice in deep learning. Remarkably, we prove that such operations can be exactly
determined combining the convolutional nature of the limited angle Radon transform
and basic properties defining an orthogonal wavelet system. While this might seem
contrary to the machine learning philosophy which finds its strength in avoiding any
predefined structure for neural networks, our recipe gives insight into understanding
and interpreting the results of the proposed CNN, combining results from FIOs, ΨDOs
and classical variational regularization theory. At the same time, the possibility to
deploy such operations allows for a significant reduction of the parameters involved,
especially when compared to the standard interpretation of ISTA as a recurrent neural
network: this is fundamental when it comes to a practical numerical implementation
of the proposed CNN. Overall, ΨDONet is able to reproduce ISTA, or a perturbation
of ISTA for which we can bound the coefficients of the filters, and has the potential
to learn ΨDO-like structures which are intrinsic to the problem at hand.
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As a proof of concept, we test ΨDONet on simulated data from limited angle ge-
ometry, generated from the ellipse data set. We provide two different implementations
of ΨDONet: Filter-Based ΨDONet (ΨDONet-F), where the backprojection operera-
tor is approximated by its filter-equivalent, and Operator-Based ΨDONet (ΨDONet-
O), where the backprojection opererator encoded in K0 is not approximated but
explicitly computed. Both implementations provide equally good and noteworthy
preliminary results, the main difference being a greater computational efficiency for
ΨDONet-O. The improvement provided by our results, compared to standard ISTA
(and FBP), bodes well for further numerical testing which we leave to future work.

Finally, we stress that the contribution of our paper is mainly theoretical and
is in line with current research in data-driven inversion, which combines knowledge
from traditional inverse problems theory with data-driven techniques. While in our
paper we derived the result contingently to the case of limited angle Radon trans-
form, our approach is actually very general and can be extended to any convolutional
operator which is a FIO or ΨDO. This is the case, for instance, of the geodesic X-ray
transform [49], and its applications in seismic imaging, or synthetic-aperture radar
(SAR) [41]. Finally, our paper paves the way to theoretical generalization results, in
light of recent contributions like [14].

The remainder of this paper is organized as follows: section 2 is devoted to review-
ing the theoretical background of sparsity promoting regularization and the wavelet
transform. In section 3, we detail the key idea of our approach, namely we give a con-
volutional interpretation of ISTA using the wavelet transform. The neural network
architecture we propose, ΨDONet, is introduced in section 4, where we also prove
our main theoretical result. Two different implementations of ΨDONet, which we
call Filter-Based ΨDONet and Operator-Based ΨDONet, are described in section 5.
Finally, we demonstrate the performance of our network by a series of numerical ex-
periments (see section 6). Concluding remarks and future prospects are briefly sum-
marized in section 7. The appendices collect proofs of some of the results presented
in section 2.

2. Theoretical background. In this section, we collect some theoretical results
which are preliminary to the main discussion of the paper.

2.1. Sparsity-promoting regularization via ISTA. Consider the inverse
problem of determining u† ∈ X from the measurementsm = Au†+ε, being A : X → Y
a linear bounded operator between the Hilbert spaces X and Y . The perturbation
ε ∈ Y is such that ‖ε‖Y ≤ δ.
The main application we have in mind is the limited-angle Radon transform RΓ,
which is a continuous linear operator, e.g., from X = L2(Ω) (being Ω ⊂ R2) to
Y = L2([−Γ,Γ]× [−S, S]) (see [38, Theorem 2.10]).
Introduce an orthonormal basis {ψI}I∈N in X. For later purposes, we will assume
that such basis is a wavelet system. Define W : X → `2(N) the operator associat-
ing to any u ∈ X the sequence of its component with respect to the wavelet basis:
(Wu)I = (u, ψI)X , where (·, ·)X denotes the inner product in X. We assume to know
a priori that the exact solution u† is sparse with respect to the wavelet basis ψI :

(2.1) Wu† = w† ∈ `0(N).

The reconstruction of u† (or, equivalently, w†) from the noisy measurements m is
in general an ill-posed problem, hence we introduce the following regularized problem:

(2.2) min
w∈`1(N)

‖AW ∗w −m‖2Y + λ‖w‖`1 ,
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being λ > 0. The requirement w ∈ `1(N) is in general not satisfied by any w = Wu,
u ∈ X; hence, we define Z ⊂ X, Z = {u ∈ X : Wu ∈ `1(N)}. In particular, in the
tomography application, it is possible to show that the `1 norm of the components of
the wavelet representation of a L2(Ω) function is equivalent to the Besov norm B1

1,1(Ω)
(see, e.g., [12, formula (A3)]). Hence, the minimization problem (2.2) is equivalent to

(2.3) min
u∈Z
‖Au−m‖2Y + λ‖u‖Z .

It is well known that the regularization term involving the `1 norm is a good choice to
encode the a priori information regarding the sparsity of w†. In particular if the noise
level tends to 0, there exists a suitable choice of λ = λ(δ) ensuring the convergence of
wδλ to w†, being wδλ the solution of (2.2). We report a result from [17] which also shows
that such convergence occurs with linear rate. In particular, [17, Corollary 2] does not
require w† to satisfy a classical source condition, but relies on the sparsity assumption
(2.1) and on the injectivity of the operator A. Such property can be restrictive in
some applications, and as a consequence many alternative results involve some weaker
assumptions (as the well known Restricted Isometry Property); nevertheless, in our
tomographic application, we can rely on the injectivity of the Radon transform, even
in the limited angle case.

Proposition 2.1. Let w† satisfy (2.1), and suppose A : X → Y is injective.
Define wλδ a solution of problem (2.2) associated with a regularization parameter λ
and a noise level δ. For sufficiently small δ, provided that λ is chosen such that
λ = c0δ, then there exists a positive constant c1 = c1(c0, A, ‖w†‖`0) such that

(2.4) ‖w† − wλδ ‖`1 ≤ c1δ.

This proposition is an immediate consequence of [17, Corollary 2], relying on [17,
Lemma 2] to ensure that A is weak*-to-weak continuous. From now on, we suppose
that λ is chosen as a linear function of δ and denote uλδ as uδ and wλδ as wδ.

We now introduce a finite-dimensional approximation of the regularized problem
(2.2). Consider the subspace Xp ⊂ X, Xp = span{ψI}pI=1, mapped by W into the
space Wp = {w ∈ RN : wI = 0 ∀I > p} (which is isomorphic to Rp). Denote by

Pp the orthogonal projection of `2(N) onto Wp and by P̃p = W ∗PpW the orthogonal
projection of X onto Xp. Moreover, we introduce an orthogonal basis {ϕj}∞j=1 on
Y and define Yq = span{ϕj}qj=1 and the projection Pq : Y → Yq. For any choice of
p, q > 0, let Ap,q be the representation of the operator A in the subspaces Xp, Yq,

namely Ap,q = PqAP̃∗p. Consider the following minimization problem:

min
w∈Wp

‖Ap,qW ∗w − Pqm‖2Y + λ‖w‖`1 .(2.5)

Denote by wδ,p,q a solution of (2.5). We can prove the following convergence result:

Proposition 2.2. Let w† satisfy (2.1) and A be an injective operator. Suppose
moreover that for a suitable choice of p, q it is possible to ensure that ‖w†−Ppw†‖`2 ≤
cpδ and ‖(I − Pq)A‖X→Y ≤ cqδ. Then, provided that λ is chosen as λ = c0δ, there
exists a positive constant c2 (depending on ‖A‖, ‖w†‖`1 , on the choice of {ψI}, {ϕj}
and on the constants c0, c1,cp,cq) such that:

(2.6) ‖wδ,p,q − w†‖`1 ≤ c2δ.

The proof, which follows by an application of the variational source condition reported
in [17, Section 3], is reported in Appendix A.
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Remark 2.3. Upper bounds of the kind ‖w† − Ppw†‖`2 ≤ f(p) can be explicitly
computed under some particular assumptions on w†. If, for example, we suppose
that u† is a cartoon-like image (i.e., u† is a C2-smooth functions apart from jump
discontinuity along a finite set of C2−curves) and {ψI} is the Haar wavelets basis, it
is well known that ‖w† − Ppw†‖`2 ≤ p−1 (see, e.g., [35, Chapter 9]).
On the other hand, an estimate for the term ‖(I − Pq)A‖X→Y can be obtained by
standard results of finite-rank approximation of compact operators. For example,
suppose that the operator A is a compact operator. Define {sj} its singular values

(i.e., let {(sj , ej)} be the eigenvalues and eigenfunctions of (A∗A)
1
2 ) and suppose the

sequence sj is non-increasingly converging to 0. A sufficient condition for this is that
A is a Schatten operator of any class p. If we select the basis {ϕj} such that ϕj = Uej ,

where U is the partial isometry in the polar decomposition A = U(A∗A)
1
2 , then it

holds ‖(I − Pq)A‖X→Y ≤ sq+1. In the case of the Radon transform in 2D, according

to [37, Section IV.3], sj = cRj
− 1

2 , hence to get ‖(I − Pq)A‖X→Y ≤ cRδ it is enough
to consider q ≥ 1

δ2 − 1

A well-know technique for the solution of the minimization problem (2.5) is the
Iterative Soft Thresholding Algorithm (introduced in [12]), which consists in selecting
an initial guess w(0) ∈ Rp(∼= Wp) and in iteratively creating the sequence {w(n)}Nn=1

as follows:

(2.7) w(n) = T (w(n−1)) = Sλ/L
(
w(n−1) − 1

L
WA∗p,qAp,qW

∗w(n−1) +
1

L
WA∗p,qm

)
,

where 1
L > 0 is interpreted as a (fictitious) time step and, for β > 0, Sβ(w) is the

(component-wise) soft-thresholding operator:

[Sβ(w)]I = Sβ(wI); Sβ(wI) =





wI + β if wI < −β
0 if |wI | ≤ β

wI − β if wI > β

.

The convergence of {w(N)} to a minimizer wδ,p,q of (2.5) is analyzed, in an infinite
dimensional context, in [8]. The following result for the discrete problem under con-
sideration is instead a direct consequence of [6, Theorem 25]:

Proposition 2.4. If L is chosen such that L ≥ ‖WA∗p,qAp,qW
∗‖/2 then the

sequence {w(N)} generated via (2.7) by any w(0) ∈ Rp converges in `2 to the solution
wδ,p,q of (2.5). Moreover, there exist c3 > 0 and 0 ≤ a < 1 (both depending on Ap,q,
L and ‖w†‖`2) such that

(2.8) ‖w(N) − wδ,p,q‖`2 ≤ c3aN .

2.2. A modification of ISTA. We now consider a perturbation of ISTA (2.7).
Let Z : `2(N)→ `2(N) satisfy

(2.9) ‖WA∗p,qAp,qW
∗ − Z‖`2→`2 ≤ ρ.

Then, we substitute Z in place of the matrix WA∗p,qAp,qW
∗ in the expression of ISTA.

To remark the dependency on the perturbation amplitude ρ, we denote by {w(n)
ρ } the

sequence obtained by selecting w
(0)
ρ ∈ Rp and iterating

(2.10) w(n)
ρ = TZ(w(n−1)

ρ ) = Sλ/L
(
w(n−1)
ρ − 1

L
Zw(n−1)

ρ +
1

L
WA∗p,qm

)
.
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The following result shows a connection between the convergence of the sequence

{w(n)
ρ } to the minimizer wδ,p,q and the magnitude of the perturbation ρ.

Proposition 2.5. Let w(0) = w
(0)
ρ , L ≥ ‖WA∗p,qAp,qW

∗‖ and consider N0, η0 >

0. Then there exists a constant c̃4, depending on L,A,w(0), ‖w†‖`2 and on N0, η0,
such that if N ≥ N0 and ρN ≤ η0 then

(2.11) ‖w(N)
ρ − wδ,p,q‖`2 ≤ c3aN + c̃4ρN.

If, moreover, N, ρ are chosen as N > ln(δ−1)
ln(a−1) and ρ < δ

N , then (for c4 = c3 + c̃4)

(2.12) ‖w(N)
ρ − wδ,p,q‖`2 ≤ c4δ.

The proof of this proposition follows by the nonexpansivity of the soft-thresholding
operator and is reported in Appendix B.

We collect the results obtained in Proposition 2.2 and Proposition 2.5 in the
following final convergence estimate:

Theorem 2.6. Let w† satisfy (2.1) and let A be injective. For sufficiently small
δ, select a regularization parameter λ = c0δ. Select p, q s.t. ‖w† − Ppw†‖ ≤ cpδ and
‖(I − Pq)A‖X→Y ≤ cqδ. Let L ≥ ‖WA∗p,qAp,qW

∗‖ and consider the perturbed ISTA

iterations (2.10), where the operator Z satisfies (2.9), N = loga δ and ρ = δ
N . Then,

there exists a positive constant c5 (depending on the previously introduced constants
c0, c1, c2, c3, c4, cp, cq) such that, for sufficiently small δ,

(2.13) ‖w(N)
ρ − w†‖`2 ≤ c5δ.

2.3. Wavelets in 2D. In order to derive the main results of the paper, we
need to assume that the orthogonal basis {ψI}∞I=1 is a wavelet basis in X = L2(Ω).
Although our approach is sufficiently general to handle higher-dimensional spaces, we
are going to focus on the two-dimensional case, i.e., Ω ⊂ R2 (e.g., Ω = [0, 1]2). Before
moving to the representation of the operator A∗A with respect to such basis, we need
to describe in more details its structure.

A common way to define a wavelet basis in R2 is to rely on two real functions ψ
and ϕ, respectively defined as mother wavelet and scaling function, whose support is
in [0, 1]. We identify an element ψI of the basis by its scale j, its translation k ∈ N2

0

and its type (t) ∈ {(v), (h), (d), (f)} (respectively, vertical, horizontal, diagonal and

low-pass filter). We denote ψI(x) as ψ
(t)
j,k(x) = 2jψ(t)(2jx − k), x ∈ [0, 1]2, where we

have:

ψ(v)(x1, x2) = φ(x1)ψ(x2) ψ(h)(x1, x2) = ψ(x1)φ(x2)

ψ(d)(x1, x2) = ψ(x1)ψ(x2) ψ(f)(x1, x2) = φ(x1)φ(x2)

When selecting a maximum scale J (and J0 < J as coarsest scale), we can define
a wavelet basis of p = 22J elements as follows: take j ∈ {J0, . . . , J1 = J − 1}; for
each j 6= J0, consider wavelets of the types (v), (h) and (d), whereas for j = J0

include also the type (f). For each level j and type (t), consider offsets k = (k1, k2),
k1 = 0, . . . , 2j − 1, k2 = 0, . . . , 2j − 1.

We group the wavelet basis functions in subbands, each of which is identified by
a scale j and a type (t), obtaining 3(J − J0) + 1 subsets.
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3. ISTA and Convolutional Neural Networks. It is already well known that
the unrolled iterations of ISTA can be considered as the layers of a neural network
(see, e.g., [22]). Indeed, the n-th iteration of ISTA can be written as

(3.1) w(n) = Sλ/L
(
w(n−1) − 1

L
K(n)w(n−1) +

1

L
b(n)

)
,

being K(n) = WA∗p,qAp,qW
∗ and b(n) = WA∗p,qm, independently of n. At the same

time, (3.1) can be seen as the n-th layer of a recurrent Neural Network, where K(n)

is the matrix of the weight coefficients and b(n) is the bias vector. Notice that the
resulting architecture is the one of a recurrent neural network although, due to its
theoretical deduction, it does not present any advanced residual block (such as skip
connections) which are common features in the related literature. We also point
out that formula (3.1) enforces a specific choice of the nonlinear activation function,
namely the soft-thresholding operator, instead of the more widely-used ReLU or sig-
moid functions. Additionally, the soft thresholding operator Sα can be written in
terms of rectified linear units as follows:

(3.2) Sα(x) = max(0, x− α)−max(0,−x− α) = ReLU(x− α)− ReLU(−x− α)

for x ∈ R; for vectors, it is applied componentwise.
When considering only the first N iterations of ISTA, we can collect the pa-

rameters appearing in the layers in a vector θ ∈ Θ. Together with the entries of the
matrices K(n), we may consider as parameters the steplength L as well as the regular-
ization parameter λ: see subsection 5.3 for more details. Conversely, the bias vectors
b(n) are not to be considered as parameters: they are fixed and equal to WA∗p,qm in
each layer. We then introduce the map fθ : Y → `1(N), parameterized by θ ∈ Θ,
which takes as an input m ∈ Yq and computes N iterations like (3.1), where, for
each n, K(n) ∈ Rp×p is specified in θ and b(n) = WA∗p,qm. For any selected value of
p, q,N, λ, L, we know that there exists a particular choice θ0 which corresponds to the
ISTA iterations associated to the measurements m.

In this section we show that, under some assumptions on the operator A, it
is possible to interpret the operations in (3.1) as a layer of a CNN. We therefore
provide a fairly general network architecture which allows to recover the standard
ISTA iterations (or a perturbation of the kind described by (2.9)), for a specific
choice of the parameters.

From now on, we focus on the case X = L2(Ω), and consider a wavelet basis {ψI}
of the kind described in subsection 2.3.

3.1. A convolutional interpretation of ISTA. We first show, under addi-
tional assumptions on operator A, how to translate the Neural Network encoded by
the operator fθ above into a CNN, allowing for a significant reduction of the number
of parameters involved. Suppose that A∗A is a convolutional kernel operator, i.e.,

(3.3)
KI,I′ = (A∗AψI , ψI′)X =

∫

R2

∫

R2

K(x, x′)ψI(x)ψI′(x
′)dxdx′,

K(x, x′) = K(x− x′).

According to the description in subsection 2.3, the wavelet basis can be naturally split
in subbands, each of which is identified by a couple j,(t). This implies that the matrix
K representing A∗A can be seen as a block matrix. We now aim at describing the

application of each block K
(t)→(t′)
j→j′ w

(t)
j by means of the following operations:
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1. Discrete convolution. Let B ∈ Rb×b, C ∈ R(2b−1)×(2b−1), and denote the
elements of C with indices i, j , being i = −b + 1, . . . , 0, . . . , b − 1, j =
−b+ 1, . . . , 0, . . . , b− 1. Then, C ∗B ∈ Rb×b:

(3.4) (C ∗B)k,l =

b−1∑

i=0

b−1∑

j=0

Ck−i,l−jBi,j

2. Upsampling. Let B ∈ Rb×b; then, U (B) ∈ R2b×2b satisfies:

(3.5) U (B)[2k : 2k + 1, 2l : 2l + 1] =

[
Bk,l 0

0 0

]
∀k, l = 0, . . . , b− 1,

where the notation U (B)[2k : 2k+1, 2l : 2l+1] is used to denote a submatrix
of U (B) containing the rows from 2k to 2k + 1 and all the columns from 2l
to 2l+ 1. We denote by U η the iterated application of U : U η = U ◦ . . .◦U
(η times).

3. Downsampling. Let B ∈ R2b×2b; then, D(B) ∈ Rb×b satisfies:

(3.6) D(B)k,l = B2k,2l ∀k, l = 0, . . . , b− 1.

We denote by Dη the iterated application of D : Dη = D ◦ . . . ◦D (η times).
The following crucial result provides a full description of the convolutional interpre-
tation of the matrix representing A∗A in the wavelet domain. Such result can be
compared to the ones already known in literature, see e.g. [11, Formula (4.2)], al-
though the more complicated structure of the wavelet basis entails some significant
differences.

Proposition 3.1. Let K ∈ Rp×p be the matrix representing an operator A∗A
satisfying (3.3) in a 2D wavelet basis {ψI}pI=1. For a vector w ∈ Rp, let w

(t)
j be the

vector of the wavelet components related to basis functions of scale j and type (t). Let

K
(t)→(t′)
j→j′ denote the block of K corresponding to the j, (t) subset of the column indices

and the j′, (t′) subset of the row indices. Then

(3.7) K
(t)→(t′)
j→j′ w

(t)
j =





Dδ(K̃
(t)→(t′)
j→j′ ∗W (t)

j ) if j > j′

K̃
(t)→(t′)
j→j′ ∗W (t)

j if j = j′

K̃
(t)→(t′)
j→j′ ∗U δ(W

(t)
j ) if j < j′

being δ = |j′ − j|, and K̃
(t)→(t′)
j→j′ ∈ R(2ĵ+1−1)×(2ĵ+1−1) (where ĵ = max(j, j′)):

(3.8)

[
K̃

(t)→(t′)
j→j′

]
d

=

∫

R2

∫

R2

K(x− x′ − 2−ĵd) ψ
(t′)
j′,0(x′) ψ(t)

j,0(x)dxdx′

d = (d1, d2); d1, d2 = {−2ĵ + 1, . . . , 0, . . . , 2ĵ − 1}.

The matrix W
(t)
j ∈ R2j×2j is obtained by reshaping the vector w

(t)
j ∈ R22j

so that

[W
(t)
j ]d is the component wI whose index is identified by (j, (t), d).
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Proof. Let I, I ′ be identified by (j, (t), k) and (j′, (t′), k′), respectively. Then,

[K]I′,I =

∫

R2

∫

R2

K(x− x′) ψ(t′)
j,k′(x

′) ψ(t)
j,k(x)dxdx′

=

∫

R2

∫

R2

K(x− x′) ψ(t′)
j,0 (x′ − 2−j

′
k′) ψ(t)

j,0(x− 2−jk)dxdx′

=

∫

R2

∫

R2

K(x+ 2−jk − x′ − 2−j
′
k′)ψ(t′)

j,0 (x)ψ
(t)
j,0(x)dxdx′

=

∫

R2

∫

R2

K(x− x′ − 2−ĵ(2δ
−
k′ − 2δ

+

k))ψ
(t′)
j,0 (x)ψ

(t)
j,0(x)dxdx′ =

[
K̃

(t)→(t′)
j→j′

]
d
,

where δ+ = max(0, j − j′), δ− = max(0, j′ − j), and d = 2δ
−
k′ − 2δ

+

k. For the sake

of ease, we use K instead of K
(t)→(t′)
j→j′ , K̃ instead of K̃

(t)→(t′)
j→j′ , w instead of w

(t)
j , W

instead of W
(t)
j . Moreover, we denote by I the set of indices I ⊂ {1, . . . , p} belonging

to the wavelet scale j and type (t).
Consider first the case j = j′. Then δ = δ+ = δ− = 0, and it holds

[K]I′,I =
[
K̃
]
d
, d = k′ − k.

Therefore,

[Kw]I′ =
∑

I∈I
[K]I′,I wI =

∑

I∈I

[
K̃
]
k′−k(I)

wI

=

2j∑

k1=−2j

2j∑

k2=−2j

[
K̃
]
k′1−k1,k′2−k2

Wk1,k2 = [K ∗W ]I′ .

Let now j < j′. Then δ = δ+ > 0, δ− = 0, and

[Kw]I′ =
∑

I∈I
[K]I′,I wI =

∑

I∈I

[
K̃
]
k′−2δ+k(I)

wI

=

2j
′

∑

k1=−2j′

2j
′

∑

k2=−2j′

[
K̃
]
k′1−2δ+k1,k′2−2δ+k2

U δ+(W )2δ+k1,2δ
+k2

= [K ∗U δW ]I′ .

Finally, let j > j′. Then δ+ = 0, δ = δ− > 0, and

[Kw]I′ =
∑

I∈I
[K]I′,I wI =

∑

I∈I

[
K̃
]

2δ−k′−k(I)
wI

=

2j∑

k1=−2j

2j∑

k2=−2j

[
K̃
]

2δ−k′1−k1,2δ
−k′2−k2

Wk1,k2 = [Dδ(K ∗W )]I′ .

Remark 3.2. The most relevant consequence of Proposition 3.1 is a significant
reduction of the coefficients required to describe the application of A∗A as a function
from Rp to Rp. The standard representation, obtained by a matrix in Rp×p, involves
indeed p2 = 24J parameters, whereas the representation via the convolutional filters

K̃(t)→(t′)
j→j′ involves only O(p) elements.
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W
(h)
4

decomposition

Fig. 1: Interpretation of (3.7). Step 1: decompose the wavelet transform in subbands.

This convolutional interpretation also reflects on the Neural Network architecture
proposed in (3.1): if we substitute the multiplication K(n)w(n−1) by the operations
encoded by (3.7) (decomposition of w(n−1) in wavelet subbands, upscaling, application
of convolutional filters, downscaling), the parameters θ involved in the description of
K(n) are reduced. The representation of the linear operators K(n) through convo-
lutions, upscaling and downscaling is a typical feature of CNNs: thus, by designing
a CNN which reproduces exactly the operations reported in (3.7) and (3.1), we can
ensure that such a network is completely equivalent, for a suitable choice θ0 of the
parameters, to the application of ISTA.

3.2. A working example. In order to better visualize the convolutional rep-
resentation of ISTA reported in (3.8), we now provide a small example. Consider
the case of 64 × 64 images, thus associated to J = 6 and p = 212. Create a wavelet
basis consisting of three scales of wavelets, from J0 = 3 to J1 = 5. The resulting
basis {ψI}pI=1 can be therefore split into 10 subbands: 4 associated to the scale j = 3
(types: (h), (v), (d) and (f)), 3 associated to the scales j = 4 (types: (h), (v), (d))
and 3 with j = 5. Each subband consists of 22j elements.
The operator A∗A is represented in the wavelet basis {ψI} by a matrix K ∈ Rp×p.
According to subsection 3.1, the following procedure is equivalent to applying the
matrix K on a vector w ∈ Rp (representing the wavelet transform of an image):

1. First, split the vector w into its 10 wavelet subbands, each of which identified
by a scale j and a type (t). This operation is depicted in Figure 1. The

vector w
(t)
j ∈ R2j can also be interpreted as a matrix W

(t)
j ∈ Rj×j . The ele-

ment [W
(t)
j ]d = [W

(t)
j ](d1,d2) is the component associated to the basis function

ψ
(t)
j,d(x) = 2jψ(t)(2jx1 − d1, 2

jx2 − d2).

2. Secondly, for each subband j, (t), compute the 10 vectors K
(t)→(t′)
j→j′ w

(t)
j , the

contributions of w
(t)
j on the subband j′, (t′) of the vector Kw. Each matrix

K
(t)→(t′)
j→j′ is a 22j′ × 22j block composing the matrix K. According to (3.7),

this can be done by means of usampling, downsampling and convolution.
Consider the case j = J0 = 3:
• if j′ = 3, then ĵ = 3 and δ = 0. Thus, if we compute the convolution of

the 15× 15 filter K̃
(t)→(t′)
3→3 with the matrix W

(t)
3 ∈ R8×8, we get a 8× 8

matrix representing the vector K
(t)→(t′)
3→3 w

(t)
3 ∈ R64 .

• if j′ = 4, then we shall use the third variant in formula (3.7) with δ = 1
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*
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*
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D
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D

Fig. 2: Interpretation of (3.7). Step 2: convolution, upsampling and downsampling.

(whereas in (3.8) we have ĵ = 4). To compute the 16 × 16 matrix

associated to K
(t)→(t′)
3→4 w

(t)
3 , we must first upsample the matrix W

(t)
3 and

then convolve it with the 31× 31 filter K̃
(t)→(t′)
3→4 .

• if j′ = 5, then we use again the third variant of (3.7), with δ = 2; hence

the matrix W
(t)
3 must be upsampled twice before being convolved with

the 63× 63 filter K̃
(t)→(t′)
3→5 .

Consider instead the case j = 4:
• if j′ = 3, then we need to use the first variant in (3.7) with δ = 1 (and

(3.8) with ĵ = 4), which means we first compute the convolution between

the 31 × 31 filter K̃
(t)→(t′)
4→3 and the matrix W

(t)
4 ∈ R16×16 and then to

downscale it to recover the 8× 8 matrix describing K
(t)→(t′)
4→3 w

(t)
4 .

• the case j′ = 4 is analogous to 3→ 3, using 31× 31 filters K̃
(t)→(t′)
4→4 .

• the case j′ = 5 is analogous to 3→ 4: we first perform upsampling and
then convolution.

Finally, for j = J1 = 5,

• if j′ = 3, then we first compute the convolution between K̃
(t)→(t′)
5→3 ∈

R63×63 and W
(t)
5 ∈ R32×32 and then downsample twice.

• if j′ = 4, we only downsample once, as in the case 4→ 3.
• if j′ = 5, we only do convolution, as in the cases 3→ 3 and 4→ 4, but

with 63× 63 filters.
A graphical visualization of these operations is provided by Figure 2.

3. The last step consists of collecting, for each subband j′, (t′), all the contribu-

tions coming from the vectors w
(t)
j . Thanks to the previous step, among the

100 computed matrices, all the ones associated to those contributions have
dimensions 2j

′ × 2j
′
. By adding them up we recover the j′, (t′) subband of

the vector Kw (see Figure 3).
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sum

Fig. 3: Interpretation of (3.7). Step 3: reassembling each wavelet subband.

3.3. On the possibility to use smaller filters. When designing a CNN, it is
common practice to employ a large numbers of convolutional filters of small size. In
the architecture determined by (3.7) and (3.8), the required number of filters is exactly
(3(J−J0)+1)2, and each part of the vector w(n−1) interacts only with (3(J−J0)+1)
of them. Moreover, the size of each filter must be equal to (2j

′+1 − 1)(2j+1 − 1). We
now consider the effect of substituting such large filters with smaller ones.

We would like to use filters of size τ×τ , being τ = (2ξ+1) and ξ > 1, obtained by

extracting the central elements of the large filters K̃
(t)→(t′)
j→j′ . In particular, we define

K̃τ = (K̃
(t)→(t′)
j→j′ )τ , being τ = 2ξ + 1, as

(3.9)
[
K̃τ
]
d

=





[
K̃

(t)→(t′)
j→j′

]
d

if ‖d‖∞ ≤ ξ,

0 if ‖d‖∞ > ξ.

We claim that this modification is equivalent to performing a perturbation of ISTA of
the type treated in Proposition 2.5, where the parameter ρ is a suitable function of τ .
Although providing a detailed proof of this would entail cumbersome computation,
we prove the most important result which is required to accomplish this task: we
exhibit a bound on the coefficients of the filters which are discarded due to (3.9).

Such an estimate can be obtained by assuming further hypotheses on the operator
A. In particular, suppose that A∗A is a convolutional operator of kernel K (as in (3.3))
and, in addition, that for x 6= x′ the kernel K(x, x′) is smooth and such that

(3.10) K(x, x′) ≤ C

|x− x′| |∇xK(x, x′)|+ |∇x′K(x, x′)| ≤ C

|x− x′|2 .

It is easy to verify that (3.10) is satisfied whenever A∗A is a ΨDO of order −1 with
constant coefficients, that is

A∗Af = F−1 {a(ξ)F {f} (ξ)} , a(ξ) ∼ 1

|ξ| as ξ → 0.

We also assume first-order vanishing moment property for wavelet basis functions:

(3.11)

∫

R2

ψI(x)dx = 0.
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Such property is verified even by 2D Haar wavelets, apart from the type (f).

Proposition 3.3. Let the operator A satisfy (3.3) and (3.10). Let the indices
I, I ′ denote two wavelets of scales j, j′, type (t), (t′) and offsets k, k′. Let ψI and
ψI′ satisfy (3.11) and let dI,I′ be the distance between the supports of ψI and ψI′ .
Whenever dI,I′ > 0, it holds:

(3.12) KI,I′ = (A∗AψI , ψI′)X ≤ c
2−2(j+j′)

d3
I,I′

We remark that the decay reported in (3.12) closely resembles formula (9.22) in [10]

(according to the choice n = 2, d̃ = 1, r = 2t = −1) and with minor changes also
formula (4.26) in [5] (with M = 2).

Proof. According to (3.10), and to (3.11), for any choice of x0 ∈ supp ψI , x
′
0 ∈

supp ψI′ there exists two points ξ, ξ′ in the same supports such that

KI,I′ =

∫

R2

∫

R2

(K(x, x′)−K(x, x′0))ψI(x)ψI′(x
′)dxdx′

≤
∫

R2

∫

R2

|∇xK(x, ξ′)||x′ − x′0|ψI(x)ψI′(x
′)dxdx′

≤ C
∫

R2

∫

R2

|x′−x′0|
|x− ξ′|2ψI(x)ψI′(x

′)dxdx′ ≤ C
∫

R2

∫

R2

|x−x0||x′−x′0|
|ξ − ξ′|3 ψI(x)ψI′(x

′)dxdx′.

The quantity |ξ − ξ′| is bounded from below by dI,I′ by definition. Moreover, |x −
x0| ≤ diam (supp ψI) = c2−j , and finally

∫
R2 ψI(x) ≤ 2j |supp ψI | = 2−j (analogous

arguments hold on I ′).

In view of (3.12) and of (3.8), we can easily obtain a bound on the elements of the
convolutional filters: [

K̃
(t)→(t′)
j→j′

]
d
≤ c 2−ĵ

(‖d‖∞ − 1)3
,

provided that ‖d‖∞ > 1. This result, together with (3.7), allows to obtain an explicit
bound (in the form of (2.12)) on the perturbation induced by the thresholding (3.9).

4. ΨDONet: formulation and theoretical results. In this section we intro-
duce a reconstruction algorithm for sparsity-promoting regularization based on CNNs,
which leads to a novel network architecture defined ΨDONet. We report the general
idea inspiring such a technique, taking advantage of the theoretical results obtained
in section 3 and providing a comprehensive interpretation. Eventually, we provide a
theoretical result ensuring the convergence of the proposed algorithm.

4.1. ΨDONet: a network to learn pseudodifferential operators. Inspired
by the results of the section 3, if the operator A∗A is of convolutional type, we define
a reconstruction algorithm by designing a CNN of N layers, each of which is described
by (3.1). In particular, the bias vectors appearing in (3.1) are b(n) = WA∗p,qm for each

n, whereas the linear operators K(n) are interpreted as a combination of upscaling,
downscaling and convolution as described in (3.7). As shown in Proposition 3.1, if the
entries of the convolutional filters are selected as is (3.8), this procedure is equivalent
to performing N iterations of ISTA. Instead, the key idea of the proposed algorithm
is to split the convolutional filters into two parts: a central τ × τ submatrix (where
τ is a predefined hyper-parameter of the algorithm) and the outer frame. For each
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one of the 3(J − J0) + 1 filters required by each layer, we suppose that the entries
in the external frame are specified according to (3.8), whereas the central entries
are considered as parameters, to be learned throughout the training process. Such
parameters are collected in a vector θn (related to the n-th layer) and ultimately stored
in the vector θ, possibly together with other learnable parameters. The obtained
network is denoted as fτθ : the aim of a CNN-based algorithm is to find a parameter
θ such that the network is a good approximation of the solution map of our inverse
problem, taking as an input the measurements m and giving as an output the solution
w† = Wu†.

It is evident that, among the possible choices of the optimal parameter, the net-
work could select the vector θ0 which exactly replicates the ISTA iterations (it is the
one for which, in every layer, also the central entries of each filter are specified by
(3.8)). Nonetheless, if the optimal choice of θ differs from θ0, it means that the net-
work is learning something more than the ISTA iterations associated to the operator
A∗A. This can be meaningfully interpreted as follows: in each layer, the network fτθ
applies the filters associated to an operator whose kernel is K0 +K1, where K0 is the
kernel of A∗A and K1 is the kernel of another, learned, operator. Since the difference
will only occur in the central elements of the convolutional filters, according to the
analysis of subsection 3.3, we can argue that the learned operator is indeed a suitable
approximation of a pseudodifferential operator. This finally allows to motivate the
name we propose for this novel CNN-based reconstruction algorithm: ΨDONet.

There are several reasons for which the learning process could attain a better
result than the one provided by ISTA. Indeed, a better choice of the parameters
allows to reduce numerical errors induced by the discrete representation of A∗A, which
might have a significant effect due to the error propagation among the iterations.
Moreover, we might also mitigate model errors in the definition of the operator A
itself. Finally, this perturbation could provide a representation of A∗A with respect
to a slightly different basis, which allows to better satisfies the sparsity assumption
on the solutions. For such reasons, the use of ΨDONet is specifically recommended
whenever the original operator A∗A is a ΨDO itself. Indeed, its kernel representation
by means of convolutional filters might benefit from learned corrections in all its most
important entries: namely, the central ones.

We will show that ΨDONet is also highly recommended for FIOs: in this case, the
largest entries of the convolutional filters representing A∗A are located in the center
and along some lines, possibly stretching away from the center. This is the case of
the limited-angle Radon transform (deeply analyzed in the following sections), which
is associated with the kernel

K(x, y) =
1

|x− y|χΓ(x− y),

being χΓ the indicator function of the cone in R2 between the angles −Γ and Γ. As
reported in section 5, the convolutional filters related to this operator show large
values only in the central elements and along two lines having the same slope of the
ones delimiting the cone. This provides a curious shape for the filters, which resemble
a bowtie. We will show that the application of ΨDONet on this operator, providing
learned corrections only to the center of the bowties, is still extremely effective.

In addition to the numerical verification of the previous statements (depicted in
section 6), we provide here a theoretical argument to explain why ΨDONet is expected
to outperform ISTA even when A∗A is a FIO.
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4.2. A theoretical justification for ΨDONet using microlocal analysis.
If a ΨDO correction is learned for the normal operator, the modified ISTA iterations
read as

w(n) = Sλ/L
(
w(n−1) − 1

L
W (A∗p,qAp,q + Λp)W

∗w(n−1) +
1

L
WA∗p,qm

)
,

being Λp the discrete representation of a ΨDO. This is equivalent to performing
the standard ISTA iterations on a modified version of a minimization problem (2.5),
namely

min
w∈`1(N)

‖(A∗p,qAp,q + Λp)
1/2W ∗w − (A∗p,qAp,q + Λp)

−1/2A∗p,qm‖2X + λ‖w‖`1 .

This minimization problem is a discretised version of the continuous minimization
problem

min
u∈Z
‖(A∗A+ Λ)1/2u− (A∗A+ Λ)−1/2A∗m‖2Y + λ‖u‖Z .

Eventually, this accounts to finding a regularized solution, with a regularization pen-
alty promoting solutions for which w = Wu ∈ `1(N) is sparse, of the problem

(A∗A+ Λ)1/2u = (A∗A+ Λ)−1/2A∗m

or equivalently,

(A∗A+ Λ)u = A∗m(4.1)

Assume next that A∗A is a FIO, that defines a bounded map between Sobolev spaces
in a ball B(R) of radius R and that there is r ∈ R such that for all s ∈ R, A∗A :
Hs

0(B(R)) → Hs+r(B(R)). Let Λ be a (possibly unbounded) selfadjoint, positive
definite, and invertible operator Λ : L2(B(R)) → L2(B(R)). Moreover, assume that
Λ is given by an elliptic ΨDO of order h and h > r. Then the operator A∗AΛ−1 is an
operator smoothing Sobolev spaces by order r + h, that is, A∗AΛ−1 : Hs(B(R)) →
Hs+r+h(B(R)) for all s ∈ R. Moreover, the operator (A∗A+ Λ)−1 can be written as

(A∗A+ Λ)−1 = Λ−1(I +A∗AΛ−1)−1 = Λ−1




k∑

k=0

(−A∗AΛ−1)k +Rk




where Rk : Hs → Hs+k(r+h) is bounded for all s ∈ R. Thus the solution uΛ of (4.1)
can be written as

uΛ =

k∑

k=0

uk + Λ−1RkA
∗m, uk = −Λ−1(A∗AΛ−1)k = (−Λ−1A∗A)kΛ−1A∗m.

Note that here the operator Λ−1A∗A is a Fourier integral operator whose canonical
relation is determined by A and whose symbol is determined by both A and Λ. The
training of the neural network can be considered as optimizing Λ so that for a given
datum m the solution uΛ of (4.1) is close to u†. Roughly speaking, this means
to optimize Λ so that the imaging artifacts in terms uk, caused by iteration of the
operator Λ−1A∗A, are minimized. Note that the remainder term Λ−1RkA

∗m becomes

smoother when k grows.
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We are interested in applying this argument in limited-angle tomography. As
a first step, we start by considering the case when X-rays are measured only from
finitely many directions ωj ∈ S1, j = 1, . . . , J . As it can be seen, the normal operator
obtained via back-projection is associated to the kernel

K(x, y) =

J∑

j=1

δ((x− y) ·ω⊥j ),(4.2)

where δ ∈ D′(R) is the Dirac delta distribution. In this case, K = A∗A ∈ Iµ(C ′K) is

a FIO of order µ = − 1
2 and its canonical relation CK =

⋃J
j=1 Cj , where

Cj = {(x, ξ; y, η) ∈ (T ∗R2 \ 0)× (T ∗R2 \ 0) | ξ = η, η ⊥ ωj , (x− y) ·ωj = 0},
and K : Hs

0(B(R)) → Hs+1/2(B(R)) for all s ∈ R. This entails that if (y, η) is in
the wavefront set of u, then the elements (x, ξ) in the wave front set of Ku satisfy
(x, ξ; y, η) ∈ CK , that is, the operator K moves singularities along CK . This provides
a theoretical justification for the appearance of the well-known streaking artifacts in
sparse tomography, see [29, 42]. The presence of a ΨDO Λ might affect the symbol of
the operator, but not the canonical relation of the operator Λ−1A∗A. This accounts
to say that the strength of the singularities of uk = (−Λ−1A∗A)kΛ−1A∗m can be
reduced by Λ, without transporting them.

We finally consider the limited-angle tomography problem, in which the the op-
erator K is defined as in (1.2). It is possible to show that such operator belongs to
a class of generalized Fourier Integral operator whose properties are studied e.g. in
[21, 20]. In addition, K can be treated as a FIO if considered far from the diagonal:
namely, if a smooth truncation function φ is introduced such that φ ∈ C∞0 (R2) and
φ vanishes near zero, the kernel φ(x − y)K(x, y), where K is given in (1.2), defines
a FIO. We can thus apply the strategy proposed in subsection 4.1 by supposing to
split the kernel K = K0 + K1, where now K0 is the kernel of A∗A away from the
diagonal and K1 is the kernel of Λ, a learned correction concentrated on the diago-
nal. Analogously as above, we see that the operator Λ changes the strength of the
artifacts appearing in uk = (−Λ−1A∗A)kΛ−1A∗m but not their locations. Therefore,
even in the limited-angle problem, the ΨDO correction can be seen as a regularization
technique, from a microlocal analysis standpoint.

4.3. A convergence result. We now provide a theoretical result which holds
true for the ΨDONet algorithm, regardless of its specific implementation. In analogy
with the approach of [14], we introduce the following probabilistic approach. Let
B = {u ∈ Xp : Wu ∈ `1(N); ‖Wu‖`1 ≤ CB} and u be a random variable having a
probability distribution µ on the space B. We can consider µ as some prior information
on the solution of the inverse problem. Moreover, let ε be a random variable in Yq
with distribution ν, which models the error on the measurements. Assume that u and
ε are independent: hence, the measurement m = Ap,qu + ε is a random variable on
the product space Xp×Yq with density A∗µ⊗ ν, where A∗µ denotes the pushforward
of µ to Y via the linear map A. In order to measure the performance of the network
fτθ , we introduce the loss function associated to the network fτθ as:

(4.3) L(θ;µ, ν) = Eu∼µ,ε∼ν
[
‖fτθ (Ap,qu+ ε)−Wu‖2`2

]

We define the optimal Neural Network as the one associated to θ∗ satisfying:

(4.4) θ∗ = arg min
θ∈Θ

L(θ;µ, ν).



18 T.A. BUBBA, M. GALINIER, M. LASSAS, M. PRATO, L. RATTI AND S. SILTANEN

Before focusing on the properties of the optimal network fτθ∗ , it is convenient to recall
that, for a specific choice of parameters θ0, the network fτθ0 is equivalent to performing
N iterations of (modified) ISTA. The following rough estimate will be useful:

Lemma 4.1. There exist two constants k1, k2 > 0 (depending on CB, L, ρ, ‖Ap,q‖,
w(0),N) such that, for all u ∈ B and ε ∈ Yq,
(4.5) ‖fτθ0(Ap,qu+ ε)−Wu‖`2 ≤ k1 + k2‖ε‖Yq

Proof. According to (3.1), defining κ = 1 +
‖A∗p,qAp,q‖+ρ

L , we get

‖fτθ0(Ap,qu+ ε)−Wu‖`2 ≤ ‖fτθ0(Ap,qu+ ε)‖`2 + ‖u‖Xp
≤ κN‖w(0)‖+

(
1+κ+ . . .+κN−1

)
‖Ap,qu+ ε‖Yq+CB

≤ κN‖w(0)‖+ CB +
κN − 1

κ− 1
(‖Ap,q‖CB + ‖ε‖Yq )

We now focus on the case in which ε is a Gaussian random vector, i.e., ν = N(0, σ2Iq),
being Iq the identity matrix in Rq×q. In this case, it is useful to recall that

(4.6) E[‖ε‖2Yq ] = qσ2, E[‖ε‖4Yq ] ≤ 3q2σ4.

In addition to Lemma 4.1, we can rely on the results reported in section 2 (and in
particular on Theorem 2.6) to provide a more refined estimate. Indeed, we observe
that the convergence result reported in (2.13) is independent of the choice of ε =
m − Au†, as long as ‖ε‖ ≤ δ. Moreover, the constant c5 appearing in (2.13) can
depend on u†, but only through an upper bound on ‖w†‖`1 (see, in particular, [17,
Theorem 1] and to [6, Theorem 25] for the constant derived from Proposition 2.2 and
Proposition 2.5, respectively). This allows us to conclude that

Lemma 4.2. Suppose ε ∼ N(0, σ2Iq) and let δ = σ1/η, being η > 1. There exists
σ0 > 0 such that, for σ < σ0, then for every u ∈ B

Eε∼ν
[
‖fτθ0(Au+ ε)−Wu‖2`2

]
≤ c25δ2 + 2

√
2k2

1δ
η−1 + 2

√
6k2

2qδ
3η−1.

If, moreover, η = 3 and σ < min{σ0, q
−1/2}, then there exists a constant c∗ (depending

on c5, k1, k2) such that

(4.7) Eε∼ν
[
‖fτθ0(Au+ ε)−Wu‖2`2

]
≤ c∗δ2.

Proof. We start by considering that

Eε∼ν
[
‖fτθ0(Au+ ε)−Wu‖2`2

]
=

∫

Yq

‖fτθ0(Au+ ε)−Wu‖2`2dν(ε)

=

∫

‖ε‖<δ
‖fτθ0(Au+ ε)−Wu‖2`2dν(ε) +

∫

‖ε‖>δ
‖fτθ0(Au+ ε)−Wu‖2`2dν(ε).

We now employ (2.13) on the first term and Hölder inequality on the second term.

Moreover, in view of Chebyshev’s inequality, ν({‖ε‖ > δ}) ≤ σ2

δ2 . Therefore,

Eε∼ν
[
‖fτθ0(Au+ ε)−Wu‖2`2

]
≤ c25δ2

(
1− σ2

δ2

)
+
σ

δ

(
Eε∼ν

[
‖fτθ0(Au+ ε)−Wu‖4`2

]) 1
2

≤ c25δ2 +
σ

δ

(
8k4

1 + 8k4
2E
[
‖ε‖4Yq

]) 1
2

.

By (4.6) and by σ = δη we immediately verify the first thesis, and imposing η = 3
and δ2ηq < 1 we get (4.7) with c∗ = c25 + 2

√
2k2

1 + 2
√

6k2
2.
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In view of Lemma 4.2, we can easily prove the following convergence result regarding
the the optimal network fτθ∗ :

Proposition 4.3. Consider ε ∼ N(0, σ2Iq) with δ = σ1/3 and let θ∗ satisfy (4.4).
There exists σ1 > 0 such that, for σ ≤ min{σ1, q

1/2}, it holds

(4.8) L(θ∗;µ, ν) ≤ c∗δ2.

This also accounts to say that the random variable fτθ∗(Ap,qu + ε) converges to Wu
in mean as δ → 0.

Proof. By definition of θ∗ and by Lemma 4.2,

L(θ∗;µ, ν) ≤ L(θ0;µ, ν) =

∫

B

∫

Yq

‖fτθ0(Ap,qu+ ε)−Wu‖2`2dν(ε)dµ(u)

≤
∫

B
c∗δ2dµ(u) = c∗δ2.

Although the optimal network fτθ∗ allows for a precise approximation of the solu-
tion map of the inverse problems, it is impractical to solve the minimization problem
stated in (4.4). Instead, Neural Network algorithms require to draw a sample from
the random variables U and E and to find the parameter θ which allows for the best
reconstruction on such sample (training process). This task is addressed by mini-
mizing a discretized loss functional, as reported in subsection 5.4, and results in the
definition of the trained Neural Network. The quality of the trained network can be
verified by analyzing its generalization, namely, its ability to provide good predictions
even when tested on data outside the training sample. Such an analysis has been
performed in detail (although with some different assumptions with respect to the
ones in this work) in [14], and can be extended also to the problem in consideration.

5. In practice: the particular case of CT. In this section, we focus on
the practical aspects of the reconstruction algorithm introduced in subsection 4.3, in
the particular case of limited-angle computed tomography (LA-CT) with the discrete
setting. In the remainder of the article, the discrete counterpart of the operator
Ap,q representing the LA-CT will be denoted by RΓ. We first define the regularized
minimization problem, and then propose an effective method for the computation
of the convolutional kernel filters approximating the backprojection operator in the
wavelet domain. Thirdly, we present and discuss the general reconstruction workflow
and finally give more details on the two CNN architectures we propose in this paper.

5.1. The CT minimization problem. After suitable discretization, we are
given the measurements (i.e., the so-called sinogram or observed image) m ∈ Rq
such that:

(5.1) m = RΓu† + ε,

where u† ∈ Rp denotes the (unknown) discrete and vectorized image, RΓ ∈ Rq×p
describes a discretized version of the Radon transform where the angles are limited
in the arc specified by Γ and ε ∈ Rq models the measurement noise. We call w† the
Rp-vector such that Wu† = w† where W ∈ Rp×p represents a discretization of the
wavelet transform. Thus, the regularized minimization problem is given by:

(5.2) min
w∈Rp

‖RΓW∗w −m‖22 + λ‖w‖1
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Fig. 4: Illustration of the proposed way to compute the filters of the convolutional
kernel operator K in the LA-CT case. The initial object (on the left) is created such
that all its pixels but one are set to zero. The only non-zero pixel is located at the
center of one of its wavelet subbands. By applying the operator WR∗ΓRΓW∗ to this
initial object, one obtains a new object in the wavelet domain, whose subbands present
a bowtie-shaped structure. The set of ’bowtie’ subbands thus computed from all the
possible initial objects constitute the filters of the convolutional kernel operator. Here
we have represented three levels of decomposition in the wavelet domain, meaning that
the total number of convolutional filters amounts to (32 + 1)2 = 100.

Our recovery algorithm for finding a reconstruction u of u† involves convolutional
architectures incorporated in the iterative structure of standard ISTA, as described in
section 3. In the next paragraphs, we detail the implementation of such an algorithm.

5.2. Convolutional kernel operator for limited-angle CT. Building a con-
volutional algorithm that reproduces the behavior of standard ISTA first requires to
identify the various blocks of the matrix K representing the backprojection operator
in the wavelet domain. In other words, the very first step in the development of our
method is to establish the convolutional filters of K which, once applied as defined in
(3.7), provide a reliable approximation of the operator WR∗ΓRΓW∗.

One way to compute such convolutional filters that proves to be a numerically
advantageous alternative to (3.8), is represented in Figure 4. Let us consider an object
whose representation in the wavelet domain has only one nonzero pixel, located at
the center of one of its wavelet subbands. Applying the operator WR∗ΓRΓW∗ to this
initial object leads to a new object whose subbands present a bowtie-shaped structure.
Those ’bowtie’ subbands constitute a first set of convolutional filters. By reiterating
this operation until the central pixel of all the wavelet subbands in the initial object
has been visited, one obtains the entire collection of convolutional filters necessary
for the approximation of WR∗ΓRΓW∗. A numerical example of convolutional filter
is shown in Figure 5.

In order to imitate the behavior of the operator WR∗ΓRΓW∗, the convolutional
filters so computed are then to be applied to the wavelet subbands of an object
as illustrated in Figure 6. First, each wavelet subband of the object of interest is
replicated 3(J −J0) + 1 times. Those replicas are either upsampled, or downsampled,
or kept with the same dimensions, depending on the scale of the filter they are to be
convolved with. The set of convolutional filters used on the replicas of a particular
wavelet subband of scale j and type (t) is the set of filters beforehand generated by
applying the operator WR∗ΓRΓW∗ to an object whose only non-zero pixel is located
at the center of its wavelet subband of exact same scale j and type (t). Once the
convolutions between the replicas and the filters have been performed, the resulting
subbands are reassembled to form the wavelet representation of a new object. This
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Fig. 5: Example of a ’bowtie’ subband that can be used as a convolutional filter of the
kernel operator K. It was generated from a 256× 256 initial object, according to the
procedure detailed in subsection 5.2 and illustrated in Figure 4. Theory suggests that
the pixels with highest intensities are spread according to a bowtie-shaped structure.
In practice, they are even more condensed: most of the energy is concentrated along
two diagonal lines that intersect in the center and whose inclination is defined by the
limited angle: 95.8% of the `2-norm of the filter is concentrated along those two lines,
from which 94.8% are inside the central red square.
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Fig. 6: Illustration of the way the filters of the convolutional kernel operator are
applied to each wavelet subband of the initial object, after up- and down- sampling
operations, in order to approximate the operator WR∗ΓRΓW∗.

process is reiterated for all the subbands of the initial object and ultimately, the
3(J − J0) + 1 resulting items are summed. The final outcome is an approximation of
the wavelet representation of the operator WR∗ΓRΓW∗ applied to the initial object
(cf Figure 7).

Two remarks are worth mentioning regarding the creation and use of the above-
defined convolutional filters. First, our practical implementation very slightly differs
from the theory presented in (3.7) as far as the downsampling is concerned. In our
codes, downsampling is indeed applied before computing the convolution between the
filter and the wavelet subband replica, and not after as it is presented in the theory.
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(a) (b) (c) RE: 0.121

(d) (e) (f) RE: 0.003

Fig. 7: Illustration of the effect of the standard backprojection operator and of its
approximations based on convolutional filters of different sizes. (a) shows the ground
truth u† of interest and (d) its standard backprojection R?

ΓRΓu†, computed with the
basic functions of the Python package scikit-image. (b) (resp. (e)) represents the
approximation Ku† obtained with convolutional filters beforehand generated from
2J × 2J (resp. 2J+1 × 2J+1) only-one-non-zero-pixel object. (c) and (f) show the
absolute differences between the approximation of the backprojection operator and
the expected value (d). The dynamic range of the plot is modified for better contrast.

This choice is motivated by the reduction in terms of storage needs and running time
such a change allows while preserving the accuracy of the approximation. Secondly,
both the theoretical analysis and the experimental tests showed that the dimensions
of the convolutional filters used for the approximation of WR∗ΓRΓW∗ do affect the
accuracy of the results. Initially, we assumed that the convolutional filters should be
generated from only-one-non-zero-pixel objects with the same dimensions 2J × 2J as
the image of interest (recall that p = 22J). However, we reached the conclusion that
they actually have to be generated from twice bigger objects, that is of dimensions
2J+1×2J+1, in order to get an accurate approximation of the operator WR∗ΓRΓW∗.
An illustration of the effects of the size of the filters can be seen on Figure 7.

5.3. Our CNN architectures. The above described method for generating and
applying the filters of the kernel operator K makes the concrete implementation of a
convolutional algorithm that imitates the behavior of standard ISTA possible. Thus,
the convolutional implementation of ISTA, result-wise equivalent to the standard one,
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could be written as:

(5.3) w(n+1) = S λ
L

(
w(n) +

1

L

(
WR∗Γm−Kw(n)

))
, n = {0, . . . , N}

This algorithm offers the merits of the iterative model-based method ISTA, while
allowing the incorporation of data-driven approaches, such as machine learning and
deep neural network techniques. The implementation of K indeed involves operations
that are all perfectly adaptable to the framework of CNNs. Our goal is precisely to
take full advantage of this compatibility and profit from the remarkable potentials
of deep neural networks by converting the hitherto fixed operator K into a partially
trainable CNN. Thus, the center of the convolutional filters so far precomputed with
the deterministic method presented in subsection 5.2 can henceforth be considered as
parameters to be learned from data. The choice of learning only the central part of
the convolutional filters of K rather than the whole filters is motivated by the need
to reduce the model complexity which, in the latter case, makes the training of the
model burdensome if not impractical.

In order to further improve reconstruction performance, we also propose to learn
the soft-thresholding parameter as well as the step-length so far set at 1/L. The so-
defined convolutional architecture results in our proposed algorithm ΨDONet, whose
convergence results are detailed in subsection 4.3. In subsection 5.3.1 and subsec-
tion 5.3.2, we propose two different implementations of ΨDONet, that proves to be
result-wise similar as it can be observed in subsection 6.2.

5.3.1. ΨDONet-F. The most natural way to implement ΨDONet consists in
partitioning the convolutional operator K into two operators: a fixed one, K̆τ , and a
trainable (single-layer) CNN referred to as Λτζ , where τ is a tunable hyperparameter.
The two operators have the exact same architecture as K and their sum, before any
training, is strictly equivalent to K. The first operator K̆τ is non trainable and its
filters are a copy of the filters of K with the exception that the τ × τ central weights
of each filter are set to zero. The second operator Λτζ , on the contrary, is composed
by τ × τ -trainable filters that are initialized with the τ × τ central part of the filters
of K (cf Figure 8). This first implementation of ΨDONet, referred to as Filter-Based
ΨDONet or ΨDONet-F, is formulated as:

(5.4) w(n+1) = Sγn
(
w(n) + αn

(
WR∗Γm− βn

(
K̆τw(n) + Λτζnw(n)

)))

where n = {0, . . . , N} and the parameters to be learned are {γ0, α0, β0, ζ0,. . . ,γN , αN ,
βN , ζN}. The parameters {β0, . . . , βN} have been added in such a way that the

influence of the fixed operator K̆τ with respect to the constant term WR∗Γm can be
adjusted in order to maximize the accuracy of the results. It is worth mentioning
that for the particular choice of γn = λ

L , αn = 1
L , βn = 1, for any n = {0, . . . , N}, this

model before any training is exactly equivalent to standard ISTA.
The trade-off between the number of parameters that can be improved through

the learning process and the trainability of the model is controlled by τ . For a sound
choice of such a hyperparameter, the complexity of the model is sufficiently reduced
to allow for the convergence of the learning algorithm while enabling the enhancement
of a significant number of weights in the filters.

This implementation has the advantage of offering a clear interpretation of the
role and meaning of the convolutional filters belonging to K̆τ and Λτζ . Those filters
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Fig. 8: Illustration of the way the convolutional filters of the two operators in
ΨDONet-O are computed based on the filters of operator K. Each filter of K is
partitioned into two filters, which sum is equivalent to the initial one. The filter of
K̆τ is a copy of the filter of K with the exception that the τ × τ central weights are
set to zero. The filter of Λτζ has dimensions τ × τ and is initialized with the central
τ × τ central weights of the filter of K.

are indeed initialized with the filters of the operator K that imitates the behavior
of WR∗ΓRΓW∗. Thus, modifying their weights through the learning process can be
thought of as a direct improvement of the back-projection operator.

ΨDONet-F has led to very satisfactory preliminary results, presented in section 6.
However, training such a model on big images may quickly become extremely onerous
in terms of running time and storage requirements. Such problems may arise while
training ΨDONet-F on images of dimensions greater or equal to 256 × 256. Unlike
typical CNNs that usually make use of small-sized convolutional filters, the filters
of K̆τ in our proposed algorithm are much bigger than the wavelet subbands they
are convolved with. This uncommon procedure, that inter alia implies the padding,
i.e., the addition of many extra pixels to the edge of each wavelet subband, brings
about a severe speed reduction in the training process as well as the necessity of a
substantial memory space. The alternative implementation of ΨDONet, described in
subsection 5.3.2 , addresses these shortcomings.

5.3.2. ΨDONet-O. The main flaw of ΨDONet-F rests upon the use of operator
K̆τ which implies numerous burdensome convolutions. This issue is worked around in
ΨDONet-O (5.5), as K̆τ is not involved anymore. Here, the backprojection operator is
not approximated, meaning that WR∗ΓRΓW∗ is indeed implemented as the succession
of the inverse wavelet, Radon, inverse Radon and direct wavelet transforms applied
to the iterate w(n). This second implementation of ΨDONet, named Operator-Based
ΨDONet or ΨDONet-O, reads as:

(5.5) w(n+1) = Sγn
(
w(n) + αn

(
WR∗Γm−WR∗ΓRΓW∗w(n)

)
+ βnΛτζnw(n)

)

where n = {0, . . . , N}, the parameters to be learned are {γ0, α0, β0, ζ0, . . . , γN ,αN ,
βN , ζN}, and Λτζn has the same architecture as the operator K. The block diagram of

the method is represented in Figure 9. For the special choice of γn = λ
L , αn = 1

L , βn =
0, for any n = {0, . . . , N}, this model is exactly equivalent to standard ISTA. The
only convolutions involved in this alternative implementation are the ones composing
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Fig. 9: Block diagram of the proposed model (5.5). Notice that the soft thresholding
operator acts as a nonlinear activation function.

the CNN Λτζn , whose filters are chosen to be small enough to avoid any running time
or storage issue. In that sense, ΨDONet-O offers an implementation numerically
preferable to ΨDONet-F, while retaining the same properties on a theoretical level.
Furthermore, such a model keeps offering a clear interpretation of its post-processing
abilities since Λτζn , on account of its architecture, can still be seen as an adjunct for
improving the back-projection operator.

5.3.3. Note on soft-thresholding parameters. From a theoretical point of
view, the parameters γ0, . . . , γN in ΨDONet-F and ΨDONet-O have to be non-
negative, as they represent the soft-thresholding parameters. In order to stick to
the operator originally involved in standard ISTA, it is possible to enforce the pos-
itivity of the coefficient by replacing each γn by 10γ̃n , where γ̃n becomes the actual
trainable parameter. However, in order to allow for a greater degree of freedom in the
learning process, we decided to implement the operator Sγn in such a way that it is
also interpretable for negative values of its parameter γn. In such a case, we define the
operator Sγn<0 as the symmetric of the soft-thresholding curve with respect to y = x,
while for non-negative values of γn, Sγn is exactly equivalent to the soft-thresholding
operator. Formally, Sγn becomes:

For γn ≥ 0 :

Sγn(x) =





x− γn, if x ≥ γn
0, if |x| < γn

x+ γn, if x ≤ −γn

For γn < 0 :

Sγn(x) =

{
x− γn, if x ≥ 0

x+ γn, if x < 0

The two implementations ΨDONet-F and ΨDONet-O are tested with and without
the positivity constraint on γ (cf results in subsection 6.2).

5.4. Supervised Learning. If we denominate fτθ the N -layer CNN that, given
m, computes the final output w(N+1) according to one of the two proposed architec-
tures, we aim at learning the optimal high-dimensional vector θ = {γ0, α0, β0, ζ0, . . . ,
γN , αN , βN , ζN} that ideally satisfies the relation:

(5.6) fτθ (m) ≈Wu†

For a mathematical formalization, we regard the tuple
(
m,u†

)
∈ Rq × Rp as a

random variable with a joint probability distribution Ξ, as detailed in subsection 4.3.
Ideally, we would like to find a parameter vector θ∗ minimizing the expected risk:

(5.7) min
θ

(
E(m,u†)∼Ξ‖fτθ (m)−Wu†‖22

)
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Other loss functions, such as the weighted l2-norm, where the wavelet coefficients are
weighted depending on their scale, have been tested and lead to results similar to the
non-weighted l2-norm. For the sake of brevity, we will stick to the basic form of (5.7).

In practice, computing the expectation with respect to Ξ is not possible. Instead,
we are typically given a finite set of independent drawings (m1,u

†
1), . . . , (mS ,u

†
S) and

consider the minimization of the empirical risk:

(5.8) min
θ

1

S

S∑

i=1

‖fτθ (mi)−Wu†i‖22

Depending on the properties of fτθ , the optimization problem is in general non-convex.
In the case of neural networks, typically some form of gradient descent is used, where
the gradients are calculated via backpropagation [47]. Computing the gradient over
the entire training set in (5.8) is often not feasible for large-scale problems due to
memory limitations. To circumvent this problem, stochastic of minibatch gradient
descent is used, in which the gradient is approximated over smaller, randomly se-
lected batches of training examples [19, Chapter 8]. The final performance (i.e., the
generalization) of the trained map fτθ is evaluated on a separate set of independent
drawing s, the test set, that were not previously used in the optimization of θ in (5.8).

6. Experiments and results. In this section, we evaluate the performance of
the proposed reconstruction schemes by comparing with standard ISTA.

6.1. Preliminaries. Let us begin by describing the considered experimental
scenario, the implementation of the used operators and the training procedure.

6.1.1. Data set. The data set consists of 10700 synthetic images of ellipses,
where the number, locations, sizes and intensity gradients of the ellipses are chosen
randomly. Using Matlab’s radon, we simulate measurements for a missing wedge of
60◦ with Gaussian noise. To avoid inverse crime [36] the measurements are simulated
at a higher resolution and then downsampled for an image resolution of 128 × 128.
10000 images are used for training, 200 images for validation and 500 for testing.

6.1.2. Operators. For the implementation of the discrete limited angle operator
RΓ we use the radon routine of the Python package scikit-image [51], or the 2D
parallel beam geometry of the Operator Discretization Library (ODL) library [1],
which is based on the Astra toolbox [50]. The former is employed for generating
the backprojections WR∗Γm provided as inputs to ΨDONet-F and ΨDONet-O, while
the latter is used for the implementation of WR∗ΓRΓW∗ in ΨDONet-O. The direct
and inverse Radon transform operators are multiplied by a constant so that their
norm is equal to one. Regarding the wavelet transform, we make use of the Python
package pywt [33] or a rectified version of the package tf-wavelets [23]. In all our
experiments, we consider the case J = 7 and J0 = 4, implying that the wavelet
decomposition Wu has 10 subbands. For the two ΨDONet-F and ΨDONet-O, we
choose to set τ to 32. Note that according to theory, τ is supposed to be odd,
however, in practice we prefer it to be even. This very slight modification has no
effect on the results.

6.1.3. Network structure and training. For the implementation of the two
ΨDONet-F and ΨDONet-O, we fix the number of unrolled blocksN to 120. In order to
reduce the number of parameters to be learned, we choose to use only 40 different sets
of trainable parameters {ζn, γn, αn, βn}, each of which being used over 3 consecutive
blocks, instead of the theoretically expected 120 sets. Implementing and training our
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Method RE PSNR SSIM HaarPSI

uista 0.44 22.84 0.36 0.37
uFBP 0.64 19.49 0.20 0.30

u+
Ψdo-F 0.29 26.63 0.59 0.47

uΨdo-F 0.25 27.63 0.78 0.54
u+

Ψdo-O 0.28 26.76 0.60 0.48
uΨdo-O 0.23 28.43 0.81 0.58

Table 1: Comparison of reconstruction methods. The similarity values are averaged
over the 500 images of the test set.

algorithms has been performed using Tensorflow with an Adam optimizer [30] and a
learning rate (step size) of 10−3. The number of epochs was chosen to be 3, and the
batch size was set to 25. The training, run on a NVIDIA Quadro P6000 GPU, roughly
takes 20 hours. Our codes are available at https://github.com/megalinier/PsiDONet.

6.1.4. Compared Methods. We compare the preliminary results of the ar-
chitectures we propose with the reconstructions provided by standard ISTA. In the
implementation of the latter, we make use of the formula introduced in [12]. The
regularization parameter λ and the constant L are respectively set to 2.10−6 and 5.
The number of iterations for ISTA is determined by the stopping criterion:

(6.1) ‖u(n+1) − u(n)‖22/‖u(n)‖22 < tol

where tol is chosen to be 2.10−4. Hereinbelow, we give a list of the abbreviations
henceforth used for the different recovery methods.

uista Standard ISTA reconstruction.
uFBP Standard filtered backprojection with the ’ramp’ filter of skicit-image.

u+
Ψdo-F Solution provided by ΨDONet-F with positivity-constraint on the soft-

thresholding parameter (γn = 10γ̃n ,∀n).
uΨdo-F Solution provided by ΨDONet-F without positivity-constraint on the

soft-thresholding parameter.
u+

Ψdo-O Solution provided by ΨDONet-O with positivity-constraint on the soft-
thresholding parameter (γn = 10γ̃n ,∀n).

uΨdo-O Solution provided by ΨDONet-O without positivity-constraint on the
soft-thresholding parameter.

6.1.5. Similarity Measures. For an assessment of image quality, we are us-
ing several quantitative measures, such as the relative error (RE) given by ‖u† −
u‖2/‖u†‖2, where u† denotes the reference image and u its reconstruction. Further-
more, we consider the peak signal-to-noise ratio (PSNR) and the structured similarity
index (SSIM) [52] provided by Tensorflow. Finally, we are reporting the Haar wavelet-
based perceptual similarity index (HaarPSI) that was recently proposed in [46].

6.2. Results. In the following, we will report and discuss the results of our nu-
merical experiments. The average image quality measures of the 500 test images are
reported in Table 1. Furthermore, a visualization of the reconstruction quality for
two of the test images is given in Figure 10 and Figure 11. Due to the large missing
angle of 60◦, the FBP images in Figure 10c and Figure 11c are contaminated with
streaking artifacts and contrast changes. The standard ISTA offers reconstructions

https://github.com/megalinier/PsiDONet
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of higher quality (cf Figure 10d and Figure 11d), however, the streaking artifacts are
still noticeable as well as the impurities due to the noise in the measurements. Be-
sides, the ISTA reconstructions are toned down, meaning that for the most part, the
intensity of the pixels remain significantly lower than the expected values. With our
two models, ΨDONet-F and ΨDONet-O, whether with positivity constraint on the
soft-thresholding parameter or without, it is possible to substantially reduce those ar-
tifacts and contrast issues. As it can be seen in Figure 10 and Figure 11, our proposed
methods lead to undeniably enhanced reconstructions, with a meaningful diminution
of the relative error. In particular, ΨDONet-O provides slightly better similarity val-
ues than ΨDONet-F, although both implementations produces comparable results.

In the case where the positivity of the soft-thresholding parameter is enforced, that
is for u+

Ψdo-F and u+
Ψdo-O, one can notice that the streaking artifacts, although greatly

lessened when compared with the ISTA images, are still present on the reconstructions
(cf Figure 10i, Figure 10k, Figure 11i and Figure 11k). In fact, the SSIM measures are
greater than in the ISTA case, but still clearly below the SSIM values obtained with
the non-constrained version of the two models. The latter (uΨdo-F and uΨdo-O) do
a noteworthy job in removing the artifacts and sharpening the edges (cf Figure 10e,
Figure 10j, Figure 11e and Figure 11j).

Overall, ΨDONet-O without any constraint on the soft-thresholding parameters
offers the best results among the compared methods and allows for an optimized
implementation of ΨDONet.

7. Conclusions. In the present paper, we introduced a novel CNN, named
ΨDONet, inspired by the well-known ISTA and the convolutional nature of certain
FIOs and ΨDOs, like the limited angle Radon transform. We proved that the unrolled
iterations of ISTA can be interpreted as layers of a CNN, where the downsampling,
upsampling and convolution operations, typically defining a CNN, can be exactly
specified by combining the convolutional nature of the limited angle Radon transform
and basic properties defining an orthogonal wavelet system. In addition, we proved
that, for a specific choice of the parameters involved, ΨDONet recovers standard ISTA
or a perturbation of ISTA, up to a bound on the filters coefficients which we estimated
in the case of limited angle Radon transform.

The key feature of the proposed architecture is its potential to learn ΨDO-like
structures, which makes it suitable to be extended to any convolutional operator
which is a FIO or ΨDO. Moreover, the analysis carried out in paper allows to gain
understanding and interpretability of the results, which gives insight into a whole
class of inverse problems arising from FIO or ΨDO and opens up for fundamental
theoretical generalization results.

As a proof of concept, we tested two different implementations of ΨDONet on
simulated data from limited angle geometry, generated from the ellipse data set. The
improvement, compared to standard ISTA (and classical FBP) is notable and it is
promising for further numerical testing which we leave to future work. Additional
directions for future numerical testing include larger sizes for images, smaller and
sparser visible wedges, additional regularization for the loss function and reconstruc-
tions from real data. Also, it may be beneficial for the reconstruction to introduce
more advanced features in the ΨDONet architecture, such as skip connections or other
residual blocks. Incorporating such elements, while preserving full interpretability of
the network, is left for future work.
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(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP

RE: 0.66, SSIM: 0.14
(d) uista

RE: 0.47, SSIM: 0.24
(e) uΨdo-O

RE: 0.18 , SSIM: 0.83
0
0

(f) |u† − uFBP| (g) |u† − uista| (h) |u† − uΨdo-O| 0

(i) u+
Ψdo-O

RE: 0.23, SSIM: 0.56
(j) uΨdo-F

RE: 0.20, SSIM: 0.82
(k) u+

Ψdo-F

RE: 0.24, SSIM: 0.58
0
0

(l) |u† − u+
Ψdo-O| (m) |u† − uΨdo-F| (n) |u† − u+

Ψdo-F| 0

Fig. 10: Visualization of the sinogram (or observed image) and corresponding
results for one test image.
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(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP

RE: 0.64, SSIM: 0.18
(d) uista

RE: 0.43, SSIM: 0.32
(e) uΨdo-O

RE: 0.23 , SSIM: 0.78
0
0

(f) |u† − uFBP| (g) |u† − uista| (h) |u† − uΨdo-O| 0

(i) u+
Ψdo-O

RE: 0.28, SSIM: 0.56
(j) uΨdo-F

RE: 0.25, SSIM: 0.76
(k) u+

Ψdo-F

RE: 0.29, SSIM: 0.53
0
0

(l) |u† − u+
Ψdo-O| (m) |u† − uΨdo-F| (n) |u† − u+

Ψdo-F| 0

Fig. 11: Visualization of the sinogram (or observed image) and corresponding
results for one test image.
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Appendix A. Proof of Proposition 2.2.

Proof. According to [17, Section 3], the following variational source condition is
satisfied by every w ∈ `1(N):

(A.1) β‖w − w†‖`1 ≤ ‖w‖`1 − ‖w†‖`1 + C‖AW ∗w −AW ∗w†‖Y .

We aim at applying it to w = wδ,p,q ∈ Wp ⊂ `1(N). First consider the term ‖w‖`1 −
‖w†‖`1 in the right-hand side. Since wδ,p,q is a solution of (2.5),

λ‖wδ,p,q‖`1 =
(
‖Ap,qW ∗wδ,p,q − Pqm‖2Y + λ‖wδ,p,q‖`1

)
− ‖Ap,qW ∗wδ,p,q − Pqm‖2Y

≤ ‖Ap,qW ∗Ppw† − Pqm‖2Y + λ‖Ppw†‖`1 − ‖Ap,qW ∗wδ,p,q − Pqm‖2Y ,

whence

‖wδ,p,q‖`1 − ‖w†‖`1 ≤
1

λ
‖Ap,qW ∗Ppw† − Pqm‖2Y −

1

λ
‖Ap,qW ∗wδ,p,q − Pqm‖2Y .

We can easily check that Ap,qW
∗Pp = PqAW ∗Pp; then, since ‖Pq‖Y→Y ≤ 1, denoting

by Q = ‖Ap,qW ∗wδ,p,q − Pqm‖Y , we have

‖wδ,p,q‖`1 − ‖w†‖`1 ≤
1

λ
‖AW ∗Ppw† −m‖2Y −

1

λ
Q2

≤ 1

λ
‖AW ∗(Ppw† − w†)‖2Y +

1

λ
‖AW ∗w† −m‖2Y −

1

λ
Q2.

In conclusion,

(A.2) ‖wδ,p,q‖`1 − ‖w†‖`1 ≤
1

λ
‖A‖2‖w† − Ppw†‖2`2 +

1

λ
δ2 − 1

λ
Q2.

The second term in the right-hand side of (A.1), instead, can be bounded as follows:

(A.3)

‖AW ∗(wδ,p,q−w†)‖Y = ‖PqAW ∗(wδ,p,q−w†)‖Y +‖(I−Pq)AW ∗(wδ,p,q−w†)‖Y
≤ ‖Ap,qW ∗wδ,p,q − Pqm‖Y + δ + ‖(I − Pq)A‖X→Y ‖wδ,p,q − w†‖`1 + δ

≤ Q+M‖(I − Pq)A‖X→Y + δ,

where the positive constant M depends on ‖w†‖`2 . In order to get an estimate for
Q = ‖Ap,qW ∗wδ,p,q − Pqm‖Y , we use (A.1): since 0 ≤ β‖wδ,p,q − w†‖`1 , using (A.2)
and (A.3) we have

0 ≤ 1

λ
‖A‖‖w† − Ppw†‖2`2 +

1

λ
δ2 − 1

λ
Q2 +Q+M‖(I − Pq)A‖X→Y + δ.

By solving this second-order inequality we get

(A.4)
Q ≤ λ

2
+
λ

2

(
1 +

4

λ2
‖A‖2‖w† − Ppw†‖2`2

4

λ
δ2 +

4M

λ
‖(I − Pq)A‖X→Y

4

λ
δ

) 1
2

≤ λ+ δ + ‖A‖‖w† − Ppw†‖`2 +M‖(I − Pq)A‖X→Y

Combining (A.1), (A.2), (A.3), and (A.4) we easily conclude the proof.

Appendix B. Proof of Proposition 2.5.



32 T.A. BUBBA, M. GALINIER, M. LASSAS, M. PRATO, L. RATTI AND S. SILTANEN

Proof. Consider the sequence en = ‖w(n+1)
ρ − w(n+1)‖`2 . Thanks to the nonex-

pansivity of the operator Sλ/L, it holds that
(B.1)

e0 = ‖TZ(w(0))− T (w(0))‖`2 ≤
1

L
‖WA∗p,qAp,qW

∗ − Z‖‖w(0)‖`2 ≤
1

L
ρ‖w(0)‖`2 .

Analogously, for n ≥ 1,

(B.2)
en ≤ ‖I −

1

L
Z‖‖w(n) − w(n)

ρ ‖`2 +
1

L
‖WA∗p,qAp,qW

∗ − Z‖‖w(n)‖`2

≤ ‖I − 1

L
Z‖en−1 +

1

L
ρ‖w(n)‖`2 .

Since L ≥ ‖WA∗p,qAp,qW
∗‖, then

‖I − 1

L
Z‖ ≤ ‖I − 1

L
WA∗p,qAp,qW

∗‖+
1

L
‖WA∗p,qAp,qW

∗ − Z‖ ≤ 1 +
1

L
ρ.

Moreover, since the sequence {w(n)} is convergent, then it is also bounded: let, e.g.,
‖w(n)‖`2 ≤M . As a consequence of (B.1),(B.2),

eN ≤
N∑

n=0

(
1 +

1

L
ρ

)N−n
1

L
ρ‖w(n)‖`2 ≤M

((
1 +

1

L
ρ
)N+1 − 1

)

Let now N ≥ N0 and ρN ≤ η0: then, with a constant c = c(N0, η0), it holds:

‖w(N)
ρ − w(N)‖`2 = eN ≤M(e

1
LρN − 1) ≤ cM

L
ρN.

Combining this result with (2.8), we can guarantee that

‖w(N)
ρ − wδ,p,q‖`2 ≤ ‖w(N)

ρ − w(N)‖`2 + ‖w(N) − wδ,p,q‖`2 ≤ c3aN + c̃4ρN,

which proves (2.11). To obtain (2.12), simply substitute N = loga δ and ρ = δ
N and

consider c4 = c3 + c̃4.
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