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Abstract

A multivariate score-driven filter is developed to extract signals from noisy vector processes. By
assuming that the conditional location vector from a multivariate Student’s t distribution changes
over time, we construct a robust filter which is able to overcome several issues that naturally arise
when modeling heavy-tailed phenomena and, more in general, vectors of dependent non-Gaussian
time series. We derive conditions for stationarity and invertibility and estimate the unknown pa-
rameters by maximum likelihood. Strong consistency and asymptotic normality of the estimator are
derived. Analytical formulae are derived which consent to develop estimation procedures based on
a fast and reliable Fisher scoring method. An extensive Monte-Carlo study is designed to assess the
finite samples properties of the estimator, the impact of initial conditions on the filtered sequence,
the performance when some of the underlying assumptions are violated, such as symmetry of the
underlying distribution and homogeneity of the degrees of freedom parameter across marginals. The
theory is supported by a novel empirical illustration that shows how the model can be effectively
applied to estimate consumer prices from home scanner data.

Keywords: Robust filtering, Multivariate models, Score-driven models, Homescan data.
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1 Introduction

The analysis of multivariate time series has a long history, due to the empirical evidence, from most

research fields, that time series resulting from complex phenomena do not only depend on their own

past, but also on the history of other variables. For this reason, from Hannan (1970), the literature on

multivariate time series has grown very fast. The leading example is the dynamic representation of the

conditional mean of a vector process which gives rise to vector autoregressive processes, see Hamilton

(1994) and Lütkepohl (2007).

Following the taxonomy proposed in Cox (1981), two main classes of models can be considered

when analysing dynamic phenomena: parameter-driven and observation-driven models. The class of

parameter driven model is a broad class, which involves unobserved component models and state space

models (Harvey, 1989; West and Harrison, 1997). Within this framework, parameters are allowed to

vary over time as dynamic processes driven by idiosyncratic innovations. Hence, likelihood functions

are analytically tractable only in specific cases, notably linear Gaussian models, where inference can be

handled by the Kalman filter. On the other hand, parameter-driven models are very sensitive to small

deviations from the distributional assumptions. In addition, the Gaussian assumption often turns out to

be restrictive, and flexible specifications may be more appropriate. Thus, a fast growing field of research

is dealing with nonlinear or non-Gaussian state-space models, resting on computer intensive simulation

methods like the particle filter discussed in Durbin and Koopman (2012). Although these methods

provide extremely powerful instruments for estimating nonlinear and/or non-Gaussian models, they

can be computationally demanding. Furthermore, it may be difficult to derive the statistical properties

of the implied estimators, due to the complexity of the joint likelihood function.

In contrast, in observation-driven models, the dynamics of time varying parameters depend on

deterministic functions of lagged variables. This enables a stochastic evolution of the parameters

which become predictable given the past observations. Koopman et al. (2016) assess the performances

and optimality properties of the two classes of models, in terms of their predictive likelihood. The

main advantage of observation-driven models is that the likelihood function is available in closed form,

even in nonlinear and/or non-Gaussian cases. Thus, the asymptotic analysis of the estimators becomes

feasible and computational costs are reduced drastically.

Within the class of observation-driven models, score-driven models are a valid option for modeling

time series that do not fall in the category of linear Gaussian processes. Examples have been proposed

in the context of volatility estimation and originally referred to as generalised autoregressive score

(GAS) models, Creal et al. (2013), and as dynamic conditional score (DCS) models, Harvey (2013).

The key feature of these models is that the dynamics of time-varying parameters are driven by the

score of the conditional likelihood, which needs not necessarily to be Gaussian but can be heavy

tailed, as earlier discussed by Masreliez (1975) and Masreliez and Martin (1977). For example, it

may follow a Student’s t distribution as in Harvey and Luati (2014) and Linton and Wu (2020), an

exponential generalized beta distribution, as in Caivano et al. (2016), a binomial distribution as in the

vaccine example by Hansen and Schmidtblaicher (2019), or represented by a mixture, see Lucas et al.

(2019). The optimality of the score as a driving force for time varying parameters in observation-driven

models is discussed in Blasques et al. (2015). According to which conditional distribution is adopted,
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specific situations may be conveniently handled due to the properties of the score. As an example

for the univariate case, if a heavy-tailed distribution is specified, namely Student’s t, the resulting

score-driven model yields a simple and natural model-based signal extraction filter which is robust

to extreme observations, without any external interventions or diagnostics, like dummy variables or

outlier detection, see Harvey and Luati (2014).

In score-driven models, as well as in all observation-driven models, the time varying parameters

are updated by filtering procedures, i.e. weighted sums of functions of past observations, given some

initial conditions that can be fixed or estimated along with the static parameters. A robust filtering

procedure should assign less weight to extreme observations in order to prevent biased inference of

the signal and the parameters. In particular, the work of Calvet et al. (2015) provides a remarkable

application of robust methods when dealing with contaminated observations. The authors show that a

substantial efficiency gain can be achieved by huberizing the derivative of the log-observation density.

As we show in the present study, the same holds if one considers an alternative robustification method,

based on the specification of a conditional multivariate Student’s t distribution. A similar approach can

be found in Prucha and Kelejian (1984) and Fiorentini et al. (2003), where the multivariate Student’s

t distribution provides a valid alternative to relax the normality assumption. In the context of score-

driven models, Creal et al. (2014) mention the relevance of modeling high-frequency data with outliers

and heavy tails by means of the multivariate Student’s t distribution.

In this paper, we develop a score-driven filter for the time-varying location of a multivariate Stu-

dent’s t distribution and derive its stochastic and asymptotic properties. The specification is similar

to the multivariate model for the location addressed in Harvey (2013) and has some traits in common

with the quasi-vector autoregressive model by Blazsek et al. (2017). Both these contributions extend

the univariate model by Harvey and Luati (2014) to the case of N > 1 time series, but neither the

probabilistic nor the full asymptotic theory is derived for the multivariate specification. As a matter

of fact, some aspects of the probabilistic and asymptotic theory in multivariate non-linear models are

non-trivial. Notable examples are the proof of asymptotic irrelevance of initial conditions for the fil-

tering recursions and the calculation of higher order derivatives required to characterize asymptotic

normality. These aspects are covered by the present paper, so that a comprehensive theory for the

class of multivariate score driven models for the location parameter is available and easy to apply. We

envisage three main contributions to the existing literature.

The first contribution of the paper is the derivation of the probabilistic theory behind the multi-

variate dynamic score-driven filter for conditional Student’s t distributions, including the conditions

of stationarity, ergodicity and invertibility, that we face in a similar spirit of Comte and Lieberman

(2003) and Hafner and Preminger (2009) for the multivariate conditional variance models by Baba

et al. (1990) and Engle and Kroner (1995). Invertibility is a particularly delicate issue in multivariate

non linear models (see Blasques et al. 2018) and its proof typically require high level assumptions,

often difficult to verify in practice. In the paper, we derive conditions of invertibility of the model,

following Straumann and Mikosch (2006). In addition, we derive a sufficient condition for invertibility

and a consequent non degenerate region of the parameter space where convergence is valid for the

given model.

As in score driven models the conditional likelihood is available in closed form, we estimate the
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static parameters with the method of maximum likelihood and prove strong consistency and asymptotic

normality of the estimators. A relevant contribution is the derivation of a closed-form expression for

the conditional expected Fisher information matrix, that approximates the inverse variance-covariance

matrix of the estimator, usually unavailable analytically in non linear non Gaussian models, see the

discussion in Fiorentini et al. (2003). It is noteworthy to remark that when the degrees of freedom of the

Student’s t distribution tend to infinity, we recover a linear Gaussian model. These theoretical results

provide the basis for further generalisations, such as, for instance, the spatial model by Gasperoni

et al. (2021). As the asymptotic results are derived under the assumption of a correct specification,

potential model misspecification is investigated through a large scale simulation study. There, the

multivariate Student’s t specification is compared with alternative distributions that show features

such as asymmetry and heterogeneity in the degrees of freedom, in addition to heavy tails. Finite

sample properties, such as impact of initial conditions on relatively small samples and the capability

of recognizing Gaussian data, are also analysed through simulations.

The second contribution is the development of an estimation scheme grounded on Fisher’s scoring

method, based on the closed-form analytic expression of the conditional Fisher information matrix

discussed so far, which can be directly implemented into any statistical or matrix-friendly software.

The computational gain of the scoring algorithm based on analytical formulae, compared to the usual

ones based on numerical derivatives, allow a fast implementation of the method, even in case of large

temporal or cross-section dimension.

The third contribution of the paper is an innovative application, dealing with estimation of regional

consumer prices based on home scanner data. The use of scanner data to compute official consumer

price indices (CPIs) is gaining popularity, because of their timeliness and a high level of product

and geographical detail Shapiro and Feenstra (2003). However, they also suffer from a variety of

shortcomings, which make time series of scanner data prices (SDPs) potentially very noisy, especially

when they are estimated for population sub-groups, or at the regional level Silver (1995). There is

extensive research and a lively debate on the issues related to the computation and use of scanner data

based CPIs. In a dedicated session of the 2019 meeting of the the Ottawa Group on Price Indices, it

has been suggested1 to adopt model-based filtering techniques to extract the signal from scanner-based

time series of price data. These filtered estimates lose the classical price index formula interpretation,

but are expected to deliver the same information content with a better signal-to-noise ratio. We show

that our robust multivariate model, applied to SDPs, provides information on the dynamics of the

time series and on their interrelations without being affected from outlying observations, which are

naturally downweighted in the updating mechanism. This holds also in comparison with a fitted linear

Gaussian model and with estimated univariate models by Harvey and Luati (2014).

The paper is organised as follows. In Section 2 the filter is specified. Section 3 deals with the

stochastic properties of the filter, while in Section 4, likelihood inference is discussed. Section 5 de-

scribes the Monte Carlo experiments. The empirical analysis is reported in section 6. Some concluding

remarks are drawn in Section 7. The proofs of the results stated in the paper are collected in Ap-

pendix A. Online supplementary materials contain further details of the Monte Carlo study, the relevant

1See Jens Mehroff presentation at https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u161/

towards_a_new_paradigm_for_scanner_data_price_indices_0.pdf
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quantities for deriving the conditional Fisher information matrix and implementing the Fisher scoring

algorithm, as well as the proofs of some auxiliary Lemmata.

2 The Multivariate Student’s t Location Filter

Let us consider a RN -vector of stochastic processes {yt}t∈Z, N ≥ 1, and let Ft−1 = σ{yt−1,yt−2,

yt−3, . . . } be its filtration at time t− 1. The following stochastic representation of yt is considered,

yt = µt +Ω1/2ϵt, (1)

where µt is a time varying location vector of RN , Ω is a N×N scale matrix that we assume to be static

and ϵt ∼ tν(0N , IN ) is an independent identically distributed (IID) multivariate standard t-variate.

With 0N we denote the null vector of RN and with IN the N ×N identity matrix.

Our interest is in recovering µt based on a set of observed time series from yt, for t = 1, . . . , T ,

where T ∈ N. With no distributional assumptions on the dynamics of µt, a filter can be specified,

µt+1|t = ϕ(µt|t−1,yt,θ), (2)

that is a stochastic recurrence equation (SRE), where θ ∈ Θ ⊂ Rp is a vector of unknown static

parameters, µt|t−1 is a RN -random vector that takes values in M ⊂ RN and ϕ : M× RN ×Θ 7→ M
is a Lipschitz function. The subscript notation t|t − 1 is used to emphasize the fact that µt|t−1

is an approximation of the dynamic location process at time t given the past, that is equivalent

to say that µt|t−1 is Ft−1-measurable. Therefore, based on past observations and a starting value

µ1|0 ∈ M, one can approximate the unobserved path of µt in (1) by mimicking the recursion in (2).

It is typically assumed that a parameter value θ0 exists, at which the true location can be recovered,

i.e. µt|t−1(θ0) = µt (assumption 1 of correct specification).

In this paper, we approximate the temporal changes of the dynamic location by relying on the score-

driven framework of Creal et al. (2013) and Harvey (2013). Specifically, we assume that, conditional on

the past, the distribution of yt is Student’s t, with ν > 0 degrees of freedom and conditional location

equal to µt|t−1, i.e.

f(yt|Ft−1) =
Γ
(
ν+N
2

)
Γ
(
ν
2

)
(πν)N/2

|Ω|−1/2

[
1 +

(yt − µt|t−1)
⊤Ω−1(yt − µt|t−1)

ν

]−(ν+N)/2

(3)

and specify the SRE in (2) as follows,

µt+1|t − ω =Φ(µt|t−1 − ω) +Kut, (4)

i.e.

ϕ(µt|t−1,yt,θ) := ω +Φ(µt|t−1 − ω) +Kut,

where ω is a RN vector of unconditional means, Φ and K are RN×N matrices of coefficients and the

driving force ut is proportional to the score of conditional density in (3). Indeed, the conditional score
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with respect to the time varying location filter is

∂ ln f(yt|Ft−1)

∂µt|t−1

= Ω−1 ν +N

ν
ut.

where

ut = (yt − µt|t−1)/wt, (5)

with wt = 1 + (yt − µt|t−1)
⊤Ω−1(yt − µt|t−1)/ν, is a martingale difference sequence, i.e. Et−1[ut] =

0N , under correct specification, where the shorthand notation Et−1[X] is used for the conditional

expectation E[X|Ft−1]. The score as the driving force in an updating equation for a time varying

parameter is the key feature of score-driven models. The rationale behind the recursion (4) is very

intuitive. Analogously to the Gauss-Newton algorithm, it improves the model fit by pointing in the

direction of the greatest increase of the likelihood. Optimality of score driven updates in observation-

driven models is discussed by Blasques et al. (2015).

In the context of location estimation under the Student’s t assumption, a further relevant motivation

for the score-driven methodology lies in the robustness of the implied filters. Indeed, the positive scaling

factors wt in equation (5) are scalar weights that involve the Mahalanobis distance. They possess the

role of re-weighting the large deviation from the mean incorporated in the innovation error

vt = yt − µt|t−1. (6)

Robustness comes precisely from winsorizing the innovation error vt. Note that when ν → ∞, ut

converges to vt and equations (4) and (6) coincide with the steady state innovation form of a linear

Gaussian state-space model.

A formal proof of the robustness of the method is in the following Lemma, which provides sufficient

conditions for a filter to be robust, in line with Calvet et al. (2015). We first enounce the correct

specification assumption.

Assumption 1. The filter in (4) is correctly specified, i.e. when θ = θ0, where θ0 is the true parameter

vector, µt|t−1(θ0) = µt.

Lemma 1. Under assumption 1, for 0 < ν < ∞, the vector sequence {ut}t∈Z is uniformly bounded,

that is supt E[∥ut∥] <∞ and possesses all the even moments

E[∥ut∥2s] = ∥Ω∥s
B
(
N+2s

2 , ν+2s
2

)
B
(
N
2 ,

ν
2

) ( ν
N

)s
,

for s = 1, 2, . . . and where B(α, β) = Γ(α)Γ(β)/Γ(α+ β) is the beta function and ∥Ω∥ =
√
tr(Ω⊤Ω).

The odd moments of ut are all equal to zero.

The moment structure reveals important features of the driving force ut, that turns out to be an

an IID sequence with zero mean vector and (vec)-variance covariance matrix,

E[ut ⊗ ut] = vecE[utu
⊤
t ] =

ν2

(ν +N)(ν +N + 2)
vecΩ.
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3 Properties of the Filter

Let us combine equations (4) and (5) and write the filter explicitly, as follows,

µt+1|t = ω +Φ(µt|t−1 − ω) +K
yt − µt|t−1

1 + (yt − µt|t−1)
⊤Ω−1(yt − µt|t−1)/ν

. (7)

By starting at some initial value, µ1|0 ∈ M, and using equation (7) for t = 1, . . . , T , with T ∈ N, one
can recover a unique filtered path {µ̂t|t−1}t∈N for every θ ∈ Θ. A desirable property is that the values

used to initialise the process are asymptotically negligible, in the sense that as the time t increases, the

impact of the chosen µ1|0 eventually vanishes and the process will converge to a unique stationary and

ergodic sequence. This stability property of the filtered sequence {µ̂t|t−1}t∈N is known as invertibility,

see Straumann and Mikosch (2006) and Blasques et al. (2018). Existence of the unique stationary

and ergodic solution to the SRE (7) is established by Lemma 2. Invertibility of the filter is proved in

Lemma 3.

Lemma 2. Let us consider equation (7), evaluated at θ = θ0. Assume that 0 < ν <∞ and ϱ(Φ) < 1,

where ϱ(Φ) denotes the spectral radius of Φ. Then, there exists a unique vector sequence {µ̃t|t−1}t∈Z
satisfying the recursion in (7), which is strictly stationary and ergodic with E[∥µ̃t|t−1∥m] <∞ for every

m > 0.

The stability condition ϱ(Φ) < 1 is a well-known condition in the theory of linear systems, see

Hannan (1970), Hannan and Deistler (1987) or Lütkepohl (2007), which extends to the case of the

present nonlinear model.

With the next Lemma, the relevant conditions under which the SRE in (7) is contractive on average

are given so that the convergence of the filtered sequence {µ̂t|t−1}t∈N to a unique Ft−1-measurable

stationary and ergodic solution {µ̃t|t−1}t∈Z, irrespective of the initialization µ1|0, is obtained as a

corollary of Theorem 3.1 of Bougerol (1993) or, equivalently, of Theorem 2.8 of Straumann and Mikosch

(2006). Moreover, as a consequence of Lemma 1, both {µ̂t|t−1}t∈N and {µ̃t|t−1}t∈Z have bounded

moments.

Lemma 3. Let the conditions of Lemma 2 hold and assume that

E
[
ln sup

θ∈Θ
sup
µ∈M

∥∥∥∥ k∏
j=1

Xk−j+1

∥∥∥∥] < 0, (8)

for k ≥ 1, where Θ is a compact parameter space and Xt = Φ +K∂ut/∂µ
⊤
t|t−1. Then, the filtered

location vector {µ̂t|t−1}t∈N is invertible and converges exponentially fast almost surely (e.a.s.) to the

unique stationary ergodic sequence {µ̃t|t−1}t∈Z for any initialization of the filtering recursion, µ1|0 ∈
M, that is,

sup
θ∈Θ

∥µ̂t|t−1 − µ̃t|t−1∥
e.a.s.−−−→ 0 as t→ ∞, (9)

Furthermore, supt E[supθ∈Θ ∥µ̂t|t−1∥m] <∞ and E[supθ∈Θ ∥µ̃t|t−1∥m] <∞,∀m ≥ 1.
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Remark 1. The invertibility property derived in Lemma 3, is not an alternative to the stationarity and

ergodicity obtained in Lemma 2, that are properties of the random process {yt}t∈N. In fact, invertibility

is a property of the mapping from {yt}t∈N to {µ̂t|t−1}t∈N that becomes crucial when {yt}t∈N is a

stationary and ergodic process, because then {µ̂t|t−1}t∈N will inherit these characteristics.

The contraction condition in equation (8) imposes restrictions on the parameter space Θ that

cannot be checked directly. Also, the expectation in the same equation cannot be verified in practice,

since it depends on the unconditional, unknown, distribution of yt, see also the discussion in Blasques

et al. (2018). Thus, we rely on sufficient conditions which are typically more restrictive than (8) and

that we discuss in the following, similarly to Linton and Wu (2020). Specifically, the contraction

condition in (8) is satisfied if

E
[
ln sup

θ∈Θ
sup

µ1|0∈M

∥∥∥∥X1

∥∥∥∥] < 0. (10)

Motivated by Example 3.8 of Straumann and Mikosch (2006), we rewrite X1 at θ0, so that equation

(10) becomes

E
[
ln

∥∥∥∥Φ0 +
K0

1 + ϵ⊤1 ϵ1/ν0

(
2Ω

1/2
0 ϵ1ϵ

⊤
1 Ω

−1/2
0 /ν0

1 + ϵ⊤1 ϵ1/ν0
− IN

)∥∥∥∥] < 0. (11)

Since ϵ1 ∼ tν0(0N , IN ), based on Monte Carlo simulations, Figure 1 displays a region for a bivariate

model (N = 2) that satisfies the condition (11) on a grid of values (∥Φ0∥, ∥K0∥) ∈ (0, 1)2, with ν0 = 7

and Ω0 = I2.
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Figure 1: Contour plot of the domain for invertibility.

As expected, the restrictions that need to be imposed on ∥Φ0∥ and ∥K0∥ are stronger than those

required for strict stationarity and ergodicity, see Lemma 2. Neverthless, the region depicted in Figure

1 shows that a subset Θ∗ of the parameter space Θ exists, with ∥Φ∥ < 1 and ∥K∥ sufficiently small

such that (10) is satisfied ∀θ ∈ Θ∗ ⊂ Θ, producing a non degenerate invertibility region.

The simulation-based method described so far involves a posteriori checking that the estimated

parameters lie in the implied invertibility region. As an alternative, a restricted estimation procedure

can be implemented, where parameters are constrained to satisfy the empirical version of the invert-
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ibility condition in equation (8), as in Wintenberger (2013) and Blasques et al. (2018). The empirical

counterpart of (8) with k = 1 is

1

T

T∑
t=1

ln

∥∥∥∥Φ+
K

1 + v⊤t Ω
−1vt/ν

(
2vtv

⊤
t Ω

−1/ν

1 + v⊤t Ω
−1vt/ν

− IN
)∥∥∥∥ < −δ,

for some δ > 0 arbitrarily small.

To conclude, we note that the process {yt}t∈Z inherits some properties from those of the filter

evaluated at the true parameter value. As a consequence of Lemma 1 and Lemma 2, we obtain the

following result.

Lemma 4. Under the conditions of Lemma 1 and Lemma 2, {yt}t∈Z is stationary and ergodic. More-

over, ∀m > ν − δ, δ > 0, E[∥yt∥m] <∞.

Finally, the multi-step forecasts can be straightforwardly obtained as

ET [yT+l] = ET [µT+l|T+l−1] = ω +
l−1∑
j=1

Φ j(µT+1|T − ω).

4 Maximum Likelihood Estimation

Let ℓt(θ) denote the conditional log-likelihood function for a single observation, obtained by taking

the logarithm of (3) considered as a function of the parameter θ = (ξ⊤,ψ⊤)⊤ ∈ Θ ⊂ Rp, ξ =

(ν, (vech(Ω))⊤,ω⊤)⊤ ∈ Rs, with s = 1 + 1
2N(N + 1) +N and ψ = ((vecΦ)⊤, (vecK)⊤)⊤ ∈ Rd, with

d = (N ×N) + (N ×N) and hence, p = s+ d.

Lemma 3 ensures that any choices of the initial condition µ1|0 ∈ M used for starting the filtering

process are asymptotically equivalent, such that, once an initial value has been fixed, it is possible to

obtain an approximated version of the conditional log-likelihood, ℓ̂t(θ), by replacing µt|t−1 in ℓt(θ) by

the filtered dynamic location µ̂t|t−1. Thus, for the whole sample, we obtain ℓ̂T (θ) =
∑T

t=1 ℓ̂t(θ) and

the maximum likelihood estimator (MLE) of θ is

θ̂T = argmax
θ∈Θ

ℓ̂T (θ).

We now discuss strong consistency and asymptotic normality of the MLE. The following assumptions

are standard regularity condition in likelihood theory of non linear observation driven models.

Assumption 2.

1. The data generating process {yt}t∈Z is stationary and ergodic.

2. E[ln supθ∈Θ supµ∈M ∥
∏k

j=1Xk−j+1∥] < 0 for k ≥ 1.

3. The parameter space Θ is compact with 0 < ν <∞ and detK ̸= 0.

4. The true parameter vector θ0 belongs to the interior of Θ, i.e. θ0 ∈ int(Θ).
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5. E[∥Xt ⊗Xt∥] < 1.

In Assumption 2, we first remark that condition 1 can be replaced by the conditions of Lemma 4,

whereas condition 2 ensures that the filtered sequence {µ̂t|t−1}t∈N converges to a stationary ergodic

limit sequence, irrespective of the initial conditions. Moreover, conditions 3 and 4 of Assumption 2

ensure the existence of the MLE and the validity of first order asymptotics. Finally, condition 5 of

Assumption 2 guarantees the existence of the information matrix.

Theorem 4.1. Under conditions 1–4 in Assumption 2,

θ̂T
a.s.−−→ θ0 as T → ∞.

Theorem 4.2. Under conditions 1–5 in Assumption 2,

√
T (θ̂T − θ0) =⇒ N (0,I(θ0)−1),

where,

I(θ0) = −E
[
d2ℓt(θ)

dθdθ⊤

∣∣∣∣
θ=θ0

]
is the Fisher’s Information matrix evaluated at the true parameter vector θ0.

By Theorem 4.1, I(θ0) can be consistently estimated by

Î(θ̂T ) = − 1

T

T∑
t=1

[
d2ℓ̂t(θ)

dθdθ⊤

∣∣∣∣
θ=θ̂T

]
. (12)

As the dynamic location and its derivatives are nonlinear functions of the parameter θ, the general

formula for the second derivatives in (12) evaluated at the stationary and ergodic µt|t−1, has the form

below

d2ℓt(θ)

dθdθ⊤
=
∂2ℓt(θ)

∂θ∂θ⊤
+

(
d(µt|t−1 − ω)

dθ⊤

)⊤ ∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

(
d(µt|t−1 − ω)

dθ⊤

)

+
∂ℓt(θ)

∂µ⊤
t|t−1

d2(µt|t−1 − ω)
dθdθ⊤

. (13)

To avoid the recursive evaluation of the second derivatives of the dynamic location vector, a simpler

consistent estimator can be obtained based on the analytical form of the conditional information matrix

It(θ), as in Fiorentini et al. (2003), defined as

It(θ) = −Et−1

[
d2ℓt(θ)

dθdθ⊤

]
. (14)
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Indeed, by the law of iterated expectations, one has

I(θ) = E[It(θ)] = −E
[
Et−1

[
d2ℓt(θ)

dθdθ⊤

]]
.

Given the assumption of correct specification, the score vector evaluated at the true parameter vector

θ0 forms a martingale difference sequence, so that, under the assumptions of Theorem 4.2, asymptotic

results for martingale difference sequences can be applied. In addition, the dynamic location (and its

derivatives) are Ft−1-measurable functions and therefore, after taking the conditional expectation, the

last term in the right-hand-side of equation (13) will cancel out.

It follows that, by Theorem 4.1, I(θ0) can be consistently estimated by

Î(θ̂T ) =
1

T

T∑
t=1

Ît(θ̂T ),

where Ît(θ̂T ) is the conditional information matrix in (14) evaluated at the filtered dynamic location

µ̂t|t−1 and at the MLE θ̂T . The analytical form of It(θ), requires lengthy calculations, and so, the

detailed derivations are deferred to Section S2 of the online supplementary material. However, since

this is one of the main result of the paper, its expression is reported in Appendix B.

4.1 Departure from assumptions

We discuss how the results derived so far change, if some of the underlying assumptions are modified. In

particular, we shall consider the impact of misspecification on asymptotic normality and on invertibility,

the case when the marginal distributions have different degrees of freedom and the possible extension

to explanatory variables.

When the model is not correctly specified, the conditional expectation of the score of the (quasi)

log-likelihood function evaluated at the true parameter vector θ0 is different from zero. Therefore, the

conditional expectation of the last term in the right-hand-side of equation (13) will not cancel out. In

such case, both the asymptotic and the conditional covariance matrix of the MLE assume the classical

sandwich from, see Bollerslev and Wooldridge (1992).

The situation changes if one wants to allow the degrees of freedom vary across the the time series,

e.g. by assuming marginal Student’s t distributions with νi degrees of freedom, i = 1, . . . , N and then

construct the multivariate joint distribution using a Student’s t copula (Demarta and McNeil, 2005).

In this case, the one-step MLE proposed in the paper is not applicable and a two-step estimation

procedure has to be considered. In particular, when margins are estimated parametrically, inferential

procedures about the copula model using a ML approach can be tackled with the inference-functions

for margins (IFM) approach proposed by Joe (1997). In the first step, the IFM method maximizes

each marginal log-likelihood with respect to each unknown parameter vector. These estimates are then

used in the second step to maximize the copula log-likelihood function. In this case, the analytical

formulae derived for the conditional Fisher information matrix reported in Section 4 are not valid as

the information matrices of each marginal variables have to be computed, which inevitably complicates

the computational burden. Moreover, if the degrees of freedom parameters turn out to be the same
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and equal to ν, then this model reduces to the proposed one but the two-step MLE would be less

efficient than the one-step. A detailed discussion and comparisons of the asymptotic efficiency of the

one-step and two-step MLE for copula functions can be found in Joe (2005). In addition, Harvey

(2013), Blasques et al. (2015) and Koopman et al. (2016) pointed out that score-driven models are

particularly suited to filter complex nonlinear dynamics, that are frequently experienced in applications,

irrespective of the severity of model misspecification.

On the other hand, the invertibility of the multivariate score-driven filters remains valid under

misspecification, and that is an essential ingredient to derive the asymptotic properties of the MLE.

In practice, the MLE is based on the approximate log-likelihood ℓ̂t(θ), which, for t = 1, . . . , T , is a

function of the filtered process {µ̂t|t−1}t∈N initialized at some fixed µ1|0. The key result of Lemma

3 ensures that the impact of starting values for the filters become asymptotically negligible. This

allows us to retrieve a reliable approximate sequence for the unobserved dynamic location vector and,

eventually, to establish strong consistency and asymptotic normality of the MLE. Similar discussions

can be found in Harvey (2013), Blasques et al. (2015) and Koopman et al. (2016).

Finally, in line with the results obtained by Harvey (2013) and Harvey and Luati (2014) for the

univariate dynamic location model, it is in principle possible to augment the model with exogenous

variables. Provided that the exogenous variables are Markov chains and satisfy a set of separate

conditions for their transition mechanism, the conditions for stationarity, ergodicity and invertibility

and the asymptotic properties of MLE stated in the paper remain similar. What changes are the

closed-form formulæ that lead to the conditional Fisher’s information matrix It|t−1(θ) as well as the

matrix itself. Indeed, the latter has to be extended to account for the uncertainty in the estimation of

a larger vector of parameters which includes the coefficients associated with the exogenous variables.

4.2 Computational Aspects

ML estimation and inference are carried out by means of Fisher’s scoring method. A strongly reli-

able algorithm based on analytical formulae for the score vector and the Hessian matrix (reported in

Appendix S2) is developed, which can be directly implemented in any statistical package through the

following steps:

1. Choose a starting value θ̂
(0)

T = (ν(0), (vech(Ω(0)))⊤, (ω(0))⊤, (vec(Φ(0)))⊤, (vec(K(0)))⊤)⊤

2. For h > 0, update θ̂
(h)

T using the scoring rule θ̂
(h+1)

T = θ̂
(h)

T +
[
ÎT (θ̂

(h)

T )
]−1
ŝT (θ̂

(h)

T ), where

sT (θ) =
∑T

t=1
dℓt(θ)
dθ and IT (θ) = −

∑T
t=1 Et−1

[
d2ℓt(θ)

dθdθ⊤

]
.

3. Repeat until convergence, i.e.,
∥∥θ̂(h+1)

T − θ̂
(h)

T

∥∥/∥∥θ̂(h)T

∥∥ < δ for some fixed δ > 0.

The analytical expressions for the conditional information matrix used in step 2 are given in Appendix

B, whereas the formulae of the score vector together with the detailed derivations are deferred to

Section S2 of the online supplementary material.
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5 Simulation Study

In this Section we report the details of an extensive simulation study aimed to investigate two main

aspects of the specification, i.e. the impact of initial conditions on the filtered estimates, addressed

in Section 5.1, and the effect of potential misspecification of the underlying distribution, discussed in

Section 5.2.

5.1 Impact of Initial Conditions

We aim to assess the sensitivity of the proposed multivariate filtering procedure to initial conditions.

In particular, we are interested in measuring the sensitivity of the filtering and estimation procedures

to µ1|0 and θ̂
(0)

T , respectively.

As far as the former is concerned, as discussed in Section 3, in practice, the multivariate score-

driven filter is initialized at some fixed µ1|0, to eventually retrieve the approximate sequence {µ̂t|t−1}t∈N
from the observed data using the filtering recursion in equation (7). To highlight the relevance of the

invertibility property from an applied point of view, we conduct a Monte Carlo experiment that makes

also use of a real quarterly macroeconomic time series dataset. Specifically, we simulate N = 3 time

series {yt}Tt=1 of T = 100 observations from a multivariate Student’s t distribution with ν = 5 degrees

of freedom. To generate time series with empirically relevant dynamics and correlation structure, we

estimate the parameters of our multivariate model for three series coming from Greek’s macroeconomic

quarterly data, namely, the log-differences of GDP, import and export data, from 1995 to 2021. The

log-differenced series are shown in Figure 2 (left panel). The dimension of the simulated time series

equals that of the multivariate real dataset.

To investigate the “forgetting memory” property of the sequence {µ̂t|t−1}t∈N initialized at some

fixed value µ1|0 along with the relevance of working with invertible multivariate DCS-t models, in the

right panel of Figure 2 we show the impact of the initialization on a number of fixed points.
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Figure 2: log-difference of the original series (left panel), and filtered dynamic locations for the case
satisfying the invertibility condition (right panel). The pink area at the beginning of the series in the
right panel indicate the different initial conditions used to start the multivariate filtering procedure,
whereas the purple lines, depict the stable trajectories of the filtered dynamic locations to which the
filters converge for each of the fixed initial conditions.

It is interesting to note that the chaotic behaviour of the initialized filtering process {µ̂t|t−1}t∈N
vanishes after a fair, low, number of data points and eventually converges to the unique “true” and

stationary counterpart. This Monte Carlo experiment highlights the fact that the inference proce-

dure based on the MLE procedure remains reliable even with a rather low and realistic number of

observations.

Besides initializing the filtered sequence, it is also necessary to initialise the estimation procedure

detailed in Subsection 4.2 at some starting value θ̂
(0)

T . To this end, we follow the approach suggested in

Fiorentini et al. (2003). First, a consistent estimator of the restricted version of the parameter vector

θ̃T is obtained by the Gaussian quasi-ML procedure in Bollerslev and Wooldridge (1992). Second, a

consistent method of moments is adopted for the degrees of freedom ν, by making use of the empirical

coefficient of excess kurtosis κ̃ on the standardized residuals and of the relation ν̃ = (4κ̃ + 6)/κ̃.

Convergence is fast, in that usually few iterations of that procedure are needed, which makes scoring

methods particularly appealing for estimation purposes.

5.2 Model Misspecification

The results derived in the paper assume a correct specification of the underlying distribution. To

demonstrate the reliability of the proposed score-driven filters under misspecification of the innovation

density, we perform a simulation experiment where we assume that the data generating process follows:

a skew elliptical distribution, to account for asymmetry (Section 5.2.1), a Meta t distribution, to account

for heterogeneous degrees of freedom (Section 5.2.2), a Gaussian distribution, to assess robustness in

the estimation of the degrees of freedom parameter (Section 5.2.3).
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5.2.1 Asymmetry

We first consider an asymmetric distribution as the true data generating process. Specifically, we

consider the case where the error vector is skew-elliptically distributed, see Azzalini (2005), i.e. it is

given by the following equations:

yt = ξt|t−1 + V
1/2W t, (15)

where, following the notation of Azzalini (2005), W t follows a N -dimensional skewed-normal distri-

bution, i.e., W t ∼SN(0N , Ω̄,α) with some non-singular correlation matrix Ω̄ ∈ RN×N and α ∈ RN ,

which regulates the slant of the density, and is independent of V ∼ χ2
ν/ν. We assume that the

N -dimensional dynamic location vector ξt|t−1 evolves as a vector autoregressive model of order one

ξt|t−1 = Φ̄yt−1, (16)

with Φ̄ ∈ RN×N denoting the matrix that contains the autoregressive coefficients. We set N =

3, and moreover, to evaluate the benefit the benefit from capturing the cross-series correlations

with a multivariate model, we generate time series in case of full correlation matrix with vecΩ̄ =

(1, 0.3, 0.4, 0.3, 1, 0.3, 0.4, 0.3, 1)⊤, together with the case that vecΩ̄ = vecI3, that is, with zero correla-

tion between the variables. For the level of kurtosis we set ν = 6 and we specify different values of α,

in order to assess the robustness of the proposed filtering procedure with respect to either negative and

positive skewness, together with no skewness (i.e. symmetric case). More precisely, in our simulations,

we consider three cases, negative skewness with α = (-0.5,-0.5,-0.5)⊤, no skewness with α = (0, 0, 0)⊤,

and positive skewness, α = (0.5, 0.5, 0.5)⊤}. As concern the matrix of autocorrelation coefficients Φ̄,

we consider vecΦ̄ = (0.8, 0.2, 0.1, 0.1, 0.5, 0.1, 0.1, 0.2, 0.7)⊤, such that its spectral radius is ρ(Φ̄) ≈ 0.95

which ensures a high rate of persistence in the simulated time series. Therefore, from equations (15)

and (16) we generate M = 500 time series of length T = 1000. For all the M = 500 replication, we

estimate both the multivariate DCS-t model described in Section 2 and the univariate DCS-t model in-

troduced by Harvey and Luati (2014), and we compare the filtered paths of {µ̂i,t|t−1}1000t=1 for i = 1, 2, 3,

provided by the two approaches against the true paths simulated according to equations (15) and (16).

To evaluate the performance of the two models, we consider the mean squared error (MSE) and the

mean absolute error (MAE),

MSE =
1

N

1

T

N∑
i=1

T∑
t=1

(
µ̂i,t|t−1 − ξi,t|t−1

)2
, MAE =

1

N

1

T

N∑
i=1

T∑
t=1

∣∣∣µ̂i,t|t−1 − ξi,t|t−1

∣∣∣ . (17)

The results in Panel A of Table 1 present a clear outcome: In case of correlated time series with

negative, absence or positive skewness, and across the two performance measures, the new multivari-

ate score-driven model provides more accurate filtered paths than the univariate counterpart of the

unobserved dynamic location vector. Figure 3 further corroborates this feature of the multivariate

model, since the median of the 500 filtered paths of {µ̂t|t−1}1000t=1 are very close to the medians of the

500 true paths {ξt|t−1}1000t=1 . On the other hand, the results reported in Panel B of Table 1 are less

sharp, which clearly confirm the fact that the multivariate DCS-t model cannot benefit from capturing
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Table 1: Mean squared error (MSE) and mean absolute error (MAE) between the median of the true
simulated trajectories, and the median of the filtered dynamic locations provided by the multivariate
DCS-t (mDCS-t) and the univariate DCS-t (uDCS-t) across all theM = 500 trajectories with T = 1000
generated according to equations (15) snd (16). The results given in case of presence of both correlated
(Panel A) and uncorrelated (Panel B) time series. In each case, we consider negative, absence and
positive degrees of skewness.

Panel A: Correlated time series

MSE MAE

Neg. Skew. No Skew. Pos. Skew. Neg. Skew. No Skew. Pos. Skew.

mDSC-t 1.1114 1.4725 1.0208 1.1423 2.0983 2.5099
uDSC-t 3.7985 3.0987 3.8645 3.0568 3.6632 3.7654

Panel B: Uncorrelated time series

MSE MAE

Neg. Skew. No Skew. Pos. Skew. Neg. Skew. No Skew. Pos. Skew.

mDSC-t 0.9381 0.0620 0.8686 1.5112 1.5113 1.2743
uDSC-t 1.2111 0.0987 0.9234 1.8393 1.5101 1.5648

the cross-series correlation.
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Figure 3: Median of the true simulated trajectories (dot-dashed black line), and median of the filtered
dynamic locations (purple line) across the M = 500 trajectories with T = 1000 data points, generated
according to equations (15) snd (16), for the case of negative skewness (left panel) with α = (-0.5,-
0.5,-0.5)⊤, no skewness (middle panel) with α = (0, 0, 0)⊤ and positive skewness (right panel) with
α = (0.5, 0.5, 0.5)⊤.

5.2.2 Heterogeneous degrees of freedom

We investigate the flexibility of the multivariate filter when the time series are correlated and heavy-

tailed but with heterogeneous degrees of freedom. We carry on a Monte Carlo experiment, where

we generate the data from a dynamic version of the Meta-t distribution introduced by Fang et al.

(2002). More precisely, we consider the same observation equation defined in (15) but we replace the
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skewed distributional assumption W t ∼SN(0N , Ω̄,α) with W t ∼Meta-t(0N , Ω̄, ν, ν1, . . . , νN ), i.e., a

Meta-t distribution with 0N location vector and Ω̄ correlation matrix. Here ν denotes the degrees

of freedom of the Student’s t copula whereas ν1, . . . , νN denote the (possibly heterogeneous) degrees

of freedom of the univariate Student’s t distribution of the marginals. Also in this case, we assume

that the dynamic location vector ξt|t−1 evolves as a zero-mean vector autoregressive model as given

by equation (16), and we set again N = 3, vecΩ̄ = (1, 0.3, 0.4, 0.3, 1, 0.3, 0.4, 0.3, 1)⊤, ν = 6 and

vecΦ̄ = (0.8, 0.2, 0.1, 0.1, 0.5, 0.1, 0.1, 0.2, 0.7)⊤. However, since we the interest is in measuring the

robustness of the proposed multivariate filtering procedure under heterogeneous degrees of freedom,

we consider four different cases: (i) Correlated time series with same degrees of freedom, such that

ν = ν1 = ν2 = ν3 = 6, (ii) correlated time series with different degrees of freedom so that ν = 6

whereas ν1 = 5, ν2 = 10 and ν3 = 15 for the marginal distributions, and furthermore, (iii) uncorrelated

time series with same degrees of freedom as in case (i), and lastly (iv) uncorrelated time series with

different degrees of freedom as in case (ii).

Similarly to the previous simulation exercise, from equations (15) and (16) we generate T = 1000

observations for yt and then, for each t = 1, . . . , 1000, we repeat the generationM = 500 times. Again,

we estimate both our multivariate DCS-t model described in Section 2 of the paper and the univariate

DCS-t model introduced by Harvey and Luati (2014), and for the M = 500 replications, we compare

the filtered paths of {µ̂i,t|t−1}1000t=1 for i = 1, 2, 3, provided by the two approaches against the true paths

simulated according to equations (15) and (16) with the new distributional assumptions. Then, to

evaluate the performance of the two models, we consider the mean squared error (MSE) and the mean

absolute error (MAE), as defined in (17).

Table 2: Mean squared error (MSE) and mean absolute error (MAE) between the median of the true
simulated trajectories, and the median of the filtered dynamic locations provided by the multivariate
DCS-t (mDCS-t) and the univariate DCS-t (uDCS-t) across all theM = 500 trajectories with T = 1000
generated according to equations (15) snd (16). Results are given forW t ∼Meta-t(0N , Ω̄, ν, ν1, . . . , νN )
with same degrees of freedom ν = ν1 = ν2 = ν3 = 6, and different degrees of freedom, such that ν = 6
and ν1 = 5, ν2 = 10 and ν3 = 15.

Panel A: Correlated time series

MSE MAE

Same DoF Different DoF Same DoF Different DoF

mDSC-t 1.4644 1.4584 0.9254 0.9189
uDSC-t 2.0876 2.9214 2.9871 2.6541

Panel B: Uncorrelated time series

MSE MAE

Same DoF Different DoF Same DoF Different DoF

mDSC-t 0.9048 1.3581 0.8882 1.3721
uDSC-t 0.9374 0.9647 0.8930 1.0312
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The results in Table 2 confirm that, in case of correlated time series and for all two performance

measures, the new multivariate score-driven model provides a more accurate filtered paths than the

univariate counterpart of the unobserved dynamic location vector, even in the case of heavy-tailed data

with heterogeneous degrees of freedom in the marginals. For a graphical inspection, in Figure 4 we

plot the median of the 500 filtered paths of {µ̂t|t−1}1000t=1 , which are very close to the median of the 500

true paths {ξt|t−1}1000t=1 . Therefore, we conclude that the multivariate model provides a good trade-off

between allowing for correlation across the time series and imposing the same degrees of freedom to

all the series. However, we now note that in case of uncorrelated time series and different degrees of

freedom, the multivariate DCS-t is heavily misspecified, and then, the performances of the multivariate

filter start to deteriorate. Obviously, this is not the case for the univariate DCS-t, as the univariate

filers do not suffer from a multivariate structure and then, they can adapt to each of the uncorrelated

time series.

−6

−3

0

3

6

0 250 500 750 1000

 

 

µ1,t|t−1

−4

0

4

0 250 500 750 1000

 

 

µ2,t|t−1

−4

0

4

0 250 500 750 1000

 

 

µ3,t|t−1

−8

−4

0

4

8

0 250 500 750 1000

 
 

µ1,t|t−1

−6

−3

0

3

6

0 250 500 750 1000

 

 

µ2,t|t−1

−6

−3

0

3

6

0 250 500 750 1000

 

 

µ3,t|t−1

Figure 4: Median of the true simulated trajectories (dot-dashed black line), and median of the filtered
dynamic locations (purple line) across all theM = 500 trajectories with T = 1000 generated according
to equations (15) snd (16), for the case of Meta-t distribution with same degrees of freedom ν = ν1 =
ν2 = ν3 = 6 (left panel), and different degrees of freedom, such that ν = 6 and ν1 = 5, ν2 = 10 and
ν3 = 15 (right panel).

5.2.3 Finite sample properties and Gaussian assumption

We conclude by discussing a Monte Carlo study aimed to assess the finite sample properties of the

MLE based on the Fisher’s scoring method detailed in the above section. The results are reported in

section S1 of the online supplementary material to save space. Here we highlight that our approach

performs well in terms of bias and root mean square errors for a wide range of time series, from the most

severe heavy-tailed case (i.e., ν very small) to the Gaussian case (i.e. for ν → ∞). Most importantly,

when the underlying process is Gaussian, the degrees of freedom parameter is always estimated of the

order of hundreds. In addition, we note that the algorithm delivers satisfactory results even when the

number of iterations is limited to ten rounds.
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6 Empirical Analysis of Homescan Data Consumer Prices

In order to illustrate potential use of the robust score-driven filter, we show an innovative application

to the estimation of consumer prices from homescan data. This field of application is gaining interest,

due to the growing availability of high frequency and high detail purchase data collected through

scanner technologies at the retail point (retail scan) or household level (homescan). The latter of

type of data allows one to obtain cost-of-living measures for vulnerable sub-groups of the population,

and to explore the distributional effects of fiscal measures. While being a valuable source for detailed

price information, post-purchase homescan price data are affected by a measurement noise that can

be potentially large in small samples, and the application of filtering techniques may help to mitigate

such noise and control for outliers.

Scanner data are collected either at the retail level, e.g. supermarket data, or from households in

consumer panels, i.e. homescan data. Retail scanner data are widely used to estimate prices, both

for continuity with the traditional price survey methodology, and because they are expected to suffer

less from the substitution (unit value) bias (Silver and Heravi, 2001). This bias is due to the fact

that scanner data are based on actual transactions, i.e. prices are only observed after the consumer

purchases the good. This implies that the observed price embodies a quality choice component, as

consumers confronted with a price increase may opt for a cheaper option (or a cheaper retailer) and

information on non-purchased items is missing. The bias can be particularly important for aggregated

goods, such as those goods commonly represented by category-level prices like food and drinks. Thus,

a wide body of research has been devoted to improve sampling strategies and the choice of weights in

aggregation. A well-documented problem is the change in the composition of the consumption basket

over time, an issue that can be exacerbated by high-frequency data Feenstra and Shapiro (2003). For

example, stockpiling of goods during promotion periods generate bias in price indices, as the purchased

quantities are not independent over subsequent time periods Ivancic et al. (2011); Melser (2018).

Although supermarket-level scanner data allow to mitigate the problem, as one expects a wide range

of products to be purchased across the population of customers within a given time period, the use of

homescan data to estimate prices and price indices has potentially major advantages. These advantages

lie in the possibility to exploit household-level heterogeneity. Most importantly, it becomes feasible to

estimate prices faced by particular population sub-groups whose consumption basket differs from the

average one, as elderly households or low-income groups Kaplan and Schulhofer-Wohl (2017); Broda

et al. (2009). However, the unit value issue is heavier with homescan data, as individual households buy

a small range of products. Thus, variable shopping frequencies and zero purchases make it necessary

to rely on very large samples of households to control the bias. The problem becomes even more

conspicuous for prices at the regional level, for products that are not frequently purchased and for

products whose demand is highly seasonal.

Robust filtering techniques may constitute a powerful solution to the above mentioned problems

related to measurement noise, and may perform well even with relatively small samples of household

as the one used in our application.

To illustrate the potential contribution of the proposed method, we exploit a data-set that has been

recently used to evaluate the effects of a tax on sugar-sweetened beveraged introduced in France in
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2012 Capacci et al. (2019). Our data for the empirical application were previously used for evaluating

the impact of the French soda tax through a quasi-experimental difference-in-difference design, where

the Italian data served as a counter-factual, see Capacci et al. (2019), and consists of weekly scanner

price data for food and non-alcoholic drinks. The data were collected in a single region, within the

Italian GfK homescan consumer panel, based on purchase information on 318 households surveyed in

the Piedmont region, over the period between January 2011 and December 2012. The regional scope

and the relatively small sample provide an ideal setting to test the applicability and effectiveness of

the multivariate filtering approach.

Table 3: Average unit values, e per kilogram, Piedmont homescan data (standard deviations in
brackets)

2011 2012

Food 4.343 (0.234) 4.226 (0.255)
Non-alcoholic drinks 0.434 (0.047) 0.426 (0.052)
Coca-Cola 1.000 (0.096) 1.100 (0.172)

6.1 Data

The data for our application consist of three time series of weekly unit values for food items, non-

alcoholic drinks and Coca-Cola purchased by a sample of 318 households residing in the Piedmont

region, Italy, over the period 2011-2012, and collected within the GfK Europanel homescan survey.

The data-set provides information on weekly expenditures and purchased quantities for each of the

three aggregated items, and unit values are obtained as expenditure-quantity ratios.

Average unit values are shown in Table 3. Food and non-alcoholic drinks are composite aggregates,

hence they are potentially subject to fluctuations in response to changes in the consumer basket even

when prices are stable. Instead, Coca-Cola is a relatively homogeneous good, with little variability due

to different packaging sizes.

6.2 Results

We fit the multivariate score-driven model developed in the paper to the considered vector of time

series. ML estimation produces the following multivariate dynamic system of time varying locations

for Drinks (D), Food (F) and Coca-Cola (C),
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ω̂ =



0.443

(0.000)

4.394

(0.000)

−1.070

(0.000)


Φ̂ =



0.839 0.015 0.007

(0.011) (0.002) (0.005)

−0.528 0.912 0.342

(0.059) (0.009) (0.025)

0.222 0.023 0.847

(0.020) (0.003) (0.009)


K̂ =



0.442 −0.023 0.007

(0.017) (0.003) (0.007)

0.334 0.216 −0.631

(0.079) (0.014) (0.038)

−0.290 −0.098 −0.014

(0.030) (0.005) (0.014)


where the values in parenthesis are the standard errors and with

ν̂ = 6.921 (0.229), Ω̂ =



0.162 · ·
(0.138)

0.348 53.258 ·
(0.913) (0.327)

−0.134 −0.579 9.086

(0.057) (0.327) (0.155)


× 10−3.

The estimated degrees of freedom are approximately 7. We remark that the assumption of a

(conditional) multivariate Student’s t distribution implies that all the univariate marginal distributions

are tail equivalent, see Resnick (2004). This requires the implicit underlying assumption that the level

of heavy-tailedness across the observed time series vector is fairly homogeneous. To investigate this

issue, and for the sake of comparisons, we have carried out a univariate analysis, as in Harvey and

Luati (2014), from which it resulted that the estimated degrees of freedom were very low for Coca-

Cola (about 4) and medium size (smaller than 30) for the other two series, as expected. Hence, the

multivariate score-driven model developed in the paper reveals to be a good compromise between a

multivariate non-robust filter, based on a linear Gaussian model, and a robust univariate estimator.

Indeed, a multivariate Portmanteau test on the residuals obtained from the three univariate models

is carried out to test the null hypothesis H0 : R1 = · · · = Rm = 0, where Ri is the sample cross-

correlation matrix for some i ∈ {1, . . . ,m} against the alternative H1 : Ri ̸= 0. The results of Table 4

indicate rejection of the null hypothesis of absence of serial dependence in the trivariate series at the

5% significance level.

Table 4: Multivariate Portmanteau test.

m Q(m) df p-value

1 13.7 9 0.000
2 40.8 18 0.000
3 58.6 27 0.000
4 89.6 36 0.000
5 105.9 45 0.000
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We also remark that the estimated degrees of freedom close to 7 rule out the hypothesis that the

data come from a linear Gaussian state-space model, in which case the estimated degrees of freedom

would be definitely higher. Nevertheless, we have fitted a misspecified linear Gaussian state-space

model estimated with the Kalman filter and, as expected, along with a higher sensitivity to extreme

values, in particular in the last period of the Coca-Cola series, likelihood and information criteria are

in favour of the multivariate model based on the conditional Student’s t distribution.

Table 5: Likelihood, Akaike and Bayesian information criteria.

log-Lik AIC BIC

KF 241.16 -434.32 -370.85
mDCS-t 257.93 -465.69 -402.23
uDCS-t 230.87 -441.74 -392.07

To enforce our results, we explore the robustness to misspecification with respect to a univariate

model and in particular to the univariate model by Harvey and Luati (2014). The aim is to assess

the trade-off between (i) allowing for correlations among series at the price of imposing one common

degree of freedom, against (ii) a univariate approach that allows for heterogeneous degrees of freedom

but does not directly model the series correlation structure.

To this end, we perform the specification test for nonlinear dynamic models discussed in Bai and

Chen (2008) and Kheifets (2015). Specifically, using the notation of Kheifets (2015), we test the

following null hypothesis:

HM
0 : The distribution of yt|Ft−1 is in the parametric family Ft( · |Ft−1,θ) for some θ0 ∈ Θ.

In our case, this null hypothesis translates in testing if the N -vector stochastic process {yt}t∈Z has

multivariate conditional t-distribution with ν degrees of freedom, µt|t−1 dynamic conditional location

and Ω scale matrix. It is well-known that, analogously to the multivariate Gaussian case, when a

random vector has a multivariate t-distribution, any of its subvector has multivariate t-distribution,

see Zellner (1971) or Kotz and Nadarajah (2004). Furthermore, as discussed in Spanos (1986) and

Ding (2016) the conditional distributions are also multivariate t.

To apply test, we need to compute the univariate series of probability integral transforms {Utk}Tt=1,

k = 1, . . . , N . Then, by the location-scale representation of the model in equation (1), we have

Utk = P(ϵtk ≤ ϵ) = tνk

(
ytk − µt|t−1,k|k−1√

Ωk|k−1

)
,

with yt,k−1 = (yt,1, . . . , yt,k−1)
⊤ for k = 1, . . . , N , conditional mean E[ytk|yt,k−1,Ft−1] = µt|t−1,k|k−1,

conditional variance V[ytk|yt,k−1,Ft−1] =
ν

ν−2Ωk|k−1, and νk = ν +N − 1 degrees of freedom.

Explicit formulae for the multivariate probability integral transform of Student’s t distributed

random vector can be found in Bai and Chen (2008) and Ding (2016). In particular, by applying the
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results of Ding (2016) into the multivariate Student’s t setting, we have that

ytk|yt,k−1,Ft−1 ∼ tνk(µt|t−1,k|k−1,Ωk|k−1),

where for k = 1, . . . , N

µt|t−1,k|k−1 = µt|t−1,k +Ωk,k−1Ω
−1
k,kΩk−1,k(yt,k−1 − µt|t−1,k−1),

with E[ytk|Ft−1] = µt|t−1,k and V[ytk|yt,k−1,Ft−1] = ν
ν−2Ωk,k, and moreover, with the conditional

vectors E[yt,k−1|Ft−1] = µt|t−1,k−1 and Cov[ytk,yt,k−1|Ft−1] =
ν

ν−2Ωk,k−1 conditional matrices, such

that

Ωk|k−1 =
ν + (yt,k−1 − µt|t−1,k−1)

⊤Ω−1
k−1,k−1(yt,k−1 − µt|t−1,k−1)

ν + k − 1
(Ωk,k −Ωk,k−1Ω

−1
k−1,k−1Ωk−1,k).

By stacking the Utk in a vector, for t = 1, . . . , T and k = 1, . . . , N , we obtain a new vector U τ of

univariate random variables of length T ×N which, under HM
0 are IID and uniformly distributed on

[0, 1]. This allow us to apply the test statistics based on V2T,j for j = 1, 2, . . . of Kheifets (2015),

that tests the j-lag pairwise independence using the fact that, under HM
0 , the distance to this null

hypothesis is measured by

V2T,j(r) =
1√
T − j

T∑
t=j+1

(
1{Uτ≤r1}1{Uτ−j≤r2} − r1r2

)
,

for each r1, r2 ∈ [0, 1]2.

Since, for all t = 1, . . . , T and k = 1, . . . , N , Utk is not observable, we estimate Ûtk by replacing

each µt|t−1,k|k−1 by the filtered counterpart µ̂t|t−1,k|k−1, and the static parameters Ωk|k−1 and ν by

their MLE Ω̂k|k−1 and ν̂, respectively. Based on Ûtk we eventually get V̂2T,j(r).

To test the null hypothesis HM
0 , we consider both Cramer-von Mises (CvM) and Kolmogorov-

Smirnov (KS) statistics proposed by Kheifets (2015), defined as

DCvM
2T =

∫
[0,1]2

V̂2T,j(r)dr, DKS
2T = sup

[0,1]2

∣∣∣V̂2T,j(r)∣∣∣ , (18)

whose approximate distribution is obtained by a parametric bootstrap procedure as described in

Kheifets (2015). Results are gathered in Table 6.

Table 6: The p-values of specification tests for the multivariate DCS-t (mDCS-t) and the univariate
DCS-t (uDCS-t).

DCvM
2T DKS

2T

mDCS-t 0.144 0.254
uDCS-t 0.001∗∗∗ 0.001∗∗∗
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From Table 6 we conclude that the tests are not rejected in the multivariate DCS-t case at any usual

significance level, such as 1%, 5% or 10%. Conversely, HM
0 is rejected at any of these significant level

in the univariate DCS-t case, suggesting that neither the full dynamics nor auto-correlation structures

are captured by the simpler univariate approach.

The matrix of the estimated autoregressive coefficients Φ̂ measures the dependence across the

filtered dynamic locations µ̂t|t−1, while the estimated scale matrix Ω̂ measures the concurrent rela-

tionship between the three series under investigation, i.e. drink, food and Coca-Cola prices. For these

matrices, we report the estimates of the coefficients and, in parenthesis, the relative standard errors.

The diagonal elements of Φ̂ show that each variable of interest is highly persistent.

In order to explore the relation among the series, we implement an impulse response analysis. We

follow the approach of Gallant et al. (1993) and Lin (1997), and define the impulse response function

for dynamic conditional locations as the impact of a small perturbation of the i-th variable on the

future predicted location vector µt+1|t, i.e., the i-th element of the vector yt, for i = 1, . . . , N , i.e.

Qs,t(i) = E[µt+1|t|yt = y0 + δi,Ft−1]− E[µt+1|t|yt = y0,Ft−1],

where y0 is a vector of zeros defined as the initial condition without any impulse, and δi is a zero

vector with i-th element equal to 1 (or −1). The nonlinear impulse are computed by using the local

projections approach of Óscar Jordá (2005), and the confidence bands are obtained by using the

Newey-West corrected standard-errors, see Newey and West (1987).
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Figure 5: Estimated impulse response functions of the filtered µ̂t|t−1 for a unit shock.
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Figure 5 shows the estimated impulse response functions. What emerges is a negative relation

between drink and food prices: a unit shock in drink prices will produce a negative shock in food

prices. This may adjustments in purchasing decisions by the households aimed at mitigating the rising

cost of their shopping basket. This would be evidence that univariate signals are likely to suffer from

the unit value bias. Similarly, a non trivial negative relation exists between food and Coca-Cola prices.

A unit shock on food prices yields a concurrent negative impact on Coca-Cola prices, which is also noted

from the analysis of the cross-correlations. As one might expect, a positive correlation exists between

Coca-Cola prices and drink prices, as the former product belongs to the latter category. Instead, unit

shocks on food prices seem to have negligible correlation (if any) on drink prices.

6.3 Interpretation

Figure 6 shows the original unit value time series and the corresponding signals extracted through

the multivariate score-driven filter. Noise and outliers, as well as some irregular periodic pattern, are

clearly visible in the drinks and food series. On the other hand, the Coca-Cola series is relatively

regular, with the exception of few peaks, including a couple of large outliers in the second year. Given

the homogeneous nature of the good, it is reasonable to believe that those extreme values are the results

of measurement error. The estimates illustrate an effective noise reduction and return patterns that

are smoother and more consistent with a regular price time series. As one would expect, the Coca-Cola

DCS-t series is very flat, and suggests a relatively stable price over the two-years time window, with

no outliers.

Figure 7 shows the monthly natural logarithm differences of the raw homescan prices (HSP) and

the estimated signals, together with changes in the official Regional CPIs (R-CPI) for food and non-

alcoholic drinks, whereas no CPI to the brand detail is produced. The R-CPIs are provided by the

National Statistical Institute (ISTAT). They have a monthly frequency and are built with a traditional

survey-based approach on retailers. The comparison between the score-driven filtered values and the

R-CPIs is purely indicative, as the unit values from the homescan data are weekly, whereas the official

CPIs are monthly. This frequency difference may lead to biased comparisons Diewert et al. (2016).

Nevertheless, the graphs confirm that the score-driven signals are effective in reducing the noise in the

data. This is especially true for the food series, whose CPIs are more volatile compared to drinks. The

correlation between the raw homescan log-differenced unit value and the log-differenced food CPI is

0.05, against 0.44 when the filtered time series is considered. For the non-alcoholic drinks price series

the gain is less conspicuous, as prices evolve very regularly over the time window. Still, an inexistent

correlation between the HSP and the R-CPI (-0.02) turns into a positive one (+0.11) when considering

the score-driven estimates and the R-CPI.
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In essence, the empirical evidence suggests that a robust multivariate approach to model-based

signal extraction produce meaningful price series from homescan data, especially when noise and

outliers in the original data are relevant. We find the approach to perform reasonably well even

with a low number of sampled households (318) and price time series (3), and with a relatively short

time window (104 weeks). Future research might shed further light on the implications of dealing with

a larger number of price series and longer time series.

7 Concluding Remarks

We developed a nonlinear and multivariate dynamic location filter which enables the extraction of reli-

able signals from vector processes affected by outliers and possibly non-Gaussian errors. Its peculiarity

lies in the specification of a score-robust updating equation for the time-varying conditional location

vector. Compared to the existing literature on observation driven models for time varying parameters,

the model has two innovative features: (a) it extends the univariate first-order dynamic conditional

location score by Harvey and Luati (2014) to the multivariate setting; and (b) it extends the dynamic

model for time varying volatilities and correlations by Creal et al. (2011) to the location case.

We derived the stochastic properties of the filter: bounded moments, stationarity, ergodicity, and

filter invertibility. Parameters are estimated by the method of maximum likelihood and we provided

analytic closed-form formulæ for the score vector and the Hessian matrix. The latter can be directly

used to design a scoring algorithm that is naturally much faster than the usual ones based on numerical

derivatives. Consistency and asymptotic normality have been proved and a large scale Monte-Carlo

study analyzed the finite sample properties of the estimation procedure. In particular, we investigated:

the sensitivity to initial conditions of the filtered sequence and of the estimation algorithm; the robust-

ness against misspecification in several directions, such as asymmetry of the underlying distribution,

heterogeneous degrees of freedom; the performance compared to its corresponding univariate counter-

part. In the case when the degrees of freedom tend to infinity, or, in practice, their estimate is of the

order of hundreds, our specification converges to a linear and Gaussian model.

The empirical application showed that robust filtering may lead to satisfactory estimates of price

signals from homescan data, in the case when the multivariate dimension is low. We contribute to

research in this area with two promising results. First, we show that robust modeling allowing for

heavy tails is more effective in dealing with noisy series affected by outliers or extreme observations.

Second, the multivariate extension of the DCS-t model has shown more appropriate than the robust

univariate filtering approach in the case of scanner price data, as price time series are expected to have

a good degree of correlation.
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Appendix A: Main Proofs

Proof of Lemma 1

The score ut in equation (5) can be written as

ut = vt(1− bt) (19)

with bt = 1− 1/wt and where, conditional to Ft−1,

bt =
v⊤t Ω

−1vt/ν

1 + v⊤t Ω
−1vt/ν

, 0 ≤ bt ≤ 1, with bt ∼ Beta
(N
2
,
ν

2

)
, (20)

i.e. the driving force ut is a continuous function of a beta distributed random variable, see Pag. 19 of

Kotz and Nadarajah (2004) or Proposition 39 of Harvey (2013). For 0 < ν <∞, ∥ut∥ = 0 if ∥vt∥ = 0,

while ∥ut∥ → 0 if ∥vt∥ → ∞ because bt → 1. Therefore, we achieve that supt E[∥ut∥] <∞.

Second, we retrieve the moment structure of ut. Under assumption 1, the following stochastic

representation is valid for the driving force

ut =
√
ν
√
bt(1− bt)Ω

1/2zt, (21)

where zt is uniformly distributed on the unit sphere in RN independently of bt, see Fang et al. (1990).

It follows that for even integers m = 2s, s = 1, 2, . . . , the moments of ut can be expressed as

E
[
∥ut∥m

]
=νm/2∥Ω∥m/2E

[
b
m/2
t (1− bt)

m/2
]
E
[
∥zt∥m

]
=

∥Ω∥m/2

B
(
N
2 ,

ν
2

)( ν
N

)m/2
∫
b
N+m

2
−1

t (1− bt)
ν+m

2
−1dbt

=∥Ω∥m/2
( ν
N

)m/2B
(
N+m

2 , ν+m
2

)
B
(
N
2 ,

ν
2

) .□

Proof of Lemma 2

It follows from Lemma 1, that, at θ = θ0, and given the filtration at time t−1, i.e. Ft−1 = σ{yt−1,yt−2,

yt−3, . . . }, the score ut forms a martingale difference sequence with zero mean and time-invariant

covariance matrix. As, in addition, Lemma 1 shows that all the moments of ut exist and do not depend

on time, but only on the degrees of freedom ν and the vector time series dimension N , the process

{ut}t∈Z is IID and independently distributed of µt|t−1. Therefore, by using recursive arguments, for

each starting value µs|s−1, where s is a fixed time point, one has that µt+1|t − ω = Φt−s(µs|s−1 −
ω)+

∑t−1
j=0Φ

jKut−j . Consequently, according to the theory of linear systems, see Hannan and Deistler

(1987), the condition ϱ(Φ) < 1 is sufficient for the existence and uniqueness of a strictly stationary

and ergodic solution {µ̃t|t−1}t∈Z.
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Then, when the process starts from the infinite past, we can write µ̃t+1|t−ω =
∑∞

j=0Φ
jKut−j , so

that, from Lemma 1, by taking the unconditional expectation and applying the triangle, Hölder and

Minkowsky inequalities, we get

E
[
∥µ̃t+1|t − ω∥m

]
= E

[∥∥∥∥ ∞∑
j=0

ΦjKut−j

∥∥∥∥m] ≤ {c̄ ∞∑
j=0

ρ̄j
(
E
[
∥ut−j∥m

])1/m}m

<∞,

where c̄ = N∥K∥ and ρ̄ < 1. The first inequality follows from a standard result in linear algebra, as

∥Φ∥ = ∥PΛP−1∥ = tr(Λ) =
∑N

i=1 ρi where ρi are the eigenvalues of Φ. □

Proof of Lemma 3

The stationary and ergodic solution of equation (7) can be embedded in a first order nonlinear dy-

namic system. µ̃t+1|t = ϕ(µ̃t|t−1,yt,θ), t ∈ Z. Let us define inductively, for k ≥ 1 and any ini-

tialization µ̂1|0 ∈ M, a sequence of Lipschitz maps ϕ(k+1) : M × RN × Θ 7→ M for k ≥ 1 such

that ϕ(k+1)(µ̂1|0,y1, . . . ,yk+1,θ) = ϕ (ϕ(k)(µ̂1|0,y1, . . . ,yk,θ),yk+1,θ). By applying the mean value

theorem to ϕ(µ̂t|t−1,yt,θ), that is, the nonstationary Lipschitz map, we obtain

µ̂t+1|t = X̂
⋆

t µ̂t|t−1 + φ(µ̂⋆
t|t−1,yt,θ), (22)

where µ̂⋆
t|t−1 denotes a set of points between µ̂t|t−1 and µ̃t|t−1. Moreover, we have that X̂

⋆

t =

ϕ′(µ̂⋆
t|t−1,yt,θ), where ϕ

′ denotes the first partial derivatives of ϕ with respect to the transpose of

the vector µ̂⋆
t|t−1, and φ(µ̂⋆

t|t−1,yt,θ) = ϕ(µ̃t|t−1,yt,θ) − X̂
⋆

t µ̃t|t−1. Equation (22) is a multivariate

SRE, that can be viewed as vector autoregressive process with random coefficients. The sufficient

conditions for invertibility given by Bougerol (1993) and Straumann and Mikosch (2006) then become

E
[
ln+ sup

θ∈Θ

∥∥ϕ(µ̃1|0,y1,θ)− µ̃1|0
∥∥] <∞, E

[
ln+ sup

θ∈Θ

∥∥∥∥X1

∥∥∥∥] <∞, (23)

for any µ̃1|0 ∈ M and

E
[
ln sup

θ∈Θ
sup
µ∈M

∥∥∥∥ k∏
j=1

Xk−j+1

∥∥∥∥] < 0, (24)

for k ≥ 1 and where ln+ x = max{0, lnx}.
Let us consider condition (23). One has

E
[
ln+ sup

θ∈Θ

∥∥ϕ(µ̃1|0,y1,θ)− µ̃1|0
∥∥] ≤ 2 ln 2 + ln+ sup

θ∈Θ

∥∥Φ∥∥+ 2 ln+ sup
θ∈Θ

∥∥µ̃1|0 − ω
∥∥

+ ln+ sup
θ∈Θ

∥∥K∥∥+ E
[
ln+ sup

θ∈Θ

∥∥u1

∥∥] <∞

by compactness of Θ and since ut is uniformly bounded ∀t in both µt|t−1 ∈ M and yt ∈ RN . In

particular, for any µt|t−1 ∈ M, as ∥yt∥ → ∞ we obtain that ∥ut∥ → 0. Thus, supt E[supθ∈Θ ∥ut∥] <∞
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which clearly implies E[ln+ supθ∈Θ ∥u1∥] <∞.

Moreover, note that E
[
ln+ supθ∈Θ

∥∥X1

∥∥] < ∞ directly follows from the contraction condition

E
[
ln supθ∈Θ supµ̃1|0∈M ∥X1∥

]
< 0. Therefore, condition (23) is fulfilled.

As far as condition (24) is concerned, the exponentially fast almost sure convergence of the filtered

{µ̂t|t−1}t∈N is obtained as an application of Theorem 3.1 in Bougerol (1993) or Theorem 2.8 in Strau-

mann and Mikosch (2006), since the contraction condition (24) implies that supθ∈Θ ∥µ̂t+1|t− µ̃t+1|t∥ =

supθ∈Θ

∥∥∥∥(∏t−1
i=0 X̂

⋆

t−i

) (
µ̂1|0 − µ̃1|0

)∥∥∥∥ ≤ ϱt c, where c > 0 and 0 < ϱ < 1 are constants.

Therefore, all the requirements of Bougerol (1993)’s Theorem are satisfied. Additionally, the claim

that the moments are bounded follow from the fact that, as noted above, ut is uniformly bounded. □

Proof of Lemma 4

Under the correct specification assumption 1, for θ = θ0 the stationary and ergodic solution {µ̃t|t−1}t∈Z
coincide with {µt|t−1}t∈Z in (4), and, consequently, with µt, since Lemma 2 ensures that the SE so-

lution is unique. As a consequence of Lemma 1 and Lemma 2, the process {yt}t∈Z is stationary by

continuity and its moments are bounded. Ergodicity of {yt}t∈Z under the same assumptions follows

by Proposition 4.3 of Krengel and Brunel (1985) □

To prove consistency and asymptotic normality of the MLE, additional quantities are introduced.

Let us define the empirical average log-likelihood function based on the chosen initial value µ1|0 and

on the filtered sequence {µ̂t|t−1}t∈N

L̂T (θ) =
1

T

T∑
t=1

ℓ̂t(θ), (25)

and the likelihood based on the stationary sequence {µ̃t|t−1}t∈Z

LT (θ) =
1

T

T∑
t=1

ℓt(θ), (26)

with the following limit

L(θ) = E[ℓt(θ)]. (27)

The first and second derivatives of the above quantities with respect of the parameter will be denoted

as L̂′
T (θ),L′

T (θ),L′(θ) and as L̂′′
T (θ),L′′

T (θ),L′′(θ), respectively.

The proof of consistency is based on some Lemmata that we report here for sake of clarity. The

proofs of the Lemmata are in the online appendix.

Lemma 5. Assume that conditions 1, 2 and 3 in Assumption 2 are satisfied. Then E
[
supθ∈Θ |ℓt(θ)|

]
<

∞ and E
[
|ℓt(θ0)|

]
< ∞. Furthermore, under condition 4, for every θ ̸= θ0 ∈ Θ, E

[
|ℓt(θ)|

]
<

E
[
|ℓt(θ0)|

]
.

Lemma 6. Assume that conditions 1, 2 and 3 in Assumption 2 are satisfied. Then, supθ∈Θ |L̂T (θ)−
LT (θ)|

a.s.−−→ 0 as t → ∞, and supθ∈Θ |LT (θ) − L(θ)| a.s.−−→ 0 as t → ∞, where L̂T (θ), LT (θ) and L(θ)
and are defined in (25), (26) and (27), respectively.
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Proof of Theorem 4.1

One has,

sup
θ∈Θ

|L̂T (θ)− L(θ)| ≤ sup
θ∈Θ

|L̂T (θ)− LT (θ)|+ sup
θ∈Θ

|LT (θ)− L(θ)|.

By Lemma 6 and the Ergodic Theorem, limT→∞ L̂T (θ0) = limT→∞ LT (θ0) = L(θ0), and, by Lemma

5, L(θ) < L(θ0), ∀θ ̸= θ0. Following similar arguments of Theorem 3.4 in White (1994), one can show

that strong consistency holds if ∀ θ ̸= θ0, ∃ Bη(θ), where Bη(θ) = {θ : ∥θ − θ0∥ > η, η > 0} s.t. for

any θ⋆ ∈ Bη(θ),

lim sup
T→∞

sup
θ⋆∈Bη(θ)

L̂T (θ) < lim
T→∞

L̂T (θ0) a.s.

With a similar reasoning, by the reverse Fatou’s Lemma and the Ergodic Theorem

lim sup
T→∞

sup
θ⋆∈Bη(θ)

L̂T (θ) = lim sup
T→∞

sup
θ⋆∈Bη(θ)

LT (θ) = lim sup
T→∞

sup
θ⋆∈Bη(θ)

1

T

T∑
t=1

ℓt(θ)

≤ lim sup
T→∞

1

T

T∑
t=1

sup
θ⋆∈Bη(θ)

ℓt(θ) = E

[
sup

θ⋆∈Bη(θ)
ℓt(θ)

]
,

and therefore, ∀ ε > 0 ∃ η > 0 s.t. E
[
supθ⋆∈Bη(θ) ℓt(θ)

]
< E

[
ℓt(θ)

]
+ ε = L(θ) + ε.Note that ε can

be made arbitrarily small. Therefore, the uniqueness and identifiability of the maximizer θ0 ∈ Θ, is

ensured by the uniqueness of θ0 as the maximizer of the likelihood, see Lemma 5, the compactness of

the parameter space Θ and finally, the continuity of the limit L(θ) in θ ∈ Θ which is ensured from

the continuity of LT (θ) in θ ∈ Θ, ∀T ∈ N and the uniform convergence in Lemma 6. Then, strong

consistency follows by Theorem 3.4 in White (1994). □

The proof of asymptotic normality requires the following Lemmata, proved in the online appendix.

Lemma 7. Assume that conditions 1, 2 and 3 in Assumption 2 are satisfied. Then, the first derivatives

of the log-likelihood L′
T (θ0) obeys the CLT for martingale difference sequences, that is

√
TL′

T (θ0) =⇒

N (0,V ) as t→ ∞, where V = E
[
(L′

T (θ0))(L′
T (θ0))

⊤
]
.

Lemma 8. Assume that conditions 1, 2, 3 and 4 in Assumption 2 are satisfied. Then, we obtain√
T∥L̂′

T (θ0)− L′
T (θ0)∥

P−→ 0 as T → ∞.

Lemma 9. Assume that conditions 1, 2 and 3, in Assumption 2 are satisfied. Then, we obtain

supθ∈Θ |L̂′′
T (θ)− L′′

T (θ)|
a.s.−−→ 0 as t→ ∞.

Lemma 10. Assume that conditions 1, 2, 3 and 4 in Assumption 2 are satisfied. Then, we obtain

supθ∈Θ |L′′
T (θ)− L′′(θ)| a.s.−−→ 0 as t→ ∞,
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Lemma 11. Assume that conditions 1, 2, 3, 4 and 5 in Assumption 2 are satisfied. Then, the second

derivative processes of the likelihood
{

d2ℓt(θ)

dθdθ⊤

}
t∈Z

are stationary ergodic with bounded moments. In

particular, E
[
d2ℓt(θ)

dθdθ⊤

]
<∞, and is nonsingular.

Proof of Theorem 4.2 (Asymptotic Normality)

Standard arguments for the proof of asymptotic normality and the Taylor’s theorem lead to the ex-

pansion of the conditional likelihood’s score function around a neighborhood of θ0, which yields

0 =
√
T L̂′

T (θ̂T ) =
√
T
[
L̂′
T (θ0)− L′

T (θ0)
]
+
√
TL′

T (θ0)

+
[(
L′′
T (θ0)− L′′(θ0)

)
+
(
L̂′′
T (θ

⋆)− L′′
T (θ0)

)
+ L′′(θ0)

]√
T (θ̂T − θ0), (28)

where θ⋆ lies on the chord between θ̂T and θ0, component-wise.

First, the fact that
√
TL′

T (θ0) obeys the CLT for martingales is entailed in Lemma 7. Convergence

of the first difference in square brackets of equation (28) is ensured by Lemma 8. Thus, by the

asymptotic equivalence (see Lemma 4.7 in White (2001)) L̂′
T (θ0) has the same asymptotic distribution

of
√
TL′

T (θ0). As regards the second line, we have that the middle term vanishes almost surely and

exponentially fast, since Lemma 9 demonstrates that the initial conditions for the likelihood’s second

derivatives are asymptotically irrelevant and the consistency theorem further ensures the convergence

in the same point by continuity arguments of the likelihood’s second derivatives. In addition, the

first term in the brackets of the second line vanishes as well by the Uniform Law of Large Numbers

discussed in Lemma 10. Finally, with Lemma 11 at hand, we can easily solve equation (28), since

L′′(θ0) is nonsingular. Slustky’s Lemma (see Lemma 2.8 (iii) of van der Vaart (1998)) completes the

proof. □

Appendix B: The Conditional Fisher Information Matrix

As we show in Section S2 of the online supplementary material, the conditional information matrix

may be represented as follows,

It(θ) =



I(ν)
t (θ) I(ν,v(Ω))

t (θ) 0
1×N

I(ν,v(Φ))
t (θ) I(ν,v(K))

t (θ)

I(v(Ω),ν)
t (θ) I(v(Ω))

t (θ) 0
N2×N

I(v(Ω),v(Φ))
t (θ) I(v(Ω),v(K))

t (θ)

0
N×1

0
N×N2

I(ω)
t (θ) 0

N×N2
0

N×N2

I(v(Φ),ν)
t (θ) I(v(Φ),v(Ω))

t (θ) 0
N2×N

I(v(Φ))
t (θ) I(v(Φ),v(K))

t (θ)

I(v(K),ν)
t (θ) I(v(K),v(Ω))

t (θ) 0
N2×N

I(v(K),v(Φ))
t (θ) I(v(K))

t (θ)


.
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The four blocks of the matrix have the following expansions: the first block is composed by

I(ν)
t (θ) =

1

4

[
ψ′
(
ν

2

)
− ψ′

(
ν +N

2

)
− 2N(ν +N + 4)

ν(ν +N)(ν +N + 2)

]
+

ν +N

ν +N + 2

(
d(µt|t−1 − ω)

dν

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
,

I(v(Ω),ν)
t (θ) = − 1

(ν +N)(ν +N + 2)
D⊤

N (vech(Ω−1))

+
ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
,

I(v(Ω))
t (θ) =

ν +N

2(ν +N + 2)
D⊤

N (Ω−1 ⊗Ω−1)DN

− 1

2(ν +N + 2)
D⊤

N (vech(Ω−1))(vech(Ω−1))⊤DN

+
ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
.

The second,

I(v(Φ),ν)
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
,

I(v(Φ),v(Ω))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
,

I(v(K),v(Ω))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
,

I(v(K),ν)
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
.

Third, the unconditional mean

I(ω)
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)

dω⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dω⊤

)
.

By symmetry, the fourth and last block are composed by

I(v(Φ))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)
,

I(v(Φ),v(K))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vecK)⊤

)
,

I(v(K))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vecK)⊤

)
.
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We note that the formulae above require the calculations of the derivative of the dynamic location

process µt|t−1, which are given by

d(µt+1|t − ω)
dν

=Xt

d(µt|t−1 − ω)
dν

+Kat,

d(µt+1|t − ω)
d(vech(Ω))⊤

=Xt

d(µt|t−1 − ω)
d(vech(Ω))⊤

+KBt,

d(µt+1|t − ω)
dω⊤ =Xt

d(µt|t−1 − ω)
dω⊤ +C,

d(µt+1|t − ω)
d(vecΦ)⊤

=Xt

d(µt|t−1 − ω)
d(vecΦ)⊤

+Dt,

d(µt+1|t − ω)
d(vecK)⊤

=Xt

d(µt|t−1 − ω)
d(vecK)⊤

+Et,

where Xt = Φ+KCt and with

at =
∂ut

∂ν
= (yt − µt|t−1)bt(1− bt)/ν,

Bt =
∂ut

∂(vech(Ω))⊤
= (1− bt)

2/ν (yt − µt|t−1)
[
(yt − µt|t−1)⊗ (yt − µt|t−1)

]⊤
(Ω−1 ⊗Ω−1)DN ,

Ct =
∂ut

∂µ⊤
t|t−1

= 2(1− bt)
2/ν (yt − µt|t−1)(yt − µt|t−1)

⊤Ω−1 − (1− bt)IN ,

and finally

C =
∂(µt|t−1 − ω)

∂ω⊤ = IN −Φ,

Dt =
∂(µt|t−1 − ω)
∂(vecΦ)⊤

= (µt|t−1 − ω)⊤ ⊗ IN ,

Et =
∂(µt|t−1 − ω)
∂(vecK)⊤

= u⊤
t ⊗ IN .

It is worth to remark that ω is asymptotically independent of the other parameters. Moreover, none

of the terms of the conditional information matrix involves the second derivatives of the dynamic

location. This result is a direct consequence of the asymptotic properties of the proposed MLE under

the assumption of correct specification of the model and some regularity conditions.
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Abstract

In this online supplementary materials, we provide details of a Monte Carlo study aimed to assess
the finite sample properties of the MLE derived in the paper (Section S1), the relevant quantities
for the implementation of the Fisher scoring algorithm (Section S2), the proofs of Lemma 5-11 in
the main paper, as well as some additional auxiliary Lemmata (Section S3).

S1 Monte Carlo

The finite-sample properties of the MLE are investigated via Monte-Carlo simulations. We assume
that the distribution of the heavy-tailed IID errors will be ϵt ∼ tν0(02, I2), where ν0 ∈ {3, 5, 10, 100},
that is, a standard bivariate Student’s t with three, five and ten degrees of freedom, while the case
when ν0 = 100 we cover the case when ϵt tends to behave like a standard Gaussian noise. A property
of the multivariate model introduced so far is that it estimates a linear Gaussian model when the
errors are actually Gaussian. In this sense, the filter is robust to misspecification if normality holds.
On the other hand, it is important to remark that we are assuming that all the time series share the

∗Corresponding author.
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same degrees of freedom ν0. It is well-known that estimating the degrees of freedom in Student’s t
distributions can be quite challenging, since the implied profile likelihood is remarkably flat, see the
discussion in Breusch et al. (1997).

In practice, we simulate data from the different specifications of the standard bivariate Student’s
t and for each of the realized paths of the time series we consider the recursion in (7), which satisfies
the conditions of Lemma (2). During the process which generates the data, we use a burn-in period of
1, 000 replications and we store T = 250, 500 and 1, 000 observations. This ensures that the collected
{yt}t∈Z are stationary ergodic.

With this simulated data at hand, we start the Fisher’s scoring algorithm based on the analytical
formulae described in Section 4.2. We repeat this simulation scheme M = 1, 000 times for each case
and we use the empirical measures of bias and root mean square error to quantify the accuracy of our
proposed estimators. Formally, the empirical bias measure and the empirical root mean square error
of ν̂ over the M = 1, 000 replications are computed as

Bias(ν̂) =
1

M

M∑
m=1

(ν̂m − ν0), RMSE(ν̂) =

√√√√ 1

M

M∑
m=1

(ν̂m − ν0)2.

In the bivariate case, the vector of parameters assumes the following form

θ = (ν,Ω11,Ω21,Ω22, ω1, ω2,Φ11,Φ21,Φ12,Φ22, κ11, κ21, κ12, κ22)
⊤,

thus θ ∈ R14, which means that a complete bivariate system is characterized by 14 parameters. The
true parameters of the considered DGP are

ν0 ∈ {3, 5, 10, 100}, Ω0 = I2, ω0 =
[
−3 5

]
, Φ0 =

[
0.85 0.00

0.00 0.80

]
, K0 =

[
0.95 0.05

0.05 0.90

]
.

The Monte-Carlo results are reported in Tables S1 to S4 according to the values of the degrees of
freedom ν0 ∈ {3, 5, 10, 100}, respectively. Each table contains three columns: Estimate reports the
Monte-Carlo average of the point estimates obtained from the simulations, while Bias and RMSE
report the Monte-Carlo deviations from the true values as described above, which are associated with
the time series dimensions, that is T = 250, 500 and 1, 000.

The first evident result, common to all the tables, is that as the time series dimension increases,
the values of the empirical Bias and RMSE tend to reduce sharply, which is line with the consistency
Theorem 4.1. In particular, we note that even if the value of ν0 is very low, namely ν0 = 3, the results
are still satisfactory.

In general, estimation of the number of degrees of freedom is rather accurate. In the approximately
Gaussian case when ν0 = 100 the filter collapses to the steady state form of the Kalman filter and the
degrees of freedom parameter is recovered already in the case of the smallest sample size. Moreover, the
decreasing bias and RMSE patterns may be due to the fixed initial value of the dynamic location vector
µ1|0 which was used to start the filter recursions. However, the invertibility conditions introduced in
Lemma 3 ensure that for T → ∞, this initial estimation bias will eventually tapers off. In conclusion,
the ML estimations deliver satisfactory results in terms of bias and root mean square error, hence the
reliability of the Fisher-scoring method.
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Table S1: Monte-Carlo Simulation results for ν0 = 3.

T = 250 T = 500 T = 1000

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

ν 2.987 0.013 0.457 2.979 0.021 0.473 3.016 -0.016 0.321

Ω11 0.972 0.028 0.132 0.972 0.028 0.130 0.988 0.011 0.093

Ω12 -0.000 0.000 0.073 -0.004 0.004 0.074 0.000 0.000 0.053

Ω22 0.971 0.029 0.135 0.972 0.028 0.136 0.991 0.008 0.090

ω1 -2.996 -0.004 0.288 -2.990 -0.009 0.257 -3.008 0.009 0.183

ω2 5.002 -0.003 0.215 5.004 -0.004 0.207 5.002 -0.002 0.145

Φ11 0.831 0.019 0.063 0.836 0.014 0.062 0.840 0.010 0.040

Φ12 0.001 -0.001 0.082 0.000 0.000 0.083 -0.000 0.001 0.047

Φ21 0.000 0.000 0.069 -0.001 0.001 0.066 -0.000 0.000 0.041

Φ22 0.768 0.032 0.091 0.771 0.029 0.084 0.789 0.011 0.048

κ11 0.955 -0.005 0.184 0.941 0.009 0.117 0.954 -0.004 0.086

κ12 0.052 -0.002 0.142 0.054 -0.004 0.145 0.049 0.000 0.097

κ21 0.054 -0.004 0.149 0.057 -0.007 0.152 0.051 -0.001 0.098

κ22 0.898 0.002 0.182 0.894 0.006 0.186 0.899 0.001 0.121

Table S2: Monte-Carlo Simulation results for ν0 = 5.

T = 250 T = 500 T = 1000

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

ν 5.089 -0.090 1.084 5.075 -0.075 0.693 5.012 -0.012 0.573

Ω11 0.978 0.220 0.121 0.993 0.007 0.086 0.997 0.003 0.068

Ω12 0.000 -0.001 0.075 -0.002 0.002 0.050 -0.001 0.001 0.046

Ω22 0.974 0.025 0.123 0.988 0.012 0.084 0.992 0.008 0.038

ω1 -2.973 -0.027 0.326 -2.994 -0.006 0.219 -3.002 0.002 0.127

ω2 5.011 -0.011 0.268 4.995 0.005 0.156 4.997 0.003 0.133

Φ11 0.831 0.019 0.055 0.831 0.019 0.055 0.844 0.006 0.055

Φ12 -0.000 0.001 0.068 -0.000 0.001 0.068 0.000 0.000 0.044

Φ21 -0.000 0.001 0.056 -0.001 0.001 0.056 -0.001 0.001 0.024

Φ22 0.776 0.023 0.069 0.777 0.023 0.069 0.788 0.012 0.039

κ11 0.974 0.002 0.154 0.949 0.001 0.103 0.950 -0.001 0.083

κ12 0.047 0.003 0.115 0.050 0.000 0.075 0.050 0.000 0.027

κ21 0.055 -0.005 0.112 0.055 -0.005 0.073 0.052 -0.002 0.055

κ22 0.896 0.004 0.138 0.900 -0.001 0.099 0.900 -0.000 0.049
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Table S3: Monte-Carlo Simulation results for ν0 = 10.

T = 250 T = 500 T = 1000

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

ν 10.529 -0.529 4.727 10.383 -0.384 2.232 10.226 -0.226 1.631

Ω11 0.989 0.011 0.097 0.995 0.005 0.075 0.995 0.004 0.057

Ω12 -0.001 0.002 0.067 0.000 0.000 0.045 -0.000 0.002 0.035

Ω22 0.991 0.008 0.108 0.991 0.009 0.074 0.993 0.006 0.057

ω1 -3.014 -0.015 0.365 -2.994 -0.006 0.234 -2.996 -0.004 0.189

ω2 5.013 -0.013 0.287 4.994 0.006 0.204 4.997 0.002 0.129

Φ11 0.834 0.016 0.052 0.838 0.011 0.032 0.845 0.005 0.023

Φ12 -0.005 0.006 0.064 0.002 -0.003 0.040 -0.002 0.002 0.027

Φ21 0.002 -0.002 0.047 0.001 -0.001 0.031 -0.000 0.000 0.024

Φ22 0.781 0.019 0.063 0.789 0.011 0.040 0.794 0.006 0.028

κ11 0.926 0.024 0.113 0.946 0.003 0.089 0.949 0.001 0.065

κ12 0.059 -0.009 0.083 0.051 -0.001 0.065 0.049 0.001 0.050

κ21 0.042 0.007 0.091 0.048 0.002 0.064 0.049 0.000 0.050

κ22 0.877 0.023 0.123 0.896 0.004 0.083 0.893 0.007 0.061

Table S4: Monte-Carlo Simulation results for ν0 = 100.

T = 250 T = 500 T = 1000

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

ν 96.708 3.290 25.729 98.782 1.218 13.782 100.855 -0.855 12.866

Ω11 0.999 0.001 0.119 1.016 -0.017 0.085 1.002 -0.002 0.064

Ω12 -0.005 0.005 0.068 0.006 -0.006 0.056 0.000 -0.001 0.030

Ω22 0.991 0.009 0.106 1.008 -0.008 0.084 1.003 -0.003 0.061

ω1 -2.974 -0.026 0.380 -2.964 -0.035 0.302 -3.032 0.032 0.268

ω2 4.944 0.056 0.304 5.042 -0.042 0.230 5.009 -0.009 0.118

Φ11 0.826 0.023 0.054 0.834 0.016 0.039 0.841 0.009 0.039

Φ12 0.004 -0.004 0.060 0.002 -0.002 0.040 0.001 -0.001 0.022

Φ21 -0.001 0.001 0.045 -0.004 0.004 0.033 0.001 -0.001 0.022

Φ22 0.780 0.019 0.061 0.785 0.015 0.043 0.785 0.015 0.034

κ11 0.945 0.004 0.121 0.946 0.004 0.093 0.947 0.003 0.049

κ12 0.048 0.002 0.094 0.052 -0.002 0.062 0.055 -0.005 0.039

κ21 0.064 -0.014 0.098 0.049 0.001 0.069 0.049 0.001 0.037

κ22 0.910 -0.010 0.108 0.903 -0.003 0.090 0.907 -0.008 0.038
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S2 Computational Aspects

This Appendix is devoted to the construction of score vector and the Hessian matrix, essential for
estimation and inference. Our approach to tackle this problem is based on the matrix differential
calculus by Magnus and Neudecker (2019). As argued by the authors, one of the advantages to
represent the conditional log-density in its differential form is that we can straightforwardly retrieve
all the partial derivatives, thus avoiding the problem of dealing with the dimensions of the matrices
and vectors involved.

S2.1 The Score Vector

The expressions for the score might be collected in a single vector,

st(θ) =
[
s
(ν)
t (θ) s

(v(Ω))
t (θ) s

(ω)
t (θ) s

(v(Φ))
t (θ) s

(v(K))
t (θ)

]⊤
,

yielding the recursions for the static parameters

s
(ν)
t (θ) =

1

2

[
ψ

(
ν +N

2

)
− ψ

(
ν

2

)
− N

ν
+
ν +N

ν
bt − lnwt

]
+
ν +N

ν

1

wt

(
d(µt|t−1 − ω)

dν

)⊤
Ω−1(yt − µt|t−1),

s
(v(Ω))
t (θ) =

1

2
D⊤

N (Ω−1/2 ⊗Ω−1/2)

[
ν +N

ν

1

wt
(ϵt ⊗ ϵt)− vec IN

]
+
ν +N

ν

1

wt

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
Ω−1(yt − µt|t−1),

for the unconditional mean

s
(ω)
t (θ) =

ν +N

ν

1

wt

(
d(µt|t−1 − ω)

dω⊤

)⊤
Ω−1(yt − µt|t−1),

and for the remaining parameters determining the dynamics of the location vector

s
(v(Φ))
t (θ) =

ν +N

ν

1

wt

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1(yt − µt|t−1),

s
(v(K))
t (θ) =

ν +N

ν

1

wt

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1(yt − µt|t−1).

Similarly, the conditional information matrix may be represented as follows,

It(θ) =



I(ν)
t (θ) I(ν,v(Ω))

t (θ) 0
1×N

I(ν,v(Φ))
t (θ) I(ν,v(K))

t (θ)

I(v(Ω),ν)
t (θ) I(v(Ω))

t (θ) 0
N2×N

I(v(Ω),v(Φ))
t (θ) I(v(Ω),v(K))

t (θ)

0
N×1

0
N×N2

I(ω)
t (θ) 0

N×N2
0

N×N2

I(v(Φ),ν)
t (θ) I(v(Φ),v(Ω))

t (θ) 0
N2×N

I(v(Φ))
t (θ) I(v(Φ),v(K))

t (θ)

I(v(K),ν)
t (θ) I(v(K),v(Ω))

t (θ) 0
N2×N

I(v(K),v(Φ))
t (θ) I(v(K))

t (θ)


.
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The four blocks of the matrix have the following expansions: the first block is composed by

I(ν)
t (θ) =

1

4

[
ψ′
(
ν

2

)
− ψ′

(
ν +N

2

)
− 2N(ν +N + 4)

ν(ν +N)(ν +N + 2)

]
+

ν +N

ν +N + 2

(
d(µt|t−1 − ω)

dν

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
,

I(v(Ω),ν)
t (θ) = − 1

(ν +N)(ν +N + 2)
D⊤

N (vech(Ω−1))

+
ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
,

I(v(Ω))
t (θ) =

ν +N

2(ν +N + 2)
D⊤

N (Ω−1 ⊗Ω−1)DN

− 1

2(ν +N + 2)
D⊤

N (vech(Ω−1))(vech(Ω−1))⊤DN

+
ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
.

The second,

I(v(Φ),ν)
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
,

I(v(Φ),v(Ω))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
,

I(v(K),v(Ω))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
,

I(v(K),ν)
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dν

)
.

Third, the unconditional mean

I(ω)
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)

dω⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)

dω⊤

)
.

By symmetry, the fourth and last block are composed by

I(v(Φ))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)
,

I(v(Φ),v(K))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vecK)⊤

)
,

I(v(K))
t (θ) =

ν +N

ν +N + 2

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
Ω−1

(
d(µt|t−1 − ω)
d(vecK)⊤

)
.

Notably, I(ω,ξ)
t (θ) = 0 and I(ω,ψ)

t (θ) = 0, i.e. ω is asymptotically independent of the other pa-
rameters. Moreover, none of the terms of the conditional information matrix involves the second
derivatives of the dynamic location. This result is a direct consequence of the asymptotic properties
of the proposed MLE under the assumption of correct specification of the model and some regularity
conditions.
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To construct the score vector, we take the first differential of the likelihood function

dℓt(θ) =
1

2

[
ψ

(
ν +N

2

)
− ψ

(
ν

2

)
− N

ν
+
ν +N

ν
bt − lnwt

]
(dν)

+
1

2
(d vech(Ω))⊤D⊤

N (Ω−1/2 ⊗Ω−1/2)

[
ν +N

ν

1

wt
(ϵt ⊗ ϵt)− vec IN

]
+
ν +N

ν

1

wt
(dµt|t−1)

⊤Ω−1(yt − µt|t−1), (S1)

where ψ(x) = d ln Γ(x)/d(x) is the digamma function and DN the duplication matrix, which allow us
to write d vecΩ = DN (d vech(Ω)), since the scale matrix is symmetric. Secondly, we define st(θ) =
dℓt(θ)/dθ and partition the parameter as θ = (ξ⊤,ψ⊤)⊤, so that the score vector can be partitioned
into two blocks and two distinct applications of the chain rule are required. Specifically, for ξ =
(ω⊤, (vech(Ω))⊤, ν)⊤, we have

s
(ξ)
t (θ) =

dℓt(θ)

dξ
=
∂ℓt(θ)

∂ξ
+

(
d(µt|t−1 − ω)

dξ⊤

)⊤ ∂ℓt(θ)

∂µt|t−1

,

while for ψ = ((vecΦ)⊤, (vecK)⊤)⊤, we have

s
(ψ)
t (θ) =

dℓt(θ)

dψ
=

(
d(µt|t−1 − ω)

dψ⊤

)⊤ ∂ℓt(θ)

∂µt|t−1

.

Let us start by considering the first differential of the dynamic location

d(µt+1|t − ω) =Φd(µt|t−1 − ω) +
[
(µt|t−1 − ω)⊤ ⊗ IN

]
d vecΦ

+
[
(ut)

⊤ ⊗ IN
]
d vecK +K(dut),

where

dut =(yt − µt|t−1)bt(1− bt)/ν(dν)

+ (yt − µt|t−1)(1− bt)
2/ν(ϵt ⊗ ϵt)⊤(Ω−1/2 ⊗Ω−1/2)DN (d vech(Ω))

+ 2(yt − µt|t−1)(1− bt)
2/ν(yt − µt|t−1)

⊤Ω−1(dµt|t−1)− (1− bt)(dµt|t−1).

Let us embed the dynamic differential as an SRE

d(µt+1|t − ω) =Xtd(µt|t−1 − ω) +Rt,

where

Xt = Φ+KCt, (S2)

and
Rt =Katdν +KBtd vecΩ+Dtd vecΦ+Etd vecK. (S3)
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The terms of the latter equations are

at =
∂ut

∂ν
= (yt − µt|t−1)bt(1− bt)/ν,

Bt =
∂ut

∂(vech(Ω))⊤
= (1− bt)

2/ν (yt − µt|t−1)(Ω
−1/2ϵt ⊗Ω−1/2ϵt)

⊤DN ,

Ct =
∂ut

∂µ⊤
t|t−1

= 2(1− bt)
2/ν (yt − µt|t−1)(yt − µt|t−1)

⊤Ω−1 − (1− bt)IN ,

which we write, for convenience, also in their vectorised form

at = b
3/2
t (1− bt)

1/2/νΩ1/2zt,

vecBt = νb
3/2
t (1− bt)

1/2(Ω−1/2 ⊗Ω−1/2 ⊗Ω1/2)(zt ⊗ zt ⊗ zt),

vecCt = 2bt(1− bt) (Ω
−1/2 ⊗Ω1/2)(zt ⊗ zt)− (1− bt) vec IN . (S4)

The partial derivatives

C =
∂(µt|t−1 − ω)

∂ω⊤ = (IN −Φ),

Dt =
∂(µt|t−1 − ω)
∂(vecΦ)⊤

=
[
(µt|t−1 − ω)⊤ ⊗ IN

]
,

Et =
∂(µt|t−1 − ω)
∂(vecK)⊤

=
[
(ut)

⊤ ⊗ IN
]
,

are required to obtain the final recursions, necessary for the iterative procedure

d(µt+1|t − ω)
dν

=Xt

d(µt|t−1 − ω)
dν

+Kat,

d(µt+1|t − ω)
d(vech(Ω))⊤

=Xt

d(µt|t−1 − ω)
d(vech(Ω))⊤

+KBt,

d(µt+1|t − ω)
dω⊤ =Xt

d(µt|t−1 − ω)
dω⊤ +C, (S5)

d(µt+1|t − ω)
d(vecΦ)⊤

=Xt

d(µt|t−1 − ω)
d(vecΦ)⊤

+Dt,

d(µt+1|t − ω)
d(vecK)⊤

=Xt

d(µt|t−1 − ω)
d(vecK)⊤

+Et.

The discussion on the required partial derivatives of the log-likelihood function is similarly tackled.
From (S1) the calculation are straightforward, we define

αt =
∂ℓt(θ)

∂ν
=

1

2

[
ψ

(
ν +N

2

)
− ψ

(
ν

2

)
− N

ν
+
ν +N

ν
bt − lnwt

]
,

βt =
∂ℓt(θ)

∂(vech(Ω))
=

1

2
D⊤

N (Ω−1/2 ⊗Ω−1/2)

[
ν +N

ν

1

wt
(ϵt ⊗ ϵt)− vec IN

]
,

ςt =
∂ℓt(θ)

∂µt|t−1

=
ν +N

ν

1

wt
Ω−1(yt − µt|t−1),

which completes the construction of the score vector.
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S2.2 The Hessian Matrix

Like in the previous section, we obtain the second differential of the conditional log-likelihood by
differentiating (S1), which yields

d2ℓt(θ) =
1

2

[
1

2
ψ′
(
ν +N

2

)
− 1

2
ψ′
(
ν

2

)
+
N

ν2
− N

ν2
bt −

ν +N

ν2
bt(1− bt) +

1

ν
bt

]
(d2ν)

+

[
ν +N

2ν2
(1− bt)

2(d vecΩ)⊤(Ω−1/2 ⊗Ω−1/2)

× (ϵtϵ
⊤
t ⊗ ϵtϵ⊤t )(Ω−1/2 ⊗Ω−1/2)(d vecΩ)

]
−

[
ν +N

ν
(1− bt)(dµt|t−1)

⊤Ω−1(dµt|t−1)

]
−
[
ν +N

ν
(1− bt)(d

2µt|t−1)
⊤Ω−1/2ϵt

]
+

[
ν +N

ν2
(1− bt)

2(dµt|t−1)
⊤(Ω−1/2ϵtϵ

⊤
t Ω

−1/2 ⊗ ϵ⊤t Ω−1/2)(d vecΩ)

]
−
[
ν +N

ν
(1− bt)(d vecΩ)⊤(Ω−1 ⊗Ω−1/2ϵtϵ

⊤
t Ω

−1/2)(d vecΩ)

]
+

[
2
ν +N

ν
(1− bt)(dµt|t−1)

⊤(ϵ⊤t Ω
−1/2 ⊗Ω−1)(d vecΩ)

]
+

[
2
ν +N

ν2
(1− bt)

2(dµt|t−1)
⊤Ω−1/2ϵtϵ

⊤
t Ω

−1/2(dµt|t−1)

]
+

[
1

2
(d vecΩ)⊤(Ω−1 ⊗Ω−1)(d vecΩ)

]
+

[
(dµt|t−1)

⊤Ω1/2ϵt +
1

2
(d vecΩ)⊤(Ω−1/2 ⊗Ω−1/2)(ϵt ⊗ ϵt)

]
×
[
ν +N

ν2
bt(1− bt)−

N

ν2
(1− bt)

]
(dν), (S6)

where ψ′(x) = d2 ln Γ(x)/d(x)2 is the trigamma function.
We thus define the Hessian matrix

Ht(θ) =
d2ℓt(θ)

dθdθ⊤
,

Similar arguments as those used in the computation of the score vector lead us to decompose the
Hessian into four blocks and then apply the chain rule separately to each block. The first set is
ξ = (ω⊤, (vech(Ω))⊤, ν)⊤,

H(ξ)
t (θ) =

d2ℓt(θ)

dξdξ⊤

=
∂2ℓt(θ)

∂ξ∂ξ⊤
+

(
d(µt|t−1 − ω)

dξ⊤

)⊤ ∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

(
d(µt|t−1 − ω)

dξ⊤

)

+
∂ℓt(θ)

∂µ⊤
t|t−1

d2(µt|t−1 − ω)
dξdξ⊤

.
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As regards the second vector of parameters ψ = ((vecΦ)⊤, (vecK)⊤)⊤, we have

H(ψ)
t (θ) =

d2ℓt(θ)

dψdψ⊤

=

(
d(µt|t−1 − ω)

dψ⊤

)⊤ ∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

(
d(µt|t−1 − ω)

dψ⊤

)

+
∂ℓt(θ)

∂µ⊤
t|t−1

d2(µt|t−1 − ω)
dψdψ⊤ ,

and finally, by symmetry, we get the remaining blocks

H(ξ,ψ)
t (θ) =

d2ℓt(θ)

dξdψ⊤

=

(
d(µt|t−1 − ω)

dξ⊤

)⊤ ∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

(
d(µt|t−1 − ω)

dψ⊤

)

+
∂ℓt(θ)

∂µ⊤
t|t−1

d2(µt|t−1 − ω)
dξdψ⊤ .

As far as the second differentials of the dynamic equation are concerned, we have

d2µt+1|t =Φd2µt|t−1 + 2[d(µt|t−1 − ω)⊤ ⊗ IN ]d vecΦ

+ 2[d(ut)
⊤ ⊗ IN ] vecK +K(d2ut),

that, in turn, implies expanding d2ut with respect to the parameters of the Student’s t.
After some algebra we get the second differential of the driving-force

d2ut =2(yt − µt|t−1)/ν
[
b2t (1− bt)/ν − bt(1− bt)

]
(d2ν)

+ 2(1− bt)
3/ν2

{[
(d vecΩ)⊤ ⊗ (yt − µt|t−1)(ϵt ⊗ ϵt)⊤

]
vec(Ω−1/2 ⊗Ω−1/2)

}
×
[
(ϵt ⊗ ϵt)⊤(Ω−1/2 ⊗Ω−1/2)(d vecΩ)

]
− 2(1− bt)

2/ν
{[

(d vecΩ)⊤(Ω−1/2ϵt ⊗Ω−1)

⊗ (yt − µt|t−1)(yt − µt|t−1)
⊤Ω−1

]
(d vecΩ)

}
+ 8(1− bt)

3/ν2
{[

(dµt|t−1)
⊤ ⊗ (yt − µt|t−1)(yt − µt|t−1)

⊤] vecΩ−1
}

×
[
(yt − µt|t−1)

⊤Ω−1(dµt|t−1)
]

− 2(1− bt)
2/ν

{[
(dµt|t−1)

⊤Ω−1 ⊗ IN
]

×
[
(yt − µt|t−1)⊗ IN + IN ⊗ (yt − µt|t−1)

]
(dµt|t−1)

}
− 2(1− bt)

2/ν
{[

(dµt|t−1)
⊤Ω−1 ⊗ IN

][
(yt − µt|t−1)⊗ IN

]
(dµt|t−1)

}
+ 2(1− bt)

2/ν
{[

(yt − µt|t−1)(yt − µt|t−1)
⊤Ω−1(d2µt|t−1)

]}
− (1− bt)

{
(d2µt|t−1)

}
+ 4(1− bt)

3/ν2
{[

(dµt|t−1)
⊤ ⊗Ω1/2ϵtϵ

⊤
t Ω

1/2
]
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× (vecΩ−1)(ϵt ⊗ ϵt)⊤(Ω−1 ⊗Ω−1)(d vecΩ)
}

− (1− bt)
2/ν

{[
(dµt|t−1)

⊤ ⊗ IN
]
(vec IN )

[
(ϵt ⊗ ϵt)⊤(Ω−1 ⊗Ω−1)(d vecΩ)

]}
− 2(1− bt)

2/ν
{[

(dµt|t−1)
⊤ ⊗Ω1/2ϵtϵ

⊤
t Ω

1/2
]
(Ω−1 ⊗Ω−1)(d vecΩ)

}
+
{
[(d vecΩ)⊤ ⊗ (yt − µt|t−1)(ϵt ⊗ ϵt)⊤] vec(Ω−1/2 ⊗Ω−1/2)

}
×
[
2bt(1− bt)

2/ν2 − (1− bt)
2/ν2)

]
(dν)

+ 2
{[

(dµt|t−1)
⊤ ⊗ (yt − µt|t−1)(yt − µt|t−1)

⊤](vecΩ−1)
}

×
[
2bt(1− bt)/ν

2 − (1− bt)
2/ν2

]
(dν)

−
{[

(dµt|t−1)
⊤ ⊗ IN

]
(vec IN )

}[
bt(1− bt)/ν

]
(dν).

Let us write

d2(µt+1|t − ω) =Xtd
2(µt|t−1 − ω) +Kd(µt|t−1 − ω)⊤C′

td(µt|t−1 − ω) +Qt,

where Xt is as in (S2) and

Qt =Ka
′
td

2ν +KB′
td

2 vecΩ+K(d vecΩ)⊤âB
′
tdν

+D′
td

2 vecΦ+E′
td

2 vecK + (d vecΦ)⊤D̂E
′
t(d vecK). (S7)

We now derive the terms of recursion (S7). We first need a set of partial derivative

a′t =
∂2ut

∂ν2
= 2(yt − µt|t−1)/ν

[
b2t (1− bt)/ν − bt(1− bt)

]
,

B′
t =

∂2ut

∂(vech(Ω))∂(vech(Ω))⊤
= 2(1− bt)

3/ν2

×
{[

D⊤
N ⊗ (yt − µt|t−1)(ϵt ⊗ ϵt)⊤

]
vec(Ω−1/2 ⊗Ω−1/2)

}
×
[
(ϵt ⊗ ϵt)⊤(Ω−1/2 ⊗Ω−1/2)DN

]
− 2(1− bt)

2/ν
{[

D⊤
N (Ω−1/2ϵt ⊗Ω−1)

⊗ (yt − µt|t−1)(yt − µt|t−1)
⊤Ω−1

]
DN

}
,

C′
t =

∂2ut

∂µt|t−1∂µ
⊤
t|t−1

=8(1− bt)
3/ν2

{[
IN ⊗ (yt − µt|t−1)(yt − µt|t−1)

⊤](vecΩ−1)
}

×
[
(yt − µt|t−1)

⊤Ω−1
]
2(1− bt)

2/ν
{[

Ω−1 ⊗ IN
]

×
[
(yt − µt|t−1)⊗ IN + IN ⊗ (yt − µt|t−1)

]}
− 2(1− bt)

2/ν
{[

Ω−1 ⊗ IN
][
(yt − µt|t−1)⊗ IN

]}
. (S8)
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Secondly, a set of partial cross-derivatives

âB
′
t =

∂2ut

∂(vech(Ω))∂ν
=[IN ⊗ (yt − µt|t−1)(ϵt ⊗ ϵt)⊤] vec(Ω−1/2 ⊗Ω−1/2)

×
[
2bt(1− bt)

2/ν2 − (1− bt)
2/ν2)

]
,

âC
′
t =

∂2ut

∂µt|t−1∂ν
=2

{[
IN ⊗ (yt − µt|t−1)(yt − µt|t−1)

⊤](vecΩ−1)
}

×
[
2bt(1− bt)/ν

2 − (1− bt)
2/ν2

]
−
{[

(dµt|t−1)
⊤ ⊗ IN

]
(vec IN )

}
×
[
bt(1− bt)/ν

]
, (S9)

B̂C
′
t =

∂2ut

∂µt|t−1∂(vech(Ω))⊤
=4(1− bt)

3/ν2
{[
IN ⊗Ω1/2ϵtϵ

⊤
t Ω

1/2
]

× (vecΩ−1)(ϵt ⊗ ϵt)⊤(Ω−1 ⊗Ω−1)
}

− (1− bt)
2/ν

{[
IN ⊗ IN

]
(vec IN )

×
[
(ϵt ⊗ ϵt)⊤(Ω−1 ⊗Ω−1)

]}
− 2(1− bt)

2/ν
{[
IN ⊗Ω1/2ϵtϵ

⊤
t Ω

1/2
]

× (Ω−1 ⊗Ω−1)
}
. (S10)

In addition, we a new set of partial derivatives defined by

D′
t =

∂[d(µt|t−1 − ω)]
∂(vecΦ)d(vecΦ)⊤

=2

[(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
⊗ IN

]
,

E′
t =

∂[d(µt|t−1 − ω)]
∂(vecK)d(vecK)⊤

=2

[(
C⊤
t

d(µt|t−1 − ω)
d(vecK)⊤

)⊤
⊗ IN

]
,

and finally, we conclude the derivations with

D̂E
′
t =

∂[d(µt|t−1 − ω)]
∂(vecΦ)d(vecK)⊤

=

[(
C⊤
t

d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
⊗ IN

]
.

We therefore have obtained a new set of recursions composed by

d2(µt+1|t − ω)
dν2

=Xt

d2(µt|t−1 − ω)
dν2

+K

(
d(µt|t−1 − ω)

dν

)⊤
C′
t

(
d(µt|t−1 − ω)

dν

)
+Ka′t,

d2(µt+1|t − ω)
d(vech(Ω))d(vech(Ω))⊤

=Xt

d2(µt|t−1 − ω)
d(vech(Ω))d(vech(Ω))⊤

+K

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)
+KB′

t,
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d2(µt+1|t − ω)
d(vech(Ω))dν

=Xt

d2(µt|t−1 − ω)
d(vech(Ω))dν

+K

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
C′
t

(
d(µt|t−1 − ω)

dν

)
+KâB

′
t,

which continue with

d2(µt+1|t − ω)
d(vecΦ)d(vecΦ)⊤

=Xt

d2(µt|t−1 − ω)
d(vecΦ)d(vecΦ)⊤

+K

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)
+D′

t,

d2(µt+1|t − ω)
d(vecK)d(vecK)⊤

=Xt

d2(µt|t−1 − ω)
d(vecK)d(vecK)⊤

+K

(
d(µt|t−1 − ω)
d(vecK)⊤

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecK)⊤

)
+E′

t,

d2(µt+1|t − ω)
d(vecΦ)d(vecK)⊤

=Xt

d2(µt|t−1 − ω)
d(vecΦ)d(vecK)⊤

+K

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecK)⊤

)
+ D̂E

′
t,

and conclude with

d2(µt+1|t − ω)
d(ν)d(vecΦ)⊤

=Xt

d2(µt|t−1 − ω)
d(ν)d(vecΦ)⊤

+K

(
d(µt|t−1 − ω)

dν

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)
,

d2(µt+1|t − ω)
d(ν)d(vecK)⊤

=Xt

d2(µt|t−1 − ω)
d(ν)d(vecK)⊤

+K

(
d(µt|t−1 − ω)

dν

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecK)⊤

)
,

d2(µt+1|t − ω)
d(ν)d(vecΦ)⊤

=Xt

d2(µt|t−1 − ω)
d(vech(Ω))d(vecΦ)⊤

+K

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecΦ)⊤

)
,

d2(µt+1|t − ω)
d(vech(Ω))d(vecK)⊤

=Xt

d2(µt|t−1 − ω)
d(vech(Ω))d(vecK)⊤

+K

(
d(µt|t−1 − ω)
d(vech(Ω))⊤

)⊤
C′
t

(
d(µt|t−1 − ω)
d(vecK)⊤

)
.

The construction of the Hessian can now be completed by deriving the remaining second-order partial
derivatives of the second differential in (S6).

By virtue of this representation, one can show that

α′
t =

∂2ℓt(θ)

∂ν2
=

1

2

[
1

2
ψ′
(
ν +N

2

)
− 1

2
ψ′
(
ν

2

)
+
N

ν2
− N

ν2
bt −

ν +N

ν2
bt(1− bt) +

1

ν
bt

]
,
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β′
t =

∂2ℓt(θ)

∂(vech(Ω))∂(vech(Ω))⊤
=

[
ν +N

2ν2
(1− bt)

2D⊤
N (Ω−1/2 ⊗Ω−1/2)(ϵtϵ

⊤
t ⊗ ϵtϵ⊤t )

× (Ω−1/2 ⊗Ω−1/2)DN

]
−
[
ν +N

ν
(1− bt)D⊤

N (Ω−1 ⊗Ω−1/2ϵtϵ
⊤
t Ω

−1/2)DN

]
+

[
1

2
D⊤

N (Ω−1 ⊗Ω−1)DN

]
,

ς ′t =
∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

=

[
ν +N

ν2
2(1− bt)

2Ω−1/2ϵtϵ
⊤
t Ω

−1/2

]
−
[
ν +N

ν
(1− bt)Ω

−1

]
,

and

α̂β
′
t =

∂2ℓt(θ)

∂(vech(Ω))∂ν
=
1

2
D⊤

N (Ω−1/2 ⊗Ω−1/2)(ϵt ⊗ ϵt)

×
[
ν +N

ν2
bt(1− bt)−

N

ν2
(1− bt)

]
,

α̂ς ′t =
∂2ℓt(θ)

∂µt|t−1∂ν
=Ω1/2ϵt

[
ν +N

ν2
bt(1− bt)−

N

ν2
(1− bt)

]
,

β̂ς
′
t =

∂2ℓt(θ)

∂µt|t−1∂(vech(Ω))⊤
=

[
ν +N

ν2
(1− bt)

2(Ω−1/2ϵtϵ
⊤
t Ω

−1/2 ⊗ ϵ⊤t Ω−1/2)DN

]
+

[
ν +N

ν
2(1− bt)(ϵ

⊤
t Ω

−1/2 ⊗Ω−1)DN

]
.

which completes the construction of the Hessian matrix.

S2.3 The Conditional Information Matrix

Taking the conditional expectation of the negative Hessian matrix yields the conditional information
matrix needed for the Fisher’s scoring method. Likewise to the score and the Hessian, we start the
discussion by taking advantage from the differentials of the log-likelihood function.

Et−1[d
2ℓt(θ)] =

[
1

4
ψ′
(
ν +N

2

)
− 1

4
ψ′
(
ν

2

)
+

N(ν +N + 4)

2ν(ν +N)(ν +N + 2)

]
(d2ν)

+

[
1

2(ν +N + 2)
(d vecΩ)⊤(vecΩ−1)(vecΩ−1)⊤(d vecΩ)

]
−
[

ν +N

2(ν +N + 2)
(d vecΩ)⊤(Ω−1 ⊗Ω−1)(d vecΩ)

]
+

[
1

(ν +N)(ν +N + 2)
(d vecΩ)⊤(vecΩ−1)(dν)

]
−
[

ν +N

ν +N + 2
(dµt|t−1)

⊤Ω−1(dµt|t−1)

]
.
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The calculations of this matrix require for the first set ξ = (ω⊤, (vech(Ω))⊤, ν)⊤,

I(ξ)
t (θ) = −Et−1

[
d2ℓt(θ)

dξdξ⊤

]
= I(ξ)(θ) +

(
d(µt|t−1 − ω)

dξ⊤

)⊤
I(µ)(θ)

(
d(µt|t−1 − ω)

dξ⊤

)
,

for the second vector ψ = ((vecΦ)⊤, (vecK)⊤)⊤,

I(ψ)
t (θ) = −Et−1

[
d2ℓt(θ)

dψdψ⊤

]
=

(
d(µt|t−1 − ω)

dψ⊤

)⊤
I(µ)(θ)

(
d(µt|t−1 − ω)

dψ⊤

)
,

and in conclusion, the negative conditional expected value of the cross-second derivatives are

I(ξ,ψ)
t (θ) = −Et−1

[
d2ℓt(θ)

dξdψ⊤

]
=

(
d(µt|t−1 − ω)

dξ⊤

)⊤
I(µ)(θ)

(
d(µt|t−1 − ω)

dψ⊤

)
.

Now, by equation (S5) the calculations boils down to the static terms of the matrix. Specifically,

I(µ)(θ) = −Et−1

[
∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

]
=

ν +N

ν +N + 2
Ω−1,

while the terms of the static matrix I(ξ)(θ) are

I(ν)(θ) = −Et−1

[
∂2ℓt(θ)

∂ν2

]
=

1

4

[
ψ′
(
ν

2

)
− ψ′

(
ν +N

2

)
− 2N(ν +N + 4)

ν(ν +N)(ν +N + 2)

]
,

I(v(Ω))(θ) = −Et−1

[
∂2ℓt(θ)

∂(vech(Ω))∂(vech(Ω))⊤

]
=

ν +N

2(ν +N + 2)
D⊤

N (Ω−1 ⊗Ω−1)DN

− 1

2(ν +N + 2)
D⊤

N (vech(Ω−1))(vech(Ω−1))⊤DN ,

and lastly the cross terms

I(v(Ω),ν)(θ) = −Et−1

[
∂2ℓt(θ)

∂(vech(Ω))∂ν

]
= − 1

(ν +N)(ν +N + 2)
D⊤

N (vech(Ω−1)).

With these last derivations, we have completed the derivations for the Fisher’s scoring method in the
multivariate DCS-t set up.

S2.4 Third differentials

This section derives the third differential of the conditional log-likelihood with respect to the dynamic
location, auxiliary to the proof of the asymptotic normality of the MLE, see Lemma 9. By differenti-
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ating equation (S6) with respect µt|t−1 one obtains

d3µt|t−1
ℓt(θ) =

[
8
ν +N

ν3
(1− bt)

3(dµt|t−1)
⊤Ω−1/2ϵt(dµt|t−1)

⊤Ω−1/2ϵtϵ
⊤
t (dµt|t−1)

]
+

[
2
ν +N

ν2
(1− bt)

2(dµt|t−1)
⊤[Ω−1/2ϵt ⊗ IN + IN ⊗ ϵtΩ−1/2](dµt|t−1)

2

]
−
[
2
ν +N

ν2
(1− bt)

2(dµt|t−1)
⊤Ω−1/2ϵt(dµt|t−1)

⊤Ω−1(dµt|t−1)

]
−
[
2
ν +N

ν2
(1− bt)

2(dµt|t−1)
⊤Ω−1/2ϵt(d

2µt|t−1)Ω
−1/2ϵt

]
−
[
ν +N

ν
(1− bt)(d

2µt|t−1)
⊤Ω−1/2(dµt|t−1)

]
−
[
ν +N

ν
(1− bt)(d

3µt|t−1)
⊤Ω−1/2ϵt

]
. (S11)
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S3 Lemmata

This Appendix contains the proofs of the auxiliary lemmata used to establish consistency and asymp-
totic normality of the MLE of Section 4.

Lemmata for the Proof of Consistency

Proof of Lemma 5

Consider the t-th contribution to the log-likelihood, ℓt(θ). We have that

E
[
sup
θ∈Θ

|ℓt(θ)|
]

≤ sup
θ∈Θ

∣∣∣∣ ln Γ(ν +N

2

)∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ ln Γ(ν2
)∣∣∣∣+ sup

θ∈Θ

∣∣∣∣N2 ln(πν)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ 12 ln |Ω|
∣∣∣∣

+
ν +N

2
E
[
sup
θ∈Θ

∣∣∣∣ ln(1 + (yt − µt|t−1)
⊤Ω−1(yt − µt|t−1)

ν

)∣∣∣∣] <∞,

since the compactness of the parameter space Θ with 0 < ν < ∞ ensures that the first three terms
are finite, there exist Ω− > 0 and Ω+ < ∞ such that Ω− < |Ω| < Ω+ and moreover, the logarithmic
moment in the last term exists as a consequence of Lemmata 2, 4 and 3 with m > 0. In particular, we
can show that

E
[

sup
θ Θ

∣∣∣∣(yt − µt|t−1)
⊤Ω−1(yt − µt|t−1)/ν

∣∣∣∣m]
<∞,

is always satisfied for some m > 0 and with ν > 0, implying the existence of the required logarithmic
moment.

Clearly, the result obtained above also implies that E
[
|ℓt(θ0)|

]
<∞, and then, we can turn to the

last statement.
To prove the uniqueness and identifiability of θ0 it is sufficient to consider the sequence {ℓt(θ) −

ℓt(θ0)}t∈Z under the assumption that (ν, vechΩ)⊤ = (ν0, vechΩ0)
⊤. We prove the argument by

contradiction.
By denoting with µt|t−1(θ) and µt|t−1(θ0) the dynamic location vector evaluated at θ and the

true parameter vector θ0 respectively, and as vt(θ) = yt − µt|t−1(θ) and vt(θ0) = yt − µt|t−1(θ0) the
difference becomes

ℓt(θ)− ℓt(θ0)

∝ ln
[
1 + (vt(θ))

⊤Ω−1
0 (vt(θ))/ν0

]
− ln

[
1 + (vt(θ0))

⊤Ω−1
0 (vt(θ0))/ν0

]
= ln

([
1 + (vt(θ))

⊤Ω−1
0 (vt(θ))/ν0

]/[
1 + (vt(θ0))

⊤Ω−1
0 (vt(θ0))/ν0

])
,

where the latter equation holds if and only if µt|t−1(θ) = µt|t−1(θ0) almost surely since Ω0 is symmetric
positive definite and 0 < ν < ∞. Under maintained assumptions, it is clear that {µt|t−1(θ)}t∈Z and
{µt|t−1(θ0)}t∈Z are stationary and ergodic sequences, which implies that the same holds true for the
sequence by {(µt+1|t(θ)− µt+1|t(θ0))}t∈Z. Thus, it is possible to write the difference recursion as

(µt+1|t(θ)− µt+1|t(θ0))

= (ω − ω0) + (Φ−Φ0)ω0 + (Φ−Φ0)µt|t−1(θ0) + (K −K0)ut,
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and the relation above entails the fact that if µt|t−1(θ) = µt|t−1(θ0) ∀t almost surely, then

(ω − ω0) + (Φ−Φ0)ω0 =(Φ−Φ0)µt|t−1(θ0) + (K −K0)ut,

almost surely. Nonetheless, as detK ̸= 0, the whole multivariate system of equations is stochastic,
and one cannot find a nontrivial solution of the system that will cancel out the driving force ut of the
dynamic location vector. As a result, the only available option reduces to the equivalence between all
the parameters, that is ω = ω0, Φ = Φ0 and K =K0.

Therefore, we have shown that E[ℓt(θ)] < E[ℓt(θ0)] for every θ ̸= θ0. □

Proof of Lemma 6

We apply a mean-value expansion of the log-likelihood around µ̂⋆
t|t−1 which is on the chord between

the started filtered location µ̂t|t−1 and µt|t−1. We take the supremum over the compact parameter
space and see that

sup
θ∈Θ

|L̂T (θ)− LT (θ)| ≤ sup
θ∈Θ

∥∥∥∥∂L̂T (θ)

∂µ̂⋆⊤
t|t−1

∥∥∥∥ sup
θ∈Θ

∥µ̂t|t−1 − µt|t−1∥,

where by direct calculation and the triangle inequality we get

sup
θ∈Θ

∥∥∥∥∂L̂T (θ)

∂µ̂⋆⊤
t|t−1

∥∥∥∥
≤ 1

T

T∑
t=1

sup
θ∈Θ

∥∥∥∥Ω−1 ν +N

ν

(yt − µ̂⋆
t|t−1)

1 + (yt − µ̂⋆
t|t−1)

⊤Ω−1(yt − µ̂⋆
t|t−1)/ν

∥∥∥∥
≤ cΩ

(
max
θ∈Θ

ν +N

ν

)
1

T

T∑
t=1

sup
θ∈Θ

∥yt − µ̂⋆
t|t−1∥

× sup
θ∈Θ

∣∣∣∣ [
1 + (yt − µ̂⋆

t|t−1)
⊤Ω−1(yt − µ̂⋆

t|t−1)/ν
]−1

∣∣∣∣.
Note that the compactness of the parameter space imposed by condition 3 is crucial here. Moreover,
if we treat the dynamic location vector as a fixed parameter with value µ̂⋆

t|t−1 and let yt → ∞
the entire term in the right hand side of the latter inequality will vanish. Hence, we obtain that

supθ∈Θ
∥∥ ∂L̂T (θ)

∂µ̂⋆⊤
t|t−1

∥∥ = Op(1), which is enough to ensure the existence of log-moments. Furthermore,

conditions 1 and 2 are needed in order to keep the data stationary and ergodic and the filter invertible,
respectively. Thus, we can apply Lemma 3 and obtain supθ∈Θ ∥µ̂t|t−1 −µt|t−1∥

e.a.s.−−−→ 0. In conclusion,
by Lemma 2.1 in Straumann and Mikosch (2006) the claimed almost sure convergence holds.

Now, for the second result, we note that Theorem A.2.2 of White (1994), i.e. the Uniform Law
of Large Numbers in its version for stationary and ergodic processes, applies straightforwardly to our
case since: (1) the parameter space is compact, (2) the empirical likelihood function LT (θ) defined in
(26) is continuous in θ ∀ yt and ∀ θ ∈ Θ is measurable in yt, which is stationary and ergodic, and
(3) by Lemma 5 we obtain the moment bound E

[
supθ∈Θ |ℓt(θ)|

]
< ∞ which ensure the dominance

condition.
Thus, all the conditions of Theoerm A.2.2 in White (1994) are met and the proof is complete. □
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Lemmata for the Proof of Asymptotic Normality

Proof of Lemma 7

The first derivatives of the log-likelihood contribution at time t with respect to the true parameter
vector θ0 can be retrieved from the differential in equation (S1).

We have

Et−1[dℓt(θ0)]

=
1

2

[
ψ

(
ν0 +N

2

)
− ψ

(
ν0
2

)
− N

ν0
+
ν0 +N

ν0
Et−1[bt]− Et−1[lnwt]

]
(dν0)

+
1

2
(d vech(Ω0))

⊤D⊤
N (Ω

−1/2
0 ⊗Ω

−1/2
0 )

[
ν0 +N

ν0
Et−1[(ϵt ⊗ ϵt)/wt]− vec IN

]
+
ν0 +N

ν
(dµ̃t|t−1)

⊤Ω−1
0 Et−1[(yt − µ̃t|t−1)/wt],

since the derivatives obtained from dµ̃t|t−1 are Ft−1-measurables.
Then, one has

Et−1[bt] =
N

ν +N
,

Et−1[ln(1/wt)] = Et−1[ln(1− bt)] = ψ

(
ν

2

)
− ψ

(
ν +N

2

)
,

Et−1[(ϵt ⊗ ϵt)/wt] = νEt−1[(zt ⊗ zt)]Et−1[bt] =
ν

ν +N
vec IN ,

Et−1[(yt − µ̃t|t−1)/wt] =
√
νEt−1[

√
bt(1− bt)]Ω

1/2Et−1[zt] = 0,

where the first and the second equality follow from the properties of the beta distribution, see equation
(20). The third and the fourth equalities are obtained based on the stochastic representation of the
model given in equation (21). Thus, by substitutions, we obtain the martingale difference property.

The second claim follows by Lemmata 1, 2, 3, 4, 5 and by an application of the continuous mapping
theorem to dℓt(θ0).

With the support of the Cramér-Wold device (see van der Vaart (1998) pag. 16) the CLT for martin-

gales of Billingsley (1961) directly applies to the linear combination
√
TL′

T (θ0) =
√
T 1

T

∑T
t=1

dℓt(θ0)
dθ0

=⇒
N (0,V ). □

Proof of Lemma 8

The claimed convergence in probability can be proved based on the invertibility of the location filter,
see Lemma 3, and its derivatives, see Lemma S3.3. Invertibility also ensures that the perturbed first
differential of the dynamic location evaluated at θ = θ0 will converge to the unique stationary ergodic
solution,

sup
θ∈Θ

∥µ̂t|t−1 − µ̃t|t−1∥
e.a.s.−−−→ 0 and

sup
θ∈Θ

∥dµ̂t|t−1 − dµ̃t|t−1∥
e.a.s.−−−→ 0 as t→ ∞. (S12)
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Hence, we can rely on a multivariate mean value expansion about all the elements of the vectors µ̂⋆
t|t−1

and dµ̂⋆
t|t−1, which lie on the chords between (µ̂t|t−1, µ̃t|t−1) and (dµ̂t|t−1, dµ̃t|t−1) respectively, yielding

√
T∥L̂′

T (θ0)− L′
T (θ0)∥

≤
√
T

∥∥∥∥∥∥∥∥
∂(L̂′

T (θ0))

∂µ̂⋆⊤
t|t−1

∂(L̂′
T (θ0))

∂(dµ̂⋆⊤
t|t−1)

∥∥∥∥∥∥∥∥
∥∥∥∥∥ (µ̂t|t−1 − µ̃t|t−1)

(dµ̂t|t−1 − dµ̃t|t−1)

∥∥∥∥∥ .
The first term on the right hand of the inequality is uniformly bounded. Exponentially fast almost
sure convergence of the second term in the right hand side is obtained by Lemma S3.3.

By means of analogous arguments as in Lemma 6 we can show that∥∥∥∥∂(L̂′
T (θ0))

∂µ̂⋆⊤
t|t−1

∥∥∥∥ = Op(1), and

∥∥∥∥∂(L̂′
T (θ0))

∂(dµ̂⋆⊤
t|t−1)

∥∥∥∥ = Op(1).

Moreover, the results obtained in (S12) imply that for t large enough

max{∥µ̂t|t−1 − µ̃t|t−1∥, ∥dµ̂t|t−1 − dµ̃t|t−1∥} < 1.

By using the Chebyshev and the cm inequalities we then have that for ε > 0 and some m > 0

P
(√

T∥L̂′
T (θ0)− L′

T (θ0)∥ > ε
)
≤
√
T

εm
E[∥L̂′

T (θ0)− L′
T (θ0)∥m]

≤ 1

Tm/2εm

T∑
t=1

E
[∥∥∥∥dℓ̂t(θ0)dθ0

− dℓt(θ0)

dθ0

∥∥∥∥m]
≤ 1

Tm/2εm
Op(tϱ

t),

which is Op(T
−m/2) and this implies the claimed convergence in probability. □

Proof of Lemma 9

The second derivatives of the likelihood are nonlinear functions of the filtered location vector and its
first end second derivatives. Hence, the mean value theorem is applied for each dynamic equation. As
a result,

sup
θ∈Θ

∥L̂′′
T (θ)− L′′

T (θ)∥ ≤ sup
θ∈Θ

∥∥∥∥∥∥∥∥∥∥∥

∂L̂′′
T (θ)

∂µ̂⋆⊤
t|t−1

∂L̂′′
T (θ)

∂(dµ̂⋆⊤
t|t−1)

∂L̂′′
T (θ)

∂(d2µ̂⋆⊤
t|t−1)

∥∥∥∥∥∥∥∥∥∥∥
sup
θ∈Θ

∥∥∥∥∥∥∥∥
(µ̂t|t−1 − µt|t−1)

(dµ̂t|t−1 − dµt|t−1)

(d2µ̂t|t−1 − d2µt|t−1)

∥∥∥∥∥∥∥∥ .

Thus, the proof follows by the same arguments of the proof of Lemma 6, i.e. by obtaining the uniformly
boundedness of the first term and the exponentially fast convergence of the second term in the right
hand side respectively. Note that the last component of the first term in the right hand side involves a
third order differential, which can be found in (S11) and is uniformly bounded. Subsequent applications
of Lemma 2.1 of Straumann and Mikosch (2006) yield the desired result. □
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Proof of Lemma 10

Note that L′′
T (θ) is a continuous function of {yt}t∈Z and therefore stationary and ergodic. The Lemma

follows straightforwardly from Lemma 11 and The Uniform Law of Large Numbers for ergodic station-
ary processes, see Theorem A.2.2 in White (1994) and Lemma 6. □

Proof of Lemma 11

This Lemma is a multivariate extension of the Theorem 5 of Harvey (2013). Thus, we only discuss the
relevant arguments.

The complete equation of the second differential is more subtle than the first, thus we leave it in
(S6). We prove the arguments by considering equation (13), namely

d2ℓt(θ)

dθdθ⊤
=
∂2ℓt(θ)

∂θ∂θ⊤
+

(
d(µt|t−1 − ω)

dθ⊤

)⊤ ∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

(
d(µt|t−1 − ω)

dθ⊤

)

+
∂ℓt(θ)

∂µ⊤
t|t−1

d2(µt|t−1 − ω)
dθdθ⊤

.

By taking the expectation, we get a finite and static term in the first summand on the right hand side,
while by the independence and the martingale difference sequence properties of the score vector, the
last term becomes null. Thus, we can focus our attention on the middle term. Define

I(µt|t−1)(θ) =− E
[(

d(µt|t−1 − ω)
dθ⊤

)⊤ ∂2ℓt(θ)

∂µt|t−1∂µ
⊤
t|t−1

(
d(µt|t−1 − ω)

dθ⊤

)]
.

Note that, by independence, we can express the vectorized counterpart as

vecI(µt|t−1)(θ) =E
[(

d(µt|t−1 − ω)
dθ⊤

)
⊗
(
d(µt|t−1 − ω)

dθ⊤

)]⊤
vecI(µ)(θ).

By Lemmata 3 and S3.3, the dynamic location filter and its differentials are invertible and achieve
their own unique stationary ergodic solution with an unbounded number of finite moments.

Thus, we obtain the desired result by repeated applications of the law of iterated expectation to
the following equality

Et−1

[(
d(µt+1 − ω)

dθ⊤

)
⊗
(
d(µt+1 − ω)

dθ⊤

)]⊤
=Et−1

[(
Xt

d(µt|t−1 − ω)
dθ⊤

+
dRt

dθ⊤

)
⊗
(
Xt

d(µt|t−1 − ω)
dθ⊤

+
dRt

dθ⊤

)]⊤
=

(
d(µt|t−1 − ω)

dθ⊤
⊗
d(µt|t−1 − ω)

dθ⊤

)⊤
Et−1

[(
Xt ⊗Xt

)]⊤
+ Et−1

[(
Xt

d(µt|t−1 − ω)
dθ⊤

⊗ dRt

dθ⊤

)]⊤
+ Et−1

[(
dRt

dθ⊤
⊗Xt

d(µt|t−1 − ω)
dθ⊤

)]⊤
+ Et−1

[(
dRt

dθ⊤
⊗ dRt

dθ⊤

)]⊤
.

Note that the contraction conditions 2 and 5 are more than enough to ensure the stability of the
recursions, while Lemma S3.1 ensures the existence of the required moments. □
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Auxiliary Lemmata

Lemma S3.1. Consider the stochastic difference equation

d(µt+1|t − ω) =Xtd(µt|t−1 − ω) +Rt,

where Xt and Rt are defined in (S2) and (S3), respectively.
Assume that conditions 1, 2 and 3 in Assumption 2 are satisfied. Then, there exist a unique

sequence {d(µ̃t+1|t − ω)}t∈Z which is stationary and ergodic. A causal stationary solution exists and
can be expressed as

d(µ̃t+1|t − ω) =
∞∑
j=0

( j∏
k=1

Xt−k

)
Rt−j .

Furthermore, E[∥d(µ̃t|t−1 − ω)∥m] <∞ for every m > 0.

Proof. The proof follows the arguments of the proof of Lemma 2, which now applies by rewriting
Xt and all the components of Rt in terms of the innovations and independently of µ̃t|t−1 so that a
stationary ergodic sequence {(Xt,Rt)}t∈Z can be generated.

It follows from Lemma 2 that the first condition is used in order to keep the multivariate system
stable and the matrices Xt random, while the contraction condition 2 for linear stochastic difference
equations gives us the sufficient condition which ensures that d(µ̃t+1|t − ω) is the unique stationary
and ergodic solution, see Bougerol (1993).

Moreover, the Hölder and Minkowsky inequalities imply that

E
[
∥d(µ̃t+1|t − ω)∥m

]
≤

{ ∞∑
j=0

E
[∥∥∥∥ j∏

k=0

Xt−k

∥∥∥∥m]1/m
E
[
∥Rt−j∥m

]1/m}m

.

In addition, from equation (S4) we note that when θ = θ0

E
[
∥Xt∥m

]
≤ ∥Φ∥m + E

[
∥KCt∥m

]
≤ ρ̄m + cKE

[
b
m/2
t (1− bt)

m/2

]
E
[
∥(zt ⊗ zt)∥m

]
+ cKN

m/2E
[
(1− bt)

m/2
]

= ρ̄m + cKE
[
∥zt∥2m

]B(
N+m

2 , ν+m
2

)
B
(
N
2 ,

ν
2

) + cKN
m/2B

(
N
2 ,

ν+m
2

)
B
(
N
2 ,

ν
2

)
= ρ̄m +

cK
Nm

B
(
N+m

2 , ν+m
2

)
B
(
N
2 ,

ν0
2

) + cKN
m/2B

(
N
2 ,

ν+m
2

)
B
(
N
2 ,

ν
2

) <∞,

by Lemma 1. Note that the condition 1 is needed in order to keep the matrix Xt random and
identifiable.

It remains to prove the moment bounds of Rt for every m > 0. We have,

E
[
∥at∥m

]
= E

[
b
3m/2
t (1− bt)

m/2/νm/2

]
E
[
∥Ω1/2zt∥m

]
≤ cΩ
Nm/2

B
(
N+3m

2 , ν+m
2

)
B
(
N
2 ,

ν0
2

) <∞,
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In addition,

E
[
∥ vecBt∥m

]
=E

[
νm/2b

3m/2
t (1− bt)

m/2

]
E
[∥∥∥∥(Ω−1/2zt ⊗Ω−1/2zt ⊗Ω1/2zt)

∥∥∥∥m]
≤cΩE

[
∥zt∥3m

]B(
N+3m

2 , ν+m
2

)
B
(
N
2 ,

ν
2

) =
cΩ

N3m/2

B
(
N+3m

2 , ν+m
2

)
B
(
N
2 ,

ν
2

) <∞,

and

E
[
∥Dt∥m

]
=E

[∥∥[(µ̃t|t−1 − ω)⊤ ⊗ IN
]∥∥m]

≤
{√

Nc̄

∞∑
j=0

ρ̄j
(
E
[
∥ut−j∥m

])1/m}m

<∞,

by Lemma 2, and finally, by Lemma 1,

E
[
∥Et∥m

]
= E

[∥∥[(ut)
⊤ ⊗ IN

]∥∥m]
≤ Nm/2E

[
∥ut∥m

]
≤ cΩν

m/2B
(
N+m

2 , ν+m
2

)
B
(
N
2 ,

ν
2

) . <∞.

Lemma S3.2. Consider the stochastic difference equation

d2(µt+1|t − ω) =Xtd
2(µt|t−1 − ω) +Kd(µt|t−1 − ω)⊤C′

td(µt|t−1 − ω) +Qt,

where Xt, Qt and C′
t are defined in (S2), (S7) and (S8), respectively.

Assume that conditions 1 and 2 in Assumption 2 are satisfied. Then, there exist a unique sequence
{d2(µ̃t+1|t − ω)}t∈Z which is stationary and ergodic. A causal stationary solution exists and can be
expressed as

d2(µ̃t+1|t − ω) =
∞∑
j=0

{( j∏
k=1

Xt−k

)

×
[
Kd(µ̃t−j|t−j−1 − ω)⊤C′

t−jd(µ̃t−j|t−j−1 − ω) +Qt−j

]}
Furthermore, E[∥d2(µ̃t|t−1 − ω)∥m] <∞ for every m > 0.

Proof. From Lemma 2, the first two conditions ensure the existence of a unique stationary and ergodic
sequence {d2(µ̃t+1|t − ω)}t∈Z.

Moreover, by the Hölder and Minkowsky inequalities along with the independence between each
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component, imply that

E
[
∥d2(µ̃t+1|t − ω)∥m

]
≤

{ ∞∑
j=0

E
[∥∥∥∥ j∏

k=0

Xt−k

∥∥∥∥2m]1/2m

×
(
cKE

[
∥d(µ̃t−j|t−j−1 − ω)∥4m

]1/4m
E
[
∥C′

t−j∥2m
]1/2m

+ E
[
∥Qt−j∥m

]1/m)}m

,

from which we can see that, by Lemma S3.1, the first two terms are uniformly bounded and the third
is the second derivative of the driving force with respect to the dynamic location vector.

In the same spirit of Lemma S3.1, let us consider equation (S8). Then, when θ = θ0, the cm-
inequality establishes that

E
[
∥C′

t∥m
]
≤ E

[
[8(1− bt)

3/ν2]m
∥∥∥{[IN ⊗ vtv⊤t

]
vecΩ−1

}∥∥∥m∥∥∥[v⊤t Ω−1
]∥∥∥m]

+ E
[
[2(1− bt)

2/ν]m
∥∥∥{[Ω−1 ⊗ IN

][
vt ⊗ IN + IN ⊗ vt

]}∥∥∥m]
+ E

[
[2(1− bt)

2/ν]m
∥∥∥{[Ω−1 ⊗ IN

][
vt ⊗ IN

]}∥∥∥m]
≤ C4E

[
∥zt∥3m

]
+ C3E

[
∥zt∥2m

]
+ C3E

[
∥zt∥2m

]
<∞.

Straightforward calculations show that analogous results hold for each component of Qt, so that Qt is
uniformly bounded.

Lemma S3.3. Let the conditions of Lemmata 2, S3.1 and S3.2 hold true. Consider further the filtering
equation (7) under the condition of Lemma 3. Then, for any initialization of the filter µ̂1|0 and its
first derivatives in dµ̂1|0, the perturbed first and second derivative sequences of the dynamic location

filter, i.e. {d(µ̂t|t−1 −ω)}t∈N and {d2(µ̂t|t−1 −ω)}t∈N, converge exponentially fast almost surely to the

unique stationary ergodic solution {d(µt|t−1 − ω)}t∈Z and {d2(µt|t−1 − ω)}t∈Z.
Furthermore, for any m > 0

E[sup
θ∈Θ

∥d(µ̂t|t−1 − ω)∥m] <∞ and E[sup
θ∈Θ

∥d2(µ̂t|t−1 − ω)∥m] <∞,

E[sup
θ∈Θ

∥d(µ̃t|t−1 − ω)∥m] <∞ and E[sup
θ∈Θ

∥d2(µ̃t|t−1 − ω)∥m] <∞.

Proof. We provide a detailed discussion for the first case, that is the convergence of the perturbed first
derivatives, since the proof for the convergence of the perturbed second derivatives follows the same
line.

The proof of this Lemma builds upon the arguments of Theorem 2.10 in Straumann and Mikosch
(2006) for perturbed SRE. In particular, the perturbed SREs corresponds to the derivatives in d(µ̂t+1|t−
ω) = X̂td(µ̂t|t−1−ω)+ R̂t, which are nonlinear functions of the initialized filtered sequence {(µ̂t|t−1−
ω)}t∈N. The relevant contraction condition (8) of Lemma 3 holds and the required convergence of the
recurrence equation is obtained if

sup
θ∈Θ

∥X̂t − X̃t∥
e.a.s.−−−→ 0 and sup

θ∈Θ
∥R̂t − R̃t∥

e.a.s.−−−→ 0 as t→ ∞. (S13)
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In order to verify these conditions, we use the mean value theorem, giving

sup
θ∈Θ

∥X̂t − X̃t∥ ≤ sup
θ∈Θ

∥C′
t∥ sup
θ∈Θ

∥µ̂t|t−1 − µ̃t|t−1∥, (S14)

and

sup
θ∈Θ

∥R̂t − R̃t∥ ≤ sup
θ∈Θ

∥∥∥∥∥∥∥∥
C′
t

B̂C
′
t

âC
′
t

∥∥∥∥∥∥∥∥ sup
θ∈Θ

∥µ̂t|t−1 − µ̃t|t−1∥,

where the expression for C′
t, B̂C

′
t and B̂C

′
t can be found in (S8), (S9) and (S10) respectively. We

can combine the results obtained in Lemma S3.2 together with the almost sure exponentially fast
convergence (9) in Lemma 3, in order to achieve the required convergences in (S13). As in Lemma
S3.1 we can show by direct calculations that the property of uniformly boundedness applies to each
these derivatives, since they are continuous functions of wt in equation (5).

We obtain that

sup
θ∈Θ

∥C′
t∥ = Op(1), sup

θ∈Θ

∥∥∥∥∥∥∥∥
C′
t

B̂C
′
t

âC
′
t

∥∥∥∥∥∥∥∥ = Op(1)

and

sup
θ∈Θ

∥µ̂t|t−1 − µ̃t|t−1∥ = oe.a.s.(1) as t→ ∞.

Thus, repeated applications of Lemma 2.1 in Straumann and Mikosch (2006) ensure the required
convergence in (S14).

Summarising, we have

sup
θ∈Θ

∥d(µ̂t|t−1 − ω)− d(µ̃t|t−1 − ω)∥
e.a.s.−−−→ 0 as t→ ∞.

Since the sequence {d2(µ̂t|t−1 − ω)}t∈N is a nonlinear function of both the perturbed recurrence
{d(µ̂t|t−1 − ω)}t∈N and the filter {(µ̂t|t−1 − ω)}t∈N the same arguments apply sequentially, yielding

sup
θ∈Θ

∥d2(µ̂t|t−1 − ω)− d2(µ̃t|t−1 − ω)∥
e.a.s.−−−→ 0 as t→ ∞.

The second claim for the moment bounds follows by the continuous mapping theorem, since the
derivatives are nonlinear continuous functions of µ̃t|t−1, which has unbounded moments, see Lemma
3.
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