
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Puliafito, C., Gigli, L., Zyrianoff, I., Montori, F., Virdis, A., Di Pascoli, S., . . . Di Felice,
M. (2022). Joint power control and structural health monitoring in industry 4.0
scenarios using eclipse arrowhead and web of things. Paper presented at the
Proceedings - 2022 IEEE 5th International Conference on Industrial Cyber-Physical
Systems, ICPS 2022

The final published version is available online at
https://dx.doi.org/10.1109/ICPS51978.2022.9816975

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICPS51978.2022.9816975
https://dx.doi.org/10.1109/ICPS51978.2022.9816975

Joint Power Control and Structural Health
Monitoring in Industry 4.0 Scenarios using Eclipse

Arrowhead and Web of Things
Carlo Pulia�toy, Lorenzo Gigli� , Ivan Zyrianoff� , Federico Montori�z ,

Antonio Virdisy, Stefano Di Pascoliy, Enzo Mingozziy, Marco Di Felice�z
� Department of Computer Science and Engineering, University of Bologna, Italy

y Department of Information Engineering, University of Pisa, Italy
z Advanced Research Center on Electronic Systems �Ercole De Castro�, University of Bologna, Italy

Correspondent author’s email: antonio.virdis@unipi.it,

Abstract�The integration of legacy IoT ecosystems in Industry
4.0 scenarios requires human effort to adapt single devices. This
process would highly bene�t from features like device lookup,
loose coupling and late binding. In this paper, we tackle the issue
of integrating legacy monitoring systems and actuation systems
in an industrial scenario, by looking into the Web of Things
(WoT) as a communication standard and the Eclipse Arrowhead
Framework (AHF) as a service orchestrator. More speci�cally,
we propose a general architectural approach to enable closed-
loop automation between the above mentioned legacy systems
by leveraging the adaptation of the WoT to the AHF. Then,
we develop a rule-based engine that enables the control of the
actuation based on sensor values. Finally, we present a proof-
of-concept use case where we integrate a Structural Health
Monitoring (SHM) scenario with a power control actuation
subsystem using the developed components.

Index Terms�Industry 4.0, Arrowhead, Web of Things, inter-
operability

I. I NTRODUCTION

The fourth industrial revolution is an ongoing phenomenon
that leverages on new concepts like the Internet of Things
(IoT), Systems of Systems (SoS), Cyber-physical systems
(CPS) and Digital Twins (DT). As a matter of fact, Industry
4.0 scenarios are all about relying on solid and complex
ecosystems of sensors, actuators and computational elements
that automatize human activities in factory premises [1]. The
need for reusing single components in multiple articulated
toolchains calls out for modular architectures, which should
support concepts like loose coupling, late binding and lookup
[2]. Moreover, interconnected systems often belong to different
manufacturers and domains. As a result, a challenge for
modern Industry 4.0 scenarios is to support a high level of
�exibility and interoperability to fully unleash the potential
of end devices as well as to support seamless on-boarding
processes [3].

As an example, consider the use case shown in Figure
1, which presents an Industry 4.0 scenario. Let us assume
that a factory is monitored using a set of vibration sensors
(highlighted in green in the �gure), used to detect potential
damages to the building, e.g., through a graphical dashboard.

The factory is also monitored using other environmental
sensors (highlighted in blue), such as humidity meters that
keep track of the moisture level in the walls. Finally, the
factory machines, such as robotic arms, are powered through
a set of remotely-controlled circuit breakers (highlighted in
purple), which allow to remotely power on and off the various
machines.

In the above use case, there could be the need to automate
the power management depending on the measurements taken
by the monitoring systems. For instance, for safety reasons one
might decide to power off all the robotic arms as soon as a
high-level of vibration is detected, which might be for example
due to damages in the structure. However, the three systems
described above are deployed for three independent monitoring
and control tasks of the factory maintenance, using different
technologies and distinct communication infrastructures, either
wireless or wired. Unless addressed by design, the monitoring
and actuation systems are unable to interact, and can only

Fig. 1. An exemplary use case that shows three heterogeneous legacy
sensors/actuators ecosystems, represented in different colors. [Credits to
icograms.com]

be accessed using a dedicated interface. To enable a closed-
loop interaction between such systems, there is the need
for an integrated SoS that gets inputs from sensors, applies
a con�gurable logic to detect a critical status, and issues
commands to actuators when needed.

The aim of this paper is to de�ne the integrated SoS
described above, requesting as less modi�cation to the legacy
ecosystems as possible, and relying on existing technologies.
For this purpose, we propose an architecture exploiting two
existing frameworks, which are well known in the Industry
4.0 and IoT domains respectively. The �rst one is the W3C
Web of Things (WoT), a standard for describing the interfaces
of IoT devices in the form of Web Things (WT) that expose
interaction affordances. WoT ecosystems have however no
standardized ways of performing discovery and lookup op-
erations. Therefore, integrating multiple WoT deployments is
a non trivial task that most of the times would require either
the modi�cation of WTs or a middleware that acts as a bridge.
For this reason, we complement WoT with a second frame-
work, i.e., the Eclipse Arrowhead Framework (AHF), which
is a service-oriented architecture (SOA) allowing lookup, late
binding and loose coupling within IoT-based industrial scenar-
ios [4]. Recently, the AHF has included the WoT-Arrowhead
Enabler (WAE) within its core systems, which enables the
seamless integration of different WoT ecosystems via the
AHF by offering discovery, authorization and orchestration
capabilities [5]. We leverage the AHF together with the WAE
to integrate a monitoring and an actuation WoT ecosystem.
Moreover, we develop a control logic that empowers both.
More in detail, our main contributions are the following:

1) We propose an architecture based on the AHF and WoT
to enable closed-loop automated interaction between
different legacy systems.

2) We develop a con�gurable logic to support the control
loop in a Structural Health Monitoring (SHM) use case.

3) We validate the proposed architecture on a proof-of-
concept (PoC) deployment.

The rest of the paper is organized as follows. Section II
provides a brief background on the AHF and WoT, whereas
Section III describes the proposed architecture. In Section IV,
we discuss the implementation of our control logic. Then,
Section V describes our proof-of-concept deployment in a
realistic use case. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Eclipse Arrowhead
The Eclipse AHF was designed within the Arrowhead EU

project1 between 2014 and 2017 and has been endorsed by
Eclipse in 20202. The AHF was designed with the goal of sup-
porting the transition from industrial SCADA/DCS systems,
typically presented as monolithic architectures, to distributed
SoS that are self-con�gurable, intelligent and integrated [4].
More in detail, the AHF is de�ned as a SOA wherein each

1http://www.arrowheadproject.eu
2https://projects.eclipse.org/projects/iot.arrowhead

ecosystem is called a �local cloud�. Within a local cloud,
systems interact with each other through service interfaces. In
particular, each system is a service provider and/or a service
consumer, and interactions are mediated by the Arrowhead
Core Systems, which is a set of systems instantiated in
the local cloud to support various operations. Local clouds
can then communicate with each other through dedicated
core systems [6]. Among the many core systems released,
we use three of them in particular, which are labeled as
�mandatory� in order for a SoS to be Arrowhead-compatible:
Service Registry, Authorisation and Orchestration. The Service
Registry system enables discovery and service lookup, as it
stores in a service record the information of each service
registered within the local cloud, along with its endpoints and
metadata. The Authorisation system stores a set of rules that
keep track of which service can be consumed by which system
within the local cloud. Besides, it acts as a certi�cate authority.
The Orchestration system provides a local cloud administrator
with the capability of setting up orchestration rules, which
are basically able to instruct systems on which service they
have to query in order to participate in a certain process [7].
Furthermore, a recently introduced core system, the WAE,
presented in Section II-C, supports the automated integration
of WoT scenarios [5].

B. W3C Web of Things

The last few years have shown an exponential increase in
the number of devices connected to the Internet. However,
the emerging technologies provided speci�c interfaces and
protocols, generating an unprecedented heterogeneous ecosys-
tem. The W3C Web of Things seeks to counter the IoT
fragmentation by extending existing Web technologies and
standards through uniform interfaces [8].

In WoT, physical or virtual entities are abstracted as WTs,
and those entities capabilities are described by a machine-
and human-readable description, namely the Thing Description
(TD) [8]. The TD is a fundamental building block of the WoT
since it describes the WT metadata and all the information
needed to interact with it through a JSON-LD document. The
TD encompasses the thing information such as itsaffordances.
The affordances describe: (i) properties, which are the WT
state variables; (ii) actions, used to invoke functions of a
WT; and (iii) events, which are occurrences that push data
asynchronously from the WT.

As an IoT-based system often involves multiple things, a
way to organize and search for these things is needed. In
the WoT paradigm, the Thing Description Directory (TDD)
implements such functionalities to store and retrieve TDs.
There are several different implementations of TDDs. We
highlight MODRON [9] and LinkSmart3. Finally, a WoT
servient is a software stack that implements the WoT building
blocks and can expose and/or consume WTs.

3https://github.com/linksmart/thing-directory

C. WAE
The WAE4 is an of�cial component of the Eclipse Arrow-

head Project. The tool enables seamless integration between
Arrowhead services and WTs [5]. The WoT is an effective
solution to the interoperability problem in the IoT environ-
ment. However, not all applications and devices can easily
integrate with WTs due to the WoT interface requirements
de�ned by the W3C [8]. Furthermore, applications are unaware
of those devices’ location or even existence. The Arrowhead
Service Registry solves both of those problems since it ex-
poses the interfaces and locations of the WTs as Arrowhead
Thing Mirrors, which enablesany REST user to discover
and consume those IoT-based devices through the Arrowhead
ecosystem. The WAE automatically discovers new WTs from
a TDD and registers them as Arrowhead services through
the Arrowhead Service Registry. In order to perform such a
task, WAE periodically retrieves a list with all WTs stored in
the TDD. Then, the tool makes a request in the Arrowhead
Service Registry with the WTs metadata and detects if a WT
needs to be updated, removed or registered. If any difference
is detected, the WAE performs the appropriate modi�cation
in Arrowhead through the Service Registry API. WAE also
enables the discovery and conversion of Arrowhead Services
into WTs, though we did not explore this feature in this
project.

III. A RCHITECTURE

As remarked in Section I, we propose an architecture
and toolchain to enable Industry 4.0 scenarios. We do this
by integrating WoT-enabled ecosystems through the Eclipse
AHF. More in details, we focus on monitoring and actuation
scenarios, wherein the monitoring subsystem may be unaware
of the existence of one or more compatible actuation sides
and vice versa. The aim of our toolchain is then to enable
the creation of a closed control loop by bringing together
heterogeneous entities controlled by different third-parties.
We assume that, for any communication channel with the
outside, each party is supporting the W3C WoT standard.
Hence, every endpoint can be expressed through a set of
properties, actions, or events, as discussed in Section II-B. A
similar assumption can be taken for any IoT industrial standard
that guarantees syntactical and semantic compatibility such as
OMA Lightweight M2M, OSLC, etc. Our contribution is then
twofold: (i) we use the Eclipse Arrowhead Core Systems to
establish a common ground and deploy all the useful hooks
to the tools and systems within the local cloud; and (ii)
we develop with minimal human effort a control logic that
establishes the relationship between the monitoring party and
the actuation party.

Figure 2 shows a high-level vision of the proposed architec-
ture, which is composed of three main blocks interconnected
through the AHF: (i) an SHM subsystem, (ii) a power control
subsystem, and (iii) a control logic. The SHM subsystem is
able to monitor the inertial and physical condition of a building

4https://github.com/arrowhead-f/application-skeleton-wot

in order to assess its health status or to forecast potential
threats to the structure. The power control subsystem can
monitor the power consumption of the industrial equipment,
and turn it on and off remotely and on demand. Major technical
details about them will be given in Sections III-A and III-B.
Recall our premises, we act onto this local cloud in two steps.
The �rst step is enabling systems within the local cloud to be
announced and discovered. This is done using the WAE, which
is described in Section II-C. We implement an Arrowhead-
compliant control logic that is able to trigger actions in the
actuation parties once given conditions within the monitoring
parties are met. The control-logic component does not need to
explicitly know the single endpoints, which are provided by
the Arrowhead Orchestrator, therefore the only implementation
effort lies in the logic itself.

A. SHM subsystem

In Figure 3, we show the architecture of the SHM sub-
system, which is a complete monitoring environment divided
into various layers from edge to cloud. The Monitoring layer
is the closest to the physical structure and includes the network
infrastructure and sensors that produce the data streams for the
components above. The Edge-WoT layer represents a stratum
of abstraction on top of the sensing devices designed to make
data access homogeneous. In our system, we relied on the
W3C WoT standard to design a set of WTs to represent our
sensors and monitored structures. This approach has proven
to be very functional because it allows to get rid of the het-
erogeneity of the underlying protocols and data formats and,
at the same time, to implement �ltering and pre-processing
operations directly at the edge. Above these layers there is
the MODRON cloud platform that includes a set of high-level
services divided into two blocks: Data Management and Data
Analytics [9]. The Data Management block includes several
microservices that offer storage, aggregation, and visualization
functionalities for the collected data. In addition, one of the
services exposes an advanced interface for managing WTs
(and thus physical devices) remotely. Finally, the Data An-
alytics block gives meaning to the data: condition assessment
and damage prediction techniques are performed.

Fig. 2. High-level architecture of our proposed solution.

Fig. 3. Internal architecture of the SHM system used as the monitoring
subsystem in the SHM loop.

Fig. 4. Internal architecture of the power control system used as the actuation
subsystem in the SHM loop.

B. Power control subsystem
In Figure 4, we show the architecture of the power control

subsystem, which is used as actuation subsystem in the frame
of the SHM loop. It is composed of a legacy system, a
module for WoT translation and a TDD. The legacy system
performs power monitoring and power control through a set
of custom power plugs, which implement the behavior of
smart circuit breakers. Power monitoring allows for real-time
measurement of active and reactive power, voltage, current,
whereas power control allows to remotely power an appliance
on or off through a latching relay. The power plugs are
designed for smart grid or smart home applications, and have
a Bill Of Material (BOM) cost below 15$. The power plugs
communicate with a ZigBee IP gateway whose BOM cost is
15$ as well. The gateway maintains a TCP connection with a
server, exchanging sensor data and actuation commands. The
server can run on a general-purpose computer and can connect
to multiple gateways simultaneously. All the components of
the legacy system use AES-128 for encryption, to secure
exchanged data that can be sensitive and con�dential. Finally,
the server exposes an HTTP server to the user, allowing for
data displaying and manual actuation through HTTP calls.

The WoT translation module (WTM) is responsible of mak-
ing the legacy system accessible as a WT. It is implemented
as a WoT servient and communicates with the legacy system’s
server via HTTP. It abstracts the legacy system by exposing
one WT for each power plug. Each WT has four interaction

affordances, i.e., three actions and one observable property.
The actions are used to power the appliance on and off. More
speci�cally, it is possible to power off an appliance in a
hard or a soft way. The hard way powers off the appliance
immediately. Instead, the soft way allows the WT to monitor
power consumption of the appliance and to power it off
only when power consumption is below a threshold, i.e., the
appliance is in an idle state. Besides, these actions update the
only exposed property, which is a boolean that tells whether
the appliance is powered on or off. At startup, the WTM �rst
connects to the HTTP server, retrieving the list of gateways
and active power plugs. Then, it creates and exposes the TDs
containing the required set of properties and actions. Finally, it
registers the resulting TDs to a TDD. We chose LinkSmart for
the implementation of the TDD. Whenever the WTM receives
a request for an affordance of the exposed TDs, it will issue
the proper HTTP call to the HTTP server.

IV. I MPLEMENTATION/DESIGN OF THESHM CONTROL
LOOP

In this section, we describe the design and implementation
of a control logic for an Industry 4.0 use case. This logic
realizes a closed-loop interaction between the SHM platform,
on the one hand, and the power control system, on the other.

f
"triggers": [f

"conditions": f
"AND": [f

"selector": "building01.floor02
.room02.accl. * ",

"property": "Value",
"operator": "gte",
"values": [42]

g, f
"selector": "building01.floor02

. * .plug. * ",
"property": "PoweredOn",
"operator": "eq",
"values": [true]

g
]

g,
"effects": [f

"selector": "building01.floor02. * .
plug. * ",

"affordanceType": "action",
"affordanceName": "SoftPowerOff",
"affordancePayload": fg

g]
g]

g

Listing 1. Example of a condition-effect rule in our system.

A. Syntax Language
We designed a simple syntax to describe rules useful for

managing monitoring and prevention scenarios. This JSON de-
scriptor allows us to de�ne triggers having multiple conditions
and effects. A condition describes the requirements needed
to activate the trigger: the selector is a string, based on dot
notation and wildcards, which allows identifying WTs located
in a speci�c area of a structure; theproperty key is used
to identify the property affordance to be observed, whereas
operator andvalues are the parameters that de�ne how
the observed value needs to be evaluated. The conditions
of a trigger can also be grouped through logical AND/OR
operators. This way, it is possible to achieve a higher level of
expressiveness critical for our use cases. Theeffects are
executed one after the other when the trigger conditions occur.
The selector behaves in the same way as the one used in
theconditions , while properties likeaffordanceType ,
affordanceName and affordancePayload serve to
identify and act on a speci�c interaction affordance that will
modify the interal state of the WT. E.g., in the Listing 1, the
speci�ed conditions select all the accelerometers WTs that
are located in room number 2 on �oor 2 of building 1 and
all the power plugs on the same �oor. After that, the system
starts observing these properties triggering theeffects if
the accelerometer values are greater (or equal) than 42 and
the power plugs are on.

Fig. 5. Query Language

B. WoT Arrowhead Drawbridge
We refer to the proposed control logic as WoT Arrowhead

Drawbridge (WAD). Our logic indeed bridges between two
different ecosystems by triggering actions on one of them (i.e.,
the power control subsystem) if speci�c conditions are met in
the other (i.e., the SHM subsystem). From an architectural

point of view, the WAD is an Arrowhead consumer running
within an Arrowhead local cloud.

When it �rst starts, the WAD is con�gured with a number
of settings that �exibly allow it to adapt to the speci�c context
and needs. The �rst type of setting are two Arrowhead Mirror
Groups indicating respectively the group of vibration sensors
to monitor and the group of power plugs to control. With this
setting, it is possible to select the area of the production plant
that needs to be monitored and controlled (e.g., the whole
building, a �oor, a room). The other setting are three threshold
values � low, medium, and high � for the vibration samples,
which are used by the WAD to trigger actions on the power
control subsystem, as explained below.

The WAD observes theValue property of all the vibration
WTs in order to periodically retrieve vibration samples. Be-
sides, it observes thePoweredOn property of all the power
WTs, with the aim to detect whether factory machines are
powered on or off. The actual control logic of the WAD
consists of condition-effect rules. These are de�ned using the
JSON syntax presented above and can be dynamically updated
through a RESTful API that the WAD exposes. The scenario
that we implemented works as follows:

� If samples from all the vibration sensors in a room exceed
the medium threshold and all the factory machines on the
�oor are powered on, the WAD assumes that there is a
pre-alarm situation. For safety reasons, the WAD softly
powers off all the factory machines on the �oor. The
WAD does so by invoking theSoftPowerOff action
that is exposed by power WTs on the �oor. This action
also sets thePoweredOn property to �false� when the
machine is actually powered off. This condition-effect
rule is de�ned in Listing 1 and depicted in Figure 5.

� If vibration samples from all the sensors in a room are
above the high threshold (e.g., due to a major earthquake)
and all the factory machines on the �oor are powered on,
the WAD immediately powers off those factory machines.
This is done by invoking theHardPowerOff action,
which also sets thePoweredOn property to �false�.

� If instead vibration samples from a room are below the
low threshold and all the factory machines on the �oor
are powered off, it means that the critical condition has
terminated. Then, the WAD powers on all the factory
machines on the �oor by invoking thePowerOn action,
which also sets thePoweredOn property back to �true�.

V. POC AND VALIDATION

In this section, we describe a PoC deployment that resem-
bles the use case described in Section IV. The structure of
the PoC is shown in Figure 6 and described in the following.
The SHM subsystem consists of a high-rise grid structure with
12 accelerometers deployed on several points of the structure.
The sensors are publishing bursts of data on a Cluster Head,
which is deployed as a Raspberry Pi 3, hosting the WoT proxy
of each of the sensors. MODRON runs on a Qotom mini-PC
(Quad-core Intel Celeron CPU at 1.99GHz, 8GB of RAM,
and 58GB of disk, running Ubuntu). MODRON acts as a

Fig. 6. Actual deployment of the use case in all its components, with speci�c focus on the physical appliances used.

Webserver for the Grafana dashboard that is visualized through
a laptop. The power control subsystem instead is deployed
as follows. Two custom power plugs, described in [10], are
connected to a custom zigbee gateway powered by an ARM
Cortex M4 processor with hardware encryption. The server
controlling the power plugs and running the HTTP-server
backend is a Sony Vaio PCG-71311M laptop with an Intel
i5-450M CPU at 2.4GHz, 4GB of RAM, and 256GB of disk,
running CentOS 6.3 and Linux kernel 2.6.32. A Qotom mini-
PC represents a local cloud node, running both the WTM and
the TDD. The WTM is developed using the Thingweb node-
wot framework, which is the WoT implementation in Node.js.
The TDD is the open-source LinkSmart Thing Directory5.
The Arrowhead local cloud is again deployed on a Qotom
mini-PC. We used the of�cial Java Arrowhead Core Systems
version 4.4.06 and we run the WAE in the same host as a
separate module7. Finally, the control logic is deployed on a
fourth Qotom mini-PC. We used the above PoC deployment
to validate the integration of the various subsystem composing
the use case. Moreover, we veri�ed the correct execution of the
WAD functions, both using synthetic inputs and with real data
coming from the accelerometers, also exploiting the graphical
interface to assess the behavior of the logic.

VI. CONCLUSIONS

In this paper we integrated two heterogeneous IoT ecosys-
tems in an industrial scenario by leveraging both the WoT stan-
dard and the AHF. We �rst proposed a high-level architecture
for integrating separate SoS that either are monitoring systems
or actuation systems by introducing a rule-based control logic
in between. Next, we implemented an exemplary control logic,
the WAD, for a SHM use case where parties adopt the
WoT standard and can discover each other by means of the
AHF, and we de�ned the con�guration syntax of the WAD.
Finally, we deployed the proposed system in a real scenario
where an SHM monitoring ecosystems causes a power plug
actuation ecosystem to react promptly to emergencies, thus

5https://github.com/linksmart/thing-directory, last accessed Jan 2022
6https://github.com/eclipse-arrowhead/core-java-spring
7https://github.com/arrowhead-f/application-skeleton-wot

demonstrating feasibility of our approach. As a future work,
we plan to carry out an extensive performance evaluation of
the system, to assess its scalability and feasibility in realistic
deployments.

ACKNOWLEDGMENT

This work was partially supported by the Italian Ministry
of Education and Research (MIUR) in the framework of the
CrossLab project (Departments of Excellence), and by the EU
ECSEL Joint Undertaking under grant agreement No 826452
(Arrowhead Tools), supported by the European Union Horizon
2020 research and innovation programme.

REFERENCES

[1] F. Tao, Q. Qi, L. Wang, and A. Nee, �Digital twins and cyber�physical
systems toward smart manufacturing and industry 4.0: Correlation and
comparison,�Engineering, vol. 5, no. 4, pp. 653�661, 2019.

[2] A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lund-
holm, and B. Lennartson, �An event-driven manufacturing information
system architecture for industry 4.0,�International journal of production
research, vol. 55, no. 5, pp. 1297�1311, 2017.

[3] A. Bicaku, S. Maksuti, C. Heged�us, M. Tauber, J. Delsing, and
J. Eliasson, �Interacting with the arrowhead local cloud: On-boarding
procedure,� in2018 IEEE Industrial Cyber-Physical Systems (ICPS),
2018, pp. 743�748.

[4] J. Delsing,Iot automation: Arrowhead framework. Crc Press, 2017.
[5] I. Zyrianoff, L. Gigli, F. Montori, C. Kamienski, and M. Di Felice,

�Two-way integration of service-oriented systems-of-systems with the
web of things,� in IECON 2021�47th Annual Conference of the IEEE
Industrial Electronics Society. IEEE, 2021, pp. 1�6.

[6] C. Hegedus, P. Varga, and A. Frank·o, �Secure and trusted inter-cloud
communications in the arrowhead framework,� in2018 IEEE Industrial
Cyber-Physical Systems (ICPS). IEEE, 2018, pp. 755�760.

[7] C. Paniagua, J. Eliasson, and J. Delsing, �Ef�cient device-to-device
service invocation using arrowhead orchestration,�IEEE Internet of
Things Journal, vol. 7, no. 1, pp. 429�439, 2019.

[8] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura,
and K. Kajimoto, �Web of things (wot) architecture,� W3C Recommen-
dation, Apr. 2020, https://www.w3.org/TR/wot-architecture/.

[9] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, F. Zonzini, L. De Marchi,
M. Di Felice, A. Marzani, and T. S. Cinotti, �Modron: A scalable and
interoperable web of things platform for structural health monitoring,�
in 2021 IEEE 18th Annual Consumer Communications Networking
Conference (CCNC), 2021, pp. 1�7.

[10] E. Span�o, L. Niccolini, S. Di Pascoli, and G. Iannaccone, �Last-
meter smart grid embedded in an internet-of-things platform,�IEEE
Transactions on Smart Grid, vol. 6, no. 1, pp. 468�476, 2015.

