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Abstract  75 

In the face of the growing challenges brought about by human activities, effective planning and 76 

decision-making in biodiversity and ecosystem conservation, restoration, and sustainable 77 
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development are urgently needed. Ecological models can play a key role in supporting this need 78 

and helping to safeguard the natural assets that underpin human wellbeing and support life on 79 

land and under water (United Nations Sustainable Development Goals; SDG 14 & 15). The 80 

urgency and complexity of safeguarding forest (SDG 15.2) and mountain ecosystems (SDG 15.4), 81 

for example, and halting decline in biodiversity (SDG 15.5) in the Anthropocene requires a re-82 

envisioning of how ecological models can best support the comprehensive assessments of 83 

biodiversity and its change that are required for successful action.  84 

A key opportunity to advance ecological modeling for both predictive and explanatory purposes 85 

arises through a collaboration between ecologists and the Earth observation community to 86 

achieve a close integration of remote sensing and species distribution models. Remote sensing 87 

data products have the capacity to provide continuous spatiotemporal information about key 88 

factors driving the distribution of organisms, therefore improving both the use and accuracy of 89 

these models for management and planning.  90 

Here we first survey the literature on remote sensing data products available to ecological 91 

modelers interested in improving predictions of species range dynamics under global change. We 92 

specifically explore the key biophysical processes underlying the distribution of species in the 93 

Anthropocene including climate variability, changes in land cover, and disturbance. We then 94 

discuss potential synergies between the ecological modeling and remote sensing communities, 95 

and highlight opportunities to close the data and conceptual gaps that currently impede a more 96 

effective application of remote sensing for the monitoring and modeling of ecological systems. 97 

Specific attention is given to how potential collaborations between the two communities could lead 98 

to new opportunities to report on progress towards global agendas such as the Agenda 2030 for 99 

sustainable development of the United Nations or the Post-2020 Global Biodiversity Framework 100 

of the Convention for Biological Diversity, and help guide conservation and management 101 

strategies towards sustainability.  102 

 103 
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 104 

1. Introduction 105 

Human society in the Anthropocene has emerged as a global driver rapidly transforming 106 

ecosystems (Ellis, 2015, 2011; Waters et al., 2016). Anthropogenic transformation affects the 107 

distribution of species and habitats through a range of drivers and processes including land-use 108 

and land-cover change, climate change, pollution, (over-)exploitation (Benítez-López et al., 2019), 109 

and biological invasions (Chaudhary et al., 2015; Lenzen et al., 2009; Newbold et al., 2016, 2015; 110 

Pekin and Pijanowski, 2012; Pereira et al., 2012). Importantly, the existence of global supply 111 

chains that interconnect human societies implies that local anthropogenic impact can also be 112 

driven by consumptive demands thousands of kilometers away (Chaudhary and Kastner, 2016; 113 

Marques et al., 2019; Meyfroidt et al., 2013; Rudel, 2007; Verburg et al., 2015). Furthermore, 114 

novel disturbance regimes are emerging, such as altered frequency and intensity of extreme 115 

climatic and fire events (IPCC, 2014; Mahecha et al., 2017; Ummenhofer and Meehl, 2017). Such 116 

events impact the state, structure, functionality, and evolution of biological systems at different 117 

scales, potentially increasing vulnerability to further changes in climate variability (Dirzo et al., 118 

2014; IPCC, 2014).  119 

The challenges posed by anthropogenic impact on the environment are increasingly recognized 120 

at national and international levels. This has resulted in large integrated monitoring and reporting 121 

frameworks. At the global level, such frameworks include the United Nations’ Sustainable 122 

Development Goals (2030 Agenda) and the Aichi biodiversity targets of the Convention on 123 

Biological Diversity (Strategic Plan for Biodiversity 2011-2020). For example, UN goal 15.5 aims 124 

to ‘Take urgent and significant action to … halt the loss of biodiversity and, by 2020, protect and 125 

prevent the extinction of threatened species’, whilst the closely related Aichi target 12 focuses on 126 

improving the conservation status of threatened species. These targets are used to monitor 127 

progress, inform actions, and evaluate alternative options for governance and decision-making. 128 

Meeting the SDGs and Aichi targets requires a suite of monitoring strategies for the acquisition of 129 
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high quality data and a thorough understanding of current and emerging pressures acting on 130 

species and ecosystems (Chen et al., 2011; Lenoir et al., 2019; Lenoir and Svenning, 2015; Mirtl 131 

et al., 2018). Monitoring programs should help conservation and management strategies based 132 

on explanatory as well as predictive models and support the regular evaluation of the 133 

effectiveness of policy interventions (Haase et al., 2018). 134 

The development of monitoring design and management strategies that account for the scale, 135 

pace, and complexity of anthropogenic impacts on species and ecosystems (Ceballos et al., 2017; 136 

Dirzo et al., 2014; Kim et al., 2018) requires assessments of past and current biodiversity changes 137 

as well as robust projections of the potential future distributions of species and ecosystems (i.e., 138 

satisfactory accuracy and precision of models transferred to novel conditions. Species Distribution 139 

Models (SDMs, sensu Guisan and Thuiller, 2005; Guisan and Zimmermann, 2000, Box 1) provide 140 

a powerful explanatory and predictive modeling framework in this context. In conservation and 141 

decision-making, SDMs can for example be used as explanatory models (sensu Shmueli, 2009) 142 

to identify critical environmental variables for species or communities (e.g. Droz et al., 2019), or 143 

for  interpolating and extrapolating potential geographic distributions from available observations 144 

of species or communities (McShea, 2014). These predicted ranges can then be used in 145 

conservation planning to minimize the impact of development (Guisan et al., 2013) and may be 146 

linked to biodiversity monitoring through frameworks such as Essential Biodiversity Variables1 147 

(EBVs, Fernandez et al., 2019; Pereira et al., 2013). SDMs have further evolved to provide 148 

scenarios for past and future species distributions and community composition, based on the use 149 

of environmental variables such as climate, land cover and biotic constraints. This allows 150 

stakeholders to identify the natural resources they want to sustain and assess the projected 151 

effects of environmental policy options on the distribution of threatened, rare, flagship or invasive 152 

species (e.g. Cianfrani et al., 2018, 2015; Esselman and Allan, 2011). SDM projections can also 153 

                                                
1 a minimum set of biodiversity state variables required to study, report, and manage multiple facets of biodiversity 
change (Pereira et al., 2013) 
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indicate whether current protected areas or networks of protected sites match with likely future 154 

species and community distributions (e.g. Araujo et al., 2004; Bolliger et al., 2007; Droz et al., 155 

2019). Collectively, these applications illustrate the high relevance of SDMs for biodiversity 156 

conservation and hence for meeting the SDGs and the Aichi targets.  157 

However, there are numerous criticisms of current implementations of SDMs, in particular when 158 

applied to assist biodiversity monitoring. Such criticisms originate primarily from the reliance of 159 

both correlative and process-based SDMs (see Box 1) on long-term, averaged, and interpolated 160 

spatial climate variables, routinely used without accounting for their temporal variability 161 

(Zimmermann et al., 2009). Moreover, correlative models are calibrated on statistical relationships 162 

that fail to capture the actual biological processes underlying the geographical distributions of 163 

species and biodiversity (Dormann et al., 2012). Finally, projections from both correlative and 164 

process-based SDMs are often based on calibration datasets with limited spatial and temporal 165 

extent, which restricts transferability of model projections (Werkowska et al., 2017; Yates et al., 166 

2018). Although hybrid and process-based distribution models (see Box 1) address flaws such as 167 

the causality between the response and the predictors as well as the spatiotemporal 168 

transferability, these models are data intensive (and thus limited to few species) and typically rely 169 

on climate interpolations. 170 

The development of free, open, easily accessible remote sensing data provide opportunities for 171 

resolving some of the limitations of SDMs. For example, a large variety of products derived from 172 

various satellite sensors are available to assess key natural systems and environmental 173 

conditions as well as extremes affecting the land surface in a contiguous spatial and temporal 174 

fashion (Mahecha et al., 2017), thereby capturing the environmental processes underlying 175 

species, and thus biodiversity, distribution. For example, these products allow assessment of land 176 

use and cover (e.g. Verburg et al., 2011), forest cover (e.g. Hansen et al., 2008; Klein et al., 2015), 177 

vegetation structure (e.g. Schneider et al., 2014), vegetation productivity and phenology (e.g. de 178 

Jong et al., 2013; Garonna et al., 2018; Jolly et al., 2005), snow (e.g. Hüsler et al., 2014; Xie et 179 
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al., 2017), temperature (e.g. Ibrahim et al., 2018), and precipitation (e.g. Naumann et al., 2012). 180 

Additionally, continuous time series deliver observations over large spatial extents and at 181 

ecologically relevant time scales, improving the transferability of model projections and at least 182 

partially solving data sparsity with respect to spatial and temporal resolution.  183 

Some remote sensing data products are already used in SDMs (see Franklin, 1995 for an early 184 

review), mostly as abiotic and biotic predictor variables and occasionally as response variables 185 

(see He et al., 2015 for a comprehensive review). However, remote sensing and species 186 

distribution modeling are still quite distinct fields that have not typically overlapped extensively, 187 

resulting in a lack of awareness of potential opportunities. Accordingly, we argue that remote 188 

sensing-derived data products are not yet used to their full potential and that they can contribute 189 

more to the development of SDMs for biodiversity monitoring and policy.  190 

Here, we 2  first discuss how current developments in remote sensing may improve our 191 

understanding and projections of species distributions (see section 2: Modeling species 192 

distribution using remote sensing data: state-of-the-art). This discussion is based on a selection 193 

of processes and a prioritization of relevant literature, which by no means aims to be exhaustive. 194 

We then suggest synergistic activities between the ecological modeling and remote sensing 195 

communities (see section 3: Modeling species distribution using remote sensing data: closing 196 

gaps and moving forward). These activities may serve to fill data and conceptual gaps and 197 

develop remote sensing data products that can effectively contribute to the monitoring and 198 

modeling of ecological systems and ultimately guide and inform conservation and management 199 

strategies towards sustainability. Unlike previous contributions (e.g. He et al., 2015), this paper is 200 

organized around some of the key biophysical dimensions and processes (Mackey and 201 

Lindenmayer, 2001; Pearson and Dawson, 2003) underlying the distribution of species in the 202 

                                                
2 This publication is the result of a workshop supported by the European Space Agency and Future Earth that brought 
together participants from the ecological modelling, biodiversity, land systems science, and remote sensing 
communities 
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Anthropocene, such as climate variability and land-cover change. As such, it is aimed at species 203 

distribution modelers and remote sensing specialists who jointly want to better support monitoring 204 

and conservation actions at different spatial and temporal scales. 205 

 206 

2. Modeling species distribution using remote sensing data: state-of-the-art 207 

Key processes and biophysical factors that underlie the distribution of species in the 208 

Anthropocene and are required for modeling include: climate and its variability from the global to 209 

the regional scale (Fig. 1(a), see paragraph 2 “Climate and its variability”), topo- and microclimate 210 

from the regional to the local scale (Fig. 1(b), see paragraph 3 “Topography”), physical 211 

disturbance processes modulating distribution at various scales (Fig. 1(c), see paragraph 212 

“Physical disturbances”), and anthropogenic pressures (Fig. 1(d)), such as changes in land cover 213 

and land use. Additional factors that are not explicitly discussed but merely mentioned throughout 214 

the text include resource variables (e.g., water, food resources, and nutrient availability, Austin 215 

and Van Niel, 2011). Climate and topography are often used as proxies for these types of 216 

variables. Ideally, the predictor variables in SDMs meet at least two of three requirements (holy 217 

grail, Fig. 1): spatiotemporal contiguity (i.e., full coverage of a process in space and time), intensity 218 

(i.e., the full range of variation of a continuous variable is covered, including the extremes likely 219 

to impact on an organism’s traits and ultimately on its demography), and 3D-structure.  220 
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  221 

 222 

Fig. 1.  Main categories of predictor variables in SDMs and requirements they meet. Variables 223 

consist of regulators (a, b), physical disturbances (c), and direct anthropogenic pressures (d) 224 

(sensu Austin and Smith, 1989; Guisan and Zimmermann, 2000; Randin et al., 2009c).  225 

Requirements are contiguity, intensity, and 3D structure. Categories of predictor variables point 226 

with continuous lines to requirements they can currently meet and with dotted lines to 227 

requirements they could meet with the integration of remote sensing data.  228 

 229 

Climate and its variability 230 

Climate has been consistently identified as the main determinant of species ranges at the broad 231 

scale (Woodward, 1990), whereas non-climate predictors (such as topography and habitat) are 232 

more important at finer scales (e.g. Luoto et al., 2007; Normand et al., 2009). It is therefore 233 

common to build large-scale and coarse-resolution SDMs to characterize species geographic 234 

extents and spatial patterns of occurrence using only climate predictors (see e.g. Mod et al., 2016 235 

for plants; Thuiller et al., 2005). This approach is commonly referred to as bioclimatic envelope 236 
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modeling and climate predictor variables are defined as direct or regulator predictors (Fig. 1(a): 237 

Austin and Smith, 1989; Guisan and Zimmermann, 2000), because the spatial resolution at which 238 

models operate may be much greater than the processes experienced by species (Austin, 2002). 239 

These variables are also routinely used without accounting for their measurement errors and 240 

uncertainty, which can lead to biased estimates and erroneous inferences (Stoklosa et al., 2015). 241 

In addition, temperature and precipitation interpolations from weather stations (e.g. Worldclim) 242 

capture neither temperature-related processes, such as inversion, air stagnation (Vitasse et al., 243 

2017) or cold air pooling (e.g. Patsiou et al., 2017), nor precipitation-related processes, such as 244 

orographic effects  (Fernandez et al. 2015; but see CHELSA Karger et al., 2017). However, some 245 

of these physical patterns can be captured by remote sensing products such as from the 246 

Operational land Imager (OL) on Landsat8 and the Moderate Resolution Imaging 247 

Spectroradiometer (MODIS) on TERRA and AQUA for surface temperature or Tropical Rainfall 248 

Measuring Mission (TRMM) and Global Precipitation Mission (GPM) for precipitation (e.g. at the 249 

scale of the Andes; Bookhagen and Strecker, 2008). These products have been successfully 250 

integrated in SDM studies (Cord et al., 2010; Estrada-Peña et al., 2016; Neteler et al., 2013). 251 

Alongside the development of improved remote sensing data products, considerable advances 252 

have also been achieved in terms of the algorithms needed to process remote sensing data. For 253 

instance, algorithms for deriving land surface temperature are now sufficiently advanced that a 254 

typical accuracy of 1 Kelvin is possible with data acquired at around 100 m resolution from recent 255 

Landsat satellites. Such high spatial resolution surface temperature data can ultimately be used 256 

to detect local features such as urban heat islands (Liu et al., 2011), which are key components 257 

for the persistence or extinction of plants and animals. However, pros and cons of surface 258 

temperature should be carefully listed before its integration into SDMs. On one hand, SDMs 259 

mostly relate the occurrence or the abundance of species to data from standardized shaded 2-m 260 

air temperature sensors, although interpolated between weather stations that can be sparse and 261 
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located in specific locations (e.g. low altitudes Hik and Williamson 2019). On the other hand, 262 

temperature derived from remote sensing might integrate, depending on the spatial resolution and 263 

the post-processing considered, a mix of surfaces such as rock, tree canopy or grassland.  264 

Although land surface temperature derived from remotely sensed datasets can substantially 265 

improve projections of SDMs (Deblauwe et al., 2016), precipitation data derived from sensors still 266 

rely on the ground projected spatial resolution of the data and the addition of ground observations 267 

(e.g. TRMM at a 0.05° native resolution versus CHIRPS at a 0.25° resolution and calibrated with 268 

45’707 weather stations worldwide). In addition, precipitation is measured precisely but locally 269 

with water gauges, whereas currently available satellite sensors detect rainfall patterns at 270 

resolutions > 1 km. As a consequence, both satellite sensors and interpolations from direct 271 

measurements are not able to adequately capture small-scale processes (e.g. orographic 272 

processes) that influence species distribution (Deblauwe et al., 2016; Lenoir et al., 2017) 273 

(Deblauwe et al., 2016). Additionally, rainfall is usually an indirect predictor, whereas variables 274 

reflecting soil water budget or snow cover and depth are more direct predictors.  275 

Climate also enters SDM-based studies in the form of long-term averaged variables used to define 276 

range limits. However, such averages overlook information contained in the distribution of climate 277 

values, including climate extremes of increasing frequencies, whose influence on range limits 278 

remains to be fully understood (Ummenhofer and Meehl, 2017). Accordingly, Kollas and 279 

colleagues (2014) called for the use of temperature extremes during key phenological stages of 280 

focal species when attempting to explain range limits. Zimmermann and co-authors (2009) 281 

showed that the primary effect of including information on climate variability and extremes is to 282 

correct local SDMs for over- and underprediction. Such results speak in favor of the incorporation 283 

of targeted absolute climate values instead of long-term means that are only proxies of unknown 284 

relevance for the physiologically critical facets of climate that control species abundances and 285 

distributions. They also have important implications for projections of climate-change impacts on 286 
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species distributions that are based on correlative approaches only. Relevant data for deriving 287 

extremes are spectral time series. With such series approaching 20 years of records and daily 288 

time steps, it is now becoming possible, for example, to use land surface temperature from remote 289 

sensing to derive extreme climatic events. The Global Climate Observing System (GCOS) was 290 

specifically set up under the auspices of United Nations organizations and the International 291 

Council for Science to ensure the availability of so-called Essential Climate Variables (ECV, 292 

GCOS 2010), which are systematic and long-term observations of climate. An Essential Climate 293 

Variable is a physical, chemical, or biological variable or a group of linked variables that 294 

contributes to the characterization of the Earth's climate (Bojinski et al., 2014). Specific Essential 295 

Climate Variables of interests for the SDM community include land surface temperature, 296 

precipitation, snow, glaciers, permafrost, albedo, land cover, fraction of absorbed 297 

photosynthetically active radiation (FAPAR), Leaf area index (LAI), above-ground biomass, soil 298 

carbon, fire, and soil moisture. For the latter, a global ECV surface soil moisture data set has been 299 

generated within the European Space Agency (ESA) Climate Change Initiative. This soil moisture 300 

dataset covers a 38-year period from 1978 to 2016 at a daily time step and at a 0.25° spatial 301 

resolution. Snow, high-resolution land cover, surface temperature and permaforst are other ECVs 302 

currently developed by ESA (http://cci.esa.int/). Similar initiatives have also been developed at 303 

smaller scales. The Sentinel Alpine Observatory of Eurac Research (http://sao.eurac.edu/sao/) 304 

and satellite-based snow cover climatology (Hüsler et al., 2014) are two examples for the 305 

European Alps. Yet, although the temporal resolution might be appealing for the SDM community, 306 

typical spatial resolutions of 0.25° (at best 500 m) do not match the requirements for safe 307 

calibration and projections of SDMs for many organisms, calling for further data integration 308 

(Lembrechts et al., 2019).  309 

 310 

Topography 311 
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When SDMs are calibrated only with  climate data at a low spatial resolution (e.g. Worldclim; ~1-312 

km grid cells), their fit and predictive power are often improved by incorporating additional 313 

predictors (Luoto and Heikkinen, 2008; Pradervand et al., 2014), or by enhancing them to 314 

consider finer-scale processes (e.g. topoclimate Daly, 2006; Karger et al., 2017). One important 315 

predictor is the topography, which locally controls biota, habitat structure, and growing conditions 316 

(albeit mostly indirectly, Austin and Van Niel, 2011). It does so primarily by affecting local climate 317 

(<1 km2) through elevation (adiabatic lapse rate), exposure (to solar radiation and wind), and cold 318 

air pooling (Böhner and Antonić, 2009), but also through its effect on soil development, causing 319 

spatial variability in soil depth and nutrient as well as water availability (Fisk et al., 1998). 320 

Topography-related indirect variables (sensu Guisan and Zimmermann, 2000), such as slope or 321 

topographic position, or more direct variables such as potential solar radiation are broadly used 322 

in SDMs and evolutionary ecology (Kozak et al., 2008; Leempoel et al., 2015). The topographic 323 

wetness index is also a commonly used proxy for soil moisture (see e.g. le Roux et al., 2013a). 324 

Including these variables improves SDMs, but interpreting the actual drivers of species 325 

distributions related to these variables can be difficult. Topographic data are indeed only 326 

surrogates for direct environmental controls of occurrence and abundance and the effects of 327 

topographic variables on plant distributions are therefore distal (sensu Austin, 2002, 2007; Mod 328 

et al., 2016; Moeslund et al., 2013). Improvements are also scale-dependent as topographic 329 

variables that make sense over a small geographic area can become problematic at broader 330 

scales if they are not linearly related to the environmental factors for which they serve as proxies.  331 

Regardless of scale, the problem with using indirect (i.e. distal) predictors of topography is that 332 

the identified relationships are inherently non-causal, which therefore reduces model 333 

transferability in space and time. This limitation also applies for other predictor variables based 334 

on climate or land cover, notably when SDMs are calibrated for species situated at high trophic 335 

levels.  336 
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One solution to this problem is to utilize more direct and causal predictors or resource variables 337 

(Austin, 2002; sensu Guisan and Zimmermann, 2000). For example, SDMs can be calibrated with 338 

nutrient status (Bertrand et al., 2012; Buri et al., 2017; Coudun et al., 2006; Dubuis et al., 2013; 339 

Vries et al., 2010), as well as fine resolution climate predictors based on topography and remote 340 

sensing-derived estimates of vegetation cover (Ashcroft and Gollan, 2011; Lenoir et al., 2017). 341 

Digital elevation models, in turn, can be used to directly estimate cold-air drainage, which can 342 

lead to improved predictions of species distributions over indirect estimates of topography 343 

(Ashcroft et al., 2014; Patsiou et al., 2017). Remote sensing offers another solution. Relevant 344 

accurate high-resolution terrain data (Jaboyedoff et al., 2012; Leempoel et al., 2015) are 345 

increasingly obtained using Light Detection and Ranging (LiDAR) technology (e.g. Mathys et al., 346 

2004; Sørensen and Seibert, 2007; Vierling et al., 2008). The benefits of LiDAR are specifically 347 

related to its capacity to detect minor terrain features, such as hill tops, ridges, small depressions, 348 

and minor hydrological features (Engstrom et al., 2005; Kammer et al., 2013; Kemppinen et al., 349 

2018), which are expected to play an important role in determining species distribution (Graf et 350 

al., 2009; Pradervand et al., 2014). Moreover, high point return densities (1–10 points/m) and 351 

relative ease of data collection across large areas makes LiDAR a popular option for measuring 352 

bare earth elevation and vegetation height (Hancock et al., 2017). However, the accuracy of 353 

LiDAR-derived digital elevation models can vary considerably across topographic and land-cover 354 

gradients (Leitold et al., 2015). For instance, it is common to achieve high elevation accuracies 355 

(<0.15 m root mean square error) in areas with low vegetation cover and relatively flat terrain, 356 

(Montané and Torres, 2006; Spaete et al., 2011), but elevation errors in digital elevation models 357 

tend to increase in areas covered by dense vegetation. Further work is required to determine how 358 

these errors in elevation are propagated to the direct predictors that are desirable in SDMs (cold 359 

air drainage, vegetation structure, exposure to winds and radiation, microclimate), and to the SDM 360 

itself.  361 
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Unlike high-resolution topographic information, the availability of spatial layers of soil conditions 362 

is still limited (Fang et al., 2016). Yet spaceborne multispectral and imaging spectroscopy 363 

instruments have a high potential for mapping topsoil carbon (Peón et al., 2017) and organic 364 

matter content as well as soil physical properties (Rosero-Vlasova et al., 2018). These novel 365 

possibilities should be tested in SDMs in the future. 366 

 367 

Physical disturbances 368 

Physical disturbances include geomorphological disturbances such as fluvial erosion, nivation, 369 

landslides, rock falls and other disturbances such as mechanical abrasion by wind or fire. 370 

Geomorphological processes in particular, create a wide range of disturbance regimes across 371 

landscapes (Aalto et al., 2017; Gooseff et al., 2003; Niittynen and Luoto, 2018) that may 372 

significantly alter local soil stability, moisture conditions, and nutrient availability (Kozłowska and 373 

Rączkowska, 2002). Due to ongoing land-use and climate change, these disturbance regimes are 374 

predicted to change rapidly as many geomorphical processes have a significant climate response 375 

(Knight and Harrison, 2013), with small changes in climate forcing triggering large changes in 376 

Earth system processes (Aalto et al., 2017). Accordingly, Earth system processes potentially 377 

represent key drivers of local habitat heterogeneity (Cannone et al., 2016), variation in ecosystem 378 

functioning (Frost et al., 2013), and species assemblages (le Roux et al., 2013b; Malanson et al., 379 

2012).  380 

Recent studies demonstrate that the incorporation of direct Earth system processes variables – 381 

as opposed to the indirect topographic and soil surface properties used as surrogates in plant 382 

SDMs (Dirnböck et al., 2003; Mellert et al., 2011) – can improve the explanatory and predictive 383 

power of SDMs (le Roux et al., 2013b; le Roux and Luoto, 2014; Niittynen and Luoto, 2018; 384 

Randin et al. 2009a). However, the type and necessity of including disturbance variables in 385 

models are highly environment-specific. For decades, remote sensing data have been used for 386 
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the mapping of geomorphological landforms and processes (Walsh et al., 1998). The high spatial 387 

resolution of airborne photographs provides a valuable data source in that context, particularly for 388 

detecting smaller landforms (e.g. 1-10 m). Yet, the precision (< 10 m) and increasing temporal 389 

resolution (revisit time of 1-5 days) of satellite data, such as WorldView 3 390 

(http://worldview3.digitalglobe.com), the Planetscope satellite constellation 391 

(https://www.planet.com), or open access ESA Sentinel-2 (https://sentinel.esa.int), can now 392 

compete with that of aerial photography. High-resolution satellite imagery is thereby becoming a 393 

valuable data source for the modeling of dynamic processes. Attempts to include remote sensing-394 

based geomorphological and other non-anthropogenic physical disturbances into SDMs include 395 

Miller and Franklin (2002) with landforms derived from a DEM, and Connell et al. (2017) as well 396 

as Madani et al. (2016) for fire. 397 

 398 

Direct anthropogenic pressure 399 

The availability of spatially and temporally highly resolved land-cover information is central to 400 

many monitoring programs and land-cover mapping is probably one of the oldest application of 401 

remote sensing, starting with aerial photographs from hot air balloon in the 1860’s and from 402 

airplane in the 1910’s (Fuller et al., 1994). Assessments of changes in land systems range from 403 

local to regional and global (Stürck and Verburg, 2017; van Asselen and Verburg, 2013) and from 404 

historical (Bolliger et al., 2017; Kaim et al., 2016; Loran et al., 2017) to predictive, with scenario-405 

based assessments of potential future changes in land use (Martinuzzi et al., 2015; Pazúr and 406 

Bolliger, 2017; Price et al., 2015). 407 

Changes in land cover and land use affect biodiversity in different ways. In the case of 408 

urbanization, there is usually a complete replacement of (semi-)natural open land with buildings 409 

or other impervious infrastructures such as roads, which profoundly changes species distributions 410 

(Lembrechts et al., 2017). However, impacts on species distributions or abundances can also be 411 
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triggered by other forms of land-use and land management such as slash and burn cultivation or 412 

deforestation,  or by modification of their intensity (e.g., agricultural practice, Randin et al., 2009b). 413 

Both the detection of changes in land cover and the differentiation between changes in land cover 414 

and land use are difficult. Yet progress has been made over recent years using change patterns 415 

in remotely sensed data as indicators of change in management and land-use intensity (Eckert et 416 

al., 2017; Franke et al., 2012; Gómez Giménez et al., 2017; Jakimow et al., 2018; Rufin et al., 417 

2015). Examples include the mapping of grassland mowing frequencies through the identification 418 

of typical variations in greenness during the growing season (Kolecka et al., 2018), observed 419 

agricultural intensification in Kenya through the successful long-term monitoring of rainfed and 420 

irrigated agriculture using monthly satellite data composites (Eckert et al., 2017), or the 421 

occurrence of plantation forests in in the southeastern United States based on high resolution 422 

spatial patterns (Fagan et al., 2018). 423 

Until recently, small or heterogeneous areas important to landscape structure and land-use 424 

management were not detected due to low spatial, spectral, and temporal resolution. These 425 

limitations are partially addressed with spatially, spectrally, and temporally highly resolved 426 

instruments such as on the Sentinel-2 constellation (ESA, 2018). Every five days, these sensors 427 

provide global coverage of the land surface at a spatial resolution of 10, 20, and 60 m (depending 428 

on spectral band setting and product definition).  429 

However, in spite of the novel developments and achievements of remote sensing, limitations will 430 

persist in observing land management practices relevant to biodiversity. Proper characterization 431 

of land-cover and land-use change faces the difficulty of the ‘curse of dimensionality’. By 432 

improving any of the spatial, spectral or temporal resolutions of an Earth observation instrument, 433 

exponential increase of the other two remaining dimensions is needed to properly describe the 434 

dimensionality of the signal per se. Currently, data integration, fusion or multi-modality seems to 435 

hold most promise. Examples of such approaches are provided by Van Asselen and Verburg 436 

(2013), Price et al. (2015), See et al. (2015), and Estel et al. (2018).  437 
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Land cover and land use have traditionally relied on two-dimensional (2D) representations of the 438 

environment. Yet, 3D vegetation structure not only allows for more continuous landscape 439 

representations but is also a crucial determinant of species habitat (Fawcett et al., 2018; Gastón 440 

et al., 2017; Huber et al., 2016; Milanesi et al., 2017; Torabzadeh et al., 2014; Zellweger et al., 441 

2016) and functional connectivity (Marrotte et al., 2017; Milanesi et al., 2017). Such evidence 442 

stresses the need for more detailed landscape-content information, and for 3D structure 443 

information to supplement habitat assessments. These structures are captured using digital aerial 444 

photogrammetry (Ginzler and Hobi, 2015) or active remote sensors, e.g., LiDAR (Bergen et al., 445 

2009; Merrick and Koprowski, 2017). 3D structure represented as morphological traits are 446 

increasingly combined with physiological traits allowing to model and predict substantial detail on 447 

functional diversity (Asner et al., 2017; Schneider et al., 2017) as well as light interaction within 448 

the 3D canopy (Schneider et al., 2019).  449 

Moving from simple land-cover representations to more species-relevant representations of land 450 

use requires advances in remote sensing and integration with other data (Wulder et al., 2018). 451 

Yet, following Franklin et al. (2014) and others (Boulangeat et al., 2014; Martin et al., 2013; 452 

Newbold, 2018), adaptations are also needed for SDMs to properly account for such novel 453 

landscape representations and address not only climate change (Titeux et al., 2016) but also 454 

land-use change. Increasing the detail in landscape characterization not only requires SDMs to 455 

be capable of addressing the represented diversity, but it also requires understanding of the 456 

temporal dynamics and climate responses of land use at a higher level of detail. To avoid 457 

overwhelming and, sometimes unnecessary, complexity, the sensitivity of the SDMs to the refined 458 

detail should be continuously tested and simplifications made as part of the modeling process. 459 

Besides land-use composition, land-use configuration can in some cases represent a good proxy 460 

for those species requiring corridors and landscape borders to survive (e.g., Neilan et al., 2019; 461 

Vinter et al., 2016). Accordingly, the heterogeneity of land use or of satellite reflectance data has 462 

been widely assessed in the past, using various algorithms and metrics such as multivariate 463 
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statistical analysis (Feilhauer and Schmidtlein, 2009), the spectral species concept (Féret and 464 

Asner, 2014), self-organizing feature maps (Foody, 1999), multidimensional distance metrics 465 

(Rocchini et al., 2016), and Rao’s Q diversity (Rocchini et al., 2017). Each of them addresses one 466 

or several issues related to heterogeneity measurements. These can then be incorporated as 467 

metrics of land-cover heterogeneity and land-cover change into SDMs to drive future predictions, 468 

such as in Coops et al. (2016). 469 

 470 

3. Modeling species distribution using remote sensing data: closing gaps and moving 471 

forward  472 

We are coming to an era of cost-efficient mass processing of high-resolution remote sensing data 473 

products over extensive geographical areas and long periods of time (Hansen et al., 2013). This 474 

coincides with the increasing demand for reliable, spatially comprehensive and time-sensitive 475 

information on the status of and trends in biodiversity (Navarro et al., 2017) and the urgent need 476 

to achieve significant progress towards sustainability. Remote sensing data are increasingly 477 

recommended for and applied to biodiversity monitoring and conservation (e.g. see Alleaume et 478 

al., 2018; Lausch et al., 2016; Rocchini et al., 2016; Schneider et al., 2017; Schulte to Bühne and 479 

Pettorelli, 2018; Vihervaara et al., 2017). In this context, such data are used notably in the 480 

monitoring of EBVs (e.g., see Alleaume et al., 2018; Fernandez et al., 2019; Pettorelli et al., 2016) 481 

and the adoption of systematic observation requirements is steadily improving (Navarro et al., 482 

2017; Pettorelli et al., 2016; Skidmore et al., 2015). However, the use of remote sensing data in 483 

the reporting on individual sustainable development goal indicators is not systematic. For 484 

instance, whereas the methodologies to assess progress on “forest area as a proportion of total 485 

land” (SDG 15.1.1), “sustainable forest management” (SDG 15.2.1), “proportion of land that is 486 

degraded over total land area” (SDG 15.3.1), or “mountain green cover index” (SDG 15.4.2) are 487 

largely or fully based on remote sensing data, this is not the case for reporting on the “coverage 488 

by protected areas of important sites for mountain biodiversity” (SDG 15.4.1). Here we discuss 489 
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joint ventures between the ecological modeling and remote sensing communities that could 490 

ultimately contribute to improving as well as accelerating the modeling and prediction of species’ 491 

distributions across large spatial scales and the delivery of reliable information for reporting on 492 

progress towards specific sustainable developments goals such as SDG 15.4.1. The joint 493 

ventures we propose pertain to time series and temporal stacking (see paragraph 2 below, Fig. 494 

2), the direct detection and sampling of species and their traits (see paragraph 3), the 495 

improvement of integrated and dynamic range models (see paragraph 4, Fig. 3), and the 496 

prediction of belowground processes, disease and biotic interactions (see paragraph 5).  497 

 498 

Time series and temporal stacking 499 

Most SDM studies that have included remote sensing data products so far have used static and 500 

temporally aggregated remote sensing-derived layers as predictors (e.g. land surface 501 

temperature, water availability, topography, land cover and 3D structure, section 2). Fewer 502 

attempts have been made to take advantage of the existing time series data and the dynamic 503 

information contained in remote sensing data products (Fernández et al., 2016; Pinto-Ledezma 504 

and Cavender-Bares, 2020), despite the pivotal role that such temporally explicit data play. For 505 

instance, long-term time series of remote sensing data are key to test the temporal transferability 506 

of SDMs (Yates et al., 2018), a basic requirement to formally guide and inform monitoring 507 

strategies in changing environments and make sure that model projections follow the observed 508 

trajectories of species. Likewise, long-term observations of response variables, such as 509 

occurrences or abundances of focal organisms, are essential to understand and project the 510 

impact of global change with SDMs. Andrew and Ustin (2009), Bradley and Mustard (2006), or 511 

Malavasi et al. (2019) provide examples of the integration of occurrence data derived from remote 512 

sensing into SDMs. The availability of long time series from satellites or cost-effective tools such 513 

as Unmanned Aerial Vehicles  (UAVs, e.g. Kellenberger et al., 2018) will undoubtedly lead to a 514 

rapid increase in such applications. Finally, long-term time series are also critical for estimating 515 
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lag times. The Anthropocene is an era of rapid environmental changes. Under such conditions, 516 

lag times in cause-effect chains may severely confound the identification of species-environment 517 

relations via correlated distribution patterns. Rapid climate change, for example, is expected to 518 

cause a severe disequilibrium between climate and species distribution due to both slow 519 

colonization of areas that become newly suitable and delayed extinction from those sites that are 520 

no longer suitable to the species (i.e., extinction debts; Dullinger et al., 2012; Svenning and 521 

Sandel, 2013; Talluto et al., 2017). Land-use changes may have similar effects and many studies 522 

have demonstrated that in landscapes undergoing changes in human usage, spatial biodiversity 523 

patterns often represent habitat configurations of decades back rather than current ones (Auffret 524 

et al., 2018; Krauss et al., 2010). Matching current species distributions and environmental 525 

conditions in statistical models will hence result in flawed correlation and, as a corollary, 526 

inappropriate prediction of future development. Remote sensing data products offer a way forward 527 

here, because time series of many of these products now cover two decades, and several of them 528 

up to five (He et al., 2015). These time series have great potential in detecting and quantifying lag 529 

times, e.g. in the response of biological populations to land-cover conversions (Wearn et al., 530 

2012). Incorporating these lag times into models of species responses to past, current, and future 531 

environmental change has important ramifications for the management of biodiversity because it 532 

defines ‘windows of opportunity’ for mitigating the anticipated consequences (Kuussaari et al., 533 

2009; Wiens et al., 2015). 534 

One reason for the limited transferability of purely correlative models is the generally coarse or 535 

inadequate spatial and temporal resolution of the data used to calibrate models (Connor et al., 536 

2018; Manzoor et al., 2018; Potter et al., 2013). This spatial-resolution paradox (Lenoir et al., 537 

2017) is inherent to correlative models and stems from the spatial mismatch between the 538 

resolution at which the predictor variables (e.g. biophysical variables, see section 2) are available, 539 

the resolution that matches the response variables (e.g., species occurrence, presence-absence, 540 
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abundance or trait data; Guisan and Thuiller, 2005), and the size of the studied organism (Potter 541 

et al., 2013).  542 

Here, we argue that remote sensing could be used to better calibrate SDMs, by integrating 543 

spatially and temporally (through multiple years) more proximal environmental data to derive more 544 

comprehensive quantifications of species’ response curves along environmental gradients (see 545 

Austin and Gaywood, 1994). An improved calibration process may in turn increase the spatial and 546 

temporal transferability of both correlative and process-based models. This can be illustrated by 547 

focusing on environmentally-specific species response curves, such as temperature response 548 

curves (sensu Austin, 2002; Fig. 2(a)) and thermal performance curves (sensu Schulte et al., 549 

2011; Fig. 2(a)-(b)) are at the foundation of both correlative (Guisan and Zimmermann, 2000) and 550 

certain types of process-based (Kearney and Porter, 2009) models, respectively. Temperature 551 

response curves generated by SDMs are usually parameterized through the statistical 552 

relationship between field observations and spatial layers of temperature. Temperature 553 

performance curves used in process-based models on the other hand are best parameterized 554 

from experimental data depicting metabolic requirements, usually in the absence of competition 555 

(e.g., Chuine and Beaubien, 2001). Because they explicitly rely on a physiological basis, 556 

temperature performance curves are expected to better identify species thermal tolerance limits 557 

that set range boundaries and to be thus more robust when extrapolating species redistributions 558 

under future climate change (Eckert et al., 2017). However, physiologically-based species 559 

performance curves represent the fundamental rather than post-interactive realized niches of 560 

species (Hutchinson, 1978; Pulliam, 2000). Such performance curves are not as time- and cost-561 

efficient as statistically-based species response curves. For some species, the quantifications of 562 

statistically-based performance curves by the integration of remote sensing data (Fig. 2(c)) might 563 

better inform on the real microhabitat conditions experienced by living organisms, and thus might 564 

help to capture species’ response curves that are closer to the fundamental responses (response 565 
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niche; Maiorano et al., 2013 ; e.g. for dominant late-successional species; Pearman et al., 2008) 566 

obtained from experiments. Hence, the integration of remote sensing data into SDMs has the 567 

potential to generate more transferable SDMs (Maiorano et al., 2013). Similarly, the combination 568 

of experimental and remote sensing data (i.e. the combination of fundamental and realized 569 

niches) through e.g. the direct use of land surface temperature to derive thermal performance 570 

curves could better capture the geographic variability caused by local adaptations (Fig. 2(d)).  571 

Temporal stacking of remote sensing images (e.g. spectroscopy, thermal or radar images; Fig. 2) 572 

allows more observations of both response and predictor variables to be obtained and can be 573 

used to reduce the temporal mismatch between these variables (e.g. George et al., 2015). This 574 

in turn allows the generation of more comprehensive representations of the realized response 575 

curves. Images from imaging spectroscopy in particular can be used to gather a large amount of 576 

occurrence, abundance, and trait data (Lausch et al., 2019; e.g. van Ewijk et al., 2014). 577 

Conversely, remote sensing data can also be used to develop more accurate estimates of 578 

elevation, microclimate and other direct environmental predictors (see section 2, paragraph 3 579 

“Topography”), which will improve estimates based on coarse-scale climate grids or indirect 580 

predictors alone.  581 

Similarly, process-based distribution models such as Phenofit that integrate phenology and frost 582 

resistance for instance (Chuine and Beaubien, 2001) also strongly rely on experimental response 583 

curves (Fig. 2(b)). As a consequence, responses such as the completion of a phenological phase 584 

as a function of temperature are usually limited to a restricted set of plant species for which data 585 

are available. When remote sensing data cover large geographic extents, the same combination 586 

of temporally-stacked remote sensing images could potentially help extend such models to more 587 

species and take into account the variability due to local adaptation.  588 
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  589 

 590 

Fig. 2. Temporal stacking of imaging spectroscopy, thermal or radar images for improving 591 

response curves of statistical (a and c) and process-based (b and d) models. Thermal response 592 

curves derived from statistical models (a) describe the realized thermal niche of species whereas 593 

experimental thermal performance curves are closer to the thermal fundamental niche, thus 594 
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potentially increasing the transferability of such relationship in space and time. The response 595 

curve from statistical models in (a) is calibrated with presence (black crosses) and absence (black 596 

circles). Thermal performance curve of a phenological phase in (b) derived from phenological 597 

observations (black triangle). Time series of remote sensing images potentially allows to increase 598 

the number of observations for both calibrating thermal response curves of statistical SDMs (c) 599 

and thermal performance curves used in process-based models (d). In (c), presences and 600 

absences are extracted from remote sensing data, thus allowing to derive a high number of 601 

observations and to calibrate a response curve closer to the thermal performance curve. Similarly, 602 

in (d), phenological observations are derived from remote sensing data, allowing to estimate the 603 

spatiotemporal variability of the performance curve caused by e.g. local adaptation (green surface 604 

on d). It is also important to note that the spatiotemporal accuracy of species’ occurrence, 605 

presence-absence or abundance data collected from field observations need to be at least as 606 

high as the spatiotemporal resolution of the predictors used to fit the model to ensure robust model 607 

transferability (Manzoor et al., 2018). Optimizing environmental and biological monitoring for 608 

better data availability is hence key for the usefulness of remote sensing in SDMs (Bush et al., 609 

2017). A promising development is the European research infrastructure for Long-Term 610 

Ecological Research (http://www.lter-europe.net/elter-esfri), which is being rolled out during the 611 

coming years to provide the combined in situ data needed for future SDM improvements (Haase 612 

et al., 2018; Mirtl et al., 2018).  613 

 614 

Direct detection and sampling of species and their traits 615 

The direct detection of species using full-range (400-2500 nm) spectroscopic data (Féret and 616 

Asner, 2014) is becoming increasingly accurate, notably for trees but also for smaller organisms 617 

such as bryophytes (Skowronek et al., 2017). However, the spatial resolution of data collection 618 

remains critical and successful detection will likely remain limited to certain lifeforms and groups 619 
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of species in the near future. Beyond the detection of species, new possibilities are also emerging 620 

for capturing plant functional types using spectroscopy (Ustin and Gamon, 2010). Accurately 621 

mapping of some functional traits such as canopy traits (Asner and Martin, 2009; Singh et al., 622 

2015) and changes in other plant traits (Jetz et al., 2016; Schneider et al., 2017) is now also 623 

possible. Direct species detection and the link of spectra to the tree of life (Cavender-Bares et al., 624 

2017) can equally be achieved by using a combination of high spatial and high spectral resolution. 625 

Spectra from leaves (Cavender-Bares et al., 2016; Deacon et al., 2017) can be used with high 626 

accuracy to differentiate populations within a species and to separate hybrids from parental 627 

species. Partial Least Squares Regression methods applied to spectral profiles differentiate 628 

species with higher accuracy than genotypes and clades with higher accuracy than species 629 

(Cavender-Bares et al., 2016). In some cases,  with 1 m2 spatial resolution remote sensing allows 630 

differentiation of different genotypes of poplar clones (Madritch et al., 2014). Tree canopies are 631 

likely to be well distinguished if functional information on morphology and physiology at species 632 

level are available (Torabzadeh et al., 2019). In recent years, the use of remote sensing has 633 

enabled great advances in both functional as well as scaling-based approaches (Gamon et al., 634 

2019; Malenovský et al., 2019). In forests where species groups are well characterized and occur 635 

in clumps, species distributions can be fairly readily mapped using satellite derived data (Chastain 636 

and Townsend, 2007). Many living resources exist that contain geolocated and botanically 637 

identified trees for developing spectral libraries for tree canopies.  638 

UAVs or drones are mainly used to capture data with limited spectral resolution, to acquire thermal 639 

data, or to produce very high-resolution digital elevation models by means of 640 

stereophotogrammetry (Coops et al., 2019). UAVs can notably serve to overcome the issue of 641 

partially missing spectral resolution with high-density time series (Böhler et al., 2019). Multi-View 642 

Stereo analysis (Furukawa and Ponce, 2010) and Structure-from-Motion (Westoby et al., 2012) 643 

algorithms are increasingly used as they make it possible to estimate three-dimensional structures 644 

from partly overlapping image sequences. These approaches are very useful to analyze forest 645 
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and vegetation structures (Webster et al., 2018) and also to model marine environments including 646 

the complex structure of coral reefs (Ferrari et al., 2016), a domain of particular interest in the 647 

current period of intense coral bleaching (Walsworth et al., 2019). 648 

Another function is the collection of animal occurrences to calibrate SDMs with presence only or 649 

presence/absence data. Van Gemert et al. (2015) evaluated how animal detection and animal 650 

counting could be implemented on the basis of a combination of images acquired by drones and 651 

state-of-the-art object recognition methods. Most of the time, such images are used to carry out 652 

surveys and to count animals in a management or conservation projects (Hodgson et al., 2018; 653 

Koh and Wich, 2012). However, as all UAVs are equipped with a GPS device, the exact location 654 

of investigated individuals can also be retrieved from precisely georeferenced image data. The 655 

main challenge is related to the detection and recognition of the correct species by means of 656 

machine learning algorithms (Kellenberger et al., 2018; Ofli et al., 2016; Rey et al., 2017). Beyond 657 

this step, the generation of presence/absence of a single taxon is straightforward. This is a 658 

component included in the concept of Next Generation Species Distribution Models proposed by 659 

He et al. (2015).  660 

 661 

Improving integrated and dynamic range models  662 

Demographic processes and demographic data are increasingly integrated into models of the 663 

spatiotemporal dynamics of species’ ranges. This results from the realization that considering 664 

dynamic aspects is important and potentially markedly improves the quantification of ecological 665 

niches, the process-based understanding of range dynamics, and the forecasting of species 666 

responses to environmental change (Pagel and Schurr, 2012). This is because commonly-used 667 

static SDMs ignore spatial population dynamics, which can cause mismatches between species 668 

niches and species distributions (Holt, 2009; Pellissier et al., 2013). The data needed to 669 

parameterize dynamic range models can be obtained from demographic field measurements and 670 

small-scale experiments. However, small-scale environmental responses are not necessarily 671 
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transferable to the spatial and temporal scales of dynamic range models. In this context, time 672 

series of multi-spectral, imaging spectroscopy, and LiDAR data (Fig. 3(a)) can help to quantify 673 

changes in the environment of the focal and modeled species such as changes of suitable 674 

vegetation (Strecha et al., 2012; Fig. 3(b)) or 3D structures such as buildings or tree canopy height 675 

(e.g. Droz et al., 2019; Fig. 3(b)). Knowledge of suitable areas for, and population size of, animals 676 

in large wildlife reserves helps park rangers and managers in their efforts to protect endangered 677 

species (Guisan et al., 2013). However, correlative SDMs rely on the assumptions that species 678 

location data used for modeling are representative of a species’ true distribution and that observed 679 

species distributions are in equilibrium with environmental factors that limit those distributions. To 680 

better support conservation practice, conservation biogeography should thus favor dynamic range 681 

models and metapopulation dynamics rather than correlative SDMs. However, the more detailed 682 

information needed for dynamic range models (e.g. manual animal censuses) is expensive and 683 

sometimes potentially dangerous to collect. Hence, UAVs with consumer level digital cameras 684 

are becoming a popular alternative tool to estimate populations of large mammals (Fig. 3(a); 685 

Kellenberger et al., 2018). Furthermore, such data allow the modeling of metapopulation 686 

dynamics (Fernández et al., 2016)  and species migration in order to understand the ability of a 687 

species to occupy suitable habitat in new locations. At the same time, movements of species can 688 

be linked to landscape disturbance and succession also obtained by remote sensing and models 689 

of habitat suitability (Fig. 3(b); Franklin, 2010). 690 
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 691 

Fig. 3. Acquisition of demographic parameters for dynamic range models with time series of 692 

multispectral and / or imaging spectroscopy and airborne laser scanning data (a). The 693 

combination of such data allows to track movements of animals in suitable habitats.  694 

 695 

Predicting belowground processes, disease and biotic interactions 696 

Valuable information on belowground processes, disease, and biotic interactions can be obtained 697 

from imaging spectroscopy data. Carbon-based defense traits can be retrieved from spectral 698 

information (Couture et al., 2016), facilitating integration of information on host-specific herbivores 699 

and pathogens with leaf chemical composition. Variation in biomass and leaf chemistry, including 700 

condensed tannins, lignin, and nitrogen  should be linked to the chemistry of below-ground root 701 

exudation and to litter chemistry and litter abundance (Cavender-Bares et al., 2017). These inputs 702 

from aboveground vegetation to soil influence substrates available as food for soil organisms, the 703 

activity of enzymes secreted by soil microorganisms, and thus decomposition and nutrient cycling 704 

(Madritch et al., 2014), which are all important for species distribution. An example of the use of 705 

imaging spectroscopy in the context of biotic interactions is that of the detection of declines in 706 
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hemlock (Tsuga canadensis) stands in the eastern United States due to invasion of the exotic 707 

woolly adelgid (Adelges tsugae) (Hanavan et al., 2015). Recent work has also shown that a 708 

combination of imaging sepctroscopy and thermal data can be used to diagnose Xylella fastidiosa 709 

plants that are visually asymptomatic (Zarco-Tejada et al., 2018), and that airborne imaging 710 

spectroscopy can be used to track the spread of invasive submerged aquatic vegetation at high 711 

spatial resolution (Santos et al., 2016). These examples, and others from the early detection of 712 

moss species (Skowronek et al., 2017) and the assessment of ecosystem processes in forests 713 

(Ewald et al., 2018) illustrate the high potential of leveraging the rich information content of 714 

imaging spectroscopy data, for the description of biotic environments in SDMs. 715 

 716 

4. Conclusions 717 

In their review, He et al. (2015) discussed the importance of remote sensing data for the 718 

development of new predictor variables and the next generation of SDMs, which will include 719 

spatially explicit values of uncertainty. Here we argue that an additional value of remote sensing 720 

data lies in their temporal coverage (see section 3, paragraph and Fig. 2), which could overcome 721 

the inability of current temporally-aggregated variables to reflect the intensity or the frequency of 722 

biophysical processes and contribute to fulfilling all requirements across variables (Fig. 1). Taking 723 

advantage of long-term time series of remote sensing data to extract (absolute) extremes as well 724 

as frequencies and improve both these variables and the models in which they are used would 725 

be an avenue to explore through formal evaluation and model improvement (e.g. Zimmermann et 726 

al., 2009).    727 

Temporal stacking of available time series (see section 3, paragraph and Fig. 2) can also be 728 

performed to better capture the realized niche of species, their actual rather than potential 729 

distributions, and increase the transferability of SDMs. In this context, evidence exists that building 730 

the niche as an ensemble through time allows a better understanding and forecasting of species’ 731 

ranges under changing environmental conditions (Maiorano et al., 2013). To support this, airborne 732 
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or satellite sensors can deliver a large amount of observations pertaining to the response variable 733 

at a very high spatiotemporal resolution for both animal and plant organisms (e.g. drone 734 

multispectral images, LiDAR or high-resolution satellite data). Temporal stacking thus further 735 

allows tracking population dynamics and dispersal, which are both key variables to build hybrid 736 

and process-based models such as dynamic range models. Such observations can then be 737 

transformed from occurrences to abundance. Ultimately, gathering a large amount of data to build 738 

models should allow correlative SDMs to better estimate the true response curves along 739 

environmental gradients. 740 

Over the last decade, several studies have questioned the ability of SDMs to predict the 741 

persistence of species when these models are projected into warming conditions. Indeed, some 742 

species may be able to escape the negative effects of climate warming by moving into or 743 

persisting in microrefugia with unusual and stable climates conditions (Ashcroft and Gollan, 2013), 744 

or by adapting to new conditions.  In all these cases, remotely sensed data of high spatial 745 

resolution could be used in SDMs to better capture microclimatic conditions (e.g., soil humidity, 746 

surface and air temperature). However, important challenges remain in determining to which 747 

extent microclimate detected by remote sensing can be scaled and coupled to climate change 748 

projections from broader scale Earth system models. Indeed, models such as regional climate 749 

models provide values and anomalies of e.g. 2 m air temperature, precipitations and cloudiness 750 

and it remains to be tested whether relationships between microclimate detected by remote 751 

sensing and climate from e.g. regional climate models can be described statistically and later 752 

projected into a future climate. However, remote sensing products could be used to bias-correct 753 

Regional Climate Modes and Global Climate Models outputs (e.g. as done in Lange, 2019). 754 

Land cover has been identified as one of the thirteen terrestrial ECVs because of its feedbacks 755 

on climate through the modification of water and energy exchanges with the atmosphere. Land 756 

use and land-use change, assessed from the local to the global scale, are typically more difficult 757 

to map and in many cases cannot be remotely sensed. As a consequence, spatially-explicit data 758 
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of land use are less available and land-use changes, variability, and intensity are often neglected 759 

in SDMs, despite their potentially critical importance for species distributions. Despite recent 760 

progress to develop indicators of changes in management and land-use intensity obtained from 761 

remote sensing, online access to spatially explicit data of land use can be improved.  762 

This is particularly critical to identify the contribution of land use in SDMs applied as explanatory 763 

tools or to improve the accuracy of projections of SDMs integrated in monitoring programs.  764 

 765 

In situ monitoring, modeling, and remote sensing 766 

Although developments of remote sensing and SDM techniques have occasionally intersected 767 

over the last 30 years, combining these two fields better has great potential for future scientific 768 

progress. In line with Franklin and colleagues (Franklin et al., 2016) and others, we advocate a 769 

closer integration of remote sensing in the monitoring and modeling of species and ecosystems 770 

to better understand and predict current and future impacts of global change drivers on 771 

biodiversity (Fernandez et al., 2019). We stress that models should serve the same fundamental 772 

role in ecological monitoring as in any other scientific activity; that is, both the a priori guiding of 773 

monitoring designs, and the a posteriori guiding of data analyses. Essential elements of the 774 

monitoring design are management actions, replicated spatial climatic gradients, as well as 775 

temporal resolution and extents that capture both fast and slow processes. Ecosystem-based 776 

monitoring should be dynamic and adaptive in the sense that models and monitoring designs are 777 

iteratively improved by new empirical results, new technologies and the evolving needs of 778 

stakeholders (Ims and Yoccoz, 2017; Fig. 4). Once conceptual models (Fig. 4(a)) and appropriate 779 

monitoring designs (Fig. 4(b)) have been built, field data can be collected (Fig. 4(c)) for tracking 780 

the trajectories of individual species or the entire ecosystems. In this context, SDMs can serve as 781 

tools to identify the main drivers of changes or to project the fate of species or ecosystems (by 782 

e.g. stacked SDMs; Calabrese et al., 2014; Guisan and Rahbek, 2011; Fig. 4(d)). Finally, new 783 

field monitoring can later validate projections of SDMs and the robustness of conceptual models 784 
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(Fig. 4(e)). Here, remote sensing data can strongly contribute to adaptive monitoring programs 785 

by providing simultaneously additional data that complement field monitoring and observations 786 

for the validation of SDM projections in-between two field campaigns that are often expensive in 787 

terms of time and money. 788 

A better integration of in situ and remote sensing observations through SDMs will also contribute 789 

to devise monitoring systems capable to provide consistent biodiversity data for addressing 790 

conservation targets in multi-scale policy contexts ranging from subnational to national and global. 791 

A major area of application is the production of data informing on EBVs for species populations, 792 

which typically require interpolation and extrapolation models with the view of obtaining 793 

continuous and temporally consistent probabilistic species occurrence data from sparsely-794 

distributed observations. These model-derived data are critical for deriving consistent and 795 

scalable biodiversity change indicators that can accommodate the reporting needs of multiple 796 

management programs and policy targets (Jetz et al., 2019; Navarro et al., 2017).   797 

The SDGs are one of the key global frameworks for addressing the environmental challenges of 798 

the Anthropocene. From a biodiversity perspective, to safeguard life below water (SDG 14) and 799 

life on land (SDG 15) it is crucial to characterize and understand current species distributions and 800 

how these may change under future land use and climate scenarios. SDMs make an essential 801 

contribution to providing this information but have several important limitations that can 802 

compromise their accuracy and hence the effectiveness of resulting conservation interventions 803 

and environmental policy. We suggest that, together with novel methodological applications such 804 

as the temporal image stacking, currently available and upcoming remote sensing data can 805 

alleviate or resolve many of the data gaps that constrain SDMs. However, there is the risk that 806 

non-specialists may unintentionally misinterpret remote sensing data, and that key data 807 

requirements for SDMs are not fully appreciated. We argue that greater collaboration between 808 

the two communities by developing jointly data platforms with standardized metadata and 809 

documentation will be a key step in achieving the full potential of remote sensing data and 810 
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products for SDMs, thereby supporting more effective conservation monitoring, management, and 811 

policy decisions for a sustainable future. 812 

 813 

Fig. 4. An ideal loop of adaptive monitoring in which remote sensing data and SDMs are combined 814 

(adapted from Ims and Yoccoz, 2017). 815 
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 822 

BOX 1 | Species Distribution Models 823 

Two categories of SDMs can be distinguished: statistical (or statistical learning sensu Drake 2014) 824 

and process-based models. Statistical SDMs (sensu Franklin 2010 also called habitat suitability 825 
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models sensu Guisan et al. 2017) are methods that relate field observations or museum 826 

specimens (e.g. occurrences, abundances, or species’ traits) to environmental predictor 827 

variables. In such models, processes are empirically inferred from a combination of statistically 828 

or theoretically derived response curves (Guisan et al. 2017). In contrast, process-based models 829 

build upon explicit causal relationships determined experimentally. In these models, processes 830 

such as phenology and distribution are explicitly described (see Chuine and Régnière, 2017), 831 

which increases the confidence in extrapolating beyond the known spatiotemporal extent (Zurell 832 

et al., 2016). The continuum between these two modeling approaches includes hybrid (e.g. 833 

Dullinger et al., 2012), dynamic range (e.g. Cotto et al., 2017; Engler et al., 2012; Pagel and 834 

Schurr, 2012), and integrated models (Pagel and Schurr, 2012).  835 

  836 
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