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High-dimensional clustering via Random
Projections

Laura Anderlucci*1, Francesca Fortunato1, and Angela Montanari1

1Department of Statistical Sciences, University of Bologna, Italy.

Abstract

This work addresses the unsupervised classification issue for high-dimensional
data by exploiting the general idea of Random Projection Ensemble. Specifically,
we propose to generate a set of low-dimensional independent random projections
and to perform model-based clustering on each of them. The top B∗ projections,
i.e., the projections which show the best grouping structure, are then retained. The
final partition is obtained by aggregating the clusters found in the projections via
consensus. The performances of the method are assessed on both real and simulated
datasets. The obtained results suggest that the proposal represents a promising tool
for high-dimensional clustering. Keywords: High-dimensional clustering; random
projections; model-based clustering

1 Introduction
Data clustering plays a key role in modern statistics as it represents one of the most
effective tools to understand the structure underlying a given data set. The aim of clus-
tering is essentially to categorize data into ‘clusters’ (or groups) such that observations
belonging to the same cluster are more similar to each others than those in different
groups (see, for recent comprehensive reviews, Xu and Tian, 2015; Hennig et al., 2015).

Many different approaches have been proposed to address this issue. In this paper,
we focus on model-based ones, see Bouveyron and Brunet-Saumard (2014), McNicholas
(2016) and McLachlan et al. (2019) for reviews on this topic and Bouveyron et al. (2019)
for a recent book that covers topics on model-based clustering and classifications. Most
popular model-based clustering methods are based on the Gaussian mixture model
(GMM) (see, among others, Banfield and Raftery, 1993; McLachlan and Peel, 2000).

Clustering in low-dimensional spaces requires limited resources; the complexity of
the problem indeed increases with the number of observed features, p. When dealing
with high-dimensional data, the use of traditional unsupervised classification algorithms
faces several limitations; in particular, the presence of noisy or irrelevant information
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can mislead these methods due to the ‘curse of dimensionality’, as coined by Bellman
(1957). In order to overcome this problem, often dimension reduction procedures are
applied before carrying out any clustering.

Generally, the term ‘dimension reduction’ refers to two different approaches; namely,
it includes both feature selection methods that embed the high-dimensional points
into a lower subspace by selecting some ‘relevant’ variables, and feature extraction
algorithms which find an embedding by constructing new artificial features that are,
for example, linear combinations of the original ones. Variable selection strategies
have been frequently used to handle high-dimensional clustering issues, but feature
extraction procedures could be generally more efficient. Feature selection techniques
indeed may discard some potentially important variables, e.g. variables that are not
predictive if individually considered, but that could provide significant benefits when
taken in conjunction with other features.

Traditionally, variable combination methods involve the projection of high-dimensional
data onto a lower subspace with the intent of capturing as much of the data variabil-
ity as possible (e.g. Principal Component Analysis). Albeit this approach has been
successfully used in many applications, its aim does not always coincide with that
of a clustering task. In fact, the useful information about the group structure is not
necessarily contained in the subspaces with the largest variance, as exposed by Chang
(1983).

A recent approach for dimension reduction that has been gaining increasing attention
is based on Random Projections (RPs, Vempala, 2004) and consists in mapping at
random the original high-dimensional data onto a lower subspace by using a random
matrix with orthogonal columns of unit length. Specifically, the key point of RP is
that, regardless of the original data dimension, the final solution still preserves the
global linear information almost perfectly. Such a result is guaranteed by the Johnson-
Lindenstrauss (JL) Lemma (Johnson and Lindenstrauss, 1984), which states that any
n-point set in p dimensions (X = [x1, . . . ,xi, . . . ,xn]

⊤, xi ∈ Rp, i = 1, . . . ,n) can be
linearly projected onto d = O(log(n)/ε2) coordinates (with d ≪ p) , by using a random
matrix A ∈Rp×d with orthonormal columns, while preserving pairwise distances within
a factor 1± ε , ε ∈ (0,1). More precisely, with high probability over the randomness
of A:

(1− ε)||xi −x j||2 ≤ ||A⊤xi −A⊤x j||2 ≤ (1+ ε)||xi −x j||2, i, j = 1, . . . ,n (1)

where || · ||2 indicates the L2 norm.
RPs are a particularly useful tool in high-dimensional settings and their application

covers multiple areas of multivariate analysis (for a recent and detailed review see
Cannings, 2021), from supervised classification (e.g., Cannings and Samworth, 2017;
Durrant and Kabán, 2015) to linear regression (see, e.g., Ahfock et al., 2020; Slawski
et al., 2018; Thanei et al., 2017), to sparse principal component analysis (Gataric
et al., 2020), to dimension reduction (Bingham and Mannila, 2001) and to clustering
(Dasgupta, 1999; Fern and Brodley, 2003; Boutsidis et al., 2010).

Bhattacharya et al. (2009) proved that also the Hellinger distance between any two
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distributions P and Q, defined as

H(P,Q) =
1
2

(
||
√

P−
√

Q||2
)2

,

admits a low distortion JL-type embedding. In the model-based clustering context,
where data are considered as coming from a distribution that is a mixture of two or more
components, this theorem directly implies that the distance between the density of any
pair of components is preserved with arbitrarily small distortion. In other words, it states
that if two component densities are sufficiently far apart in the high-dimensional space,
then they are expected to be approximately the same also in the reduced d-dimensional
space.

These interesting results motivated us to employ random projections within a model-
based clustering framework. Specifically, inspired by the original idea of Cannings and
Samworth (2017) for supervised classification, we propose to generate a set of B low
dimensional independent random projections and to apply a Gaussian mixture model on
each of them. Our Random Projection Ensemble Clustering (RPEClu) algorithm then
obtains the final partition by combining via consensus the clustering results from the top
B∗ projections, i.e., the projections which show the best grouping structure according to
a given criterion.

Other approaches have been proposed in the literature on model-based clustering
with the aim of reducing the dimensionality; those based on on mixtures of factor
analyzers have turned out to provide particularly good results in terms of dimension
reduction (see, among others, Ghahramani and Hinton, 1997; McLachlan et al., 2003;
Montanari and Viroli, 2011, and references therein). They assume that, within each
mixture component, the data are generated according to a linear factor model and resort
to the Expectation-Maximization algorithm (EM, Dempster et al., 1977) for parameter
estimation.

McNicholas and Murphy (2008) developed a family of parsimonious Gaussian
mixture models (PGMMs) for clustering that allows for constraints upon the component
covariance structure in the most general mixture of factor analyzers model. Bouveyron
et al. (2007) proposed a GMM which takes into account the specific subspace around
which each cluster is located, therefore limiting the number of parameters to estimate.
The parameter estimation is carried out via EM algorithm and the intrinsic dimension
of each group is determined automatically thanks to either the Bayesian Information
Criterion (BIC) or Cattell’s scree-test (Cattell, 1966). In Sections 5 and 6 we compare
our approach to Bouveyron’s one.

The paper is organized as follows. Section 2 recalls the model-based clustering
framework. In the same section, some popular dimension reduction procedures for
high-dimensional clustering are briefly presented. In Section 3, the RPEClu algorithm is
introduced and defined in detail. Section 4 is devoted to practical considerations about
the computational complexity of the algorithm, the choice of the number of random
projections and the dimension of the projected space. Section 5 presents a simulation
study where the proposed methodology is compared with some benchmark clustering
techniques. In Section 6, RPEClu is applied to two sets of high-dimensional real data.
Section 7 explores some possible options to solve the problem of estimating the number
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of clusters when G is not known in advance. A final discussion on the obtained results
concludes the paper.

2 High-dimensional model-based clustering
In model-based clustering (Banfield and Raftery, 1993; McLachlan and Peel, 2000),
data are assumed to derive from a common source with G different sub-populations.
In particular, each sub-population is modelled separately (typically by members of the
same parametric density family) and the overall population is but a mixture of them.
The resulting model is a finite mixture and it is described by the following probability
density function (pdf):

f (x) =
G

∑
k=1

πk fk(x|θk).

Here, fk and θk are the density and the parameters of the k-th component of the
mixture, respectively, whereas πk is the prior probability that an observation belongs to
the k-th component (πk > 0, ∑

G
k=1 πk = 1). For clustering purposes, units are allocated

to the component whose posterior probability is maximum.
A common choice for fk(·) is the multivariate normal distribution, φk(·), parameter-

ized by its mean vector µk and its covariance matrix Σk:

φk(x|µk,Σk) = (2π)−(p/2)|Σk|−(1/2) exp
{
−1

2
(x−µk)

⊤
Σ
−1
k (x−µk)

}
.

Following this approach, the entire data set is modeled by a Gaussian mixture model:

f (x) =
G

∑
k=1

πkφk(x|µk,Σk).

In presence of high-dimensional data and limited sample size the GMM tends
to perform poorly. In fact, the number of parameters increases quadratically with p,
thus making the maximum-likelihood estimation problem ill-posed very quickly. The
earliest approaches, which have appeared in the literature to overcome this limit and
to attain parsimony, propose alternative parameterizations of the component densities.
For instance, Banfield and Raftery (1993) and Celeux and Govaert (1995) introduce
a parsimonious parameterizations of the covariance matrix in terms of its eigenvalue
decomposition so as to control the volume, shape and orientation of the Gaussian
ellipsoids. Biernacki and Lourme (2014) define different parsimonious models based on
a variance-correlation decomposition of the covariance matrices.

When performing variable selection for clustering, the aim is essentially to identify
those features that bring relevant information about the underlying group structure. In
the model-based context, the definition of ‘relevance’ should be expressed in terms
of probabilistic dependence (or independence) with respect to Z, i.e., the random
vector which describes the latent class membership (Z = [Z1, . . . ,Zk, . . . ,ZG]

⊤, such that
Zk = 1 if x arises from the kth subpopulation, 0 otherwise, j = 1, . . . ,k−1,k+1, . . . ,G).
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Specifically, the distribution of relevant variables directly depends on Z as these features
contain the key clustering information. Conversely, both redundant and uninformative
variables do not provide any additional nor useful information and, thus, they can be
assumed to be conditionally independent given the relevant variables or completely
independent of the group structure, respectively. Following this approach, several
authors have recast the variable selection problem for clustering in a model selection
one. Namely, relevant variables are sought through a stepwise procedure that, at each
step, compares models that differ in the role assigned to the variables in explaining the
clustering structure.

Pioneers of this framework were Raftery and Dean (2006), who introduced a proce-
dure in which the decision for inclusion or exclusion of a generic (set of) variable(s) xP

into the current set of clustering ones xC is taken by comparing two competing models
in terms of their BIC, defined as

BIC = 2ℓ−q logn,

where ℓ is the log-likelihood of the model, q is the number of estimated parameters and
n the number of observations. In particular, Model I assumes that xP carries relevant
information about the cluster membership, whereas Model II states that xP does not
depend on Z. The BIC associated to these models are:

BICI = BICclust(xC,xP)

BICII = BICclust(xC)+BICreg(xP|xC) (2)

Here, BICclust(xC,xP) is the BIC of the GMM in which xP adds useful information,
BICclust(xC) is the BIC of the GMM on the current set of clustering variables only and
BICreg(xP|xC) is the BIC of the regression of xP on xC. If BICI− BICII > 0, then xP is
added to the set of clustering variables xC.

This method has been further improved by Maugis et al. (2009a) and Maugis et al.
(2009b) under the assumption that the irrelevant variables can be independent of some
relevant ones.

Recently, two further extensions of the above modeling appeared in the literature:
Scrucca (2016) suggests to overcome the sub-optimality of a stepwise model search by
employing genetic algorithms; Galimberti et al. (2018) take into account the possibility
that different variable vectors provide information about different clustering structures.

Although effective in many applications, in the unsupervised classification context
the variable selection problem is ill-posed: clusters indeed strongly depend on the
selected features and the features are selected according to the clusters (see Ruiz et al.,
2009). For this reason, feature extraction procedures would rather be preferred.

Dasgupta (Dasgupta, 1999, 2000) demonstrated that RPs can be successfully used
to handle high-dimensional clustering issues with a model-based approach. Firstly, by
introducing the definition of c-separation of two multivariate Gaussian populations, he
showed that a mixture of G Gaussians can be embedded onto just O(logG) random
coordinates while preserving such separation with probability 1− δ , δ ∈ (0,1). The
idea is to guarantee that Gaussians which are well-separated in Rp remain so when they
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are projected in Rd , by preserving the O(G2) line segments joining pairs of Gaussian
centers in the original space. In order to satisfy such definition of separation, the
largest eigenvalue λmax of the component covariance matrices Σk in the reduced space,
k = 1, . . . ,G, has to be smaller than or equal to the largest eigenvalue λ ∗

max of the
corresponding component covariance matrix Σ

∗
k in Rp, k = 1, . . . ,G. Second, he proved

that even if the original Gaussians exhibit eccentric elliptical contours, their projected
counterparts are always more spherical. These two benefits are of major importance
and they definitely facilitate the learning of a Gaussian mixture model. In particular,
dimension reduction saves a lot of time and computational costs on one hand; on the
other, clusters of low eccentricity reduce the EM algorithmic challenges ensuring that,
at each step, the estimated covariance matrices are not singular.

3 Random projection ensemble clustering
As discussed in the previous section, high-dimensional data pose many challenges to
model-based clustering. Methods in this class indeed become rapidly over-parameterized
since the number of parameters to estimate increases quadratically with the number p of
observed features.

Random projections have shown to provide promising results for the analysis of
high-dimensional data. Boutsidis et al. (2010) propose to use Random Projections
with K-means clustering; specifically, they prove that data can be projected into a
t-dimensional space, with t = Ω(K/ε2), for any ε ∈ (0,1/3), such that the optimal
K-partition of the point set is preserved within a factor of 2+ε with constant probability.
However, the main inconvenience of RPs is that they are highly unstable: namely,
different random projections of the original data may provide completely different
classification results. That is the reason why most of the successful proposals on RPs
resort to ensembles. For example, Fern and Brodley (2003) propose to aggregate the
clustering results of a GMM on different random projections of the data into a similarity
matrix containing the probability “estimates” that any two data points belong to the
same cluster; then, they suggest to perform an agglomerative clustering procedure on
such a matrix to produce the final groups.

In this paper, we also exploit the general idea of RP ensemble for high-dimensional
clustering. In particular, our novel proposal consists of applying a Gaussian mixture
model to carefully chosen random projections of the original data, but differently from
Fern and Broadley, we use the GMM properties for both projection selection and
consensus aggregation.

3.1 On the choice of random projections
Differently from other transformation techniques (such as, for example, principal com-
ponents or projection pursuit), the random projection method does not exploit any
‘interestingness’ criterion to identify the ‘optimal’ projection. High-dimensional data
are just embedded into a lower dimensional subspace by using a random projection
matrix A with orthogonal and unit length columns (e.g. generated according to Haar
measure, Haar, 1933). As a consequence of that, results from distinct configurations of
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the same data can be even dramatically different: some projections indeed can highlight
a clear group structure in the lowered data, whilst some others can derail any hope of
learning by confusing all the groups together.

In this section, we propose a method for choosing a number B∗ of ‘good’ random
projections, that is, a criterion for identifying those projections showing a clear group
structure.

Hennig (2019) provides a detailed review of the validation indexes proposed in the
literature to evaluate the quality of a clustering procedure. Although effective, many of
these indexes rely on a measure of distance/dissimilarity and, therefore, they may seem
inconsistent with a model-based framework. Furthermore, since in the unsupervised
context no apriori information about the structure being looked for is available, we
believe it makes sense to consider the RP selection as a part of the clustering algorithm,
i.e., as the choice of the model that best fits the data according to a specific criterion
(e.g. the BIC).

The BICs of mixture models fitted to different random projections cannot in principle
be compared, because they are referred to different variables generated by the different
random projections. On the contrary, the BIC of different models defined in the original
variable space can be compared. We search for the solution that maximizes the log-
likelihood of the GMM fitted on the original data, penalized by the number of free
parameters.

In practice, in order to avoid the drawbacks associated with the high-dimensional
spaces, a feasible solution consists in considering the following variable partition

Y∗ = [Y, Ȳ] = [XA,XĀ],

where X ∈ Rn×p is the original high-dimensional data matrix, A ∈ Rp×d is the
random projection matrix and Ā ∈ Rp×(p−d) is its orthogonal complement, that can be
easily computed via QR decomposition (see, e.g., Golub and Van Loan, 1996). The
basic idea is to perform model-based clustering on the reduced data Y = XA, assuming
that the underlying group structure may be well approximated by the one in the d
dimensions of the block matrix Y∗, i.e.,

f (Y|Z = z) =
G

∑
k=1

πkφk(Y; µYk
,ΣYk). (3)

This assumption does not imply that Ȳ is not useful for clustering, but only that it
contains some information on the group membership z that is very similar to that already
available in Y. Therefore, in terms of distributional representation, it seems reasonable
to think of Ȳ as conditionally independent of Z given Y; it could be necessary for the
clustering, but only if Y is not present (Fop and Murphy, 2018). Its density, by assuming
a multidimensional multivariate regression model between Ȳ and Y, can be expressed
as:

f (Ȳ|Y) = φ(Ȳ; µ Ȳ|Y,ΣȲ|Y) (4)
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where

µ Ȳ|Y = µ Ȳ +ΣȲYΣ
−1
Y (Y−µY)

ΣȲ|Y = ΣȲ −ΣȲYΣ
−1
Y ΣYȲ. (5)

(5) describes the Schur complemement of the block ΣY in the p× p block-matrix

ΣY∗ =

[
ΣY ΣYȲ
ΣȲY ΣȲ

]
.

The distribution of Y∗ is the product of the marginal density of Y, f (Y|z), and the
conditional density of Ȳ|Y, f (Ȳ|Y):

f (Y∗|Z = z) =

[
G

∑
k=1

πkφk(Y; µYk
,ΣYk)

]
φ(Ȳ; µ Ȳ|Y,ΣȲ|Y). (6)

(6) can be easily rewritten in terms of log-likelihood as:

n

∑
i=1

log[ f (y∗i |Zi = zi)] =
n

∑
i=1

log[ f (yi|Zi = zi)]+
n

∑
i=1

log[φ(ȳi|yi)]. (7)

The BIC corresponding to (7) is:

BIC = BICGMM(Y)+BICreg(Ȳ|Y), (8)

where BICGMM(Y) = 2log[ f (Y)]− qY log(n) is the BIC associated to the Gaussian
mixture fitted on the d-dimensional data and BICreg(Ȳ|Y) = 2log[ f (Ȳ|Y)]−qȲ log(n)
is the BIC for the linear regression of the (p−d) last columns of Y∗ on the first d ones.
In high dimensional clustering the dimension of Y is generally much smaller than that
of Ȳ and is the same for each projection; therefore, the size of Y only slightly affects
the penalty term in the BICreg. This condition does not hold in the scenarios described
in Maugis et al. (2009a) and Scrucca and Raftery (2018).

The number of free parameters of the GMM on Y and those of the linear regression
are described by qY and qȲ, respectively. In order to allow for great flexibility, ΣȲ|Y is
assumed to have a general form and, thus,

qȲ = (p−d)(d +1)+
(p−d)[(p−d)+1)]

2
.

When the number of observed features p is particularly large with respect to d, a
restricted form for ΣȲ|Y is suggested. Namely, ΣȲ|Y = diag(σ2

1 , . . . ,σ
2
p−d). In this case,

the number of free parameters for the regression model reduces to qȲ = (p− d)(d +
1)+(p−d).

As depicted in Figure 1, the criterion we propose provides a good ranking of the
random projections according to the goodness of the partition they induce. Specifically,
models with increasing BIC exhibit large values for the adjusted Rand index (ARI,
Hubert and Arabie, 1985), i.e., a measure of the similarity between the classification
yielded by the GMM on the reduced data and the true class membership.
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Figure 1: ARI of the classification yielded by the GMM on B = 1000 different 8-
dimensional projections of a simulated dataset with p = 100, G = 2, n1 = n2 = 100 and
the true class membership, ordered by increasing values of the BIC.

Such result does not imply that the projections associated with the largest BIC would
yield redundant solutions. In fact, the random projection method naturally perturbs
different configurations of the original data, thus, inducing diversity. Pairwise ARIs on
all clustering vectors returned by the selected top 100 projections largely differ. For
example, in the scenario depicted in Figure 1 the average ARI value ranges from 0.6170
to 0.9845, for 100 replications.

3.2 On the result aggregation
A possible solution to the inherent instability associated with random projections in-
volves the use of cluster ensembles that combine multiple individual partitions into a
single consensus one. This process was pioneered by Strehl and Ghosh (2002) who
proved that ensembles can provide robust and stable solutions across different problem
domains. A detailed review of the state-of-the-art cluster ensemble methods can be
found in Boongoen and Iam-On (2018), where both theoretical aspects and empirical
applications are widely discussed.

Consensus clustering algorithms generally derive the ultimate data partition by min-
imizing an objective function that measures how dissimilar each hard or soft consensus
candidate is from the ensemble members. In this work, we suggest to derive the final
unit allocation by using the greedy algorithm proposed by Dimitriadou et al. (2002)
and developed in Hornik (2005); in the following, a description of their procedure is
sketched.

The aim is to look for a partition P of the given dataset {x1, . . . ,xn} into G classes
that optimally represents a given set of B∗ partitions of the same set. Each of these
B∗ partitions is represented by an n×G membership matrix U(b), b = 1, . . . ,B∗. The
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element u(b)ik of U(b) is the membership of xi to the kth class, k = 1, . . . ,G, of the bth
partition. The final partition P is encoded as an n×G matrix with element pik. In
order for the partition P to be optimal, it needs to be at the smallest distance from the
considered B∗ partitions. Thus, the task is to find P in such a way that

min
P

(
1

B∗

B∗

∑
b=1

h(U(b),P)

)
,

where h(U(b),P) is the dissimilarity function between U(b) and P:

h
(

U(b),P
)
=

1
n

n

∑
i=1

∥∥∥u(b)
i −pi

∥∥∥2
.

However, because of the label switching clustering issue, any relabeling of the
classes is to be considered as the same partition. Thus, partitions U(b) and Πb(U(b)),
which only differ by a permutation of the class labels are to be considered the same and
the distances should remain the same too:

h
(

U(b),P
)
= h

(
Πb(U(b)),P

)
, ∀P.

Therefore, the dissimilarity function h(U(b),P) between two clustering partition
U(b) and P should be rather defined as:

h
(

U(b),P
)
= min

Πb

(
1
n

n

∑
i=1

∥∥∥Πb(u
(b)
i )−pi

∥∥∥2
)
.

where the minimum is taken over all possible column permutations Πb.
The task of finding an optimal partition P is then given by the minimization problem

min
p1,...,pn

min
Π1,...,ΠB∗

(
1

B∗

B∗

∑
b=1

1
n

∥∥∥Πb(u
(b)
i )−pi

∥∥∥2
)
. (9)

In order to find an optimal P, (9) has to be minimized simultaneously for pi and Πb,
because the choice of the permutations Πb depends on pi. As a direct solution of the
minimization problem is unfeasible, a greedy algorithm is employed.

The iterative procedure determines, at each step b (b = 1, . . .B∗), the locally optimal
permutation matrix Πb for relabeling by minimizing the Euclidean distance between
the previously determined consensus candidate P(b−1) (note that at the initial step
P(0) ≡ U(1)) and all the possible permutations of the membership matrix U(b), Πb(U(b)).
Then, it derives the updated consensus partition by:

P(b) =
1
b

b

∑
l=1

Π̂l(U(l)) =
b−1

b
P(b−1)+

1
b

Π̂b(U(b)).

In so doing, this sequential method helps to tackle the issue of simultaneous combi-
nation of all partitions, otherwise computationally unfeasible. For further details, see
Dimitriadou et al. (2002), and Hornik (2005) for the corresponding R package.
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3.3 Random projection ensemble clustering algorithm
In this paper, a new model-based clustering method for high-dimensional data based on
random projections is introduced. The procedure is sketched in Algorithm 1.

Algorithm 1: RPEClu
Result: Partition of the original data X into G groups.
Set G, d, B, B∗;
1. for b from 1 to B do

(i) Generate an independent d-dimensional random projection matrix Ab;
(ii) Fit a GMM with G components on the projected data Y = XAb;
(iii) Retain the induced data partition Cb;
(iv) Fit linear regression of Ȳ on Y, where Ȳ = XĀb and Āb is the

orthogonal complement of Ab;
(v) Compute the BIC as described in (8) ;

end
2. Sort the BIC values of the B solutions;
3. Select the top B∗ projections from the BIC list of point 2;
4. Aggregate the corresponding B∗ cluster membership vectors via consensus;
5. Partition the original data X according to the consensus membership of point

4;

4 Practical considerations

4.1 Computational complexity
The algorithm we propose derives the final partition by aggregating the results of Gaus-
sian mixture model clustering performed on an ‘optimal’ subset of random projections.

The first step of this procedure involves the computation of B random projection
matrices. The cost of this operation varies according to the method used: namely,
generating a single RP from the Haar measure requires O(pd2) operations, whilst
choosing each entry of this matrix uniformly and independently from [−1,1] takes time
only O(d p) (see Achlioptas, 2003).

Once the projections have been generated, the original high-dimensional data should
be embedded into the lowered spaces; each projection requires O(npd) operations.

Then, for b = 1, . . . ,B, a GMM is fitted on the reduced set Y = XAb with a total
cost of O(Gd3)∼= O(d3), while the orthogonal complement of A is computed via QR
decomposition with a cost of O(p3). Simultaneously, a multiple linear regression of
Ȳ = XĀb on Y is computed. The cost of this step is O((p− d)3). Finally, the BIC
values computed as in (8) are sorted and observations are clustered by using the best
B∗ projections (i.e., those yielding the highest values for the BIC). These steps involve
O(B∗)1 and O(B∗nd) resources, respectively.

1See the R Documentation for the sort function with default settings.
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4.2 Choice of d

Dasgupta (2000) proved that data from an arbitrary mixture of G Gaussian distributions
can be randomly embedded into a subspace of just O(logG) dimensions, while preserv-
ing the group structure almost perfectly. Furthermore, if d < logG, the worsening of the
mapping performance is gradual. This result is particularly appealing as it proves that
the dimension of the projection subspace is independent of the original dimensions of
the data, that is, d does not depend upon n nor p. The numerical experiments conducted
on both simulated and real data corroborate Dasgupta’s result.

In particular, we generated data from two p = 500-dimensional Gaussian popula-
tions, with correlated features (0.90 for all of the features); the size of each sample was
set to 100. RPEClu was applied for different values of d (namely, {2,4,8,11,15,30},
corresponding to ⌊1log(G)⌉+1,⌊5log(G)⌉+1,⌊10log(G)⌉+1,⌊15log(G)⌉+1,⌊20log(G)⌉+
1,⌊42log(G)⌉+ 1, where ⌊x⌉ refers to the rounding of x to the next integer), with G
considered as known (and equal to 2), B = 1000, B∗ = 100 and no constraints were
imposed on the covariance matrices; 50 replications were performed. Figures 2 reports
the adjusted Rand index of the obtained partition and the true class membership for
different d values.

The real data (fully described in Section 6.1) refer to n = 231 samples of ho-
mogenized raw meat, whose spectra are recorded; the total number of variables is
p = 1050 and G = 5. RPEClu is run with B = 1000, B∗ = 100 and different val-
ues of d = {3,17,33,65,98,130} corresponding to ⌊1log(G)⌉+ 1, ⌊10log(G)⌉+ 1,
⌊20log(G)⌉+1, ⌊40log(G)⌉+1, ⌊60log(G)⌉+1, ⌊80log(G)⌉+1; G was considered
as known and equal to 5, no constraints were imposed on the covariance matrices.
Figures 3 reports the adjusted Rand index of the obtained partition and the true class
membership for different d values.

Figures 2 and 3 clearly show that a choice of d = ⌊10log(G)⌉+1 works pretty well;
higher values of d do dot noticeably improve the final performance.

4.3 Choice of B and B∗

The random projection ensemble clustering performances strongly depend on the possi-
bility to identify those random projections that induce a very clear group structure in the
reduced space.

The choice of B∗, i.e., the number of ‘base’ models to retain in the final ensemble,
is insidious. Several studies have shown that ensembles of classifiers are generally
more effective when they are constructed from members whose errors are dissimilar;
see, for example, Kittler et al. (1998). In fact, aggregating the base results of models
that agree on how a dataset should be partitioned does not provide any improvement.
The random projection method itself represents a valid technique to introduce artificial
instability (and thus diversity) to an ensemble as it allows to generate clustering results
from different perturbed configurations of the original data. However, as Fern and
Brodley (2003) point out, taking into account too many projections may degrade the
final result, especially when the original features are highly correlated; furthermore, it
surely increases the computational cost of the procedure. On the other side, considering
a very small ensemble can be risky, too. In fact, since in clustering no apriori knowledge
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Figure 2: Study on the choice of d. The boxplots report the ARI of the random projection
ensemble clustering algorithm for different dimensions of the projected space, d. The
numbers of generated and selected projections are set equal to B = 1000 and B∗ = 100,
respectively.
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Figure 3: Meat data. ARI of the random projection ensemble clustering algorithm for
different dimensions of the projected space, d. The numbers of generated and selected
projections are set equal to B = 1000 and B∗ = 100, respectively.
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Figure 4: ARI of the partition yielded by the RPEClu algorithm and the true class
membership on simulated data with p = 500, G = 2 and n1 = n2 = 100, over 100
replications. Results for different number of generated projections B (namely 100, 300,
700 and 1000) are displayed in panels; the B∗ retained projections varies on the x-axis
as a fraction of B (namely, 10%, 30%, 50% and 100%).

of the true data structure is available, identifying the best unsupervised classifier is
not a trivial task and, therefore, any criterion (including the BIC we propose) could be
confused. In order to avoid the selection of too similar or inaccurate base classifiers, a
compromise solution for B∗ is highly suggested.

Figure 4 displays the distribution of the ARI for the simulated scenario studied in
section 4.2 for different values of B and B∗, over 100 replications. The resulting message
says that the choice of B∗ is indeed the most crucial and, provided that the number of
generated projections is large enough, a fraction of 10% (or of an overall number of
projections that is about 100) generally returns better results; accuracy decreases for
larger ensembles.

Figure 5 reports the study results for the meat real data (employed in Section 4.2 and
fully described in Section 6.1). The plot highlights how larger B settings are associated
with better results; here, an ensemble of 210 classifier would return the best result in
terms of accuracy, but good performances are also observable with a smaller ensemble
chosen over a larger set of projections.

On the basis of the numerical evidences we suggest B = 1000 and B∗ = 100 as
generally good choices; however, computationally less demanding B = 700 with a
fraction of retained projections of 10-30% can also return acceptable results.
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Figure 5: ARI of the partition yielded by RPEClu algorithm and the true class member-
ship on the Meat dataset. The ensemble size is taken as fraction of the total number of
generated projections and is reported on the x-axis. The dash-dot yellow line refers to
B = 100, the dashed blue line to B = 300, the long-dashed green line to B = 700 and
the black solid line to B = 1000.

5 Simulation study
The performance of the RPEClu algorithm is evaluated in a variety of scenarios through
an extensive simulation study. In particular, G = {2,4} different Gaussian clusters of
size 100 are generated in p = {100,500,1000} dimensions by using the sim_normal
function of the clusteval R package (Ramey, 2012). According to its parametrization,
each population has a p-dimensional multivariate normal distribution, with mean vector

µk =
1
2

p/G

∑
j=1

e(p/G)(k−1)+ j,

where ek is the k-th canonical basis vector; therefore, the first p/G dimensions of µ1 are
set to 1 and all the remaining to 0, the second p/G dimensions of µ2 are set to 1 and all
the remaining to 0, and so on. The k-th population covariance matrix is

Σk = (1− τk)1p + τkIp,

where 1p and Ip denote the p× p matrix of ones and identity matrix, respectively. Here,
−(p−1)−1 < τk < 1 governs the intra-class correlation; throughout the study, we evalu-
ate different levels of correlation between variables, i.e., we take τk = {0.1,0.3,0.4,0.6},
corresponding to correlation values of {0.9,0.7,0.6,0.4} so as to explore how the clus-
tering algorithm behaves in different situations.

As an exemplification, consider the simple case of p = 6, G = 3 and τk = 0.1 ∀k.
The parameters of the three Gaussians are the following:
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µ
⊤
1 =

(
1 1 0 0 0 0

)
µ
⊤
2 =

(
0 0 1 1 0 0

)
µ
⊤
3 =

(
0 0 0 0 1 1

) Σk =Σ=


1 0.9 0.9 0.9 0.9 0.9

0.9 1 0.9 0.9 0.9 0.9
0.9 0.9 1 0.9 0.9 0.9
0.9 0.9 0.9 1 0.9 0.9
0.9 0.9 0.9 0.9 1 0.9
0.9 0.9 0.9 0.9 0.9 1


Furthermore, we consider scenarios characterized by both homoscedastic (settings

1–12) and heteroscedastic (settings 13–16) components. Scenarios with heteroscedastic
rotated components are also investigated (settings 17–20). In this case, as depicted in
the illustrative example of Figure 6, the first fifty odd variables of half of the groups are
rotated with respect to the axis x = 0.

In addition, we studied the behaviour of our proposal in contexts where original
data deviate from Normality. In particular, settings 21–23 consider the exponential, the
logarithm and the square-root transformations of p-variate Gaussian distributions (for
both the logarithm and the square root functions the absolute value was taken first),
respectively (p=100, nk=100, k = 1, . . . ,G); the number of groups is set to two and only
50% of the variables are relevant for clustering. Scenarios 24–26 extend the study to the
case of four groups. A brief description of the simulation settings considered for the
analysis is given in Table 1 for Gaussian scenarios 1–20 and in Table 2 for non-Gaussian
scenarios 21–26; more details are given in the Supplementary Material.

To validate our proposal, we apply other clustering algorithms on the same settings:
the ‘standard’ Gaussian mixture model (McLachlan and Peel, 2000) (via Mclust func-
tion of the mclust package (Scrucca et al., 2016)), the K-means algorithm (MacQueen
et al., 1967; Hartigan and Wong, 1979) (via kmeans function (R Core Team, 2020)),
Ward’s agglomerative hierarchical clustering (Ward, 1963) (via hclust function) and
the Partition Around Medoids (Pam) (Kaufman and Rousseeuw, 2009) (via pam function
of the cluster package (Maechler et al., 2019)). We also applied the high-dimensional
data clustering procedure proposed by Bouveyron et al. (2007) and implemented in
the R package HDclassif (Bergé et al., 2012), allowing for both Cattel’s scree test
(HDDC-C) and BIC (HDDC-B) methods to estimate the intrinsic dimensions of each
subclass. Two other recent procedures that have shown good performances in the
context of high-dimensional unsupervised classification are also included: namely, the
spectral clustering approach (Ng et al., 2002) (specc function of the kernlab package
(Karatzoglou et al., 2004)) and the affinity propagation algorithm (Frey and Dueck,
2007) (apclusterK function of the apcluster package (Bodenhofer et al., 2011)).
A further comparison is with the variable selection methodology for Gaussian model-
based clustering (Cl VarSel) presented in Section 2. This procedure is applied by using
the clustvarsel function included in the namesake R package (Scrucca and Raftery,
2018). We also implemented the RP-KM algorithm proposed in Boutsidis et al. (2010),
by applying the K-means algorithm with 5 random starts to the dimensionally reduced
data with d = ⌊cG/ε2⌉+1, with c = 10 and ε = 1/3.

The number of groups G is always taken as known. The default settings of each
algorithm are considered, except for the K-means which run with 5 starts. As previously
discussed, the RPEClu algorithm is performed with B = 1000, B∗ = 100, G = {2,4}
and d = {⌊10log(2)⌉ + 1 = 8, ⌊10log(4)⌉+1 = 15}, respectively.
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Table 1: Summary description of the simulation settings 1–20. When only one value
for τ is given, it means that homoscedastic Gaussian components are considered. The ∗
indicates rotated components.

Setting p G τ

1 100 2 0.1
2 500 2 0.1
3 1000 2 0.1
4 100 4 0.1
5 500 4 0.1
6 1000 4 0.1
7 100 2 0.4
8 500 2 0.4
9 1000 2 0.4
10 100 4 0.4
11 500 4 0.4
12 1000 4 0.4
13 100 2 0.1-0.6
14 100 2 0.1-0.3
15 500 2 0.1-0.6
16 500 2 0.1-0.3
17 100 2 0.1-0.6*
18 100 2 0.1-0.3*
19 500 2 0.1-0.6*
20 500 2 0.1-0.3*

Table 2: Summary description of the simulation settings 21–26. Non-Gaussian distribu-
tions.

Setting p G Transformation

21 100 2 Exp(Gaussian)
22 100 2 Log(abs(Gaussian))
23 100 2 Sqrt(abs(Gaussian))
24 100 4 Exp(Gaussian)
25 100 4 Log(abs(Gaussian))
26 100 4 Sqrt(abs(Gaussian))
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Figure 6: An example of bivariate dataset with heteroscedastic rotated components:
variable x1 of Component 1 (red points) is rotated with respect to the axis x = 0.

Figure 7 contains the aggregated results for the considered scenarios: (a)-(b) ho-
moscedastic Gaussian components with highly correlated features, with two and four
groups respectively; (c)-(d) homoscedastic Gaussian components with mildly related fea-
tures, with two and four groups respectively; (e) heteroscedastic Gaussian components
and heteroscedastic rotated Gaussian components; (f)-(g) non-Gaussian components,
with two and four groups respectively. The boxplots show the distribution of the ARI
over 100 simulations of each setting; the horizontal dotted line helps the comparison
with the other approaches, by highlighting the median ARI for the random projection
ensemble clustering algorithm. Adjusted Rand indexes of each individual setting are
reported in the Supplementary Material.

Results coming from this numerical study clearly show the general effectiveness
of the algorithm we introduce. In fact, for almost all the situations considered in the
boxplots of Figure 7, the RPEClu produces better solutions than those from the other
state-of-the-art methods, including the two procedures that usually work well in high-
dimensional contexts (i.e., spectral and affinity propagation clustering algorithms). Not
surprisingly, this aspect is particularly evident in those scenarios where the original
features are strongly related, as some approaches tend to discard this kind of informa-
tion. With reference to the mixtures of Gaussians, for example, when p is very large
compared to n, mclust is able to estimate only those models that have a small number
of parameters, i.e., models with spherical, diagonal, or homoscedastic covariance matrix.
Furthermore, the K-means algorithm can be viewed as a procedure which attempts to
model the data as a mixture of Gaussian distributions with diagonal covariance matrices
and thus it does not account for the variable correlation. Scenarios with mildly related
features, i.e., 7–9 and 10–12, appear to be very hard tasks: basically all the considered
methods, except for HDDC-C, perform poorly in terms of recovering the ‘true’ grouping
structure. The HDDC methods (Bouveyron et al., 2007) perform generally well; how-
ever, the Cattel’s scree test method to estimate the intrinsic dimensions of each subclass
always outperforms the BIC-based one.

As expected, K-means algorithm, hierarchical agglomerative clustering with Ward’s
method and Pam often fail because the distance measures they rely on become increas-
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Figure 7: Performance of different clustering algorithms. The labels along the horizontal
axis refer to the different methods: RPEClu, Random projections ensemble clustering;
GMM, Gaussian mixture model; ClVarSel, Gaussian mixture model with variable se-
lection; KM, K-means clustering; Ward, hierarchical clustering with Ward’s method;
Pam, partition around medoids algorithm; SpeCl, spectral clustering; AffPr, affinity
propagation; HDDC-B high-dimensional data clustering with BIC method; HDDC-C
high-dimensional data clustering with Cattel’s scree test; RP-KM random-projection for
K-means clustering. The seven panels show the distribution of the adjusted Rand index
for (a) homoscedastic Gaussian clusters (G = 2) with highly correlated features, (b) ho-
moscedastic Gaussian clusters (G= 4) with highly correlated features, (c) homoscedastic
Gaussian clusters (G = 2) with mildly correlated features, (d) homoscedastic Gaussian
clusters (G = 4) with mildly correlated features (e) heteroscedastic Gaussian clusters
(G = 2), (f) non-Gaussian clusters (G = 2) with 50% of relevant features and (g) non-
Gaussian clusters (G = 4) with 50% of relevant features.
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Table 3: Distribution of the meat samples.

Species Samples

Beef 32
Chicken 55
Lamb 34
Pork 55
Turkey 55

ingly meaningless in high-dimensions; however, with non-Gaussian data they exhibit
an acceptable performance. The RP for K-means clustering approach does not seem to
improve considerably over the standard KM.

A special mention should be made for the variable selection procedure (ClVarSel)
that seems capable to correctly identify relevant clustering information in most of
the settings. Nevertheless, it underperforms the RPEClu, especially in the case of
homoscedastic components with highly correlated features or in case of non-Gaussian
data. This outcome corroborates our initial idea that feature extraction techniques are
generally more effective than feature selection ones.

Globally, the capability of the RPEClu in recovering the cluster membership does
not change too much with p nor with the number of groups. In addition, it is quite
robust to deviations from Gaussianity as shown in plots (f) and (g).

6 Real data examples
For illustration, we evaluate the performances of the clustering algorithms described in
the previous section on two different real data experiments. Namely, we use the set of
near infrared spectroscopic meat data originally described in the study of Downey et al.
(2000), and subsequently analyzed in Dean et al. (2006) and Murphy et al. (2010), and
the lymphoma gene expression dataset, from Alizadeh et al. (2000) and further studied
in Dettling and Bühlmann (2002), Dettling (2004) and Chung and Keles (2010).

6.1 Meat data
This dataset contains n = 231 samples of homogenized raw meat coming from G = 5
different animal species. The distribution of the samples is described in Table 3. The
spectra are recorded over the wavelength range 400–2498 nm, with measurements
taken every 2 nm. The total number of variables is thus p = 1050. Figure 8 shows the
spectrum of each sample, grouped by type of meat. The original data source information
and conditions for the use of the data are outlined in the online supplementary material
of Murphy et al. (2010).

The objective of the analysis is to partition the set of 231 samples so as to reflect the
corresponding type of meat by employing the information coming from their spectra.
The number of groups G = 5 is taken as known; we set B = 1000, B∗ = 100 and
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Figure 8: Meat data. Spectra of the samples, grouped by type of meat.

d = ⌊10log(5)⌉+ 1 = 17. Table 4 contains the adjusted Rand index yielded by each
method.

Globally, none of the employed methods is able to perfectly recover the original
cluster membership of the meat data. Nevertheless, the RPEClu algorithm, together
with HDDC-C, provides an adjusted Rand index that is considerably superior to all
the other solutions. The GMM performs poorly; this is probably due to the fact that,
as p is very large, Mclust could only estimate mixtures of Gaussians with spherical
or diagonal covariance matrices, while data require a model that accounts for the high
correlation between the features. The Clust VarSel methodology could not run because
the too much correlated variables induced a model perfectly correlated with the response.
HDDC-C performs well and better than HDDC-B. The accuracy of RP-KM is similar to
that of K-means and among the lowest ones.

6.2 Gene expression data
The lymphoma dataset (available in the R package spls (Chung et al., 2019)) contains
the expression levels of p = 4026 genes for n = 62 patients. The study reports that 42
subjects have diffuse large B-cell lymphoma (DLBCL), 9 follicular lymphoma (FL),
and 11 chronic lymphocytic leukemia (CLL). All gene expression profiles were base
10 log-transformed and, in order to prevent single arrays from dominating the analysis,
standardized to zero mean and unit variance, as described in Dettling and Bühlmann
(2002) and Dettling (2004).

The objective of the analysis is to group patients according to the corresponding
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Table 4: ARI for the Meat data and the computational time (in seconds) required by
each clustering method.

Method ARI Time (s)

RPEClu 0.32 6460.76
GMM 0.14 1.39
ClVarSel - -
KM 0.18 0.10
Ward 0.23 0.08
Pam 0.18 0.12
SpeCl 0.25 1.23
AffPr 0.18 1.11
HDDC-B 0.22 6.45
HDDC-C 0.31 15.50
RP-KM 0.17 0.11

lymphoma diagnosis, by using the information on their gene expression levels. RPEClu
procedure run with B = 1000, B∗ = 100 and d = ⌊10log(3)⌉+1 = 12; the number of
groups is taken as known and set equal to 3 for all the methods. Clustering results in
terms of ARI are reported in Table 5. As it can be seen, the random projection ensemble
clustering algorithm is capable to perfectly detect the grouping structure identified by
the diagnosis. Mixture of Gaussians, K-means, hierarchical agglomerative clustering
with Ward’s method, Spectral clustering, HDDC methods and RP-KM provide exactly
the same (good) result, up to a label switching. This is due to the fact that, when p ≫ n,
Mclust only works on the restricted set of parsimonious models (e.g. spherical or
diagonal models) and, therefore, its optimal solution often slightly improves the one
yielded by the hierarchical algorithm. The mixture of Gaussians fitted to the set of 10
variables returned by Clust VarSel does not improve over the full set solution.

7 Some considerations on the choice of G

The presented results refer to the cases for which the number of clusters G is fixed and
known. However, in real life applications it may happen that there is no insight about
the “true” number of homogeneous groups and such information has to be inferred from
the data.

The proposed clustering method is based on an ensemble of clustering vectors. A
simple option would be to repeatedly apply RPEClu with different values for G and
then choose a posteriori the best solution, according to some clustering quality criteria.
However, such an approach would not exploit the information yielded by the model-
based approach; furthermore, the adopted clustering quality criterion would largely
impact the final choice. For example, the average silhouette width (ASW) may prefer
solutions that emphasizes gaps between neighboring clusters; Calinski and Harabasz
(CH) penalizes large within-cluster distances more strongly. Pearson version of Hubert’s
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Figure 9: Gene expression data. Multidimensional scaling representation of the samples,
grouped by type of diagnosis.

Table 5: ARI for the Gene Expression data and the computational time (in seconds)
required by each clustering method.

Method ARI Time (s)

RPEClu 1.00 83596.81
GMM 0.95 5.69
ClVarSel 0.44 5290.78
KM 0.95 0.10
Ward 0.95 0.05
Pam 0.84 0.04
SpeCl 0.95 0.22
AffPr 0.84 0.35
HDDC-B 0.95 1.66
HDDC-C 0.95 1.70
RP-KM 0.95 0.06
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Table 6: Choice of G within the ensemble procedure. Average (standard error) number
of clusters returned by the ensemble (column G) and average adjusted Rand index (ARI)
over 100 replications.

G ARI

2.00 (0.00) 1.00 (0.00)

Table 7: Choice of G within the ensemble procedure for the real datasets.

Data G ARI

Meat 2 0.31
Gene expression 3 0.90

Γ (PG) emphasizes good approximation of the dissimilarity structure by the clustering in
the sense that whether observations are in different clusters should strongly be correlated
with large dissimilarity; as the Pearson correlation is based on squares, it penalizes
large within-cluster dissimilarities. For a thorough discussion on the characteristics of
different criteria see, e.g., Hennig and Liao (2013).

Alternatively, one may let each mixture model choose the optimal G via BIC and the
ensemble is built on the resulting vectors, each potentially characterized by a different
value for G. In other words, this approach relies on the ensemble of clustering vectors
resulting from a model selection procedure via BIC; the aggregation of such B∗ vectors,
each potentially pointing to solutions with different number of clusters, can lead to a final
group allocation whose size is unknown until the end of the procedure, as the employed
ensemble method of Section 3.2 does not need its elements to be homogeneous in terms
of cluster number and only follows the ordering of the BIC. Its behaviour is studied on
simulated Gaussian data (described in both Sections 4.2 and 4.3) and on the real data
sets.

Specifically, we consider 100 replications of the simulated data and the number of
groups ranges from 2 to 5. Table 6 shows that the model selection procedure is able to
recover the true G and to recover the true cluster membership.

Table 7 outlines the results with meat and gene expression data. The performance
slightly deteriorates in terms of accuracy for the gene expression, as the corresponding
ARI reduces to 0.90. The meat data ensemble yielded a two-cluster solution; this
suggests that for such data even the best projections could not identify the correct
grouping structure.

Overall, the proposed method for model selection appears to lead to fairly accurate
results; however, additional measures can be considered and more evidence would be
needed to conclude on that.
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8 Discussion
In this work we propose a novel procedure for model-based clustering of high-dimensional
data. This procedure is based on random projections and it has been firstly inspired
by the original idea of Cannings and Samworth (2017) in the context of supervised
classification.

More in detail, we suggest to apply a Gaussian mixture model to random projections
of the high-dimensional data and to select a subset of solutions accordingly to the
Bayesian information criterion, computed here as discussed in Raftery and Dean (2006);
the multiple ‘base’ results are then aggregated via consensus to obtain the final partition.

Such proposal has been initially motivated by some benefits associated to RPs for
learning mixture of Gaussians. Dasgupta (2000) proved that a mixture of G Gaussians
can be embedded onto just O(logG) random coordinates while preserving the separation
of the components with probability 1−δ , δ ∈ (0,1); furthermore, he demonstrated that
even when the original mixing components exhibit elliptical contours, their projected
counterparts are always more spherical.

Method performances, evaluated in terms of ARI with respect to the true class
membership on both synthetic and real datasets, seem to confirm our motivating ideas.
Overall results indeed show that RPs represent a key ingredient that decisively facilitates
the learning of high-dimensional mixtures of Gaussians. Moreover, the advantage of
their use in conjunction with GMM becomes even more evident as the correlation
between the original variables increases. In fact, when dealing with high-dimensional
sets, Mclust search is restricted to models with few parameters only (i.e., EII, VEI,
VII, VVI, EEI and EVI) whereas data would require more complex parameterizations.

The RPEClu algorithm is a very general tool for model-based clustering of high-
dimensional data. We explore in detail its behavior within the Gaussian mixture model
framework only; however, many other distributions can in principle be used. Moreover,
further options for combining the clustering results can be tested.

The number of clusters G is generally fixed here; however, some model selection
procedures are suggested as a valid tool to choose the number of clusters when such
information is not available.
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