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Abstract

This study presents a new neural network approach to identify the presence and

type of obstruction in pipes from measurements of passive acoustic emissions.

Inserts were used in a fluid re-circulation loop to simulate different types of

blockage at various flow rates within the turbulent regime, generating patterns of

acoustic emissions. The data were pre-processed using Fourier analysis, and two

candidate sets of statistical descriptors were extracted for each measurement. The

first set used average and spread of the Fourier transform amplitudes, the second

used data binning to obtain a concise representation of the spectrum of ampli-

tudes. Experimental evidence showed the second set of descriptors was the most

suitable to train the neural network to recognize with accuracy the presence and

type of blockage. The obtained results compare favourably with the literature,

indicating that the approach provides a tool to enhance process monitoring in

water supply systems, in particular early detection of upstream blockages.
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1 | INTRODUCTION

Effective control and monitoring systems are essential
components for the maintenance of a reliable water distri-
bution network. In this context, the early detection of par-
tially blocked pipes and leakages is of particular
importance. As the expense of providing clean water grows
in many regions, the need to deploy effective and economi-
cal control systems is playing an increasing role in the sus-
tainability of water distribution services. This need is likely
to exacerbate in the near future, since projections assume
a shortfall of 40% in water available to human use by as
early as 2030.[1] By 2050 the United Nations Water Group
estimates that two-thirds of the world population will suf-
fer from water stress conditions.[2]

Moreover, in the manufacturing of liquid products,
the development of smart sensors, capable of analyzing
data gathered on pipe-lines and giving real time feed-
back, has been undergoing extensive research in the last
years due to its potential benefits in terms of process opti-
mization and more sustainable processes/products.[3]

Innovation in this area often stems from technologies
and methods developed in the fields of artificial intelli-
gence and process engineering.[4]

Hefft and Alberini[5] investigated the use of machine
learning to identify blockage type from pressure loss mea-
surements in pipes, indicating that the approach can
drastically help towards a better control of fluid flow
delivery. Their pilot study included popular algorithms
like decision trees,[6] k-nearest neighbours,[7] and support
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vector machines (SVMs),[8] and the authors concluded
that the latter delivered the best results.

The main limitation of SVMs is that they are only appli-
cable to two-class problems. Hence, they can just identify
one type of blockage against all other patterns. This work
builds on the indications provided by Hefft and Alberini,
tackling the problem of pipe obstruction identification from
the perspective of pattern recognition. That is, the goal of
the identification task is to recognize the presence and type
of obstruction from patterns of acoustic emissions.

A popular artificial neural network (ANN) classifier,
the multi-layer perceptron (MLP),[9] is used for the iden-
tification task. One of the main advantages of MLP with
respect to SVM classifiers is that the former are suitable
for multi-class problems. That is, they can be used to rec-
ognize different types of blockage. Inspired by the struc-
ture and functioning of biological nervous systems, the
MLP has been widely employed because of its structural
simplicity, fast learning capabilities, and ability to learn
any categorical (classification) or continuous (regression)
function with arbitrary precision.[10]

The article is organized as follows: Section 2 reviews cur-
rent technology in the detection of water pipe blockages. Sec-
tion 3 describes the proposed methodology and experimental
set up. Section 4 presents the experimental results, which are
discussed in Section 5. Section 6 concludes the paper.

2 | REVIEW OF CURRENT
TECHNOLOGY

A very common tool to detect blockages in pipes is the trac-
ing of pressure changes over the pipe length, as deposits or
corrosion will consume pipe volume and lead to a pressure
change.[11] The main limitation of this method is that it
can only show the presence and size of the blockage, giving
little information on its nature. This limitation is due to the
mathematical formulation of the problem, which is com-
monly expressed using the Darcy-Weisbach relationship
(applies to incompressible fluid flow only):

Δpv12 Pa½ � ¼ ρ �u2
2

λ
l
d
þ
X
i

ξi

 !
ð1Þ

where ρ is the density, u is the superficial velocity, λ is
the Darcy friction factor, l is the length of pipe, d is the
diameter, and ξi is the discharge coefficient.

The Darcy-Weisbach relationship can be extended to take
the elevation and gravitational acceleration into account.
This is achieved by applying the Bernoulli principle:

Δpv12 Pa½ � ¼ p1�p2þ
ρ

2
u21�u22
� �þρ �g h1�h2ð Þ ð2Þ

where h are the elevations in the two different points
where the pressure drop is measured. This Bernoulli
extension is of particular importance for vertical pipe
assemblies, such as those present in water wells, where
the pressure drop is predominantly driven by the differ-
ences in elevation and not the frictional factor. In the oil
and gas industry, horizontal wells are common, and it
becomes important to have a better understanding of the
frictional forces driving the pressure drop.[12] Other areas
where a pressure drop measurement is standard routine
are the prediction of membrane failure due to fouling[13]

and process safety monitoring in parts such as a Venturi
scrubber.[14] To determine the Darcy friction factor λ ,
empirical models depending on the flow regime are often
applied. For laminar flow, the Hagen–Poiseuille equation
states the following:

λlaminar ¼ 64
Re

ð3Þ

Moving into transient flow of the relationship as
described in Colebrook and White[15] will qualify the
following:

1ffiffiffi
λ

p ¼�2log10
2:51

Re
ffiffiffi
λ

p þ k
3:71d

� �
ð4Þ

where k is the Darcy-Weisbach Roughness height.
For flow approaching Re!∞ (hydraulic rough pipe

wall) this model turns into the Nikuradse’s
relationship,[16] and when k=d! 0 is reached (hydraulic
smooth pipe), it turns into the Prandtl-K�arm�an’s
relationship.[17]

A review paper[18] compared different methodologies
available to correlate the pressure drop to the friction fac-
tor, in order to find the most suitable method to replace
the numerical root finding-based Colebrook–White rela-
tionship. The authors conclude that the Colebrook–
White relationship can be best approximated using the
method presented in this work.[19]

A study to investigate the pressure drop in
helicoidally arranged pipes for single- and multi-phase
systems was presented.[20] Other geometries that were
studied include rectangular pipes[21] and polygons.[22]

There are two standard approaches to measure the pres-
sure drop in industrial settings.

The first method is the application of two indepen-
dent pressure gauges (Figure 1A), mounted into the inlet
and the outlet of the pipe system. As for most measure-
ment systems, it can be implemented using analogue or
digital devices. To avoid cross-contamination the devices
often take the pressure readings through the displace-
ment of a diaphragm. The pressure difference is
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determined by the difference in readings between the
two gauges.

The second method is based on a singular gauge
(Figure 1B). Capillaries are connected to the pipe inlet
and outlet, and determine the pressure drop based on the
Bernoulli relationship.

An alternative approach has been investigated by
Hefft and Alberini,[5] who obtained additional informa-
tion on the type of geometry obstructing a pipe combin-
ing passive acoustic emission (AE) sensing with
supervised machine learning. The sensitivity and accu-
racy of this approach is high, as the technique is capable
of distinguishing between different obstructions under
fully developed turbulent flow, where pressure drop mea-
surements show no or only marginal differences in
readings.

AEs are those events occurring past the audible spec-
trum (20 kHz) and before the ultrasound spectrum
(2 MHz). AEs originate from elastic stresses or pressure
waves that express themselves by dynamic surface
motions. In the case of fluid flow, the boundary shear
along the boundary layer causes AEs.[23]

There are two main drivers for the release of AEs.
The first driver is the sudden and spontaneous release of
transient energy when brittle material failure occurs
(i.e., material fatigue or poor weld seams). The monitor-
ing of these sudden energy releases is often used to
ensure the structural integrity of bridges[24,25] or
railways,[26,27] where material failure may have cata-
strophic consequences.

The second driver is material damage, which gener-
ates continuous AEs, and plays a key role in the field of
tribology and hydrodynamics. Unlike the sudden release
of transient energy in a single event, continuous AEs can
be measured constantly. The monitoring of this second
type of AEs is important to assess the wear of parts due
to friction or impact,[28] or the presence of pipe leak-
ages.[29,30] It is much more complex than monitoring sin-
gle AE events, since the signals are noise-rich and of
complex composition.[31]

AEs can be measured using active or passive sensing
methods. Active AE sensing systems incorporate at least
one signal emitter and a signal receiver. The whole tech-
nology is based on the idea of assessing the signal decay
or damping between the emitter and receiver. This can
be directly correlated to the leak location and size, and is
often paired with differential pressure measurements.[32]

Passive AE sensing consists of a group of non-
destructive testing systems that detect only the process/
material-borne transient energy release. Unlike active
technologies, passive AE measurements do not interfere
with the fluid and material and only capture the events
that are released by the system of interest. However, this
technology is much less understood and studied com-
pared to active AE techniques (e.g., compare Google
Scholar 1:3 ratio of 347 search results for ‘passive AE’
versus 1060 results for ‘active AE’).

3 | MATERIALS AND METHODS

This section describes how the data was experimentally
acquired and then processed. As shown in Figure 2, the
key research steps are summarized and presented. Firstly,
the data were collected using the experimental rig
described in Section 3.1. Then, the data were converted
from time domain to frequency domain. The next step
was the extraction of descriptors (features). Two strate-
gies are described and discussed. Finally, those descrip-
tors are fed to the ANN and results are discussed.

3.1 | Experimental rig

A water recirculation system, previously used by Hefft
and Alberini,[5] was fed by a 40-L water tank (A) and
powered by a centrifugal pump (C) (Alfa Laval, Lund,
Skåne, Sweden) of type I KA-5 132SSS1 controlled by an
inverter (B). The internal diameter (ID) of the pipework
was 25.4 mm with a 120-mm length pipe segment from
stainless steel named Rheality pipe (E) (more information
can be found at rheality.co), which was used for the
acquisition of passive acoustic signals. A schematic draw-
ing of the test rig and pipe inserts are shown in Figure 3.

Different types of obstruction and hence pressure
drops (D) were simulated slotting into the pipe objects of
different shapes (F1, F2, F3, F4). For each object, the AEs
were measured at four different water flow rates using a
Coriolis flow meter (G): 1300 (henceforth Q10), 3000
(henceforth Q20), 4530 (henceforth Q30), and 6350
(henceforth Q40) l h�1. The nomenclature Q10, Q20,
Q30, and Q40 comes from the settings of the pump used
to generate the flow rates, which corresponds to 10, 20,

FIGURE 1 Basic principles to determine the pressure drop in a

pipe. Schematic (A) shows a system based on two independent

pressure gauges. Schematic (B) shows a system of a single gauge

determining the pressure drop via capillaries

BARONTI ET AL. 523
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30, and 40 Hz, respectively. The objects (F1, F2, F3, F4)
were created using a FlashForge Dreamer 3D printer
(Zhejiang Flashforge 3D Technology Co., Ltd., Jinhua,
Zhejiang, China), and had a length (38.1 mm) equal to
1.5 times their inner diameter (25.4 mm). They are a
wall-leaning cone (Cone), mimicking a slight build-up of
deposit; a semicircle (Semicircle), mimicking a half
blocked pipe; three triangular aligned holes (Holes),
mimicking a full blockage with perforations delivering
partial flow; and a cross (Cross) formed by four wedges
meeting in the central focal point, mimicking the poten-
tial design of a spray nozzle. These four objects are
shown in Figure 3. They had a free area of 1:287 �10�4m2

(Cone), 2:53 �10�4m2 (Semicircle), 2:83 �10�5m2 (Holes),
and 2:53 �10�4m2 (Cross), respectively. A fifth case was
considered where no insert was present and the pipe was
free (Empty).

The goal of the study was to use ANNs to identify the
presence and shape of the insert from the AE recording.
The aim is to identify to which class (Cone, Cross, Hole,
Semicircle, Empty) of pattern a passive acoustic recording
belongs to.

The AE patterns were read using a piezoelectric
VS375-M (Vallen Systeme GmbH, Icking, Bavaria,
Germany) passive AE sensor. The sensor was coupled
with the Rheality device (Rheality Ltd.) which allowed
the detection of the signal in the fully flooded pipe, and
linked to an AEP5H preamplifier (Vallen Systeme
GmbH, Germany), along with a DCPL2 decoupling
unit (Vallen Systeme GmbH, Icking, Bavaria,
Germany), a PicoScope 5000 Series oscilloscope (Pico
Technology Ltd., UK), and a personal computer using
PicoScope version 6.13.15 software (Pico Technology
Ltd., UK).

FIGURE 2 Block diagram of

research steps

FIGURE 3 Test rig and obstruction

shapes

524 BARONTI ET AL.
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For each of the five types of obstructing objects
(Cone, Cross, Hole, Semicircle, and Empty) and four flow
rates (Q10-Q40), 200 AE recordings were performed. The
whole experimental dataset is thus composed of 4000 AE
patterns (200 recordings �5 types of objects �4 flow
rates). Each recording is composed of 589 623 piezoelec-
tric sensor readings, sampled at a frequency of 1.2 MHz
and resolution of 16-bit for a total recording time of
�0.5 s. The amplitude of the readings was clamped
within ±1 V and out-of-range readings (positive and neg-
ative) were converted to the minimum and maximum of
the in-range readings. The dataset is freely available from
the Mendeley Data repository by Baronti et al.[33]

3.2 | Data pre-processing

For each recording, the series of 589 623 piezoelectric
sensor readings was converted from the time domain to
the frequency domain using discrete fast Fourier trans-
form (DFFT)[34] at a sampling rate of 694 444 Hz.
Figure 4 shows the spectrum of average (median) DFFT
amplitudes calculated over the 200 recordings for four
types of obstruction (classes) for each flow rate. The spec-
tra are shown in two ranges of frequencies where inter-
class differences are particularly pronounced. The spectra
of the Holes class are not shown as they are very dissimi-
lar in magnitude from the other classes. Figure 4 suggests
that the presence and type of obstruction can be identi-
fied from the different DFFT spectra, particularly at the
highest flow rates.

The complete spectra for all the five classes until
130 kHz are provided in Appendix B. Beyond the
130 kHz of frequency the spectra flatten out, and to
reduce computational overheads were not used. Hence-
forth, the AE patterns will be considered in the interval
[0,130] kHz in the frequency domain.

3.3 | Feature extraction

In order to train an MLP classifier to recognize the differ-
ent types of obstruction, some numerical descriptors (fea-
tures) that capture the differences in DFFT spectra are
needed. Two different sets of descriptors are evaluated in
this study.

The first set (henceforth called AV) includes the aver-
age (mean) and variance over the 130 000 frequencies of
the DFFT amplitude. This minimal set (only two) of well-
understood statistical descriptors is conceptually simple
and light in terms of processor and memory overheads.
Yet, the scatter plots in Figures 5 and 6 show that, partic-
ularly at the highest flow rate, the readings are

reasonably well clustered in the two-dimensional plane
of the features.

The second set of features (henceforth called DB) is
generated via data binning, dividing the spectrum into non-
overlapping intervals of 100 frequencies, and taking the
average (median) DFFT amplitude of the frequencies inside
the interval as representative of the whole interval. The size
of the bins was experimentally optimized, taking into
account the trade-off between data compression and infor-
mation loss. This second method creates a rather large set of
features (130 000 frequencies �100 bin size¼ 1300 features),
but retains more information about the DFFT spectrum
than the AV set.

Thus, for each pattern, two feature sets are created,
AV (2 elements) and DB (1300 elements), and each of the
two sets is labelled with the class name (Cone, Cross,
Hole, Semicircle, Empty) describing the type of insert
that generated it. The mean–variance procedure[35] was
subsequently used to normalize the feature values of each
set within the �1,1½ � interval (except for outliers of fea-
ture values outside three standard deviations from
the mean).

3.4 | MLP classifier

The MLP is arguably to date the most popular and widely
used ANN model. It was chosen for this study because it
is a universal approximator, capable of modelling the
continuous or categorical output of any nonlinear func-
tion to an arbitrary degree of precision.

An MLP is composed of layers of simple non-linear
processing nodes, called perceptrons (Figure 7). Each per-
ceptron is fully connected to the nodes of the previous
and next layer, except for those of the input layer (collect-
ing the input pattern) and those of the output layer (giv-
ing the classification result). The strength (weight) of the
connections between the nodes is adjustable. By chang-
ing these weights, the behaviour of the MLP can be modi-
fied (trained) to obtain the desired output. The signal
flows unidirectionally layer-by-layer from the input to
the output layer (feedforward ANN).

The input layer is composed of a number of nodes
equal to the number of input features. Each unit takes
one input variable (feature) and fans its value out to the
nodes of the next layer. There are typically one or two
layers of processing units between the input and output
layer. These layers are called the hidden layers, and they
are where the decision regions for the classification task
are formed. It was shown that two layers of hidden units
are enough to solve any arbitrarily complex identification
problem.[36] The exact number of hidden layers and
nodes per layer depends on the problem domain, and has

BARONTI ET AL. 525
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FIGURE 4 Spectra of average (median) of the DFFT amplitudes obtained in the 200 experimental tests, one plot per flow rate. The

spectra are displayed in two frequency ranges where the differences are particularly marked. The spectra of the Holes class have been

omitted because they are too different in magnitude (see Appendix B)

526 BARONTI ET AL.
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been the topic of many studies.[37] Further hidden layers
of processing nodes might be added to perform some pre-
processing of the signal (e.g., data compression), and in
this case the ANN structure is called deep.[38] The output
layer contains one neuron per class, each neuron being
associated with a particular class. Typically, the classifica-
tion result is decided by the output node giving the
highest numerical output.

The MLP training algorithm assumes an omniscient
teacher who feeds the ANN the patterns of input fea-
tures, and for each pattern indicates the expected output.
The weights of the node connections are modified
according to the error between the MLP actual and
expected output. The most common training algorithms
are iterative weight adjustment procedures based on least
mean squares minimization of the ANN error. For more

FIGURE 5 Plots of the distribution of the data patterns in the 2D space of the AV feature set. Each plot shows the distribution at a

different flow rate, namely (A) Q10, (B) Q20, (C) Q30, and (D) Q40

BARONTI ET AL. 527
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details on the MLP, its processing units, and the training
procedure, the reader is referred to the reviews of Lipp-
mann[36] and Pham et al.[9]

Two MLPs were used in this study, one trained to
classify the patterns characterized by the AV feature set,
the other trained to classify the patterns characterized by
the DB feature set. Their architecture was experimentally
optimized, and is detailed in Table 1. In both cases, the

size of the input layer was determined by the feature set
used: 2 units for the MLP using the AV set, and
1300 units for the MLP using the DB set. Regardless of
the feature set used, the best results were obtained using
MLPs featuring one hidden layer of 15 units. The output
layer was composed of five nodes, one per class.

The two ANNs were trained using the state-of-the-art
ADAM optimizer,[39] (please note that Kingma and Ba[39]

is from a conference, and the preprint is available in the
popular open access arXiv repository) using the standard
categorical cross-entropy loss function.[40] For each

FIGURE 6 Plots of the distribution of the data patterns in the 2D space of the AV feature set at Q40 flow rate (Figure 5D) when the

(A) Hole and (B) Hole and Empty classes are removed

FIGURE 7 Example of general multi-layer perceptron (MLP)

structure

TABLE 1 Models architecture

MLP (AV) MLP (DB)

Input size 2 1300

Hidden layer size 15

Activation function (hidden) ReLu

Output layer size 5

Activation function (output) Softmax

Loss function Categorial crossentropy

Optimizer Adam

Learning rate 0.01

Number of epochs 5000

528 BARONTI ET AL.
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pattern, the cross-entropy objective function is defined as
follows:

L o,yð Þ¼�
X4
i¼0

yiloge oið Þ ð5Þ

where o is the ANN output vector and y is the target vec-
tor. The target vector y is composed of five elements, one
per class. It is one-hot encoded, namely, all its elements
are zero but the one associated with the correct class,
which is equal to 1. The vector o is composed of five ele-
ments, each one representing the output of a different
output neuron. Since the output units use the softmax
function, the elements oi are defined in the 0,1½ � range,
and o is normalized to 1. It should be noted that the only
non-zero element of y that contributes to the sum in
Equation (5) is the one associated to the correct class.
The sum will be minimum when the output of the
neuron associated to the target class is equal to 1, that is,
ot ¼ yt ¼ 1, and consequently the output of all the other
neurons, oj ¼ 0, j≠ k. The ADAM optimizer uses gradient
descent to minimize L o,yð Þ.

4 | EXPERIMENTAL RESULTS

The aim of this study was to assess the ability of the MLP
to learn to identify the presence and type of obstruction
from the patterns of AEs. As discussed in Section 3, two
data sets were created, the first using the set of AV fea-
tures to characterize the individual patterns, the second
using the set of DB features. These two data sets were
used to train two different MLPs. Three experiments
were carried out.

In the first experiment, the two MLPs were trained
to identify the patterns at a fixed flow rate. Thus,
for each flow rate (Q10–Q40), the 1000 patterns
ð200 recordings�5 types of objectsÞ were randomly split
into a training set of examples including 70% of the pat-
terns and a validation set including the remaining 30%.

The MLP was trained on the former and the latter was
used to test the learning results. The split was done using
a stratified sampling, meaning that 30% of the patterns
belonging to each class was picked to form the test set.
Hence, the training and test set had a balanced number
of examples per class. The separation of the data set was
necessary to verify that the MLP is able to generalize the
training results to unseen data samples, or, in statistical
jargon, that the evaluation of the training results is
unbiased.[41]

For each flow rate, 100 independent learning trials
were performed, each time randomly re-initializing the
MLP connection weights and the training and validation
sets of examples. The classification accuracies obtained
by the trained MLP in the 100 learning trials are summa-
rized in Table 2 (AV set of features) and Table 3 (DB set
of features). The two tables show that in all cases but Q10
in Table 4, the difference between training and test accu-
racy is negligible. This suggests there was no data
overfitting.

The experimental results show that, at fixed flow rate,
the MLP can be consistently trained to recognize with
high accuracy the AE patterns using the DB feature set.
Except for the lowest flow rate, the classification accuracy
in nearly all the learning trials was very close or equal to
1. The MLPs were able to generalize the learning results
to the previously unseen patterns of the validation set
with very small or no loss of accuracy, indicating the reli-
ability of the training procedure.

The learning results obtained using the AV feature set
were satisfactory only at the highest flow rate. Yet, at
lower flow rates, the MLP could still be trained to recog-
nize three quarters of the AE patterns successfully. In
general, the results of Table 2 confirm that the patterns
tend to cluster more clearly (and hence are easier to dis-
tinguish) at high flow rate (Figure 5).

To analyze the sources of errors, the first experiment
was repeated for the patterns generated at flow rate Q40
using the AV feature set, and the confusion matrix was
formed considering the errors on the whole data set
(training + validation set). Looking at Table 4, it is

TABLE 2 Five-value summary of

the accuracy results obtained in the 100

independent learning trials using the

AV feature set (the rows indicated with

T report the accuracy results obtained

from the training sets of examples,

whilst the rows indicated with V report

the accuracy results obtained from the

validation sets of examples)

Rate Min First quartile Median Third quartile Max

Q10 T 0.6129 0.7571 0.7743 0.7814 0.8057

V 0.6033 0.7500 0.7700 0.7867 0.8133

Q20 T 0.7143 0.7571 0.7671 0.7757 0.8043

V 0.6900 0.7533 0.7667 0.800 0.8533

Q30 T 0.6757 0.7314 0.7371 0.7429 0.7557

V 0.6533 0.7200 0.7400 0.7467 0.7667

Q40 T 0.8729 0.8943 0.9000 0.9057 0.9171

V 0.8500 0.8867 0.8967 0.9067 0.9300
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apparent that the main sources of misclassification con-
cerned the pairs of classes Cone-Semicircle, Cross-
Semicircle, and Cross-Empty, which look very close or
overlap in the AV feature space in Figures 5 and 6. Con-
versely, the patterns of the Holes class constitute a very
distinct cluster in Figure 5, and are identified without
error by the MLP.

In the second experiment, it was verified whether the
training results obtained at a given flow rate were trans-
ferable to patterns acquired at a different flow rate. The
experiment was set as follows. For each flow rate,
the most successful learning trial was decided as the one
where the highest classification accuracy was obtained

from the validation set of examples (Tables 2 and 3). The
trained MLP configuration obtained during the most suc-
cessful learning trial was then tested against the patterns
generated at the other three flow rates. In this case, all
the patterns generated at a different flow rate had not
been employed for training the MLP, and the MLP could
be tested on the whole data set (training + validation
set). For consistency, the MLP accuracy was also tested
on the whole data set where it was trained. Although this
latter measure was not guaranteed to be statistically unbi-
ased, it was used to provide the reader a term for a quick
qualitative comparison.

TABLE 3 Five-value summary of

the accuracy results obtained in the 100

independent learning trials using the

DB feature set (the rows indicated with

T report the accuracy results obtained

from the training sets of examples,

whilst the rows indicated with V report

the accuracy results obtained from the

validation sets of examples)

Rate Min First quartile Median Third quartile Max

Q10 T 1:000 1:000 1:000 1:000 1:000

V 0:7900 0:8433 0:8600 0:8733 0:9000

Q20 T 1:000 1:000 1:000 1:000 1:000

V 0:9833 0:9933 0:9967 1:000 1:000

Q30 T 1:000 1:000 1:000 1:000 1:000

V 0:9967 1:000 1:000 1:000 1:000

Q40 T 1:000 1:000 1:000 1:000 1:000

V 0:9967 1:000 1:000 1:000 1:000

TABLE 4 Confusion matrix

(predicted class vs. actual class) of the

performance of the multi-layer

perceptron (MLP) on the patterns

(training + validation set) generated

using feature set AV at flow rate Q40

Actual

Cone Cross Empty Holes Semicircle

Predicted Cone 180.62 2 0 0 17.38

Cross 0 177.18 12.75 0 10.07

Empty 0 26.59 172.62 0.04 0.75

Holes 0 2.0 0 198.0 0

Semicircle 18.82 16.39 0 0 164.79

TABLE 5 Accuracy results obtained training the multi-layer-

perceptrons (MLPs) on patterns obtained at a given flow rate, and

testing them on patterns generated at a different flow rate (AV

feature set); for each flow rate, the MLP that obtained the best

training accuracy in the experiment summarized in Table 2 was

used, and the learning results were validated on the whole (training

+ validation) data sets

Test

Q10 Q20 Q30 Q40Training

Q10 0:786 0:204 0:200 0:200

Q20 0:200 0:843 0:200 0:200

Q30 0:200 0:200 0:740 0:200

Q40 0:287 0:197 0:203 0:903

TABLE 6 Accuracy results obtained from training the multi-

layer-perceptrons (MLPs) on patterns obtained at a given flow rate,

and testing them on patterns generated at a different flow rate

(DB feature set); for each flow rate, the MLP that obtained the best

training accuracy in the experiment summarized in Table 3 was

used and the learning results were validated on the whole (training

+ validation) data sets

Test

Q10 Q20 Q30 Q40Training

Q10 0:9700 0:4380 0:2050 0:2940

Q20 0:4150 1:000 0:9990 0:3980

Q30 0:4210 0:7640 1:000 0:4140

Q40 0:2390 0:4050 0:5660 1:000
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The results of this second experiment are presented in
Table 5 for the patterns generated using the AV feature
set, and in Table 6 for the patterns generated using the
DB feature set. The tables clearly show that the learning
results obtained at a given flow rate are generally not
transferable to patterns generated at different flow rates.
The accuracy of the MLP trained using the AV feature set
is equal to the null accuracy (accuracy that would be
attained by random guessing) at a different flow rate. The
learning results obtained at a given flow rate using
the DB feature set are generally above the null accuracy
at different flow rates, although they are generally far
from being acceptable. Overall, the results of the second
experiment are explained by the large differences in the
arrangement of the data clusters between plots obtained
at different flow rates (Figure 5).

In the third experiment, the AE patterns obtained at
different flow rates were combined into one unique data
set of 4000 elements (1000 per flow rate). This data set
was split into a training set containing 70% of the pat-
terns, and a validation set containing the remaining 30%.
The split was done via stratified sampling, picking an
equal number of samples for each class regardless of the
flow rate at which they had been generated. The aim of
this experiment was to investigate if data samples gener-
ated at different flow rates could be used to train the
MLP to recognize AE patterns regardless of the flow rate.
The results are detailed in Table 7, and show that the
learning task could be performed satisfactorily only by
the MLP trained using the DB feature set.

5 | DISCUSSION

This study built on the work by Hefft and Alberini,[5]

further exploring the potentiality of machine learning to
detect and identify the presence of blockage in pipes from
AE patterns. The main advance in the proposed study is
the replacement of the SVM classifier (only suitable for
two-class problems) with an MLP classifier (suitable for
multi-class problems). Other advantages of the MLP over

SVMs are usually faster learning times and reduced
memory requirements.

In terms of classification accuracy, Hefft and Alberini[5]

reported results ranging between 96% to 97% for their
binary classifiers (one obstruction type vs. all other cases)
at fixed flow rates. In this scenario (Table 3), the MLP out-
performs the SVM when the DB feature set is used. Using
the DB feature set, the MLP achieves a classification accu-
racy of 94% even when patterns are mixed regardless of
the flow rates (Table 6). In general, it can be said that the
MLP approach is more accurate than the SVM.

The main sources of error (Table 4 and Figures 5 and 6)
at fixed flow rate seem to originate from the nature of the
data (some classes are overlapping in the feature space),
rather than poor learning of the classifier. At different flow
rates, the patterns cluster differently and seem to be less dis-
tinguishable at low flow rates. If the MLP is required to
identify obstruction patterns at different flow rates, the
training set of examples must cover the whole range of
operational conditions.

It might be possible to extract data features that can
help distinguish more clearly the clusters of AE patterns. In
addition to the two sets of features evaluated in this study,
Hefft and Alberini[5] used the 5000 DFFT amplitudes with
the largest relative variance, picking from this set the larg-
est 15 principal components. Their set was more complex
than the AV (two features) and DB (1300 features) sets used
in this study, although the precision of the trained classifier
did not seem to benefit from the additional complexity.

The results achieved in this study show concrete
developments towards a new smart sensor technol-
ogy, which could have direct applications in the
manufacturing pipelines of liquid products as well as
wastewater and sludge treatments plants. This tech-
nology, a smart pressure drop reader, has been dem-
onstrated to be a source of complex information
which can be used for accurate process monitoring.
As highlighted by Hefft and Alberini,[5] at present
pressure drop measurements are limited to Δp read-
ings. Unfortunately, similar readings may result from dif-
ferent causes within the process.

TABLE 7 Five-value summary of the accuracy results obtained in 100 independent learning trials by the multi-layer perceptrons (MLPs)

using the AV (first) and DB (second) feature sets (the patterns were used regardless of the flow rate at which they were generated; the rows

indicated with T report the accuracy results obtained from the training sets of examples, whilst the rows indicated with V report the

accuracy results obtained from the validation sets of examples)

Model Min First quartile Median Third quartile Max

MLP (AV) T 0:3071 0:4771 0:5357 0:6014 0:7186

MLP (AV) V 0:3021 0:4558 0:5203 0:5845 0:6991

MLP (DB) T 1:000 1:000 1:000 1:000 1:000

MLP (DB) V 0:9127 0:9361 0:9412 0:9455 0:9555
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The novelty of this study is in the combination of off-
the-shelf data techniques with a new application, passive
acoustic sensor technology, for the monitoring of the pres-
sure drop in pipes. In particular, Rheality is a new pat-
ented technology which enables such measurements. For
the first time, acquired data were analyzed to determine
the most valuable and descriptive features. The proposed
new method provides information which can be unambig-
uously related to the type of blockage. This possibility is a
game changer, which could lead towards a better control
of undesired phenomena within the process line.

6 | CONCLUSIONS

Acoustic emission (AE) data were used to identify the
presence and type of blockage from pressure loss mea-
surements in pipes. The data were processed according to
the following steps:

i. The AE measurements were pre-processed using
Fourier analysis, and classified into blockage type
using a popular artificial neural network (ANN), the
multi-layer perceptron (MLP).

ii. Two different sets of statistical data descriptors were
evaluated as input to the ANN. The first (AV) used
the average and variance of the DFFT amplitudes
over the 130 000 AE frequencies. The second set
(DB) was generated via data binning, dividing the
DFFT spectrum into non-overlapping intervals of
100 frequencies, and taking the average amplitude as
the representative of each bin.

The following outcomes were achieved:

• The tests showed that, at fixed flow rate, the MLP
can be consistently trained to identify with near per-
fect accuracy the AE patterns using the DB feature
set. The learning results obtained using the AV fea-
ture set were satisfactory only at the highest flow
rate. Yet, at lower flow rates, the MLP could still be
trained to recognize three quarters of the AE pat-
terns successfully.

• It was verified whether the training results obtained at
a given flow rate were transferable to patterns acquired
at a different flow rate. The results were negative, indi-
cating that the AE patterns and their relative differ-
ences are strongly related to the flow rate.

• However, experimental evidence showed that, when
trained using patterns generated at various flow rates,
the MLP can be trained to recognize blockage types at
any flow rate.

In summary, it can be concluded that the above results
are encouraging, and the proposed system can be read-
ily implemented in a real application for the monitor-
ing of pressure drops in pipes. This smart tool can be
used to provide precise information of what is happen-
ing inside the pipe, a task which is beyond the current
state-of-the-art based on standard pressure drop mea-
surements. This capability has important implications
for online monitoring in industrial processes.

Further work should be carried out to investigate
the suitability of the proposed data analysis approach
to detect different features of the flow, which could
include the presence of different phases (gas or solids)
or even recognize different flow rates. Further work
should also address the feature generation processes, in
order to improve the MLP classification accuracy, pos-
sibly including deep learning techniques. In this latter
case, the gains in accuracy should be evaluated against
the increased complexity of the ANN structure and its
training procedure.

PEER REVIEW
The peer review history for this article is available at
https://publons.com/publon/10.1002/cjce.24202.

NOMENCLATURE
Acronyms
Hz hertz (1=s)
AE acoustic emission
ANN artificial neural network
AV average and variance
DB data binning
DFFT discrete fast Fourier transform
MLP multi-layer perceptron
Re Reynolds number
SVM support-vector machine

Greek letters
Δp pressure loss (Pa)
λ Darcy friction factor (�)
ρ density (kg=m3)
ξ discharge coefficient (�)

Roman letters
d internal pipe diameter (m)
g gravity (m=s2)
h elevation (m)
i index (�)
k Darcy-Weisbach roughness height (m)
l length (m)
p pressure (Pa)
u superficial velocity (m/s)
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APPENDIX A.: RHEALITY TECHNOLOGY

Figure A1 shows the Rheality system used to acquire the
measurements.

FIGURE A1 Rheality system
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APPENDIX B.: INTRA-CLASS AND INTER-
CLASS DIFFERENCES

This appendix contains the complete spectra for all the
five classes until 130 kHz. The plots in Figures B1 to B4

show the (column-wise) five-value summary of the
200 experiments for each shape and each flow rate.
Figure B5 shows the spectrum of average (median) DFFT
amplitudes calculated over the 200 recordings for the five
types of obstruction (classes) for each flow rate.

FIGURE B1 Intra-class difference, in the form of column-wise five-value summary, of the 200 experiments for each class at Q10

flow rate
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FIGURE B2 Intra-class difference, in the form of column-wise five-value summary, of the 200 experiments for each class at Q20

flow rate
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FIGURE B3 Intra-class difference, in the form of column-wise five-value summary, of the 200 experiments for each class at Q30

flow rate
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FIGURE B4 Intra-class difference, in the form of column-wise five-value summary, of the 200 experiments for each class at Q40

flow rate
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FIGURE B5 Inter-class difference, in the form of column-wise median, of the 200 experiments for each class at different flow rates
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