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Abstract

This work aims to solve six problems with four different Physics-Informed Machine Learning frame-

works and compare the results in terms of accuracy and computational cost. First, we considered

the Diffusion-Advection-Reaction Equations, which are second-order linear differential equations

with two boundary conditions. The first algorithm is the classic Physics-Informed Neural Net-

works (PINNs). The second one is Physics-Informed Extreme Learning Machine (PIELM). The

third framework is Deep-Theory of Functional Connections (Deep-TFC), a multi-layer NN based

on the solution approximation via a constrained expression that always analytically satisfies the

boundary conditions. Finally, the last algorithm is the Extreme Theory of Functional Connec-

tions X-TFC, which combines TFC and shallow NN with random features (e.g., Extreme Learning

Machine, ELM). The results show that, for these kinds of problems, ELM-based frameworks, es-

pecially X-TFC, overcome those using Deep NN both in terms of accuracy and computational

time.

Keywords—Extreme Learning Machine, Functional Interpolation, Physics-Informed Neural Net-

works
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I. INTRODUCTION

Ordinary and partial differential equations are usually solved and modeled using the Finite

Elements Method (FEM). The domain is discretized via mesh generation, which depends on the

geometry of the problem. The equation will be solved on the points that define each element of

the mesh. If we need to know the solution in a different position instead, we can only obtain the

answer via interpolation. This leads to a significantly increasing of computational times and in

addition, to a lack of accuracy in the solution. Moreover, FEM techniques suffer from the curse of

dimensionality, and they may lead to several numerical instabilities such as spurious oscillations

even if the solution is regular.

Over the past few years, the development of machine learning techniques and artificial intel-

ligence has led to a growing interest in neural networks, especially for their application in solving

differential equations. The general term to refer to them is Artificial Neural Networks (ANN). The

concept that lies behind ANN is to replicate the connections among brain neurons and create a

network that, under a given input, brings out a reliable output. Physics-Informed Neural Networks

(PINNs) are a class of ANN specifically applied to learn how to solve a differential equation follow-

ing the physics behind the problem [1]. Once the training is done, the accuracy of the solution can

be tested on test points. Test points evaluation is directly computed from the NN approximation

and this avoids interpolation techniques and error propagation that derives from using them.

Nevertheless, the efficiency and applicability of NNs for the approximation of differential

problems can present some drawbacks. For example, literature has often been reported a failure

of learning machines techniques to deal with sharp gradient problems [2].

This work will consider the linear one-dimensional second-order Diffusion-Advection-Reaction

Equations. The general formulation can describe, for example, the temperature behavior in Heat

Transfer problems, and the pollutant concentration in Atmosphere Transport. Moreover, it can

extensively represents the oil-water fraction in Reservoir Engineering, and also transport phenom-

ena in porous media, such as membranes. The project aims to compare four PINNs frameworks

to solve a class of linear 1-D steady-state Diffusion-Advection-Reaction Equations with constant

coefficients where the solution is known analytically and it is regular. This class of problems is

computational challenging because of the steep gradients that arise in the computation.

The report is organized as follows. Firstly, a brief introduction on the four frameworks:
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Classic Physics-Informed Neural Networks (PINN) [3], Physics-Informed Extreme Learning Ma-

chine (PIELM) [4], Deep Theory of Functional Connections (Deep-TFC) [5], and Extreme Theory

of Functional Connections (X-TFC)[6] are based on [7]. In the following section we present six

problems we aim to solve and the characteristic parameters are here specified for each case. Then,

we outline the results and highlight which algorithms are more accurate for each case. Finally,

in the conclusions derived from the findings, the results reveal how shallow neural networks are

a robust numerical approach to obtain accurate solutions with high competitive computational

times for this kind of steep gradient solutions.

II. PINNS APPROACH TO SOLVING ODE BOUNDARY VALUE PROBLEMS

Computational techniques are widely used to solve various problems in engineering. The

interest in involving neural networks for this purpose has recently grown. There are two main

reasons why physics-informed machine learning techniques are becoming increasingly popular in

the computational field. Firstly, they aim to solve supervised learning tasks while respecting any

given laws of physics described by general differential equations. Secondly, due to the prohibitive

cost of data acquisition, faster simulations and more accurate computational solutions are necessary

to obtain valuable and reliable results.

If we consider the physical laws that govern the time-dependent dynamics of a system, this

prior information can be used as a constraint that limits the space of admissible solutions to

a manageable size. Such neural networks are built to respect every symmetry, invariance, or

conservation principle originating from the physical laws governing the empirical data, modeled

by general time-dependent and nonlinear partial differential equations. This simple yet powerful

framework allows to deal with a wide range of problems in computational science. It introduces a

potentially transformative technology leading to the development of new data-efficient and physics-

informed learning machines, new classes of numerical solvers for ordinary or partial differential

equations [8, 9, 10, 11, 12], as well as new data-driven approaches for model inversion and control

optimization[13].

Parametric DEs are powerful tools used for mathematical modeling of various problems,

which are present in various fields. There exist two types of DEs: parametric ordinary DEs

(ODEs), which are univariate independent variable equations, and parametric partial DEs (PDEs),
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which are multivariate independent variable equations. The solution of these equations can be

used to simulate, identify, characterize, design, and verify the design of a variety of systems. In

many practical problems, it is not trivial to find an analytical solution to these parametric DEs.

Sometimes the analytical solution does not even exist. Thus, for these cases, it is preferred to solve

these equations numerically. For the numerical solution of ODEs, various methods exist, with the

most popular being based on the Runge-Kutta family. Other methods include finite difference,

Chebyshev-Picard iteration, and pseudo-spectral methods [14]. This work aims to solve a set of

problems with four different techniques and compare the results obtained in terms of accuracy and

computational cost.

II.A. Standard PINN and PIELM

As already explained, numerical methods implemented through machine learning frameworks

can be applied to a wide range of differential equations and systems of differential equations. Here,

we will analyze a comparison between four different techniques used to solve seven physics prob-

lems subject to boundary conditions. The general equation that could represent all the different

problems is better known as a one-dimensional (1D) second-order linear boundary value prob-

lem (BVP). The differential equation of a typical second-order BVP in the space domain can be

expressed, in its implicit form, as follows:

F (x, u(x), u̇(x), ü(x)) = f(x) subject to


u(x = x0) = u0

u(x = xf ) = uf

(1)

where the independent variable is the space x ∈ [x0, xf ], u(x) is the unknown function, u̇(x), ü(x)

are its first and second derivatives, respectively, and f(x) is the forcing term.

II.B. Standard Physics-Informed Neural Network

In the first place, we explain how Physics-Informed Neural Networks (PINN) can be used to

solve the problem introduced in the previous section. According to the standard PINN framework,

the function u(x) could be approximated with a neural network, as u(x) ≈ uNN (x, θ) where θ are

the NN parameters, w, b, and β, which will be trained via gradient based methods. To compute

the derivatives of the NN, the Automatic Differentiation (AD) has been implemented in MATLAB,
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obtaining u̇NN (x, θ) and üNN (x, θ). The differential equation, in terms of NN approximation, has

the form: 
F (x, uNN (x, θ) , u̇NN (x, θ) , üNN (x, θ)) = f(x)

uNN (x0, θ) = uNN0

uNN (xf , θ) = uNNf

(2)

Therefore, to train the network, the Mean Squared Error (MSE) has to be minimized with

the respect to the NN parameters

min
θ

(MSE), θ ∈ R (3)

where

MSE = MSER +MSEu0
+MSEuf

(4)

MESR represents the MSE of the residual approximated with the neural network computed on

the internal training points (5):

MSER =
1

NR

NR∑
i=1

|F (xi, uNN (xi, θ) , u̇NN (xi, θ) , üNN (xi, θ))− f(xi)|2 (5)

while MSEu0
and MSEuf

represent the mean squared errors of the residual approximated

with the neural network computed on boundary points

MSEu0
= |uNN0

− u0|2 (6)

MSEuf
= |uNNf

− uf |2 (7)

Once the hyper parameters are computed, they are plugged into the NN approximation, tom

obtain the numerical solution of the equation.

II.C. Physics-Informed Extreme Learning Machine

In this section we present how to apply PIELM to solve a generic second-order BVP in the

space domain. The first step of the PIELM method is to expand the unknown solution with a

shallow neural network:

u(x) ≈ uELM (x, β) =

L∑
j=1

βj σ(wjx+ bj) (8)
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where L is the number of neurons, wj ∈ R is the input weights vector connecting the jth neuron

with the input nodes, βj ∈ R is the output weights vector that connecting the jth neuron with

the output node, bj is the bias of the jth neuron, and σ(·) are the activation functions, which are

always chosen by the user. Using a shallow neural network means that we will train a one-layer

NN, where input weights wj and bias bj are randomly selected and not tuned during the training.

Thus, they are known parameters. Consequently, the output weights βj are the only unknown

variables and this offers the advantage to compute the derivatives analytically. Therefore, the

possibility to avoid the computational cost of the automatic differentiation. The approximated

function could be expressed as:

uELM (x, β) =

L∑
j=1

βj σ(wjx+ bj) =

L∑
j=1

βj σj =


σ1

...

σL


T

βj = σT (x)β (9)

Replacing the unknown solutions and its derivatives with the neural network approximation,

the BVP could be rewritten as:


F (x, uELM (x, β) , u̇ELM (x, β) , üELM (x, β)) = f(x)

uELM (x0, β) = uELM0 = σT (x0)β = σT
0 β

uELM (xf , β) = uELMf
= σT (xf )β = σT

f β

(10)

The independent variable x is discretized in NF points, and x ∈ (x0, xf) – domain boundaries

excluded. Then the implicit equation becomes

F (xi, uELM (xi, β) , u̇ELM (xi, β) , üELM (xi, β)) = f(xi); ∀i = 1, ..., NF (11)

The only unknowns of this algorithm are the output weights β and, by rearranging the terms,

the following system of linear algebraic equations is obtained:

AF β = bF (12)
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By taking into account the boundary conditions, the system can be written as:

AELM β = bELM (13)

where

AELM =

[
AF σT

0 σT
f

]
and bELM =

[
bF u0 uf

]
(14)

Techniques similar to PIELM can be often found in literature, such as [15], where Dong et

al. developed a technique based on deep neural networks and hidden-layer parameters that are

randomly generated and optimized [16] for solving linear and non-linear PDEs. For the advection

and the diffusion case showed in [15], they achieved good results compared to traditional methods

such as FEM.

II.D. Deep-TFC and X-TFC

The Theory of Functional Connections (TFC) is a mathematical tool developed by Professor

Mortari in Ref.[7], which aims to solve numerically problems in computational science such as

differential equations [17, 11, 18]. This new method consists in deriving analytical expressions,

called constrained expressions, that can be used to represent functions subject to a set of linear

constraints. We call f (x) the resulting constrained expression. It is expressed as a function of

g (x) arbitrarily chosen. Regardless of how you choose f (x), the constrained expression will always

satisfy the set of linear constraints. TFC can be apply to solve a generic second-order BVP in the

space domain using both shallow and deep neural networks [17]. To solve the problem expressed

in Eq.(1), the unknown function is approximated by the so-called constrained expression (CE) [7],

which can be expressed in its general form:

u(x) ≈ uCE (x, g(x)) = g(x) + ϕ1(x) (u0 − g0)︸ ︷︷ ︸
ρ1

+ϕ2(x) (uf − gf )︸ ︷︷ ︸
ρ2

(15)

where g(x) is the free chosen function, ϕ1,2 are the switching functions, and ρ1,2 are the

projection functions, which are functions that project the constrained expression on the boundary.

The switching functions are built in such a way that the constrained expression can analytically

satisfy the boundary conditions ϕ1(u0) = 1, ϕ2(u0) = 0 and ϕ1(uf ) = 1, ϕ2(uf ) = 0.
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Then, the derivatives can be written as

u̇CE (x) = ġ(x) + ϕ̇1(x) ρ1 + ϕ̇2(x) ρ2 (16)

üCE (x) = g̈(x) + ϕ̈1(x) ρ1 + ϕ̈2(x) ρ2 (17)

Therefore, if we use a deep neural network as free chosen function, the technique will be

called Deep Theory of Functional Connections (Deep-TFC). On the other hand, if g(x) is a shallow

neural network computed with ELM, the framework is known as Extreme Theory of Functional

Connections (X-TFC)[6].

III. DIFFUSION-ADVECTION-REACTION EQUATIONS

The aim of this work is to solve the Diffusion - Advection - Reaction equation with the four

frameworks presented in the previous section and compare the results. The general form of the

problem is defined as follows:


−µu′′(x) + γu′(x) + λu(x) = f(x) where x ∈ [0, 1]

ν0u
′(0) + ρ0u(0) = g0

ν1u
′(1) + ρ1u(1) = g1

(18)

where µ is the diffusion coefficient, γ is the advection coefficient and λ is the reaction one. Dirichlet

and Neumann boundary conditions are derived by setting νi = 0 or ρi = 0. The following problems

are particular cases derived from Eq.(18).

III.A. Sinusoidal-bump Problem

The first case is a sinusoidal-bump 1D boundary value problem with homogeneous Dirichlet

boundary conditions, where k represents the number of oscillations in the domain:


u′′(x) + (4k2π2 − 1)u(x) = 4kπex cos(2kπx) where x ∈ [0, 1]

u(0) = 0

u(1) = 0 while k ∈ N

(19)
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The DE above has exact solution u(x) = ex sin(2kπx). We will evaluate the results for

k = 1, 5, 50, to consider equations more computationally challenging.

III.B. High-Order Polynomial

The second example is a boundary value problem containing a high-order polynomial:


u′′(x) = f(x) where x ∈ [0, 1]

u(0) = 0

u(1) = 0

(20)

The forcing term is f(x) = 22pp(1 − x)p−2xp−2
(
−1 + 2x− 2x2 + p(1− 4x+ 4x2)

)
, p ∈ N .

The problem above has exact solution u(x) = 22p xp(1 − x)p. We will analyze the results for:

p = 10, 100, 250 to make it more computational challenging,while in Ref.[2] they only observed the

result for p = 10 computed via ELM network to compare with a non-exact solution obtained with

FDM.

III.C. Diffusion - Reaction Problem

The fourth problem is derived from Eq.(18), considering γ = 0, λ > 0 and f(x) ≡ 0 and

imposing as Dirichlet boundary conditions g0 = 0, g1 = 1, we obtain a diffusion - reaction problem:


−µu′′(x) + λu(x) = 0 x ∈ [0, 1]

g0 = 0

g1 = 1

(21)

The analytical solution is u(x) =
sinh (ϑx)

sinh(ϑ)
where ϑ =

√
λ

µ
. We notice that also in

this problem, the solution can present steep gradients if λ
µ ≫ 1.

III.D. Internal Layer Profile

The fifth problem is one of the high transient problems that lead to an internal layer:
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

−u′′(x) =
2α3(x− x0)

(1 + α2(x− x0)2)
2 x ∈ [0, 1]

u(0) = − 3
2

u(1) = 3
2

(22)

The exact solution of the problem is u(x) = atan (α(x− x0)). In the test we run, we choose

α = 1, 60, 1000 and x0 =
4

9
. Even if it is an internal layer problem, the kind of differential equation

is the same as Eq.(20).

III.E. Internal Peak Profile

The sixth problem is an internal peak test, which is a rescaled sinusoidal problem:



−u′′(x) =

(
−4x2

ε2
+

2

ε

)
e
−
x2

ε x ∈ [0, 1]

u(0) = 0

u(1) = 1

(23)

The exact solution of the problem is u(x) = e
−
x2

ε . In the code we run, we choose three

different values of ε : 1, 10−3, 10−6. The kind of differential equation is the same as Eq.(20).

III.F. Comb-like Profile

The last example is a more complex case, which has as exact solution a comb-like profile:



−u′′(x) = −2(ε+ x)cos

(
1

ε+ x

)
+

sin

(
1

ε+ x

)
(ε+ x)4

x ∈ [0, 1]

u(0) = sin

(
1

ε

)
u(1) = sin

(
1

ε+ 1

)
(24)

The analytical solution of the problem is u(x) = sin

(
1

ε+ x

)
. We consider two cases:

ε =
1

π
,

1

10π
, to have solutions with different oscillations in the domain. The kind of differential

equation is the same as Eq.(20).
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IV. RESULTS AND DISCUSSION

In this section, the hyperparameters for each case – unless otherwise specified – are reported

in Table I.

TABLE I
Simulation Parameters

PINN PIELM Deep-TFC X-TFC

Activation function tanh tanh tanh tanh
Optimizer ADAM Least-Squares L-BFGS Least-Squares

Learning - rate Adaptive − Adaptive −
NR 10000 10000 10000 10000
N 2 2 0 0

Epochs Problem Dependent 1 Problem Dependent 1
Mini - batch size Problem Dependent 10000 10000 10000
Number of batch Problem Dependent 1 1 1

The following Tables show the results of the problems for each case scenarios in terms of

maximum error, mean error, Euclidean norm, standard deviation, training time and absolute

errors on the boundary conditions. The absolute error is computed by comparing the numerical

solution with the analytical solution on the test points.

In Tables II - XXXV, the superscripts and subscripts reported next to each method’s acronym

have the following meanings:

• PINN epochs, number of batches
number of layers, number of neurons per layer

• PIELM number of neurons

• Deep-TFC epochs
number of layers, number of neurons per layer

• X-TFC number of neurons

which characterize the architecture of the Neural Network at hand.

All the simulation run on a machine with an Intel Core i7 - 9700 CPU PC with 64 GB of

RAM. For some cases, we presented also the plots of the solutions calculated with each methods

and the relative absolute errors. The same graphs were presented during ICTT-27.

Sinusoidal-bump Problem - Case k = 1. From the results shown in Table II, we notice that

shallow NNs obtain the solution with excellent accuracy and low computational cost. Generally,
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(a)

(b)

Fig. 1. Solution plots (a) and absolute errors (b) on test points for k = 1.

X-TFC and PIELM architectures reach accuracy of 10−15 and 10−13 respectively, both with ≈ 2.0

s of training time. On the contrary, both Deep NNs fail to learn the solution in almost every

scenario. PINN can only achieve the solution in the architecture that presents 5 layers and 50

neurons per layer with at least 50000 epochs and 8 hours of training. Deep-TFC is only successful

in the architecture with one layer and 50 neurons per layer with computational time of ≈ 53.5

minutes. In Fig.1, we can graphically appreciate the differences in terms of absolute errors.

Sinusoidal-bump Problem - Case k = 5. From the results show in Table IV, we notice that

deep NNs totally fail to learn the solution: there is no architecture capable of solving the problem.

On the other hand, shallow NNs obtain high performances such as 10−14 for X-TFC and 10−13

13



(a)

(b)

Fig. 2. Solution plots (a) and absolute errors (b) on test points for k = 5.

for PIELM, with a computational cost of ≈ 2.0 s each. In particular, X-TFC architecture with

1000 neurons gains the best results within 2.0 seconds of training. In Fig.2, we can graphically

appreciate the differences in terms of absolute errors. In Fig.2, we can graphically appreciate the

differences in terms of absolute errors.

Sinusoidal-bump Problem - Case k = 50. From the results show in Table VI, it can be

seen how deep NNs totally fail in learning how to solve the equation. The number of oscillations

increases significantly and also shallow NNs are less accurate than previous scenarios. In particular,

X-TFC finds the solution in both architectures with 1000 and 10000 neurons with a mean error
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of 10−07 – ≈ 2 seconds and 10−13 – ≈ 2.5 minutes, respectively. On the other hand, PIELM

only achieves the solution in the order of 1005 with the 10000 neurons with a computational time

of ≈ 2.5 minutes. The best absolute errors on the boundary conditions for PINN and PIELM

are in the order of 10−03 and 10−08, respectively,as it can be seen from Table VII. While, for the

TFC-based frameworks, the absolute error is exactly 0, as the constraints are analytically satisfied.

High-Order Polynomial - Case p = 10. From the results show in Tables VIII, we notice

how shallow NNs can learn the solution with excellent accuracy and low computational cost. In

particular, X-TFC and PIELM most performing architectures reach both accuracy of 10−16 with

≈ 2.0 seconds of training time. On the other hand, both Deep NNs need higher computational

time to reach worse results, such as 10−08 for Deep-TFC, and 10−03 for PINN, with computational

times of ≈ 14 hours 45 minutes and ≈ 30 minutes, respectively. The best absolute errors on the

boundary conditions for PINN and PIELM are in the order of 10−03 and 10−16, respectively, as it

can be seen from Table IX. While, for the TFC-based frameworks, the absolute error is exactly 0,

as the constraints are analytically satisfied.

High-Order Polynomial - Case p = 100. Table X shows how shallow NNs can learn the

solution with excellent accuracy and low computational cost. In particular, X-TFC and PIELM

architectures reach accuracy of 10−15, both with ≈ 2.0 seconds of computational time. On the

contrary, Deep-TFC achieve significantly lower accuracy, such as 10−06 with training times of ≈ 3

hours. We notice that none of the PINN architectures can compute the solution. As can be seem

from Table XI The absolute errors on the boundary conditions for and PIELM are in the order

of 10−16. For the TFC-based frameworks, the absolute error is exactly 0, as the constraints are

analytically satisfied.

High-Order Polynomial - Case p = 250 Table XII shows how shallow NNs can learn the

solution with excellent accuracy and low computational cost. In particular, X-TFC and PIELM

architectures both reach accuracy of 10−15, within ≈ 2.0 seconds of computational time. On the

contrary, Deep-TFC achieve significantly lower accuracy, such as 10−05 with training times of ≈ 18

minutes. We notice that none of the PINN architectures can compute the solution. As can be
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seem from Table XIII The absolute errors on the boundary conditions for and PIELM are in the

order of 10−17. For the TFC-based frameworks, the absolute error is exactly 0, as the constraints

are analytically satisfied.

Diffusion-Reaction problem - Case λ = 1. From the results show in Tables XIV, it can be

seen how shallow NNs can learn the solution with excellent accuracy and low computational cost.

In particular, X-TFC and PIELM architectures reach accuracy of 10−17 and 10−15, respectively,

both with ≈ 2.0 seconds of computational time. Conversely, both Deep NNs achieve significantly

lower accuracy, such as 10−06 for Deep-TFC, and 10−07 for PINN, with a computational time of

≈ 11.7 seconds and ≈ 20 days respectively. The best absolute errors on the boundary conditions

for PINN and PIELM are in the order of 10−05 and 10−16, respectively,as it can be seen from Table

XV. While, for the TFC-based frameworks, the absolute error is exactly 0, as the constraints are

analytically satisfied.

Diffusion-Reaction problem - Case λ = 300. Table XVI shows how shallow NNs can learn

the solution with excellent accuracy and low computational cost. In particular, X-TFC and PIELM

architectures reach accuracy of 10−15 and 10−14, respectively, with ≈ 2.5 and ≈ 2.7 minutesof

computational time. On the contrary, we note that Deep NNs learn the solution with lower

accuracy, such as 10−03 with a training time of ≈ 11.4 seconds for DEEP-TFC and ≈ 30 minutes

for PINN. In particular, they can not follow the sharp gradient on the final boundary. The best

absolute errors on the boundary conditions for PINN and PIELM are in the order of 10−04 and

10−15, respectively,as it can be seen from Table XVII. While, for the TFC-based frameworks, the

absolute error is exactly 0, as the constraints are analytically satisfied.

Diffusion-Reaction problem - Case λ = 50000. From the results show in Tables XVIII, it

can be seen how shallow NNs can learn the solution with good accuracy and low computational

cost. In particular, X-TFC and PIELM architectures reach accuracy of 10−14 and 10−09, with

computational time of ≈ 2.4 and ≈ 2.3 minutes, respectively. We note that Deep NNs learn the

solution with lower accuracy, such as 10−02 with a training time of ≈ 13.5 seconds for DEEP-TFC

and ≈ 30 minutes for PINN. In particular, they can not follow the sharp gradient on the final

boundary. The best absolute errors on the boundary conditions for PIELM are in the order of
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10−15,as it can be seen from Table XIX. While, for the TFC-based frameworks, the absolute error

is exactly 0, as the constraints are analytically satisfied.

Internal Layer Profile - Case α = 1. From the results show in Tables XX, it can be seen how

shallow NNs can learn the solution with excellent accuracy and low computational cost. In par-

ticular, X-TFC and PIELM architectures reach accuracy of 10−17 and 10−16, with computational

time of ≈ 2.0 and ≈ 0.02 seconds, respectively. We note that both Deep NNs achieve significantly

lower accuracy, such as 10−08 with a training time of ≈ 35.2 seconds for Deep-TFC and 294 hours

for PINN. The best absolute errors on the boundary conditions for PIELM and PINN are in the

order of 10−16 and 10−08 respectively,as it can be seen from Table XXI. While, for the TFC-based

frameworks, the absolute error is exactly 0, as the constraints are analytically satisfied. In Fig.3,

we can graphically appreciate the differences in terms of absolute errors.

Internal Layer Profile - Case α = 60. Table XXII shows how shallow NNs can learn the

solution with excellent accuracy and low computational cost in almost every scenario. In particular,

X-TFC and PIELM architectures can reach accuracies of 10−14 and 10−13 respectively, in ≈ 2.0

seconds On the contrary, Deep-TFC achieves significantly lower accuracy, such as 10−03, with

training times of ≈ 2.8 minutes. We notice that every PINN architecture fail to learn the solution.

As can be seem from Table XXIII The absolute errors on the boundary conditions for and PIELM

are in the order of 10−13. For the TFC-based frameworks, the absolute error is exactly 0, as the

constraints are analytically satisfied. In Fig.4, we can graphically appreciate the differences in

terms of absolute errors.

Internal Layer Profile - Case α = 1000. In the most demanding case of this problem, we

notice that also shallow NNs accuracies are lower than usual, but still with the lowest computationl

costs. Table XXIV, shows that both X-TFC and PIELM architectures reach accuracy of 10−04

with ≈ 2.0 minutes of training time. On the contrary, both Deep NNs fail to learn the solution in

every scenario. The best absolute errors on the boundary conditions for PIELM are in the order of

10−05, as it can be seen from Table XXV. While, for the TFC-based frameworks, the absolute error

is exactly 0, as the constraints are analytically satisfied. In Fig.5, we can graphically appreciate

the differences in terms of absolute errors.
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(a)

(b)

Fig. 3. Solution plots (a) and absolute errors (b) on test points for α = 1.
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(a)

(b)

Fig. 4. Solution plots (a) and absolute errors (b) on test points for α = 60.
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(a)

(b)

Fig. 5. Solution plots (a) and absolute errors (b) on test points for α = 1000.
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Internal Peak Profile - Case ε = 1. From the results show in Table XXVI, it can be seen

how shallow NNs can learn the solution with excellent accuracy and low computational cost. In

particular, X-TFC and PIELM architectures reach accuracy of 10−16 and 10−15, respectively, both

with ≈ 0.02 seconds of computational time. Conversely, both Deep NNs achieve significantly lower

accuracy, such as 10−06 for Deep-TFC, and 10−05 for PINN. We note that one of the two most

performing PINN architectures is a one-hidden layer NNs. The computational time is ≈ 4.9 seconds

for Deep-TFC and ≈ 26 minutes for PINN. The best absolute errors on the boundary conditions

for PINN and PIELM are in the order of 10−06 and 10−15, respectively,as it can be seen from Table

XXVII. While, for the TFC-based frameworks, the absolute error is exactly 0, as the constraints

are analytically satisfied.

Internal Peak Profile - Case ε = 10−03. From the results show in Table XXVIII, it can be

seen how shallow NNs can learn the solution with excellent accuracy and low computational cost.

In particular, X-TFC and PIELM architectures reach accuracy of 10−14 and 10−13, respectively,

both with ≈ 2.6 minutes of computational time. Conversely, both Deep NNs achieve significantly

lower accuracy, such as 10−03 for Deep-TFC, and 10−05 for PINN with a training time of ≈ 1.2

minutes and ≈ 2.5 hours, respecitively. The best absolute errors on the boundary conditions for

PINN and PIELM are in the order of 10−04 and 10−13, respectively, as it can be seen from Table

XXIX. While, for the TFC-based frameworks, the absolute error is exactly 0, as the constraints

are analytically satisfied.

Internal Peak Profile - Case ε = 10−06. Table XXX shows how shallow NNs can learn

the solution with gpod accuracy and low computational cost. In particular, X-TFC and PIELM

architectures both reach accuracy of 10−12, within ≈ 2.6 minutes of training. On the contrary,

PINN reaches the solution only with two configurations and achieves significantly lower accuracy,

such as 10−03 with computational time of ≈ 2.5 hours. We notice that Deep-TFC always fails

to learn the solution. As can be seem from Table XXXI The absolute errors on the boundary

conditions for and PIELM and PIELM are in the order of 10−12 and 10−02 respectively. For the

TFC-based frameworks, the absolute error is exactly 0, as the constraints are analytically satisfied.
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Comb-like Profile - Case ε =
1

π
. Table XXXII shows how shallow NNs can learn the solution

with excellent accuracy and low computational cost. In particular, X-TFC and PIELM architec-

tures reach accuracy of 10−15 and 10−14, respectively, both with ≈ 2.0 seconds of computational

time. On the other hand both Deep NNs achieve significantly lower accuracy, such as 10−04 for

Deep-TFC, and 10−05 for PINN, with computational times of ≈ 5.0 seconds and ≈ 2.0 hours,

respectively. The best absolute errors on the boundary conditions for PINN and PIELM are in

the order of 10−05 and 10−14, respectively,as it can be seen from Table XXXIII. While, for the

TFC-based frameworks, the absolute error is exactly 0, as the constraints are analytically satisfied.

Comb-like Profile - Case ε =
1

10π
. In the most challenging case of this problem, Table XXXIV

shows how shallow NNs can learn the solution with good accuracy and low computational cost

in almost every scenario. In particular, X-TFC architectures reach accuracy of 10−13 in ≈ 2.6

minutes, while in the same training time PIELM can reach 10−12. On the contrary, Deep fails

to learn the solution with every architecture trained. PINN can achieve the solution only in one

configuration, with accuracy of 10−02 and training times of ≈ 88.0 hours. As can be seem from

Table XXXV The absolute errors on the boundary conditions for and PIELM and PINN are in

the order of 10−12 and 10−02, respectively. For the TFC-based frameworks, the absolute error is

exactly 0, as the constraints are analytically satisfied.

V. CONCLUSION

This paper is a comparison of four different PINNs frameworks for solving physics prob-

lems arising from the second-order linear Diffusion-Advection-Reaction equation. The motivation

behind the choice of these physics problems is the existence of sharp gradients in the solution,

which makes it computationally challenging. We solved six different problems, varying the DEs’

parameters in each of them, to create discontinuities in the solutions and increase the computa-

tional challenge. For each method, several architectures have been used to find the optimal set of

hyperparameters and to get the best performances. All the problems we faced led us to draw the

same qualitative conclusions.

The classic PINN framework is able to find the solutions for the simplest cases with tolerable
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accuracy values but less acceptable computational costs (times never less than 20 minutes), while

it fails for slightly more difficult cases. Deep-TFC proved to be slightly better in accuracy than

the classic PINN by learning the solution for the cases where classic PINN starts to fail but fails

in turn for subsequent cases. This small improvement is due to the introduction of the TFC

constrained expression in the approximation of the solution since it solves the problem on the

constraints analytically. PIELM framework was able to solve all the most challenging problems

with steeper discontinuities, with great accuracy and highly performing computational times. This

substantial difference from the previous two methods is due to the employment of Shallow NNs as

an approximation of the solution instead of multiple hidden layers of neurons. Finally, by using

the TFC constrained expression and a Shallow NN as a free function, the accuracy of the solutions

of all the problems have been improved to the machine error accuracy, with computational times

never longer than 3 minutes. This is the case of X-TFC, which is the most performing framework

within this simulations.

In conclusion, we proved how Shallow NNs are more advised than Deep NNs in the machine

learning community for solving 1D steady-state differential equations. Also, the biggest limitation

of the physics-driven frameworks, i.e. the non-analytic satisfaction of the constraints, can be easily

overcome by the use of constrained expression introduced by the TFC. Future works will focus on

solving non-linear ODEs, and linear and non-linear PDEs to investigate the different performance

of the frameworks and apply them to solve problems in several fields of physics and engineering,

such as Radiative Transfer, Rarefied Gas Dynamics, Nuclear Reactor Dynamics, Chemical Kinetics,

and many more.
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TABLE II
Performance summary in terms of absolute errors for the case k = 1.

max(error) mean(error) norm(error) std(error) training time

PINN150000,5
1,50 2.81 1.79 0.20 0.86 ≈ 51 h

PINN15000,5
1,100 2.83 1.80 0.20 0.87 ≈ 59 h

PINN15000,5
5,50 1.39 0.89 0.10 0.43 ≈ 3.2 h

PINN100000,5
5,50 1.32e-01 8.39e-02 9.30e-03 4.04e-02 ≈ 15.7 h

PINN500000,5
5,50 2.72e-03 1.74e-03 1.93e-04 8.38e-04 ≈ 42.3 h

PINN15000,5
5,100 1.65 1.05 0.117 0.508 ≈ 2.3 h

PINN15000,5
10,50 1.86 1.19 0.132 0.572 ≈ 3 h

PINN15000,5
10,100 2.23 1.42 0.158 0.687 ≈ 3.5 h

PIELM100 9.45e-12 5.97e-12 6.62e-13 2.87e-12 ≈ 0.02 s
PIELM1000 9.89e-13 6.30e-13 6.99e-14 3.04e-13 ≈ 2.0 s
PIELM∗

10000 2.76e-10 1.76e-10 1.96e-11 8.50e-11 ≈ 2.6 min
Deep-TFC3000

1,50 3.95e-09 1.56e-09 1.89e-10 1.06e-09 ≈ 53.5 min
Deep-TFC3000

1,100 3.62 1.52 0.20 1.31 ≈ 5.9 min
Deep-TFC3000

5,50 3.62 1.52 0.20 1.31 ≈ 16.7 min
Deep-TFC3000

5,100 3.62 1.52 0.20 1.31 ≈ 51.4 min
Deep-TFC3000

10,50 3.62 1.52 0.20 1.31 ≈ 49.8 min
Deep-TFC3000

10,100 3.62 1.52 0.20 1.31 ≈ 1.3 h

X-TFC100 2.96e-12 8.22e-14 1.03e-14 6.32e-14 ≈ 0.02 s
X-TFC1000 1.38e-14 7.48e-15 8.47e-16 8.47e-16 ≈ 2.0 s
X-TFC∗

10000 1.47e-13 7.83e-14 9.14e-15 4.74e-14 ≈ 2.6 min

TABLE III
Absolute errors on the boundary conditions for the case k = 1.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN150000,5

1,50 1.11e-01 1.11e-01

PINN15000,5
1,100 1.11e-01 1.20e-01

PINN15000,5
5,50 5.54e-02 5.61e-02

PINN50000,5
5,50 1.40e-02 1.42e-02

PINN100000,5
5,50 5.23e-03 2.24e-03

PINN500000,5
5,50 1.12e-04 1.03e-04

PINN15000,5
5,100 6.62e-02 6.62e-02

PINN15000,5
10,50 7.43e-02 7.43e-02

PINN3000,5
10,100 8.86e-02 8.95e-02

PIELM100 3.76e-13 4.24e-13
PIELM1000 3.61e-14 4.00e-14
PIELM10000 9.76e-12 1.23e-11
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE IV
Performance summary in terms of absolute errors for the case k = 5.

max(error) mean(error) norm(error) std(error) training time

PINN15000,5
1,50 2.60 1.09 0.12 0.64 ≈ 1.8 h min

PINN3000,5
1,1000 2.60 1.08 0.12 0.64 ≈ 23 min

PINN3000,5
1,10000 2.60 1.08 0.13 0.64 ≈ 31 min

PINN3000,5
5,50 2.60 1.08 0.13 0.64 ≈ 28 min

PINN3000,5
5,100 2.60 1.26 0.14 0.65 ≈ 25 min

PINN3000,5
10,50 2.57 1.38 0.154 0.696 ≈ 29 min

PINN3000,5
10,100 1.83 1.15 0.13 0.57 ≈ 36 min

PIELM∗
100 1.78e-05 1.13e-05 1.26e-06 5.60e-06 ≈ 0.02 s

PIELM∗
1000 1.29e-12 8.14e-13 9.08e-14 4.04e-13 ≈ 2.0 s

PIELM∗
10000 7.43e-08 4.69e-08 5.23e-09 2.33e-08 ≈ 2.7 min

Deep-TFC60000
1,50 2.42 1.12 0.12 0.66 ≈ 25.8 min

Deep-TFC60000
1,100 1.95 1.12 0.12 0.56 ≈ 19.5 min

Deep-TFC60000
5,50 1.73 1.06 0.12 0.55 ≈ 2.7 s

Deep-TFC60000
5,100 1.73 1.06 0.12 0.55 ≈ 4.8 s

Deep-TFC60000
10,50 1.73 1.09 0.12 0.54 ≈ 17.1 min

Deep-TFC60000
10,100 1.71 1.09 0.12 0.54 ≈ 55 min

X-TFC∗
100 1.35e-10 4.33e-11 5.48e-12 3.39e-11 ≈ 0.02 s

X-TFC∗
1000 8.93e-14 5.51e-14 6.15e-15 2.74e-14 ≈ 2.0 s

X-TFC∗
10000 2.50e-12 1.57e-12 1.75e-13 7.82e-13 ≈ 2.7 min

TABLE V
Absolute errors on the boundary conditions for the case k = 5.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN15000,5

1,50 2.60e-02 3.70e-02

PINN3000,5
1,1000 2.80e-02 2.37e-01

PINN3000,5
1,10000 2.30e-02 2.11e-02

PINN3000,5
5,50 2.96e-02 4.90e-02

PINN3000,5
5,100 3.77e-02 3.13e-02

PINN3000,5
10,50 1.51e-03 3.41e-04

PINN3000,5
10,100 1.89e-01 2.25e-01

PIELM∗
100 1.39e-07 1.45e-07

PIELM∗
1000 5.55e-15 1.63e-14

PIELM∗
10000 5.98e-10 5.85e-10

Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE VI
Performance summary in terms of absolute errors for the case k = 50.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 1.73 1.06 0.119 0.554 ≈ 23 min

PINN3000,5
1,100 1.73 1.06 0.119 0.554 ≈ 23 min

PINN3000,5
5,50 1.73 1.06 0.119 0.554 ≈ 28 min

PINN3000,5
5,100 1.73 1.06 0.119 0.554 ≈ 32 min

PINN3000,5
10,50 1.73 1.06 0.119 0.554 ≈ 37 min

PINN3000,5
10,100 1.73 1.06 0.119 0.554 ≈ 38 min

PINN50000,5
1,1000 1.73 1.06 0.119 0.554 ≈ 6.5 h

PIELM∗
100 1.73 1.06 1.20e-01 5.55e-01 ≈ 0.02 s

PIELM∗
1000 1.06 6.70e-01 7.48e-02 3.33e-01 ≈ 2.0 s

PIELM∗
10000 5.16e-05 3.28e-05 8.15e-07 1.59e-05 ≈ 2.5 min

Deep-TFC60000
1,50 1.73 1.06 0.12 0.55 ≈ 1.31 s

Deep-TFC6e04
1,100 1.73 1.06 0.12 0.55 ≈ 2.26 s

Deep-TFC6e04
5,50 1.73 1.06 0.12 0.55 ≈ 1.85 s

Deep-TFC6e04
5,100 1.73 1.06 0.12 0.55 ≈ 4.67 s

Deep-TFC6e04
10,50 1.73 1.06 0.12 0.55 ≈ 4.04 s

Deep-TFC6e04
10,100 1.73 1.06 0.12 0.55 ≈ 5.76 s

X-TFC∗
100 1.73 1.06 1.20e-01 5.55e-01 ≈ 0.02 s

X-TFC∗
1000 9.97e-07 6.28e-07 7.02e-08 3.14e-07 ≈ 2.0 s

X-TFC∗
10000 4.22e-13 2.46e-13 6.11e-15 1.19e-13 ≈ 2.5 min

TABLE VII
Absolute errors on the boundary conditions for the case k = 50.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 1.90e-03 1.20e-03

PINN3000,5
1,100 2.50e-02 1.81e-01

PINN3000,5
5,50 3.02e-03 4.00e-04

PINN3000,5
5,100 2.74e-03 1.59e-03

PINN3000,5
10,50 1.50e-03 3.41e-04

PINN3000,5
10,100 2.04e-03 4.28e-03

PINN50000,5
1,1000 1.14e-04 2.44e-04

PIELM∗
100 6.78e-04 8.46e-04

PIELM∗
1000 7.57e-04 9.34e-04

PIELM∗
10000 4.11e-08 4.10e-08

Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE VIII
Performance summary in terms of absolute errors for the case p = 10.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 1.20e-02 6.11e-03 7.06e-04 3.56e-03 ≈ 25 min

PINN3000,5
1,100 1.06e-02 5.42e-03 6.28e-04 3.19e-03 ≈ 25 min

PINN3000,5
5,50 6.49e-03 3.56e-03 3.76e-04 1.20e-03 ≈ 31 min

PINN3000,5
5,100 7.94e-03 3.98e-03 4.61e-04 2.33e-03 ≈ 32 min

PINN3000,5
10,50 7.18e-03 3.66e-03 4.20e-04 2.07e-03 ≈ 40 min

PINN3000,5
10,100 2.85e-02 1.29e-02 1.56e-03 8.70e-03 ≈ 40 min

PIELM100 1.77e-13 3.14e-14 5.11e-15 4.054e-14 ≈ 0.02 s
PIELM1000 2.22e-15 6.69e-16 8.10e-17 4.58e-16 ≈ 2.0 s
PIELM∗

10000 2.09e-13 1.04e-13 1.20 e-14 6.00e-14 ≈ 2.6 min
Deep-TFC60000

1,50 4.30e-05 1.10e-05 9.09e-06 1.42e-06 ≈ 2 min
Deep-TFC60000

1,100 1.06-04 2.10e-05 2.41e-05 3.18e-06 ≈ 3 min
Deep-TFC60000

5,50 1.68e-06 4.66e-07 3.49e-07 5.81e-08 ≈ 27 min
Deep-TFC60000

5,100 9.36e-07 3.03e-07 2.25e-07 3.77e-08 ≈ 2.8 h
Deep-TFC60000

10,50 1.08e-06 6.26e-07 3.10e-07 6.98e-08 ≈ 3.7 h
Deep-TFC60000

10,100 1.67e-07 5.80e-08 4.30e-08 7.21e-09 ≈ 14.8 h

X-TFC100 1.81e-13 3.02e-14 5.05e-15 4.07e-14 ≈ 0.02 s
X-TFC1000 1.11e-15 1.55e-16 2.70e-17 2.22e-16 ≈ 2.0 s
X-TFC10000 4.80e-14 2.92e-14 3.28e-15 1.51e-14 ≈ 2.6 min

TABLE IX
Absolute errors on the boundary conditions for the case p = 10.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 1.20e-02 6.11e-03

PINN3000,5
1,100 1.06e-02 1.06e-02

PINN3000,5
5,50 3.17e-03 3.49e-03

PINN3000,5
5,100 7.93e-03 7.94e-03

PINN3000,5
10,50 7.10e-03 7.18e-03

PINN3000,5
10,100 2.68e-02 2.85e-02

PIELM100 1.04e-09 9.48e-10
PIELM1000 5.41e-16 7.22e-16
PIELM10000 2.09e-13 2.00e-13
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE X
Performance summary in terms of absolute errors for the case p = 100.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 NaN NaN NaN NaN ≈ 25 min

PINN3000,5
1,100 NaN NaN NaN NaN ≈ 25 min

PINN3000,5
5,50 NaN NaN NaN NaN ≈ 31 min

PINN3000,5
5,100 NaN NaN NaN NaN ≈ 32 min

PINN3000,5
10,50 NaN NaN NaN NaN ≈ 40 min

PINN3000,5
10,100 NaN NaN NaN NaN ≈ 40 min

PIELM100 1.23e-09 5.51e-10 6.39e-11 3.25e-11 ≈ 0.02 s
PIELM1000 1.13e-14 1.59e-15 2.14e-16 1.43e-15 ≈ 2 s
PIELM∗

10000 6.82e-14 3.13e-14 3.72e-15 2.01e-14 ≈ 2.6 min
Deep-TFC60000

1,50 6.44e-04 1.98e-04 1.45e-04 2.45e-05 ≈ 6.5 min
Deep-TFC60000

1,100 6.62e-04 1.90e-04 1.83e-04 2.63e-05 ≈ 4.7 min
Deep-TFC60000

5,50 9.98e-05 1.97e-05 2.67e-05 3.30e-06 ≈ 46 min
Deep-TFC60000

5,100 1.12e-05 3.60e-06 2.38e-06 4.31e-07 ≈ 3 h
Deep-TFC60000

10,50 1.58e-04 1.00e-04 4.87e-05 1.11e-05 ≈ 2.7 h
Deep-TFC60000

10,100 1.15e-05 5.40e-06 2.72e-06 6.04e-07 ≈ 11 h

X-TFC100 7.38e-10 1.81e-10 2.37e-11 1.53e-10 ≈ 0.02 s
X-TFC1000 1.18e-14 1.56e-15 2.26e-16 1.65e-15 ≈ 2 s
X-TFC∗

10000 1.15e-14 4.01e-15 5.41e-16 3.66e-15 ≈ 2.6 min

TABLE XI
Absolute errors on the boundary conditions for the case p = 100.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 NaN NaN

PINN3000,5
1,100 NaN NaN

PINN3000,5
5,50 NaN NaN

PINN3000,5
5,100 NaN NaN

PINN3000,5
10,50 NaN NaN

PINN3000,5
10,100 NaN NaN

PIELM100 1.04e-09 9.48e-10
PIELM1000 1.05e-15 1.03e-15
PIELM∗

10000 6.82e-14 6.54e-15
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XII
Performance summary in terms of absolute errors for the case p = 250.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 NaN NaN NaN NaN ≈ 25 min

PINN3000,5
1,100 NaN NaN NaN NaN ≈ 25 min

PINN3000,5
5,50 NaN NaN NaN NaN ≈ 31 min

PINN3000,5
5,100 NaN NaN NaN NaN ≈ 32 min

PINN3000,5
10,50 NaN NaN NaN NaN ≈ 40 min

PINN3000,5
10,100 NaN NaN NaN NaN ≈ 40 min

PIELM100 8.77e-06 2.81e-06 3.46e-07 2.03e-06 0.02 s
PIELM1000 2.71e-14 7.47e-15 8.97e-16 4.99e-15 ≈ 2 s
PIELM∗

10000 4.27e-14 2.10e-14 2.41e-15 1.19e-14 ≈ 2.7 min
Deep-TFC60000

1,50 4.82e-02 1.05e-02 1.20e-02 1.59e-03 ≈ 7 sec
Deep-TFC60000

1,100 2.28e-04 6.96e-05 6.06e-05 9.21e-06 ≈ 18 min
Deep-TFC60000

5,50 4.70e-03 3.24e-03 1.41e-03 3.53e-04 ≈ 41 min
Deep-TFC60000

5,100 5.97e-04 4.16e-04 1.40e-04 4.39e-05 ≈ 1.3 h
Deep-TFC60000

10,50 8.86e-04 6.30e-04 2.84e-04 6.91e-05 ≈ 2.2 h
Deep-TFC60000

10,100 7.35e-04 4.80e-04 2.24-04 5.30e-05 ≈ 5.7 h

X-TFC100 9.17e-06 1.99e-06 2.94e-07 2.17e-06 0.02 s
X-TFC1000 2.69e-14 7.61e-15 8.96e-16 4.74e-15 ≈ 2 s
X-TFC∗

10000 2.03e-14 3.57e-15 4.80e-16 3.07e-15 ≈ 2.6 min

TABLE XIII
Absolute errors on the boundary conditions for the case p = 250.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 NaN NaN

PINN3000,5
1,100 NaN NaN

PINN3000,5
5,50 NaN NaN

PINN3000,5
5,100 NaN NaN

PINN3000,5
10,50 NaN NaN

PINN3000,5
10,100 NaN NaN

PIELM100 3.83e-06 2.84e-06
PIELM1000 2.78e-17 4.99e-16
PIELM∗

10000 4.27e-14 4.07e-14
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XIV
Performance summary in terms of absolute errors for the case λ = 1.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 5.28e-06 2.36e-06 2.79e-07 1.49e-06 ≈ 25 min

PINN3000,5
1,100 3.78e-04 2.52e-04 2.70e-05 9.77e-05 ≈ 22.5 min

PINN3000,5
5,50 3.21e-04 1.30e-04 1.61e-05 9.53e-05 ≈ 27 min

PINN3000,5
5,100 4.34e-04 1.89e-04 2.30e-05 1.31e-04 ≈ 27.5 min

PINN3000,5
10,50 7.47e-03 3.31e-03 3.91e-04 2.09e-03 ≈ 37 min

PINN3000,5
10,100 7.07e-01 2.76e-01 3.36e-02 1.94e-01 ≈ 34 min

PINN1e5,5
10,100 2.82e-03 1.23e-03 1.49e-04 8.43e-04 ≈ 43 h

PINN1e6,5
10,100 8.95e-07 1.94e-07 2.56e-08 1.68e-07 ≈ 20 days

PIELM100 1.23e-14 3.47e-15 4.34e-16 2.62e-15 ≈ 0.02 s
PIELM1000 1.08e-14 7.26e-15 7.64e-16 2.40e-15 ≈ 2.0 s
PIELM∗

10000 1.52e-12 7.31e-13 8.49e-14 4.33e-13 ≈ 2.6 min
Deep-TFC60000

1,50 1.99e-05 1.04e-05 5.99e-06 1.19e-06 ≈ 6.5 s
Deep-TFC60000

1,100 7.41e-06 3.69e-06 2.20e-06 4.29e-07 ≈ 11.7 s
Deep-TFC60000

5,50 4.15e-05 1.69e-05 1.23e-05 2.09e-06 ≈ 42 s
Deep-TFC60000

5,100 7.15e-05 3.06e-05 2.36e-05 3.86e-06 ≈ 1.6 min
Deep-TFC60000

10,50 2.19e-03 1.09e-03 7.94e-04 1.35e-04 ≈ 1.5 min
Deep-TFC60000

10,100 9.09e-05 4.13e-05 3.02e-05 5.1e-06 ≈ 3.5 min

X-TFC100 4.22e-15 9.34e-16 1.37e-16 1.00e-15 ≈ 0.02 s
X-TFC1000 2.22e-16 3.52e-17 6.63e-18 5.65e-17 ≈ 2.0 s
X-TFC∗

10000 1.89e-15 1.12e-15 1.22e-16 4.97e-16 ≈ 2.5 min

TABLE XV
Absolute errors on the boundary conditions for the case λ = 1.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 0.50 0.50

PINN3000,5
1,100 0.50 0.50

PINN3000,5
5,50 0.50 0.50

PINN3000,5
5,100 0.50 0.50

PINN3000,5
10,50 0.50 0.50

PINN3000,5
10,100 0.50 0.50

PIELM100 0.50 0.50
PIELM1000 0.50 0.50
PIELM∗

10000 8.33e-08 8.33e-08
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XVI
Absolute errors on the boundary conditions for the case λ = 300.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 1.00 6.23e-01 1.84e-02 1.74e-01 ≈ 22 min

PINN3000,5
1,100 1.00 6.23e-01 1.84e-02 1.74e-01 ≈ 22 min

PINN3000,5
5,50 1.00 6.93e-01 1.85e-02 1.73e-01 ≈ 28 min

PINN3000,5
5,100 1.00 6.93e-01 1.85e-02 1.73e-01 ≈ 43 min

PINN3000,5
10,50 1.00 6.23e-01 1.84e-02 1.74e-01 ≈ 38 min

PINN3000,5
10,100 1.00 6.23e-01 1.84e-02 1.74e-01 ≈ 22 min

PIELM100 3.39e-09 4.01e-09 8.36e-11 7.37e-10 ≈ 0.02 s
PIELM1000 1.06e-12 7.29e-14 1.96e-14 1.83e-13 ≈ 1.8 s
PIELM∗

10000 4.57e-13 2.85e-14 8.34e-15 7.87e-14 ≈ 2.7 min
Deep-TFC60000

1,50 8.68e-03 3.55e-03 2.42e-03 4.29e-04 ≈ 6.3 s
Deep-TFC60000

1,100 1.81e-02 6.25e-03 4.7 e-03 7.79e-04 ≈ 11.4 s
Deep-TFC60000

5,50 6.73e-03 2.57e-03 1.65e-03 3.05e-04 ≈ 49 s
Deep-TFC60000

5,100 3.56e-02 1.25e-02 8.57e-03 1.51e-03 ≈ 1.5 min
Deep-TFC60000

10,50 3.56e-02 1.25e-02 8.57e-03 1.51e-03 ≈ 1.5 min
Deep-TFC60000

10,100 4.70e-03 1.94e-03 1.33e-03 2.34e-04 ≈ 3.8 min

X-TFC100 2.92e-11 5.69e-12 9.04e-13 7.05e-12 ≈ 0.02 s
X-TFC1000 8.77e-15 3.06e-15 3.78e-16 2.23e-15 ≈ 1.9 s
X-TFC∗

10000 2.59e-14 3.05e-15 6.90e-16 6.22e-14 ≈ 2.5 min

TABLE XVII
Absolute errors on the boundary conditions for the case λ = 300.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 1.44e-04 1.00

PINN3000,5
1,100 1.35e-03 0.99

PINN3000,5
5,50 1.07e-01 1.00

PINN3000,5
5,100 1.07e-01 1.00

PINN3000,5
10,50 0.0012 0.999

PINN3000,5
10,100 0.0012 0.999

PIELM100 3.29e-09 3.13e-09
PIELM1000 1.06e-12 1.11e-13
PIELM∗

10000 3.26e-15 4.57e-15
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XVIII
Performance summary in terms of absolute errors for the case λ = 500000.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 1.00 1.01e-02 1e-03 1e-01 ≈ 23 min

PINN3000,5
1,100 1.00 1.02e-02 1e-03 1e-01 ≈ 23 min

PINN3000,5
5,50 1.00 1.02e-02 1e-02 1e-01 ≈ 28 min

PINN3000,5
5,100 1.00 1.02e-02 1e-02 1e-01 ≈ 33 min

PINN3000,5
10,50 1.00 1.02e-02 1e-02 1e-01 ≈ 36 min

PINN3000,5
10,100 1.00 1.02e-02 1e-02 1e-01 ≈ 37 min

PIELM100 1.00 1.00 e-01 1.00e-02 1.00e-02 ≈ 0.02 s
PIELM1000 0.99 1.00e-02 9.99e-03 9.99e-02 ≈ 2.0 s
PIELM∗

10000 3.20e-07 3.54e-09 3.22e-19 3.21e-08 ≈ 2.3 min
Deep-TFC60000

1,50 9.89e-01 4.90e-01 2.93e-01 5.70e-02 ≈ 0.36 s
Deep-TFC60000

1,100 8.56e-01 9.55e-02 1.35e-01 1.65e-02 ≈ 13.5 s
Deep-TFC60000

5,50 9.89e-01 4.90e-01 2.93e-01 5.70e-02 ≈ 2.4 s
Deep-TFC60000

5,100 8.35e-01 8.36e-02 1.24e-01 1.49e-02 ≈ 2.1 min
Deep-TFC60000

10,50 9.11e-01 1.10e-01 1.72e-01 2.03e-04 ≈ 1.9 min
Deep-TFC60000

10,100 9.89e-01 4.90e-01 2.93e-01 5.70e-02 ≈ 47 s

X-TFC100 4.51e-02 6.03e-03 1.00e-03 8.04e-3 ≈ 0.02 s
X-TFC1000 1.46e-06 5.74e-08 2.14e-08 2.07e-07 ≈ 2.0 s
X-TFC∗

10000 1.43e-13 3.75e-14 4.56e-15 2.57e-14 ≈ 2.4 min

TABLE XIX
Absolute errors on the boundary conditions for the case λ = 500000.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 1.27e-04 1.00

PINN3000,5
1,100 7.30e-04 1.00

PINN3000,5
5,50 6.60e-04 1.00

PINN3000,5
5,100 5.40e-04 1.00

PINN3000,5
10,50 3.70e-04 1.00

PINN3000,5
10,100 1.16e-02 1.00

PIELM100 1.29e14 1
PIELM1000 5.88e-07 0.99
PIELM∗

10000 3.34e-08 3.20e-07
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XX
Performance summary in terms of absolute errors for the case α = 1.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 1.64e-05 6.81e-06 8.69e-07 5.42e-06 ≈ 20.3 min

PINN3000,5
1,100 2.58e-05 1.54e-05 1.62e-06 5.31e-06 ≈ 20.2 min

PINN3000,5
5,50 9.96e-05 5.30e-05 2.19e-06 3.20e-05 ≈ 28.2 min

PINN1e6,5
5,50 3.32e-07 8.21e-08 1.05e-06 6.54e-08 ≈ 294 h

PINN3000,5
5,100 6.31e-04 3.03e-04 3.50e-05 1.78e-04 ≈ 28.2 min

PINN3000,5
10,50 2.76e-03 1.40e-03 1.62e-04 8.18e-04 ≈ 36.2 min

PINN3000,5
10,100 8.75e-04 4.21e-04 4.87e-05 2.46e-04 ≈ 36.0 min

PIELM100 6.66e-16 2.32e-16 2.62e-17 1.22e-16 ≈ 0.02 s
PIELM1000 2.61e-15 1.11e-15 1.30e-16 3.79e-16 ≈ 2.0 s
PIELM∗

10000 9.46e-13 4.67e-13 5.39e-14 2.72e-13 ≈ 2.7 min
Deep-TFC60000

1,50 5.10e-06 2.43e-06 2.93e-07 1.64e-06 ≈ 4.8 s
Deep-TFC60000

1,100 5.25e-07 2.26e-07 2.78-08 1.63e-07 ≈ 8.2 s
Deep-TFC60000

5,50 2.10e-07 7.69e-08 9.88e-09 6.24e-08 ≈ 35.2 s
Deep-TFC60000

5,100 2.64e-06 1.03e-06 1.31e-07 8.18e-07 ≈ 1.3 min
Deep-TFC60000

10,50 6.97e-08 3.34e-08 4.01e-09 2.22e-08 ≈ 1.3 min
Deep-TFC60000

10,100 1.24e-07 4.20e-08 5.62e-09 3.75e-08 ≈ 2.8 min

X-TFC100 9.44e-16 2.44e-16 3.24e-17 2.14e-16 ≈ 0.02 s
X-TFC1000 5.55e-17 2.20e-17 3.10e-18 2.20e-17 ≈ 2.0 s
X-TFC∗

10000 6.11e-16 1.18e-16 2.11e-17 1.75e-16 ≈ 2.6 min

TABLE XXI
Absolute errors on the boundary conditions for the case α = 1.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 9.86e-06 1.04e-05

PINN3000,5
1,100 6.46e-06 2.22e-05

PINN3000,5
5,50 9.54e-05 9.96e-05

PINN1e6,5
5,50 5.45e-08 1.70e-07

PINN3000,5
5,100 4.00e-04 6.31e-04

PINN3000,5
10,50 2.76e-03 2.73e-03

PINN3000,5
10,100 8.75e-04 8.42e-04

PIELM100 2.22e-16 3.33e-16
PIELM1000 2.30e-15 1.11e-16
PIELM∗

10000 9.46e-13 9.04e-13
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXII
Performance summary in terms of absolute errors for the case α = 60.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 411.5 240.8 26.7 115.4 ≈ 21 min

PINN3000,5
1,100 475.1 351.2 37.7 119.6 ≈ 22 min

PINN3000,5
5,50 300.4 235.6 24.5 68.6 ≈ 25 min

PINN3000,5
5,100 315.4 153.6 18.55 104.6 ≈ 28 min

PINN3000,5
10,50 192.6 112.7 12.7 20.2 ≈ 36 min

PINN3000,5
10,100 59.00 12.2 106.8 198.7 ≈ 37 min

PIELM100 9.23e-03 1.22e-03 2.18e-04 1.82e-03 ≈ 0.02 s
PIELM1000 1.56e-13 1.21e-13 1.24e-14 2.77e-14 ≈ 2.0 s
PIELM∗

10000 2.34e-12 1.16e-12 1.34e-13 6.71e-13 ≈ 2.6 min
Deep-TFC60000

1,50 1.40 4.43e-01 5.41e-02 3.78e-01 ≈ 0.48 s
Deep-TFC60000

1,100 1.13 6.30e-01 7.22e-02 3.55e-01 ≈ 0.44 s
Deep-TFC60000

5,50 2.17e-01 1.27e-01 1.43e-02 6.79e-02 ≈ 39.1 s
Deep-TFC60000

5,100 4.59e-01 3.05e-01 3.34e-02 1.35e-01 ≈ 1.5 min
Deep-TFC60000

10,50 1.08 7.07e-01 7.82e-02 3.37e-01 ≈ 1.5 min
Deep-TFC60000

10,100 1.63e-02 5.45e-03 7.58e-04 5.29e-03 ≈ 2.8 min

X-TFC100 9.11e-03 1.11e-02 2.16e-04 1.86e-03 ≈ 0.02 s
X-TFC1000 1.02e-13 4.38e-14 5.14e-15 2.69e-14 ≈ 2.0 s
X-TFC∗

10000 3.91e-14 1.65e-14 2.00e-15 1.14e-14 ≈ 2.6 min

TABLE XXIII
Absolute errors on the boundary conditions for the case α = 60.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 311.6 187.2

PINN3000,5
1,100 469.7 398.1

PINN3000,5
5,50 196.1 242.7

PINN3000,5
5,100 85.1 283.2

PINN3000,5
10,50 20.2 152.0

PINN3000,5
10,100 63.3 161.2

PIELM100 4.82e-04 4.89e-04
PIELM1000 1.28e-13 1.27e-13
PIELM∗

10000 2.34e-12 2.24e-12
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXIV
Performance summary in terms of absolute errors for the case α = 1000.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 363.7 124.5 1485.5 81.4 ≈ 23 min

PINN3000,5
1,100 759.2 462.2 4789.1 126.2 ≈ 23 min

PINN3000,5
5,50 286.3 282.2 2883.4 25.6 ≈ 29 min

PINN3000,5
5,100 423.6 400.8 4067.4 69.8 ≈ 29 min

PINN3000,5
10,50 358.3 352.8 35.4 33.2 ≈ 28 min

PINN3000,5
10,100 160.7 152.8 15.4 22.5 ≈ 36 min

PIELM100 2.15e-01 2.13e-02 3.96e-03 3.35e-02 ≈ 0.02 s
PIELM1000 1.10e-02 3.12e-03 3.58e-04 1.77e-03 ≈ 2.0 s
PIELM∗

10000 3.45e-05 1.74e-04 2.0e-05 1.00e-04 ≈ 2.7 min
Deep-TFC60000

1,50 1.53 7.19e-01 8.50e-02 4.55e-01 ≈ 0.26 s
Deep-TFC60000

1,100 1.48 7.27e-01 8.55e-02 4.52e-01 ≈ 0.40 s
Deep-TFC60000

5,50 1.37 3.84e-01 5.18e-02 3.49e-01 ≈ 3.1 s
Deep-TFC60000

5,100 1.87 9.69e-01 1.11e-01 5.51e-01 ≈ 9.7 s
Deep-TFC60000

10,50 2.05 8.07e-01 1.02e-01 6.19e-01 ≈ 2.8 s
Deep-TFC60000

10,100 1.63 7.65e-01 8.94e-02 4.65e-01 ≈ 3.7 s

X-TFC100 2.16e-01 2.01e-02 3.94e-03 3.40e-02 ≈ 0.02 s
X-TFC1000 1.22e-02 8.61e-04 1.84e-04 1.63e-03 ≈ 2.0 s
X-TFC∗

10000 3.38e-04 1.68e-04 1.95e-05 9.83e-05 ≈ 2.6 min

TABLE XXV
Absolute errors on the boundary conditions for the case α = 1000.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 92.8 92.8

PINN3000,5
1,100 460.7 460.7

PINN3000,5
5,50 286.3 286.3

PINN3000,5
5,100 418.5 423.5

PINN3000,5
10,50 358.3 358.3

PINN3000,5
10,100 160.7 156.6

PIELM100 7.27e-03 6.63e-03
PIELM1000 4.40e-03 2.90e-03
PIELM∗

10000 4.98e-05 4.39e-05
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXVI
Performance summary in terms of absolute errors for the case ε = 1.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 5.09e-05 3.27e-05 3.59e-06 1.49e-05 ≈ 25 min

PINN3000,5
1,100 8.89e-05 5.92e-05 6.24e-06 2.00e-05 ≈ 26 min

PINN3000,5
5,50 7.30e-04 3.40e-04 4.04e-05 2.19e-04 ≈ 31 min

PINN3000,5
5,100 2.60e-04 1.26e-04 1.47e-05 7.52e-05 ≈ 32 min

PINN3000,5
10,50 1.50e-01 7.46e-02 8.6e-03 4.32e-02 ≈ 39 min

PINN3000,5
10,100 3.30e-03 1.66e-03 1.91e-04 9.52e-04 ≈ 40 min

PIELM100 5.11e-15 1.17e-15 1.63e-16 1.14e-15 ≈ 0.02 s
PIELM1000 7.77e-15 1.72e-15 2.60-16 1.96e-15 ≈ 2.1 s
PIELM∗

10000 1.03e-13 5.22e-14 5.00e-15 2.97e-14 ≈ 2.7 min
Deep-TFC60000

1,50 1.26e-05 7.62e-06 8.89e-07 4.62e-06 ≈ 4.9 s
Deep-TFC60000

1,100 9.60e-06 4.67e-06 5.62e-07 3.15e-06 ≈ 8.1 s
Deep-TFC60000

5,50 7.71e-06 3.82e-06 4.59e-07 2.56e-06 ≈ 33.6 s
Deep-TFC60000

5,100 3.76e-05 1.38e-05 1.73e-06 1.05e-05 ≈ 74.6 s
Deep-TFC60000

10,50 4.71e-06 1.88e-06 2.47e-07 1.61e-06 ≈ 2.6 min
Deep-TFC60000

10,100 3.00e-06 1.29e-06 1.55e-07 8.55e-07 ≈ 2.8 min

X-TFC100 3.33e-15 7.91e-16 1.13e-16 8.07e-16 ≈ 0.2 s
X-TFC1000 4.44e-16 2.19e-16 2.51e-17 1.23e-16 ≈ 1.9 s
X-TFC∗

10000 3.55e-15 2.45e-15 2.66e-16 1.05e-15 ≈ 2.7 min

TABLE XXVII
Absolute errors on the boundary conditions for the case ε = 1.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 1.73e-06 2.10e-05

PINN3000,5
1,100 1.54e-05 8.89e-05

PINN3000,5
5,50 4.24e-04 3.59e-04

PINN3000,5
5,100 2.60e-04 2.52e-04

PINN3000,5
10,50 1.5e-01 1.5e-01

PINN3000,5
10,100 3.30e-03 3.30e-04

PIELM100 2.66e-15 1.55e-15
PIELM1000 6.66e-15 2.78e-16
PIELM∗

10000 1.023e-13 1.00e-13
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXVIII
Performance summary in terms of absolute errors for the case ε = 10−03.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 2.37 2.01 0.20 0.19 ≈ 26 min

PINN3000,5
1,100 0.14 5.13e-02 6.26e-03 3.61e-02 ≈ 26 min

PINN3000,5
1,1000 3.15e-02 1.21e-02 1.31e-03 5.15e-03 ≈ 30 min

PINN10000,5
1,5000 1.67e-02 4.15e-03 5.23e-04 3.20e-03 ≈ 2.1 h

PINN3000,5
5,50 1.57e-02 7.81e-03 9.06e-04 4.62e-03 ≈ 30 min

PINN15000,5
5,50 3.33e-04 1.76e-04 1.97e-05 8.97e-05 ≈ 2.7 h

PINN15000,5
5,100 2.05e-04 7.23e-05 8.89e-06 5.20e-05 ≈ 2.5 h

PINN15000,5
10,50 5.77e-03 2.84e-04 3.29e-04 1.67e-03 ≈ 3.3 h

PINN15000,5
10,100 2.98e-03 1.54e-03 1.76e-04 8.60e-04 ≈ 3 h

PIELM100 8.32e-06 1.26e-06 2.30e-07 1.94e-06 ≈ 0.02 s
PIELM1000 4.95e-13 3.81e-13 3.86e-14 6.33e-14 ≈ 2.0 s
PIELM∗

10000 2.07e-13 1.02e-13 1.18e-14 6.00e-14 ≈ 2.6 min
Deep-TFC60000

1,50 1.42e-01 4.99e-02 7.17e-03 5.18e-02 ≈ 5.2 s
Deep-TFC60000

1,100 3.80e-03 1.30e-03 1.83e-04 1.29e-03 ≈ 8.5 s
Deep-TFC60000

5,50 7.34e-03 3.70e-03 4.21e-04 2.01e-03 ≈ 38.3 s
Deep-TFC60000

5,100 2.44e-02 1.22e-02 1.46e-03 8.21e-03 ≈ 1.3 s
Deep-TFC60000

10,50 2.04e-02 9.44e-03 1.22e-03 7.70e-03 ≈ 1.2 min
Deep-TFC60000

10,100 2.16e-02 1.34e-02 1.47e-03 6.07e-03 ≈ 2.7 min

X-TFC100 8.21e-06 1.25e-06 2.31e-07 1.95e-07 ≈ 0.02 s
X-TFC1000 7.22e-14 2.19e-14 2.80e-15 1.76e-14 ≈ 2.0 s
X-TFC∗

10000 1.77e-14 1.29e-14 1.39e-15 5.38e-15 ≈ 2.6 min

TABLE XXIX
Absolute errors on the boundary conditions for the case ε = 10−03.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 1.71 2.37

PINN3000,5
1,100 5.97e-02 1.38e-01

PINN3000,5
5,50 1.57e-02 1.57e-02

PINN15000,5
5,50 1.18e-04 3.33e-04

PINN15000,5
5,100 1.68e-04 2.05e-04

PINN15000,5
10,50 5.65e-03 5.77e-03

PINN15000,5
10,100 2.98e-03 2.96e-03

PIELM100 1.36e-07 1.48e-07
PIELM1000 4.09e-13 2.48e-13
PIELM∗

10000 2.07e-13 2.00e-13
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXX
Performance summary in terms of absolute errors for the case ε = 10−06.

max(error) mean(error) norm(error) std(error) training time

PINN15000,5
1,50 135.78 56.00 6.84 40.91 ≈ 2 h

PINN15000,5
1,100 212.8 133.9 14.0 41.5 ≈ 1.9 h

PINN15000,5
5,50 2.04e-02 1.99e-02 2.00e-03 2.27e-03 ≈ 2.3 h

PINN15000,5
5,100 1.53e-02 9.82e-03 1.01e-03 2.74e-03 ≈ 2.5 h

PINN15000,5
10,50 1.83 1.81 0.18 0.0035 ≈ 3 h

PINN15000,5
10,100 3.84 2.13 0.25 0.73 ≈ 3 h

PIELM100 5.80e-01 7.06e-02 1.30e-02 1.10e-01 ≈ 0.02 s
PIELM1000 1.49e-01 9.69e-02 9.96e-03 2.32e-02 ≈ 2.1 s
PIELM∗

10000 1.13e-11 9.39e-12 9.62e-13 3.22e-12 ≈ 2.6 min
Deep-TFC60000

1,50 9.90e-01 4.91e-01 5.71e-02 2.93e-01 ≈ 0.26 s
Deep-TFC60000

1,100 9.90e-01 4.95e-01 5.74e-02 2.93e-01 ≈ 0.32 s
Deep-TFC60000

5,50 9.90e-01 4.90e-01 5.70e-01 2.93e-01 ≈ 1.0 s
Deep-TF0C60000

5,100 9.90e-01 4.90e-01 5.70e-01 2.93e-01 ≈ 1.6 s
Deep-TFC60000

10,50 9.90e-01 4.90e-01 5.70e-01 2.93e-01 ≈ 2.1 s
Deep-TFC60000

10,100 9.90e-01 4.90e-01 5.70e-01 2.93e-01 ≈ 3.7 s

X-TFC100 5.90e-01 6.86e-02 1.30e-02 1.11e-01 ≈ 0.02 s
X-TFC1000 1.53e-02 4.11e-03 5.19e-04 3.18e-03 ≈ 2.0 s
X-TFC∗

10000 1.15e-11 8.46e-12 9.04e-13 3.22e-12 ≈ 2.6 min

TABLE XXXI
Absolute errors on the boundary conditions for the case ε = 10−06.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN15000,5

1,50 212.8 71.7

PINN15000,5
1,100 218.7 52.5

PINN15000,5
5,50 2.03e-02 2.04e-02

PINN15000,5
5,100 1.00e-02 1.00e-02

PINN15000,5
10,50 1.83 1.81

PINN15000,5
10,100 3.84 1.46

PIELM100 1.27e-02 1.67e-02
PIELM1000 1.40e-01 5.79e-02
PIELM∗

10000 9.82e-12 1.13e-11
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXXII

Performance summary in terms of absolute errors for the case ε =
1

π
.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 7.16e-04 2.78e-04 3.48e-05 2.11e-04 ≈ 25 min

PINN15000,5
1,50 1.11e-04 6.47e-05 6.96e-06 2.58e-05 ≈ 2.0 h

PINN3000,5
1,100 1.16e-03 7.19e-04 7.68e-05 2.69e-04 ≈ 25.5 min

PINN3000,5
5,50 1.76e-04 8.23e-03 9.63e-06 5.04e-05 ≈ 32 min

PINN3000,5
5,100 1.14e-03 5.77e-04 6.68e-05 3.38e-04 ≈ 30 min

PINN3000,5
10,50 4.55e-02 2.27e-02 2.63e-03 1.33e-02 ≈ 40 min

PINN3000,5
10,100 1.53e-02 7.64e-03 8.81e-04 4.41e-03 ≈ 40 min

PIELM100 9.69e-11 1.63e-11 2.75e-12 2.23e-11 ≈ 0.02 s
PIELM1000 3.81e-14 2.85e-14 2.89e-15 4.63e-15 ≈ 2.0 s
PIELM∗

10000 6.16e-13 3.03e-13 3.50e-14 1.77e-13 ≈ 2.6 min
Deep-TFC60000

1,50 2.52e-03 9.96e-04 1.25e-04 7.62e-04 ≈ 5.0 s
Deep-TFC60000

1,100 1.25e-03 4.35e-04 5.76e-05 3.80e-04 ≈ 8.5 s
Deep-TFC60000

5,50 1.367e-03 5.28e-04 7.26e-05 5.00-04 ≈ 34.5 s
Deep-TFC60000

5,100 8.31e-04 4.43e-04 5.09e-05 2.52e-04 ≈ 1.3 min
Deep-TFC60000

10,50 9.24e-03 3.77e-03 5.09e-04 3.43e-03 ≈ 1.3 min
Deep-TFC60000

10,100 6.12e-04 3.51e-04 3.89e-05 1.69e-04 ≈ 3.0 min

X-TFC100 9.00e-11 1.51e-11 2.64e-12 2.17e-11 ≈ 0.02 s
X-TFC1000 3.89e-15 2.66e-15 2.79e-16 8.32e-16 ≈ 1.9 s
X-TFC∗

10000 2.40e-14 1.73e-14 1.88e-15 7.41e-15 ≈ 2.6 min

TABLE XXXIII

Performance summary in terms of absolute errors for the case ε =
1

π
.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 5.64e-04 1.90e-04

PINN15000,5
1,50 1.43e-05 7.99e-05

PINN3000,5
1,100 2.00e-04 8.14e-04

PINN3000,5
5,50 1.76e-04 1.46e-04

PINN3000,5
5,100 1.14e-03 1.14e-03

PINN3000,5
10,50 4.55e-02 4.54e-02

PINN3000,5
10,100 1.53e-02 1.52e-02

PIELM100 4.48e-12 4.32e-12
PIELM1000 3.21e-14 2.25e-14
PIELM∗

10000 6.16e-13 5.89e-13
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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TABLE XXXIV

Absolute errors on the boundary conditions for the case ε =
1

10π
.

max(error) mean(error) norm(error) std(error) training time

PINN3000,5
1,50 221.4 64.75 8.00 47.4 ≈ 24.3 min

PINN3000,5
1,100 450.5 162.9 196.4 109.9 ≈ 24 min

PINN15000,5
5,50 2.14 1.67 0.177 0.60 ≈ 2.7 h

PINN15000,5
5,100 1.91 0.46 0.0747 0.592 ≈ 2.8 h

PINN500000,5
5,100 3.03-02 1.52e-02 1.75e-03 8.84e-03 ≈ 88.0 h

PINN15000,5
10,50 4.584 3.782 0.393 1.063 ≈ 3.2 h

PINN15000,5
10,100 3.314 2.066 0.229 1.004 ≈ 3.2 h

PINN200000,5
10,100 0.161 0.0684 0.00837 0.0485 ≈ 43.3 h

PIELM100 1.45 7.69e-02 2.07e-02 1.93e-01 ≈ 0.02 s
PIELM1000 1.32e-04 8.56e-05 8.79e-06 2.01e-05 ≈ 2.0 s
PIELM∗

10000 3.18e-12 1.53e-12 1.77e-13 9.01e-13 ≈ 2.6 min
Deep-TFC60000

1,50 1.15 4.27e-01 5.10e-02 2.80e-01 ≈ 0.28 s
Deep-TFC60000

1,100 1.15 4.27e-01 5.10e-02 2.80e-01 ≈ 0.33 s
Deep-TFC60000

5,50 1.15 4.27e-01 5.10e-02 2.80e-01 ≈ 0.74 s
Deep-TFC60000

5,100 1.15 4.27e-01 5.10e-02 2.80e-01 ≈ 0.74 s
Deep-TFC60000

10,50 1.15 4.27e-01 5.10e-02 2.80e-01 ≈ 0.63 s
Deep-TFC60000

10,100 1.15 4.27e-01 5.10e-02 2.80e-01 ≈ 0.95 s

X-TFC100 1.44 7.47e-02 2.06e-02 1.93e-01 ≈ 0.02 s
X-TFC1000 4.31e-05 1.26e-05 1.39e-06 5.78e-06 ≈ 2.0 s
X-TFC∗

10000 2.46e-13 2.02e-13 2.08e-14 4.70e-14 ≈ 2.6 min

TABLE XXXV

Absolute errors on the boundary conditions for the case ε =
1

10π
.

|u(0)− uNN (0)| |u(1)− uNN (1)|
PINN3000,5

1,50 221.4 38

PINN3000,5
1,100 450.5 162.9

PINN15000,5
5,50 1.963 1.964

PINN15000,5
5,100 1.15e-02 8.84e-03

PINN500000,5
5,100 3.02e-02 3.03e-02

PINN15000,5
10,50 1.82 4.42

PINN15000,5
10,100 3.314 3.305

PINN200000,5
10,100 1.60e-01 1.60e-01

PIELM100 1.13e-02 1.33e-02
PIELM1000 1.28e-04 5.25e-05
PIELM∗

10000 3.18e-12 3.07e-12
Deep-TFC 0.0 0.0
X-TFC 0.0 0.0
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