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Abstract

In this paper we consider some piecewise smooth 2-dimensional systems having a possibly non-smooth

homoclinic Eγ (t). We assume that the critical point E0 lies on the discontinuity surface�0. We consider 4 sce-

narios which differ for the presence or not of sliding close to E0 and for the possible presence of a transversal

crossing between Eγ (t) and �0. We assume that the systems are subject to a small non-autonomous pertur-

bation, and we obtain 4 new bifurcation diagrams. In particular we show that, in one of these scenarios,

the existence of a transversal homoclinic point guarantees the persistence of the homoclinic trajectory but

chaos cannot occur. Further we illustrate the presence of new phenomena involving an uncountable number

of sliding homoclinics.

 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The appearance of a chaotic pattern for smooth non-autonomous dynamical systems is nowa-

days a widely investigated topic. A well-established fact is that, if we perturb a smooth dynamical

system which admits a transversal homoclinic point, a chaotic pattern arises (see e.g. [22,38,41]).

Consider an autonomous differential equation having a non-degenerate family of trajectories

homoclinic to a critical point, say the origin. Mel’nikov theory gives a generic integral condition

which is sufficient to ensure the persistence of a homoclinic trajectory to a small time-dependent

forcing; the same requirement together with some further weak recurrence properties (e.g. peri-

odicity, almost periodicity) is sufficient to prove the insurgence of chaos.

This fact was first noticed in a two-dimensional example by Mel’nikov in [31]. His work

was later refined and generalized in many ways, see e.g. [2,7,12,21,22,30,32–34,37,39,41], and

using different approaches. Nowadays, the problem for smooth systems, is well understood in

the general n≥ 2-dimensional case.

Recently the theory was extended to embrace the case of piecewise smooth systems, see [3–6].

In particular Battelli and Fečkan considered a piecewise smooth setting, but assuming that the

critical point does not lie on the discontinuity surface �0. As in the smooth case the condition

found by Battelli and Fečkan ensures both persistence of the homoclinic [3] and the insurgence

of chaos if the system is recurrent (e.g. almost periodic), either in the case where the unperturbed

homoclinic undergoes to sliding, see [4], or in the case where there is no sliding, see [5].

In this paper we consider the piecewise smooth system

Ėx = Ef±(Ex)+ εEg(t, Ex, ε), Ex ∈�±, (PS)

where �± = {Ex ∈ � | ±G(Ex) > 0}, �0 := {Ex ∈ � | G(Ex) = 0}, � ⊂ R
2 is an open set, G is a

Cr -function on � with r ≥ 2 and 0 is a regular value of G. Next, ε ∈ R is a parameter, and
Ef± ∈ Crb(�± ∪�0,R2), Eg ∈ Crb(R×�×R,R2) and G ∈ Crb(�,R), i.e., the derivatives of Ef±,

Eg andG are uniformly continuous and bounded up to the r-th order, respectively. Here and in the

sequel we use the shorthand notation ± to represent both the + and − equations and functions.

We assume that the critical point E0 lies on �0. In [10] under this assumptions it was shown

that the Mel’nikov condition found by Battelli and Fečkan, together with a further (generic)

transversality requirement (always satisfied in 2 dimensions), is enough to prove the persistence

of the homoclinic.

The purpose of the present paper is to illustrate some new bifurcation diagrams which arise

in this discontinuous setting. In particular we want to illustrate a wide class of piecewise smooth

examples in 2 dimensions, which fits the assumption of [10], so that persistence of the homoclinic

is ensured, but Mel’nikov chaos is not present. We emphasize that this discrepancy is not present

in the smooth setting or even in the piecewise smooth setting but assuming that E0 /∈�0.

More precisely let Eγ (t) denote the unperturbed homoclinic: we can split piecewise smooth

systems in 2 dimensions into two main open classes (plus some border cases). The first, say N

where there is no sliding close to the origin, containing smooth systems, and the second, say S

where there is sliding close to the origin (see Fig. 1 and Section 3 for details).
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Fig. 1. Different mutual positions of eigenvectors Ev±s and Ev±u in discontinuous systems. Notice that in Fig. 1a trajectories

which touch �0 close to the origin cross it transversally (class N), while in Fig. 1b they remain on �0 (class S).

Fig. 2. Subclasses of N and S as various combinations of assumptions FN, FS, K1 and K2.

Each of the classes can be split further (see Fig. 2 and Section 3 for details) to N1 (S1) and

N2 (S2) depending on whether Eγ (t) /∈�0 for any t ∈ R or there is some finite t0 ∈ R, e.g. t0 = 0,

such that Eγ (t) crosses transversally �0 at t0. In both the cases, N and S, we have some further

degenerate cases, which will not be discussed in this article, where Eγ (t) is tangent to �0 for

some t ∈ R. In this paper we describe the bifurcation diagrams arising in these four cases as a

perturbation is introduced.

The Mel’nikov condition given by [10] (which reduces to the classical one in the smooth

cases) ensures the persistence of homoclinic trajectories which do not exhibit sliding phenomena

in all the classes Ni, Si for i = 1,2. Further if we have some weak recurrence properties, e.g.

almost periodicity, the insurgence of a chaotic pattern (made up by trajectories which do not

slide) is ensured by this Mel’nikov condition for systems N1 and S1, using the methods of [11].

One of the main contribution of this article is to show that chaos does not exist for systems of

type S2 even if we have a transversal homoclinic point, see Theorem 5.7 and Remark 5.9. We

conjecture that chaos will be again present for systems N2, but this will be the object of future

investigation.
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Quite surprisingly this obstruction to chaos (i.e. the fact that the presence of transversal ho-

moclinic points does not imply chaos) seems to be typical of the two-dimensional case (apart

from completely decoupled systems).

Further if we perturb systems S1 or S2 we prove the appearance of a new phenomenon: the in-

surgence of an uncountable number of homoclinic trajectories sliding near the homoclinic point.

In the S1 setting these sliding homoclinics might make several loops, following a prescribed se-

quence of 0s and 1s similarly to the chaotic case (and a “classical” non-sliding chaotic behavior

is present), see Theorem 5.5 and property Cs; in the S2 setting the sliding homoclinics make at

most one loop and cross �0 at most once, see Theorem 5.2.

The study of piecewise smooth systems has received a great impulse recently due to its rele-

vance in applications. These equations are commonly used to describe mechanical systems with

dry friction or impacts, see e.g. [9]. In particular in the former case it has to be expected that

critical points lie on the discontinuity surface: this is the case, e.g., of the inverted pendulum with

dry friction. Piecewise smooth systems are also of use in the study of power electronics when we

have state dependent switches [1], walking machines [20], relay feedback systems [8], biological

systems [36] see also [15,27] and the references therein.

The paper is organized as follows: In Section 2 we define some basic notions, we state some

basic assumptions and some classic results concerning chaos in smooth systems. In Section 3 we

set the assumptions FN, FS, K1, K2 that allow to define rigorously systems N1, N2, S1, S2 and

we recall some known results concerning persistence of homoclinic solution and insurgence of

chaos in a piecewise-smooth setting. In Section 4 we derive results on the position of trajectories

close to the homoclinic in the smooth system. Section 5 is devoted to the main results of this

paper – investigation of the four above-mentioned cases. In Section 6 we give the proofs of some

technical results: this technical part can be regarded as a sort of appendix, and even if it is needed

for the proof, it is not of help for the comprehension of the main argument.

2. Preliminaries

Throughout the paper we use bold letters for matrices, e.g. M , the arrows for vectors, e.g. Em,

and normal letters for scalars, e.g.m. We shall use the notation 〈·, ·〉 and ‖ ·‖ for the inner product

in R
2 and the norm generated by it, respectively. The lower index shall denote a partial derivative

with respect to that variable unless this makes confusion, ∧ stands for the cross product in R
2,

i.e. if Ea = (a1, a2)
∗ and Eb= (b1, b2)

∗, then Ea ∧ Eb= a1b2 − a2b1.

In Section 2.1 we introduce the definition of solutions for discontinuous systems and in par-

ticular of sliding, crossing-sliding, sliding-crossing solutions; then in Section 2.2 we recall some

standard results of Mel’nikov theory for smooth systems.

2.1. Definition of solutions in the discontinuous setting

Let us give a definition of what we mean by a solution of the piecewise smooth system (PS).

For the simplicity we use the following notation:

EF±(Ex, t, ε)= Ef±(Ex)+ εEg(t, Ex, ε), Ex ∈�± ∪�0,

F±
⊥ (Ex, t, ε)=

( E∇G(Ex)
)∗ EF±(Ex, t, ε), Ex ∈�0.

We say that a function Ex is a solution of (PS) if it is continuous, piecewise Cr , satisfies equa-

tion (PS) in �±, and if Ex(t0) ∈ �0 for some t0 ∈ R we have one of the following situations.
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In the first setting we assume that both the flows of (PS+), and of (PS−) at Ex(t0) point to-

wards �+ (or they both point towards �−), i.e. F+
⊥ (Ex(t0), t0, ε)F−

⊥ (Ex(t0), t0, ε) > 0. In this

case there is no sliding and the definition is almost obvious. In the second setting we assume

F+
⊥ (Ex(t0), t0, ε)F−

⊥ (Ex(t0), t0, ε) < 0, i.e., the flows of (PS+) and of (PS−) at Ex(t0) point in op-

posite directions: in this case we suppose that there is sliding and we follow Filippov definition.

More precisely let Ex(t0) ∈�0, and ρ be a sufficiently small number.

• If F+
⊥ (Ex(t0), t0, ε) and F−

⊥ (Ex(t0), t0, ε) are both positive for a solution we mean a continuous

piecewise Cr function Ex(t) defined for |t − t0| < ρ, such that Ex(t) ∈ �− and solves (PS−)

for any t ∈ (t0 − ρ, t0), Ex(t) ∈ �+ and solves (PS+) for any t ∈ (t0, t0 + ρ); the opposite if

F±
⊥ (Ex(t0), t, ε) < 0. In this case we say that Ex(t) is a crossing solution at t = t0.

• If F+
⊥ (Ex(t0), t0, ε)F−

⊥ (Ex(t0), t0, ε) < 0 for solution we mean a continuous piecewise Cr

function Ex(t) defined for |t − t0|< ρ, such that one of the following holds

− Ex(t) ∈�0 and F+
⊥ (Ex(t), t, ε)F−

⊥ (Ex(t), t, ε) < 0 for any t ∈ (t0 − ρ, t0 + ρ), and in this inter-

val Ex(t) solves the equation

Ėx = EF 0(Ex, t, ε), whenever Ex ∈�0, (2.1)

where

EF 0(Ex, t, ε)=
(

1 − β(Ex, t, ε)
) EF−(Ex, t, ε)+ β(Ex, t, ε) EF+(Ex, t, ε),

β(Ex, t, ε)= F−
⊥ (Ex, t, ε)

F−
⊥ (Ex, t, ε)− F+

⊥ (Ex, t, ε)

(see [19]). In this case we say that Ex(t) is a pure-sliding solution at t0. We note that EF 0 is a

convex combination of EF+, EF− such that EF 0 is tangent to �0; hence the solution of (2.1)

will remain on �0 for any t ∈ (t0 − ρ, t0 + ρ).

− Ex(t) ∈ �0, solves (2.1), and F+
⊥ (Ex(t), t, ε)F−

⊥ (Ex(t), t, ε) < 0 for any t ∈ (t0 − ρ, t0]. Fur-

ther Ex(t) ∈ �± and solves (PS±) for any t ∈ (t0, t0 + ρ). In this case we say that Ex(t) is a

sliding-crossing solution at t0.

− Ex(t) ∈ �0, solves (2.1), and F+
⊥ (Ex(t), t, ε)F−

⊥ (Ex(t), t, ε) < 0 for any t ∈ [t0, t0 + ρ). Fur-

ther Ex(t) ∈ �± and solves (PS±) for any t ∈ (t0 − ρ, t0). In this case we say that Ex(t) is a

crossing-sliding solution at t0.

In fact the stability of sliding motion of (PS) is inherited by that of any regularized version,

and Filippov definition appears to be the most appropriate choice, see [40, Chapter 2], and the

introduction of [16] for a discussion of this point in a higher dimensional context.

We say that Ex(t) is a pure crossing or non-sliding solution if it is crossing for any t0 ∈R such

that Ex(t0) ∈ �0, otherwise we say that it is a sliding solution. Notice that local uniqueness of
the solution is lost for sliding solutions. I.e. let EP ∈ �0 and Ey+(t0) = EP be a crossing-sliding

solution at t0, so that Ey+(t) ∈ �+ in a left neighborhood of t0. Then there is a solution Ey−(t)
such that Ey−(t) ∈�− in a left neighborhood of t0 and Ey−(t0)= EP is a crossing-sliding solution

at t = t0; further there will be a solution Ex(t) such that Ex(t0)= EP which is pure-sliding at t = t0,

i.e. Ex(t) ∈ �0 in a left and right neighborhood of t0. A similar non-uniqueness argument holds

for sliding-crossing solutions.
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We say that Eγ is a non-sliding (or sliding) homoclinic trajectory of the system (PS) if it is a

non-sliding (or sliding) homoclinic solution in the above sense. Further we say that a homoclinic

trajectory Eψ is forward sliding (or backward sliding) if there is t0 such that Eψ(t0) is a crossing-

sliding point and Eψ(t) ∈�0 for any t ≥ t0 ( Eψ(t0) is a sliding-crossing point and Eψ(t) ∈�0 for

any t ≤ t0).

Throughout the paper we shall consider the following assumptions:

F0 Ef (E0)= E0 and the eigenvalues λ±
s , λ±

u of f ±
x (

E0) are such that λ±
s < 0< λ±

u .

Denote by Ev±
s , Ev±

u the normalized eigenvectors of f ±
x (

E0) corresponding to λ±
s , λ±

u , respectively,

and set

c⊥,±u =
[ E∇G(E0)

]∗Ev±
u , c⊥,±s =

[ E∇G(E0)
]∗Ev±

s . (2.2)

We can assume w.l.o.g. that ±c⊥,±u ≥ 0, ±c⊥,±s ≥ 0, but we need a stronger condition:

F1 Ev±
s , Ev±

u are not orthogonal to E∇G(E0), i.e., c
⊥,−
u < 0< c

⊥,+
u , c

⊥,−
s < 0< c

⊥,+
s .

Furthermore, we take the assumption on the function Eg:

G Eg(t, E0, ε)= E0 for any t, ε ∈ R.

Some further assumptions on the mutual positions of Ev±
u and Ev±

s will be required later on. These

assumptions allow to distinguish between systems Ni and Si, while the difference between N1

and N2 (and S1 and S2) depends on whether or not Eγ (t) crosses transversally �0, see Fig. 2.

2.2. Some remarks on Mel’nikov theory and chaos in smooth systems

In this section we briefly recall some facts concerning Mel’nikov theory for smooth systems.

Therefore we assume that Ef (Ex)= Ef±(Ex) for Ex ∈�, and Ef is Cr in the whole�. We also assume

G and F0, which takes a simpler form since λ+
s = λ−

s , λ+
u = λ−

u .

Let us consider

Ėx = Ef (Ex)+ εEg(t, Ex, ε), Ex ∈� (S)

for Ef , Eg ∈ Cr . We assume that for ε = 0 system (S) admits a homoclinic trajectory, i.e., a solution

Eγ (t) such that lim|t |→+∞ Eγ (t)= (0,0).

Mel’nikov theory gives conditions which guarantee persistence of the homoclinic and, if the

system is recurrent in t , the existence of a chaotic pattern. To keep the presentation simpler we

assume that Eg is p-periodic in t . However the theory is already developed in the almost periodic

and recurrent case, even for discontinuous systems, see [5,11] for more details. To be more

precise, let E := {0,1}Z be the space of doubly infinite sequences E : Z → {0,1}, i.e. E = (ej )

where ej ∈ {0,1}, j ∈ Z, and
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E0 :=
{

e ∈ E | inf{m ∈ Z | em = 1}>−∞, sup{m ∈ Z | em = 1}<∞
}

,

E+ :=
{

e ∈ E | inf{m ∈ Z | em = 1}>−∞, sup{m ∈ Z | em = 1} = ∞
}

,

E− :=
{

e ∈ E | inf{m ∈ Z | em = 1} = −∞, sup{m ∈ Z | em = 1}<∞
}

.

The purpose of the theory is to find sufficient conditions to have the following phenomena for

0< |ε|< ε0.

H Persistence of the homoclinic. There is ε0 > 0 such that for any 0 < |ε| < ε0 there exists a

unique Cr−1 (non-sliding) solution Exb(t, ε), bounded on R and homoclinic to the origin, and

a unique Cr−1 function α(ε) satisfying α(0)= α0 such that

sup
t∈R

‖Exb
(

t + α(ε), ε
)

− Eγ (t)‖ → 0 as ε→ 0.

C Existence of a chaotic pattern. There is ε0 > 0 such that, for any 0 < |ε| < ε0, there is

M ∈ N large enough, such that for any sequence E = (ej ) ∈ E there is a (doubly infinite)

sequence of real numbers (α̂j ), |α̂j | < 1 and a (non-sliding) solution ExE(t, ε) such that, if

t ∈ [(2j − 1)pM − 1, (2j + 1)pM + 1], then

‖ExE(t, ε)− Eγ (t − 2pM − α̂j )‖ ≤ Cε if ej = 1,

‖ExE(t, ε)‖ ≤ Cε if ej = 0.
(2.3)

Further let S be the set of (non-sliding) solutions as in (2.3), and let FN , be the time shift

map: FN [ExE(t, ε)] := ExE(t +pN,ε). Then there is N ∈ N large enough such that FN : S →
S is topologically conjugated to the Bernoulli-shift on two symbols σ : E → E , σ((ej )) =
(ej+1) for j ∈ Z.

We stress that in property H we required periodicity just to keep the presentation simpler. In fact

all the results hold in the almost periodic case or even with weaker recurrence assumptions, see

[5] for more details about this point, see also [11]. Since the system is smooth, all the solutions

are obviously non-sliding. We have added this requirement to emphasize that, even in the dis-

continuous setting, when we have pattern H or C we mean that all the solutions involved are

non-sliding.

In one of the bifurcation scenarios described in the article we prove the existence of an ad-

ditional property which is not present in smooth systems. To explain it we need to define the

computable constant L Ef 0 , see Remark 3.6 and formulas (6.4), (6.5). However the constant L Ef 0

has a simple dynamical interpretation: if L Ef 0 < 0 the origin is stable for (2.1), while if L Ef 0 > 0

it is unstable.

Cs Existence of chaotic-like forward sliding or backward sliding homoclinic trajectories. As-

sume L Ef 0 < 0 (or L Ef 0 > 0); there is ε0 > 0 such that, for any 0< |ε|< ε0, there is M ∈ N

large enough, such that for any sequence E = (ej ) ∈ E0 there is an uncountable number

of forward sliding homoclinic trajectories (or backward sliding homoclinic trajectories)

ExE(t, ε) with the following property: For each ExE(t, ε) there is a (finite) sequence of real

numbers (α̂j ), |α̂j |< 1 such that, if t ∈ [(2j −1)pM−1, (2j +1)pM+1] then (2.3) holds.
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Let us define the Mel’nikov function in the simple case n= 2.

M(α)=
∫ +∞
−∞ e−

∫ t
0 trfx ( Eγ (s))ds Ef ( Eγ (t))∧ Eg(t + α, Eγ (t),0)dt ,

M′(α)=
∫ +∞
−∞ e−

∫ t
0 trfx ( Eγ (s))ds Ef ( Eγ (t))∧ ∂ Eg

∂t
(t + α, Eγ (t),0)dt .

(2.4)

We are ready to state the classical result in the smooth case.

Theorem 2.1. [32] Assume F0 and G, and that there is α0 such that M(α0)= 0 and M′(α0) 6=
0. Then system (S) has a persisting homoclinic orbit (property H). If further Eg is p-periodic in t ,
then also the chaos occurs (property C).

When n ≥ 3 some further transversality conditions are required, see e.g. [32]; and, even to

define the function M, we need to employ a solution of the adjoint variational system and the

concept of exponential dichotomy, see e.g. [32].

In the whole paper we denote by Ex(t, τ, EP ) a solution of (PS) or of (S) which leaves from EP
at t = τ (which is locally unique if EP /∈�0). Let B = B(E0, δ) be the ball of radius δ > 0 centered

in the origin. We can construct the following sets:

Wu
loc(τ ) := { EP ∈ B | Ex(t, τ, EP ) ∈ B for t ≤ 0, limt→−∞Ex(t, τ, EP )= E0},

W s
loc(τ ) := { EP ∈ B | Ex(t, τ, EP ) ∈ B for t ≥ 0, limt→+∞Ex(t, τ, EP )= E0},

Wu(τ ) := { EP ∈R
2 | limt→−∞Ex(t, τ, EP )= E0},

W s(τ ) := { EP ∈ R
2 | limt→+∞Ex(t, τ, EP )= E0}.

(2.5)

We state a result proved in [13, §13] or [24, Theorem 2.16].

Lemma 2.2. Assume G and consider (S); then Wu(τ ) and W s(τ ) are Cr immersed manifolds of
dimension 1 (i.e. each of them is the graph of a Cr curve), varying Cr smoothly with respect to τ
and ε. Further if δ > 0 is small enough, then Wu

loc(τ ) (or W s
loc(τ )) is a graph on its tangent, say

T u(τ ) (or T s(τ )), which is ε-close to the line spanned by Evu (or by Evs ). Moreover, Wu
loc(τ ) ⊂

Wu(τ ), W s
loc(τ )⊂W s(τ ).

The manifolds Wu(τ ) and W s(τ ) are the sets of all the initial conditions of the trajectories

converging to the origin in the past and in the future, respectively, and they are not invariant for

the flow of (S). However, if EP ∈Wu(τ ) then Ex(t, τ, EP ) ∈Wu(t) for any t, τ ∈ R. Analogously

for W s(τ ).

In the whole paper we use the following notation: we denote by Wu,+(τ ) and by W s,+(τ ) the

branches ofWu(τ ) andW s(τ ) leaving from the origin towards�+, whileWu,−(τ ) andW s,−(τ )
denote the branches leaving from the origin towards �−. It follows that Wu(τ ) =Wu,−(τ ) ∪
Wu,+(τ ) and Wu,+(τ )∩Wu,−(τ )= (0,0).

3. Homoclinic orbits in discontinuous systems

Here we consider system (PS) and the notation of Section 2. We assume that this system

admits a piecewise smooth homoclinic solution Eγ (t) for ε = 0. Battelli and Fečkan managed

to reprove Theorem 2.1 in this context too, assuming that E0 /∈ �0, and Eγ (t) ∈ �− for |t | > T
and E0 ∈�−. They considered both the cases where Eγ (t) crosses transversally �0 at t = ±T and
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Eγ (t) ∈�+ for |t |< T , and the case where Eγ (t) is a sliding solution so that Eγ (t) ∈�0 for |t | ≤ T .

In either case they showed that (PS) exhibits a persisting homoclinic as well as the existence of

a chaotic pattern (properties H and C) for ε > 0 small [5]. All the results are carried on in the

more general (and difficult) n≥ 3 case, and with weak recurrence properties including the almost

periodic setting. One of the main difficulties in this higher-dimensional discontinuous context is

to redefine the appropriate Mel’nikov function.

Recently the case where E0 ∈ �0 has been considered, profiting of the approach used by

Battelli–Fečkan. In [10] it was considered the case where Eγ (t) ∈ �− for t < 0, Eγ (t) ∈ �+ for

t > 0 and it crosses transversally the �0 surface at t = 0. So no sliding was allowed for Eγ (t), and

property H was shown.

As we said in the Introduction we consider four different bifurcation scenarios. In fact we can

split piecewise smooth systems exhibiting a homoclinic trajectory into two classes with respect

to the position of Ev±
s and Ev±

u . Roughly speaking, in the first class, N, the indices s and u are

alternating (Fig. 1a). This prevents the existence of sliding solutions in the neighborhood of the

origin, while in the other class, S, Ev+
s , Ev−

s and Ev+
u , Ev−

u lie next to each other (Fig. 1b), which

results in the existence of solutions sliding along �0. More precisely, set T ±
u := {cEv±

u | c ≥
0}, and denote by 51

u and 52
u the disjoint open sets in which R

2 is divided by the polyline

T u := T +
u ∪ T −

u . The following assumptions are meant to determine if (PS) is of class N or S,

respectively:

FN Ev+
s and Ev−

s lie on the opposite sides with respect to T u, i.e., Ev+
s ∈51

u and Ev−
s ∈52

u.

FS Ev+
s and Ev−

s lie on the same side with respect to T u, i.e., Ev±
s ∈52

u.

Clearly if Ef+ = Ef− then T u is a line and 5iu is a halfplane for i = 1,2. In fact all smooth

systems satisfy FN. This way we have partitioned piecewise smooth systems, satisfying F0 and

F1, in two classes N and S, “morally of the same size”, the former where no sliding phenomena

can take place close to the origin, the latter where sliding phenomena close to the origin are

present. Notice that smooth systems are in fact contained in class N.

We further divide these systems in two other groups: the one in which Eγ (t) lies entirely in

�+ and the other one in which Eγ (t) crosses transversally the discontinuity surface �0. These are

described by the following assumptions:

K1 for ε = 0 there is a unique solution Eγ (t) of (PS) homoclinic to the origin such that Eγ (t) ∈�+

for all t ∈ R.

K2 for ε = 0 there is a unique solution Eγ (t) of (PS) homoclinic to the origin such that

Eγ (t) ∈











�+, t < 0,

�0, t = 0,

�−, t > 0.

Furthermore, ( E∇G( Eγ (0)))∗ Ef±( Eγ (0)) < 0.

Recalling the orientation of Ev±
s , Ev±

u chosen in F1 we assume w.l.o.g that limt→−∞
Ėγ (t)

‖ Ėγ (t)‖ = Ev+
u .

Further limt→+∞
Ėγ (t)

‖ Ėγ (t)‖ = −Ev+
s if K1 is assumed, while limt→+∞

Ėγ (t)
‖ Ėγ (t)‖ = −Ev−

s if K2 holds.
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In the rest of this section we discuss all the couples of {FN,FS}× {K1,K2} (see Fig. 2). Each

of the next four examples represents one class of discontinuous systems. One can compare their

phase portraits to Fig. 2. In all the cases �0 = R× {0}, and �± = {(x, y) ∈R
2 | ±y > 0}.

Example 3.1. The following system satisfies assumptions FN and K1

ẋ = y(1 − y)

ẏ = x
y > 0,

ẋ = y

ẏ = x
y < 0.

Notice that the system is hamiltonian and for y > 0 it admits the first integral V +(x, y)= x2

2
−

y2

2
+ y3

3
, and the graph of the homoclinic trajectory Eγ is contained in the level set V +(x, y)= 0,

see Fig. 3a.

Example 3.2. The following system satisfies assumptions FN and K2

ẋ = y

ẏ = x(1 − x)
y > 0,

ẋ = y

ẏ = x

(

9

8
− x2

)

y < 0.

The system is hamiltonian and for y > 0 we have the first integral V +(x, y) = y2

2
− x2

2
+ x3

3
,

while for y < 0 we have the first integral V −(x, y)= y2

2
− 9x2

16
+ x4

4
. The graph of the homoclinic

trajectory Eγ is contained in the level sets

{

(x, y) | V +(x, y)= 0, y > 0
}

∪
{

(x, y) | V −(x, y)= 0, y < 0
}

∪
{(

3

2
,0

)}

(3.1)

see Fig. 3b.

Example 3.3. The following system satisfies assumptions FS and K1

ẋ = y(1 − y)

ẏ = x
y > 0,

ẋ = −y
ẏ = −x

y < 0.

The system is hamiltonian and for y > 0 we have the first integral V +(x, y)= x2

2
− y2

2
+ y3

3
. The

graph of the homoclinic trajectory Eγ is contained in the level set V +(x, y)= 0, see Fig. 3c.

Example 3.4. The following system satisfies assumptions FS and K2

ẋ = y

ẏ = x(1 − x)
y > 0,

ẋ = −y − 8xy + 8x2y + 8y3

ẏ = −3x + 12x2 + 4y2 − 8x3 − 8xy2
y < 0.
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Fig. 3. Phase portraits of illustrative examples with highlighted homoclinic trajectories.

Again, the system is hamiltonian, in �+ the first integral is V +(x, y)= y2

2
− x2

2
+ x3

3
, and in �−

the first integral is V −(x, y)= (x2 + y2 − x)2 − x2+y2

4
. The graph of the homoclinic trajectory

Eγ is contained in (3.1), where the level set V −(x, y)= 0 is a part of limaçon, see Fig. 3d.

Here we note that in general when one tries to find numerically a bounded solution and draw

its phase portrait, one may get off the precise trajectory after a single step, although the initial

condition/-s was/were taken from the real solution. This is due to the curvature of the solution

(see [17] for details).

Now we focus on systems of type S. Hence we have the assumption FS in mind, so that 51
u

does not contain any stable eigenvector. We want to discuss what happens to trajectories leaving

from points in �0 close to the origin, both in the perturbed and in the unperturbed case.

Let Eνi be such that ‖Eνi‖ = 1, ( E∇G(0))∗Eνi = 0 and Eνi ∈5iu, for i = 1,2 (Eν1 aims towards right

in Figs. 2c, 2d).

Let Eyi ∈�0, ‖Eyi‖ ≤ ρ0/2, so that Eyi = Eνiρ +O(ρ2) for some 0< ρ < ρ0 small. We give the

following remarks describing the dynamics close to the origin: their proofs are rather technical

and they are postponed to Section 6.1. We recall that the flow on �0 close to the origin is ruled

by (2.1), and that �0 is invariant for that equation.
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Remark 3.5. For any τ ∈ R, there is a solution y(t, τ, Eyi) of (PS) that slides across �0 ∩5iu,

following equation (2.1). Further this motion is unstable for i = 1 and stable for i = 2, i.e., the

former repels all the close solutions from 51
u, while the latter attracts all the close solutions from

52
u.

We recall that the solutions leaving from Eyi are not uniquely defined, as it has to be expected

in sliding region, cf. the Introduction.

Remark 3.6. The origin is stable for (2.1) if L Ef 0 < 0 and unstable if L Ef 0 > 0, where L Ef 0 is the

computable constant given in (6.5).

We conclude this part of the section by recalling some known results concerning persistence

of a homoclinic, see [10], and insurgence of chaos, see [11].

Theorem 3.7 ([10,11]). Consider (PS); assume that F0, F1, K1 and G are satisfied, and that
there is α0 ∈ R such that M(α0)= 0 and M′(α0) 6= 0 where M is as in (2.4). Then the homo-
clinic orbit persists, i.e., property H holds; and if g is p-periodic then also a chaotic pattern is
present, i.e., property C holds too.

Theorem 3.7 holds in the general n-dimensional case: property H follows from [10, Theorem

2.9] while C follows from [11]. In fact it was proved that all the solutions of the perturbed

system close to the original homoclinic lie in the same half space, i.e. the chaos occurs in �+.

We emphasize that in [10] assumption FN was required, but an inspection of the proof shows

that it is not actually needed.

When hypothesis K2 is considered we need to redefine properly the function M, and we

obtain only persistence of the homoclinic.

Theorem 3.8 ([10]). Consider (PS); assume that F0, F1, K2 and G are satisfied, and that there
is α0 ∈R such that M(α0)= 0 and M′(α0) 6= 0 where

M(α)=
0

∫

−∞
e−

∫ t
0 tr Ef +

x ( Eγ (s))ds Ef+(

Eγ (t)
)

∧ Eg
(

t + α, Eγ (t),0
)

dt

+
+∞
∫

0

e−
∫ t

0 tr Ef −
x ( Eγ (s))ds Ef−(

Eγ (t)
)

∧ Eg
(

t + α, Eγ (t),0
)

dt.

(3.2)

Then the homoclinic orbit persists, i.e., property H holds.

One of the main purposes of this paper is to show that, if the assumptions of Theorem 3.8

are satisfied and FS holds, then chaos, i.e. property C, is not possible. In fact we believe that

if FN holds, then the assumption of Theorem 3.8 and periodicity will be sufficient to prove the

presence of property C: this will be the object of a forthcoming paper.
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4. Solutions close to the homoclinic in smooth systems

Let Ŵ := { Eγ (t) | t ∈ R}, and denote by Ein the compact set enclosed by Ŵ. Further let Ŵu :=
{ Eγ (t) | t ≤ 0}, Ŵs := { Eγ (t) | t ≥ 0}. In this section we consider the smooth system (S), and we

investigate what happens in a neighborhood of Ŵ: this information will be useful also in the

context of piecewise smooth system (PS). For this purpose we need to introduce some notation

which in fact is used to explain Figs. 4, 5, 6, 7. We invite the reader to refer to the pictures for

a better and easier comprehension of the argument. We begin by giving several definitions. We

denote by B( EP , δ) the open ball of center EP and of radius δ > 0, and for any set D,

B(D,δ) :=
{ EQ ∈ R

2 | ∃ EP ∈D : ‖ EQ− EP ‖< δ
}

= ∪
{

B( EP , δ) | EP ∈D
}

.

We denote by Eψ(t) the unique vector such that 〈 Eψ(t), Ef ( Eγ (t))〉 = 0, ‖ Eψ(t)‖ = 1, and Eγ (t) +
c Eψ(t) ∈ Ein for any c > 0 small enough (it points towards the interior of Ŵ). Let Ew be a vector

transversal to Ėγ (0); for any δ > 0 small we consider the segment

L0(δ) :=
{ EQ= Eγ (0)+ d Ew | |d| ≤ δ

}

. (4.1)

Let 0< ν < 1; follow Wu,+
ε (τ ) and W s,+

ε (τ ) from the origin towards L0(ε1−ν): if ε is small

enough Wu,+
ε (τ ) and W s,+

ε (τ ) both intersect transversally L0(ε1−ν) a first time in points de-

noted respectively by Eζ u(τ ) and Eζ s(τ ). Notice that Eζ u(τ ) and Eζ s(τ ) are Cr both in ε and τ , and

that Eζ u(τ )− Eζ s(τ ) =O(ε). In fact the classical Mel’nikov theory shows that Eζ u(τ )− Eζ s(τ ) =
εM(τ ) + o(ε), where M(τ ) is defined in (2.4). We denote by W̄u

ε (τ ) the branch of Wu,+
ε (τ )

between the origin and Eζ u(τ ), similarly we denote by W̄ s
ε (τ ) the branch of W s,+

ε (τ ) between the

origin and Eζ s(τ ).
Notice thatWu,+

ε (τ ) andW s,+
ε (τ ) are not invariant for the flow. However, if EP ∈Wu,+

ε (τ ) (or

W s,+
ε (τ )) then Ex(t, τ, EP ) ∈Wu,+

ε (t) (or W s,+
ε (t)) for any t ∈R.

Remark 4.1. Let ν > 0 small; if EP ∈ W̄u
ε (τ ) then Ex(t, τ, EP ) ∈ W̄u

ε (t) for any t ≤ τ . Similarly if
EQ ∈ W̄ s

ε (τ ) then Ex(t, τ, EQ) ∈ W̄ s
ε (t) for any t ≥ τ . Further W̄u

ε (τ ) ∈ B(Ŵu, ε1−ν) and W̄ s
ε (τ ) ∈

B(Ŵs, ε1−ν) for any τ ∈R; in particular {Eζ s(τ )} = L0(ε1−ν)∩ W̄ s
ε (τ ) and {Eζ u(τ )} = L0(ε1−ν)∩

W̄u
ε (τ ).

Let EC be a point in Ein at a finite distance from Ŵ: Eγ (t) makes exactly a complete rotation

around EC as t winds from −∞ to +∞, while W̄u
ε (τ ) performs an angle smaller than 2π by

construction, say θ > 0 to fix the ideas. However, a priori, Ex(t, τ, Eζ u(τ ))may perform a complete

rotation or more around EC for t ≤ τ , e.g. the angle performed may be 2π + θ , since (S) is

non-autonomous. Such a possibility is excluded by Remark 4.1 and a topological argument, see

[14, Lemma 3.3].

Let k > 0 be a fixed constant; we introduce some further sets

L+
±(δ) :=

{ EQ= d
(

Evu ± kEvs
)

| 0 ≤ d ≤ δ
}

,

L−
±(δ) :=

{ EQ= d
(

−Evu ± kEvs
)

| 0 ≤ d ≤ δ
}

.
(4.2)

Let ν > 0 and δ > 0 be small constants; set σ s(δ, ε) := (δ + ε)
|λs |

|λs |+λu −ν
.
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Fig. 4. Curves Ezsa , Ezs
b

. Arrows denote the flow of system (S).

In the next subsection we construct two curves Ezsa : [0,1] → B(Ŵs, σ s(δ, ε)) and Ezsb : [0,1] →
B(Ŵs, σ s(δ, ε)), with the following properties, see Fig. 4: Ezsa(0) ∈ L0(ε

1−ν + δ), Ezsb(0) ∈
L0(ε

1−ν + δ), Ezsa(1) ∈ L+
+(σ

s(δ, ε)), Ezsb(1) ∈ L−
+(σ

s(δ, ε)). Let Zsa = {Ezsa(s) | 0 < s < 1} and

Zsb = {Ezsb(s) | 0< s < 1}, then Zsa , Zsb and Ŵ do not have self-intersections and do not intersect

each other. Moreover Zsa and Zsb lie on the opposite sides with respect to Ŵ. We denote by Sa , Sb ,

the segments from the origin respectively to Ezsa(1), Ezsb(1), and by L̄0
s ⊂ L0(ε1−ν + δ) the segment

between Ezsa(0) and Ezsb(0). Then we denote by Ks(δ, ε) the compact set enclosed by Sb, Sa , Zsa ,

L̄0
s and Zsb .

Lemma 4.2. Let κ > 0, δ = εκ and ν > 0, then there is ε0 > 0 such that for any 0< ε < ε0 we
can construct the curves Ezsa(s) and Ezsb(s) in such a way that Eζ u(τ ), Eζ s(τ ) ∈ L̄0

s and the flow of
(S) on Zsa ∪ Zsb points towards the interior of Ks(δ, ε) for any τ ∈ R. That means that for any
EP ∈ (Zsa ∪ Zsb), we have Ex(t, τ, EP ) ∈ Ks(δ, ε) for t − τ > 0 small enough. Further the flow of

(S) on L̄0 points towards the interior of Ks(δ, ε), while on Sa ∪ Sb \ {(0,0)} it points towards
the exterior of Ks(δ, ε).

The construction relies on some simple geometrical facts whose analytic computation is non-

trivial and rather cumbersome. In our opinion it is not so relevant for understanding the core of

the article, so it is postponed to Section 6 for the interested reader.

Fix τ ∈ R; Lemma 4.2 allows us to say that if EP ∈ L̄0
s , it stays close to Ŵs for t > τ until it

arrives close to the origin and either crosses (transversally) Sa ∪ Sb \ {(0,0)} in a finite time or it

converges to the origin as t → +∞.

In fact we can say more. Notice that Eζ u(τ ) and Eζ s(τ ) lie in L0(ε1−ν + δ) for any τ , see

Remark 4.1. Let us denote by As(τ ) the open segment between Ezsa(0) and Eζ s(τ ) and by Bs(τ )

the open segment between Ezsb(0) and Eζ s(τ ), so that L̄0
s is partitioned in As(τ ), Bs(τ ) and Eζ s(τ ).

Notice that W̄ s
ε (τ ) splits Ks(δ, ε) in two relatively open connected components: let Ks

A(τ ) and

Ks
B(τ ) denote respectively the components containing As(τ ) and Bs(τ ) (see Fig. 5).

Then we have the following.
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Fig. 5. Notation around W̄ s
ε (τ ).

Lemma 4.3. Let κ > 0, δ = εκ and ν > 0, EPa ∈ As(τ ), EPb ∈ Bs(τ ). Then there is T s( EPa) > τ
such that Ex(t, τ, EPa) ∈ Ks

A(t) ⊂ Ks(δ, ε) for any t ∈ [τ, T s( EPa)] and it intersects transversally

Sa ⊂ L+
+(σ

s(δ, ε)) at t = T s( EPa). Analogously there is T s( EPb) > τ such that Ex(t, τ, EPb) ∈
Ks
B(t) ⊂ Ks(δ, ε) for any t ∈ [τ, T s( EPb)] and it intersects transversally Sb ⊂ L−

+(σ
s(δ, ε)) at

t = T s( EPb).

Proof. Let EPa ∈ As(τ ). From elementary phase plane arguments we see that there are three

possibilities:

i) Ex(t, τ, EPa) ∈Ks
A(t) for any t ≥ τ .

ii) There is T s( EPa) > τ such that Ex(t, τ, EPa) ∈Ks
A(t) for any t ∈ [τ, T s( EPa)) and Ex(T s( EPa), τ,

EPa) ∈ W̄ s
ε (T

s( EPa)).
iii) Ex(t, τ, EPa) ∈Ks

A(t) for any t ∈ [τ, T s( EPa)) and it crosses transversally Sa ∪ Sb \ {(0,0)} at

t = T s( EPa).

In case i) then Ex(t, τ, EPa) converges to the origin as t → +∞: therefore EPa = Eζ s(τ ) and this

is a contradiction. In case ii) Ex(t, τ, EPa) ∈ W̄ s
ε (t) for any t ≥ τ , hence again EPa = Eζ s(τ ), see

Remark 4.1: a contradiction. So only the case iii) may take place and the statement follows.

The case EPb ∈ Bs(τ ) is obtained with a specular argument. ✷

When we follow trajectories in the past we get the symmetric result.

Set σ u(δ, ε) := (δ + ε)
λu

|λs |+λu−ν
. Reasoning as above (see Section 6) we construct two curves

Ezua : [0,1] → B(Ŵu, σ u(δ, ε)) and Ezub : [0,1] → B(Ŵu, σ u(δ, ε)), with the following properties,

see Fig. 6: Ezua(0) ∈ L+
+(σ

u(δ, ε)), Ezub(0) ∈ L+
−(σ

u(δ, ε)), while Ezua(1) ∈ L0(δ + ε1−ν), Ezub(1) ∈
L0(δ + ε1−ν). Let Zua = {Ezua(s) | 0 < s < 1} and Zub = {Ezub(s) | 0 < s < 1}. Then Zua , Zub and Ŵ

do not have self-intersections and do not intersect each other. Moreover Zua and Zub lie on the

opposite sides with respect to Ŵ. We denote by Ua , Ub , the segments from the origin respectively

to Ezua(0), Ezub(0), and by L̄0
u ⊂ L0(σ u(δ, ε)) the segment between Ezua(1) and Ezub(1). Then we denote

by Ku(δ, ε) the compact set enclosed by Ub , Ua , Zua , L̄0
u and Zub .

Lemma 4.4. Let κ > 0, δ = εκ and ν > 0, then there is ε0 > 0 such that for any 0< ε < ε0 we
can construct the curves Ezua(s) and Ezub(s) in such a way that Eζ u(τ ), Eζ s(τ ) ∈ L̄0

u and the flow of
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Fig. 6. Curves Ezua , Ezu
b

. Arrows denote the flow of system (S).

Fig. 7. Notation around W̄u
ε (τ ).

(S) on Zua ∪ Zub points towards the exterior of Ku(δ, ε) for any τ ∈ R. That means that for any
EP ∈ (Zua ∪ Zub ), we have Ex(t, τ, EP) ∈Ku(δ, ε) for t − τ < 0 and |t − τ | small enough. Further

the flow of (S) on Ua and Ub points towards the interior of Ku(δ, ε), while on L̄0
u points towards

the exterior of Ku(δ, ε).

Then, again, we notice that Eζ u(τ ) splits L̄0
u in two open and connected segments, Au(τ ) and

Bu(τ ), having as endpoints Eζ u(τ ) and respectively Ezua(0) and Ezub(0) (see Fig. 7). Again W̄u
ε (τ )

splits Ku(δ, ε) in two relatively open connected components: let Ku
A(τ ) and Ku

B(τ ) denote re-

spectively the components containing Au(τ ) and Bu(τ ) (see Fig. 5).

Lemma 4.5. Let κ > 0, δ = εκ and ν > 0, EPa ∈ Au(τ ), EPb ∈ Bu(τ ). Then there is T u( EPa) < τ
such that Ex(t, τ, EPa) ∈Ku

A(t)⊂Ku(δ, ε) for any t ∈ [T u( EPa), τ ] and it intersects transversally

Ua ⊂ L+
+(σ

u(δ, ε)) at t = T u( EPa). Analogously there is T u( EPb) < τ such that Ex(t, τ, EPb) ∈
Ku
B(t) ⊂Ku(δ, ε) for any t ∈ [T u( EPb), τ ] and it intersects transversally Ub ⊂ L+

−(σ
u(δ, ε)) at

t = T u( EPb).
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In fact, for any EP ∈ (As(τ )∪Bs(τ )), and any EQ ∈ (Au(τ )∪Bu(τ )) we can give estimates of

T s( EP) and T u( EQ), see Remark 6.8.

Remark 4.6. Let Eout = R
2 \ (Ŵ ∪Ein). In order to help the reader to visualize the picture we

recall that we have two different scenarios. Either −cEvu ∈ Eout and −cEvs ∈ Eout for any c > 0,

or Ein contains both −cEvu and −cEvs for c > 0 small enough. Perhaps the former situation is the

more familiar one. In the former case, for ε = 0, Ŵmay enjoy asymptotic stability just from inside

while in the latter one just from outside, see [38, §13.1] and also the beginning of Section 6.2.

Notice that in the former case L+
+, Ua , Sa , Zua , Zsa lie in Ein, while Ub , Sb , Zub , Zsb lie in Eout .

In the latter case we have the reversed situation.

5. The four bifurcation scenarios

In this section we apply the results developed in the previous section for smooth system (S) to

the piecewise smooth system (PS). In this case, we consider appropriate parts of �0 (in general

curvilinear) instead of line segments L0, L+
±, L−

±. The analogous statements are obtained with

trivial changes.

5.1. FN+K1

In this case Theorem 3.7 applies, so we have the both – a persisting homoclinic (property H)

and the existence of chaos if Eg is periodic (property C). Further notice that sliding is not allowed,

so there are no sliding homoclinic solutions.

5.2. FN+K2

In this case Theorem 3.8 applies, so we have a persisting homoclinic as in property H and we

conjecture that property C on the existence of chaos is possible if Eg is periodic: this will be the

object of future investigation. Further notice that sliding is not allowed, so there are no sliding

homoclinic solutions.

5.3. FS+K1

In this subsection we always assume F0, F1, FS, K1 and G.

We first observe that, for ε = 0, Ŵ is surrounded by sliding solutions; if L Ef 0 < 0 they are

sliding towards the origin in the future and they get away from a neighborhood of the origin in

the past, while if L Ef 0 > 0 we have the reversed situation. We recall that L Ef 0 is a computable

constant, whose value is given in (6.5).

Proposition 5.1. Consider (PS) for ε = 0, and assume F0, F1, FS, K1. For any σ > 0 there is
δ > 0 such that if EP ∈�+ ∩Eout , EP ∈ B(Ŵ, δ), there are t1 < 0< t2 such that Ex(t,0, EP ) ∈�+

for t ∈ (t1, t2) and it is a sliding solution at t = t1 and at t = t2.
Further Ex(t,0, EP) ∈Eout for any t ∈ R, and if L Ef 0 < 0 then Ex(t,0, EP ) ∈ B(Ŵ,σ ) for any t ≥

t1, Ex(t,0, EP ) ∈�0 whenever t ≥ t2 and it converges to the origin as t → +∞, while if L Ef 0 > 0

then Ex(t,0, EP ) ∈ B(Ŵ,σ ) for any t ≤ t2, Ex(t,0, EP ) ∈�0 whenever t ≤ t1 and it converges to the
origin as t → −∞.
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Proof. The proof follows from a straightforward application of Lemmas 4.3 and 4.5. ✷

We emphasize that no sliding homoclinic trajectories are possible for ε = 0. Now we turn to

consider the ε > 0 case.

We recall that Theorem 3.7 holds in this setting too, so for ε > 0 we have the persistence of a

non-sliding homoclinic and the insurgence of chaos made up by non-sliding solutions.

Let Eζ u(τ ) = Eγ (0)+ du(τ ) Eψ(0) and Eζ s(τ ) = Eγ (0)+ ds(τ ) Eψ(0) for some du(τ ), ds(τ ) ∈ R,

see (4.1). We recall that the Mel’nikov function M(τ ) measures the first order term D(τ) of the

distance with sign between Eζ u(τ ) and Eζ s(τ ). Namely there is c 6= 0 independent of ε and τ such

that

D(τ) := du(τ )− ds(τ )= cεM(τ )+ o(ε) (5.1)

where o(ε) is uniform with respect to τ ∈ R. Assume to fix the ideas that c > 0 so that M(τ ) > 0

implies D(τ) > 0. Then either Eζ u(τ ) ∈ Bs(τ ) and Eζ s(τ ) ∈Au(τ ), or Eζ u(τ ) ∈As(τ ) and Eζ s(τ ) ∈
Bu(τ ). To fix the ideas assume the former takes place when D(τ) < 0, and the latter for D(τ) >

0. This corresponds to the case d Ev−
u , d Ev−

s ∈Eout for d > 0 sufficiently small, i.e. Fig. 2c.

So we have the following results completing the picture of Theorem 3.7 when the additional

assumption FS holds.

Theorem 5.2. Consider (PS) and assume F0, F1, K1, G and FS, and that there is α0 ∈ R such
that M(α0) = 0 and M′(α0) 6= 0 where M is as in (2.4). Then if L Ef 0 < 0 there is ε0 > 0

such that for any 0 < ε < ε0 there is an uncountable number of forward sliding homoclinic
trajectories. Analogously if L Ef 0 > 0, then there is ε0 > 0 such that for any 0< ε < ε0 there is an
uncountable number of backward sliding homoclinic trajectories.

Proof. Assume that M(α1) < 0, so that Eζ u(α1) ∈ Bs(α1). So using Lemma 4.3 we see that there

is Tu(α1) := T s(Eζ u(α1)) > α1 such that Ex(t, α1, Eζ u(α1)) is in�+ for any α1 < t < Tu(α1), and it

is in�0 in a right neighborhood of t = Tu(α1), i.e., Ex(t, α1, Eζ u(α1)) is a crossing-sliding solution

at t = Tu(α1). So if L Ef 0 < 0 then Ex(t, α1, Eζ u(α1)) is a forward sliding homoclinic.

Analogously assume that M(α2) > 0 so that Eζ s(α2) ∈ Bu(α2). Using Lemma 4.5 we see that

there is Ts(α2) := T u(Eζ s(α2)) < α2 such that Ex(t, α2, Eζ s(α2)) is in �+ for any α2 > t > Ts(α2),

and it is in �0 in a left neighborhood of t = Ts(α2), so that Ex(t, α2, Eζ s(α2)) is a sliding-crossing

solution at t = Ts(α2). So if L Ef 0 > 0 then Ex(t, α2, Eζ s(α2)) is a backward sliding homoclinic.

The proof of Theorem 5.2 now easily follows observing that there are uncountably many α1,

α2 such that M(α1) < 0<M(α2). ✷

Proposition 5.3. Let EC ∈ Ein, EC /∈ B(Ŵ,
√
ε). In the assumption of Theorem 5.2, if Eg is

p-periodic in t , for any 0 < ε < ε0, for any k ∈ N there is an uncountable number of sliding
homoclinic trajectories performing exactly k loops around EC if L Ef 0 6= 0. Such homoclinic tra-
jectories are forward-sliding if L Ef 0 < 0 and backward-sliding if L Ef 0 > 0.

To prove Proposition 5.3 we need the following preliminary result. Let EP ∈Wu
ε (τ ) and denote

by W̃u(τ ) the branch of Wu
ε (τ ) between the origin and EP . Let EC be as in Proposition 5.3. Let us

consider a parametrization 9(s) of W̃u(τ ) such that 9(0)= (0,0) and 9(1)= EP . Let α ∈R and
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consider the trajectory Ex(t, α, Eζ u(α)). We consider polar coordinates with respect to EC for 9(s)

and Ex(t, α, Eζ u(α)), i.e. we set

9(s)− EC =R(s)
(

cos
(

2(s)
)

, sin
(

2(s)
))

,

Ex
(

t, α, Eζ u(α)
)

− EC =ρ(t)
(

cos
(

θ(t)
)

, sin
(

θ(t)
))

.

Assume L Ef 0 < 0 and let θ(t) := Ex(t, α1, Eζ u(α1)); observe that limt→−∞θ(t)=: θ(−∞) exists.

We can assume w.l.o.g. that θ(−∞)=2(0) ∈ (−π;π] (they are equal modulo 2π ). The proof

of Proposition 5.3 is based on the following Lemma borrowed from [18, Lemma 4.3].

Lemma 5.4. Assume F0 and G. Then θ(τ )=2(1).

We recall that the above lemma is trivial if the system is autonomous, but it is not if the system

is nonautonomous, since the graphs of Ex(t, τ, EP) and of W̃u(τ ) are distinct.

Proof of Proposition 5.3. Assume for definiteness Lf < 0, the other case being analogous.

From Theorem 3.7 we know that for any k ∈ N there is a non-sliding homoclinic trajectory

Ex(t) of (PS) such that Ex(t) ∈ �+ for any t ∈ R and it performs exactly k rotations around EC,

say counterclockwise to fix the ideas. Namely let L1 be a segment of size ε1−ν , centered in Eγ (1)
and transversal to Ėγ (1); we can choose ν > 0 small enough so that L1 ⊂ Ks(δ, ε): then Ex(t)
intersects transversally L1 exactly k times where ν > 0 is small enough. Let θ(t) be the angular

coordinate of Ex(t)− EC; then we can choose τ ∈ R such that Ex(τ) ∈ L1 and Ex(t) /∈ L1 for any

t > τ , so that 2(k − 1)π <1= θ(τ )− θ(−∞) < 2kπ , and θ(+∞)− θ(−∞)= 2kπ .

Let W̃u(τ ) be the branch of Wu
ε (τ ) between the origin and EP = Ex(τ); let 2(s) be the angular

coordinate of its parametrization9(s). From Lemma 5.4, we see that2(1)−2(0)=1 ∈ (2(k−
1)π;2kπ).

Notice that Ex(τ) ∈ W s
ε (τ ) and Ex(t) ∈ Ks(δ, ε) for any t ≥ τ . Since the crossing between

Wu
ε (τ ) and W s

ε (τ ) in Ex(τ) is topologically transversal, following 9(s) we find s1 < 1< s2 such

that 9(s1)= EQ ∈Ks
A(τ ) and 9(s2)= ER ∈Ks

B(τ ), while 9(1)= EP ∈W s
ε (τ ). I.e. EQ, ER ∈Wu

ε (τ )

lie in the opposite sides with respect to W s
ε (τ ). Further, using a continuity argument, we can

assume w.l.o.g. that

2(k − 1)π <2(si)−2(0) < 2kπ , i = 1,2.

Using Lemma 4.3 we see that Ex(t, τ, ER) is forced to stay in Ks
B(τ ) for t ≥ τ until it crosses �0,

and then it slides to the origin. Further, using again Lemma 5.4 we see that Ex(t, τ, ER) makes ex-

actly k−1 complete rotations around EC for t ≤ τ . So it follows that Ex(t, τ, ER) is a forward-sliding

homoclinic which performs exactly k rotations around EC.

If we assume L Ef 0 > 0 we need to start from trajectories inW s
ε (τ ) which perform exactly k−1

complete rotations around EC for t ≥ τ , and intersect L1 transversally at t = τ . Then we proceed

as above and we find backward-sliding homoclinic making k rotations around EC. ✷

In fact, with trivial adaption in the proof of Proposition 5.3, we can prove the following.
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Theorem 5.5. In the assumption of Theorem 5.2, if Eg is p-periodic in t , then (PS) has properties
C and Cs, i.e., after a perturbation the system exhibits chaotic behavior and chaotic-like forward
or backward sliding homoclinics.

We conjecture that property Cs might hold even for any sequence E ∈ E+ if L Ef 0 > 0 and for

any E ∈ E− if L Ef 0 < 0: this could be the object of further investigation.

5.4. FS+K2

Now we turn to consider the case where F0, F1, FS, K2 and G holds. Observe first that there

are no sliding homoclinics for ε = 0.

As in Section 5.2, Theorem 3.8 ensures the persistence of a unique non-sliding homoclinic

orbit transversally crossing �0 if the function M defined in (3.2) has a unique non-degenerate

zero. Our aim is to show that, even if g is periodic, for ε > 0 neither the existence of chaos

(property C) nor an infinite number of sliding homoclinics (property Cs) is possible, while we

have the appearance of uncountably many sliding homoclinic trajectories making just one “loop”.

Recall that the chaotic trajectories, if any, lie in B(Ŵ, cε) for some c > 0.

Lemma 5.6. Consider (PS) and assume F0, F1, FS, K2 and G.
Let EC ∈ Ein be a point at a finite distance from Ŵ, so that EC /∈ B(Ŵ,√ε). Then there is no

solution Eφ(t) of (PS) with the following property:
• There are −∞ ≤ T1 < T2 ≤ ∞ such that Eφ(t) ∈ B(Ŵ,√ε) for any t ∈ [T1, T2], and in this

interval Eφ(t) performs at least two complete rotations around EC.

Proof. To help the reader to follow the proof we provide Fig. 8. Notice that in this context L+
+ is

a broken line segment partly located in �+ and partly in �−, while L+
− and L−

+ are curvilinear

segment contained in �0.

When FS is assumed, Eζ s(τ ) ∈W s,−(τ ) ∩ L0(cε). From Lemma 4.3 (with a trivial adaption

to take account of the fact that L−
+ is not a straight line), we see that if EQa ∈As(τ ) then there is

T s( EQa) > 0 such that Ex(t, τ, EQa) ∈�− for any τ < t < T s( EQa) and it intersects L+
+(σ

s(cε, ε))

at t = T s( EQa), while if EQb ∈ Bs(τ ) then Ex(t, τ, EQb) ∈�− for any τ < t < T s( EQb) and it inter-

sects L−
+(σ

s(cε, ε))⊂�0 at t = T s( EQb).

Hence Ex(t, τ, EQb) is crossing-sliding at t = T s( EQb). So either it stays in �0 for any t >

T s( EQb), and it converges to the origin as t → +∞ (so it does not make a complete loop around
EC for t > τ ), or it stays in �0 until it gets out from a

√
ε-neighborhood of the origin (so it does

not anymore belong to B(Ŵ,
√
ε)). Further Ex(t, τ, EQa) will stay close to Wu,−(t) for t in some

right neighborhood of T s( EQa), and eventually it will get out from B(Ŵ,
√
ε), and the statement

follows.

Now we make an analogous reasoning backwards in time. Hence if EQ= Eζ u(τ ) then Ex(t, τ, EQ)
performs less than one loop around EC for t ≤ τ and the lemma is proved. If EQa ∈Au(τ ) then from

Lemma 4.5 we see that, there is T u( EQa) < 0 such that Ex(t, τ, EQa) ∈�+ for any T u( EQa) < t < τ

and it intersects L+
+(σ

u(cε, ε)) at t = T u( EQa). So Ex(t, τ, EQa) will stay close to W s,+(t) for t in

some left neighborhood of T u( EQa), and eventually it will get out from B(Ŵ,
√
ε). If EQb ∈ Bu(τ )

then from Lemma 4.5 we see that, Ex(t, τ, EQb) ∈ �+ for any T u( EQ) < t < τ and it intersects

L+
−(σ

u(cε, ε)) ⊂ �0 at t = T u( EQb). So reasoning as above, we conclude that it cannot make

more than a loop around EC for t ≤ τ , staying in B(Ŵ,
√
ε), and the lemma follows. ✷
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Fig. 8. Behavior of solutions close to Ŵ. Note that curvilinear segments L+
− , L−

+, L0 lie on �0 , while L+
+ are linear and

different for each one of �± .

As a consequence of the above lemma and of Theorem 3.8 we obtain the next result.

Theorem 5.7. Consider (PS) and assume F0, F1, FS, K2 and G. Assume that there is α0 such
that M(α0)= 0 and M′(α0) 6= 0; then the homoclinic persists (property H), but neither chaos
(property C) nor an infinite number of sliding homoclinics (property Cs) are present even if Eg is
periodic.

Moreover, we have the existence of sliding homoclinics:

Theorem 5.8. Consider (PS) and assume F0, F1, FS, K2 and G. Then we get the same conclu-
sion as in Theorem 5.2.

Notice that backward and forward sliding homoclinics make exactly one loop.

Proof. The proof of the existence of sliding-homoclinic is analogous to the one of Theorem 5.2.

For briefness we just consider the L Ef 0 < 0 case. Assume to fix the ideas that Eζ u(τ ) ∈ Bs(τ )
iff D(τ) < 0 and that the constant c in (5.1) is positive. Assume further that M′(α0) < 0 =
M(α0). Then again Eζ u(τ ) ∈ Bs(τ ) and D(τ) < 0 if α0(ε) < τ < α0(ε) + σ , for some σ > 0.

So, reasoning as above, from Lemma 4.3 we see that for any τ ∈ (α0(ε);α0(ε) + σ) there is

Tu(τ ) := T s(Eζ u(τ )) such that Ex(t, τ, Eζ u(τ )) ∈ �− for any t ∈ (τ,Tu(τ )), it is in �0 for any

t > Tu(τ ) and it converges to the origin as t → +∞. Hence Ex(t, τ, Eζ u(τ )) is a forward-sliding

homoclinic. ✷

Now we make a brief digression concerning the transversality of the crossing betweenWu(τ )

and W s(τ ).

Remark 5.9. Consider the smooth system (S). The existence of α0 ∈ R such that M(α0)= 0 6=
M′(α0) is sufficient to have a transversal crossing between Wu(α0) and W s(α0). Then, using

the flow, we see that there is a transversal crossing betweenWu(τ ) and W s(τ ) for any τ ∈R and

any ε > 0.
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Now we consider (PS) and we assume that we are in the assumptions of Theorem 5.7 so

that there is α(ε) such that Eζ u(α(ε))= Eζ s(α(ε)) ∈ [�0 ∩Wu(α(ε))∩W s(α(ε))]. It follows that

Exb(t)= Ex(t, α(ε), Eζ u(α(ε))) is a homoclinic trajectory and thatWu(τ ) intersectsW s(τ ) in Exb(τ )
for any τ ∈ R. We denote by W̄u(τ ) and W̄ s(τ ) the branch of Wu(τ ) and W s(τ ) between E0 and

Exb(τ ). A priori Wu(τ ) and W s(τ ) are just locally Lipschitz and they do not have a definite

tangent. However, since for ε = 0 they are piecewise C1, with a standard continuity argument we

see that W̄u(α(ε)) and W̄ s(α(ε)) are C1, and that if τ̄ > α(ε), then W̄ s(τ̄ ) is C1 while W̄u(τ̄ )

is piecewise C1 and it has a corner in its unique transversal crossing with �0, see [3, §3] for a

further discussion on the transversality and a precise estimate of the jump discontinuity of the

tangent of W̄u(τ̄ ) (in the general n ≥ 2 dimensional case). However in Exb(τ̄ ) the tangents of

Wu(τ̄ ) and W s(τ̄ ) are well defined and they cross each other transversally.

So, even if we have a transversal homoclinic point, the periodicity of Eg does not give

chaos as we said in the Introduction.

To conclude this section we stress that all the results of this article are easily generalized

to the case where Eγ (t) intersects the discontinuity surface �0 transversally more than once, by

combining the methods of [10] (which are based on [3,5]).

6. Proofs of the technical results

6.1. Proofs of Remarks 3.5 and 3.6

In this subsection we give a full fledged proofs of Remarks 3.5 and 3.6, and we evaluate

explicitly the constant L Ef 0 whose value rules the motion along �0 close to the origin.

Proof of Remark 3.5. Recall that ‖Eνi‖ = 1, ( E∇G(0))∗Eνi = 0 and Eνi ∈5iu, for i = 1,2. Notice

that Eνi is uniquely determined and that there are positive constants c±, d± such that:

Eν1 := c±Ev±
u − d±Ev±

s ∈ TE0�
0 =

( E∇G(0)
)⊥
, Eν2 = − Eν1. (6.1)

We emphasize that for each Eνi there are two possible expressions using either + or − eigenvec-

tors, and that c±, d± just depend on the angles between E∇G(E0), Ev±
u , Ev±

s .

We consider some Eyi ∈�0 ∩5iu, i = 1,2 such that ‖Eyi‖ ≤ ρ0/2. Then Eyi = Eνiρ +O(ρ2) for

some 0< ρ < ρ0.

Let us recall that ±c⊥,±u > 0 and ±c⊥,±s > 0, see (2.2). Consequently, Ef±(Eyi)= f ±
x (

E0)Eνiρ +
O(ρ2) and

( E∇G(Ey1)
)∗ Ef±(Ey1)=

( E∇G(E0)
)∗

f ±
x (

E0)
(

c±Ev±
u − d±Ev±

s

)

ρ +O
(

ρ2
)

=
(

λ±
u c

±c⊥,±u − λ±
s d

±c⊥,±s

)

ρ +O
(

ρ2
)

,
( E∇G(Ey2)

)∗ Ef±(Ey2)= −
(

λ±
u c

±c⊥,±u − λ±
s d

±c⊥,±s

)

ρ +O
(

ρ2
)

.

(6.2)

Therefore for ρ > 0 small enough we obtain

( E∇G(Ey1))
∗ Ef+(Ey1) > 0, ( E∇G(Ey2))

∗ Ef+(Ey2) < 0,

( E∇G(Ey1))
∗ Ef−(Ey1) < 0, ( E∇G(Ey2))

∗ Ef−(Ey2) > 0.
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Then from [19] we get the stability properties of the motion of x(t, τ ; Eyi) for any τ ∈ R and the

proof is concluded. ✷

Proof of Remark 3.6. Let us define the following non-zero constant

β(E0) := ( E∇G(E0))∗f −
x (

E0)Eν1

( E∇G(E0))∗(f −
x (

E0)− f +
x (

E0))Eν1

(6.3)

and notice that the value of β(E0) remains the same if we replace Eν1 by Eν2 = −Eν1 in (6.3). We

stress that β(Eyi, t, ε)= β(E0)+O(ρ + ε) where O(ρ + ε) is uniform with respect to t ∈ R, see

(2.1).

It is easy to check that 0 < β(E0) < 1, so, using a continuity argument, we see that 0 <

β(Ex, t, ε) < 1 whenever ‖Ex‖ ≤ ρ, 0< ρ < ρ0 and 0< ε < ε0.

Notice that by construction EF 0(Ex, t, ε) ∈ TEx�0 for any Ex ∈�0, ‖Ex‖ ≤ ρ0. Hence differentiat-

ing (2.1) we get

([

1 − β(E0)
]

f −
x (

E0)+ β(E0)f +
x (

E0)
)

Eνi = L Ef 0 Eνi . (6.4)

Let cos(θ±)= 〈Ev±
u , Ev±

s 〉, then we get

L Ef 0 Eν1 =
[

1 − β(E0)
]{

λ−
u c

−Ev−
u − λ−

s d
−Ev−

s

}

+ β(E0)
{

λ+
u c

+Ev+
u − λ+

s d
+Ev+

s

}

.

Hence L Ef 0 is as follows:

L Ef 0 :=
[

1 − β(E0)
]{

λ−
u c

−[

c− − d− cos
(

θ−)]

− λ−
s d

−[

−d− + c− cos
(

θ−)]}

+β(E0)
{

λ+
u c

+[

c+ − d+ cos
(

θ+)]

− λ+
s d

+[

−d+ + c+ cos
(

θ+)]}

.

β(E0) := c−λ−
u c

⊥,−
u − d−λ−

s c
⊥,−
s

c−λ−
u c

⊥,−
u − d−λ−

s c
⊥,−
s − (c+λ+

u c
⊥,+
u − d+λ+

s c
⊥,+
s )

.

(6.5)

Then we see that

EF 0
(

Eyi, t, ε
)

= ρL Ef 0 Eνi + o(ρ)

where o(ρ) is uniform with respect to ε and t . Hence the origin is an unstable fixed point of (2.1)

if L Ef 0 > 0, and it is a stable fixed point if L Ef 0 < 0, both in the perturbed and in the unperturbed

case (in this paper we do not consider the non-generic case L Ef 0 = 0). ✷

6.2. Proofs of Lemmas 4.2 and 4.4

In this subsection we always assume that Ef ∈ Cr with r ≥ 2. The purpose of this section

is to borrow some ideas from [38, §13.1], to construct the curves Ezsa , Ezsb , Ezua , Ezub and to prove

Lemmas 4.2, 4.4.

The proofs of this subsection are very technical and introduce a lot of notations, but in fact

mainly rely on some linearizations and some simple geometrical interpretations of the pictures.
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We suggest the reader to rely on the figures of this section to follow the arguments and the

notation.

We begin by recalling some well-established facts concerning stability of the homoclinic tra-

jectories of autonomous systems (in two dimensions), i.e., for system (S) when ε = 0: we denote

by W s and Wu the stable and unstable manifold of such a system, respectively. Then we con-

struct two auxiliary autonomous smooth systems which are ε-close to the original one, and which

enable us to construct the curves Ezu,sa,b of Lemmas 4.2, 4.4.

Let EP ∈ R
2. In the whole section we denote by Ey(t, EP ) and by Eyℓ(t, EP ), respectively, the

solution of system (S) for ε = 0 and the solution of the linear system Ėx = fx(E0)Ex leaving from
EP at t = 0.

As we said in Remark 4.6, although there are two possible scenarios, we just consider the

“more usual” one, −cEvu ∈ Eout , −cEvs ∈ Eout for c > 0 small, the other being analogous. Fol-

lowing [38, §13.1], we say that Ŵ is one sided stable (unstable), if there is δ > 0 such that for

any EP ∈ B(Ŵ, δ) ∩ Ein the trajectory Ey(t, EP ) has Ŵ as ω-limit set (Ey(t, EP ) has Ŵ as α-limit

set), i.e. Ey(t, EP ) approaches Ŵ as t → +∞ (t → −∞). It turns out that Ŵ is one sided stable if

trfx(E0)= λ1 + λ2 =:D1 < 0, or if D1 = 0 and D2 :=
∫ +∞
−∞ trfx( Eγ (t))dt < 0; analogously Ŵ is

one sided unstable if D1 > 0, or if D1 = 0 and D2 > 0, see [38, Lemma 13.1, Theorem 13.2].

In fact D1, D2 are the first two terms of the so-called Dulac sequence which gives a complete

answer to the problem of establishing one sided stability for Ŵ, see e.g. [38, §13.1].

6.2.1. Supporting results
We begin by defining some further segments, see Fig. 9. Let δ < δ0 ≪ 1 so that δ| ln(δ)| ≪ 1,

and set

S
ℓ,±
1 (δ) :=

{

± Evu
| ln(δ)| + d Evs | |d| ≤ δ

}

, S
ℓ
2(δ) :=

{

d Evu + Evs
| ln(δ)| | |d| ≤ δ

}

.

Through the whole Section 6.2.1, we estimate explicitly the crossing times τi and T +
u just for

completeness, but they are not really used in this article.

Let 0< d < δmin{1, |δ ln(δ)|
λu
|λs | −1} and EP ℓ+ = d Evu + Evs

| ln(δ)| ∈ Sℓ2(δ),
EP ℓ− = −d Evu + Evs

| ln(δ)| ∈
Sℓ2(δ). Let us focus on the solution of Ėx = fx(E0)Ex leaving from EP ℓ±, i.e.

Eyℓ
(

t, EP ℓ±
)

= ±d eλut Evu + eλs t

| ln(δ)| Evs . (6.6)

Notice that Eyℓ(t, EP ℓ+) crosses transversally S
ℓ,+
1 (δ) in EQℓ

+, while Eyℓ(t, EP ℓ−) crosses transversally

S
ℓ,−
1 (δ) in EQℓ

− where

EQℓ
± = 1

| ln(δ)|
(

±Evu + |d ln(δ)|
|λs |
λu Evs

)

(6.7)

at t = T ℓ1 = | ln |d ln(δ)||
λu

(recall that δ| ln(δ)| ≪ 1), since
|d ln(δ)|

|λs |
λu

| ln(δ)| < δ.
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Recall that there are cu, cs > 0 such that Eγ (t) ∼ cu eλut Evu as t → −∞ and Eγ (t) ∼ cs eλs t Evs
as t → +∞, see e.g. [11, Appendix]. Therefore there are τ1 < 0 < τ2 such that Eγ (t) intersects

transversally S
ℓ,+
1 (δ) and Sℓ2(δ), respectively at t = τ1 and at t = τ2. Further notice that

τ1 ∼ − ln | ln(δ)|
λu

, τ2 ∼ ln | ln(δ)|
|λs |

. (6.8)

Let P be the matrix whose range and kernel are spanned by Evs and Evu, respectively.

FollowWu from the origin in the direction of −Evu, and denote by Eξu− the first intersection with

S
ℓ,−
1 (δ). Let d̄−

1 , d̄+
1 , d̄2 be such that P Eξu− = d̄−

1 Evs , P Eγ (τ1)= d̄+
1 Evs and (I − P ) Eγ (τ2)= d̄2Evu,

then we set

S
±
1 (δ) :=

{

± Evu
| ln(δ)| +

(

d + d̄±
1

)

Evs | |d| ≤ δ
}

,

S2(δ) :=
{

(d + d̄2)Evu + Evs
| ln(δ)| | |d| ≤ δ

}

.

Let 0< d < δ for δ sufficiently small and EP+ = (d + d̄2)Evu + Evs
| ln(δ)| ∈ S2(δ). Following [38,

Lemma 13.1] we approximate the trajectory Ey(t, EP+) by Eyℓ(t, EP ℓ+) defined in (6.6). Notice that

Eyℓ(t, EP ℓ+) crosses transversally L+
+(δ) at t = T

ℓ,s
+ in EQℓ

L,+(d), and then S
ℓ,+
1 (δ) at t = T ℓ1 in EQℓ

+,

see (6.7). Further, for any EQ+(d)= d(Evu + kEvs) ∈ L+
+(δ), the trajectory Eyℓ(t, EQ+(d)) intersects

transversally S
ℓ,+
1 (δ̃) for some δ̃ at t = T

ℓ,u
+ (d) in EQℓ

u(d), where

EQℓ
L,+(d)=

d
|λs |

|λs |+λu

|k ln(δ)|
λu

|λs |+λu
(Evu + kEvs),

EQℓ
u(d)=

1

| ln(δ)|
(

Evu + k|d ln(δ)|1+ |λs |
λu Evs

)

,

T
ℓ,s
+ (d)= | ln |kd ln(δ)||

λu + |λs |
, T

ℓ,u
+ (d)= | ln |d ln(δ)||

λu
.

(6.9)

Using a contraction principle we see that Ey(t, EP+) and Ey(t, EQ+) are well approximated by the

explicitly known Eyℓ(t, EP ℓ+) and Eyℓ(t, EQ+), i.e. we have the following.

Lemma 6.1 ([38, Lemma 13.1]). Let 0 < d < δ, where δ < δ0 is small enough, and set δ̄ =
δ

|λs |
|λs |+λu−ν̄ , δ̃ = δ

1+ |λs |
λu

−ν̃ , where ν̃ > ν̄ > 0 are arbitrary small constants. Let

EP+ = EP+(d)= (d + d̄2)Evu + Evs
| ln(δ)| ∈ S2(δ).

Then the trajectory Ey(t, EP+) intersects transversally L+
+(δ̄) at t = T s+(d) in 5s+(d)(Evu + kEvs).

Further, for any EQ+(d)= d(Evu + kEvs) ∈ L+
+(δ), the trajectory Ey(t, EQ+(d)) intersects transver-

sally S+
1 (δ̃) at t = T u+(d) in EQu = EQu(d)= Eγ (τ1)+5u+(d)Evs . Moreover, as d → 0, we have
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Fig. 9. Notation of intersections in a neighborhood of the origin.

5s+(d)∼ d
|λs |

|λs |+λu |k ln(δ)|−
λu

|λs |+λu , 5u+(d)∼ kd
1+ |λs |

λu | ln(δ)|
|λs |
λu ,

T s+(d)∼
| ln |kd ln(δ)||
λu + |λs |

, T u+(d)∼
| ln |d ln(δ)||

λu
.

(6.10)

Finally Ey(t, EP+) ∈ B(Ŵ, δ̄) for 0 ≤ t ≤ T s+ and Ey(t, EQ+) ∈ B(Ŵ, δ̃) for 0 ≤ t ≤ T u+ .

Proof. The proof is obtained by applying a change of variable that reduces Wu to the y axis and

then by applying a fixed point argument, see [38, Lemma 13.1]. The fact that Ey(t, EP+) ∈ B(Ŵ, δ̄)
and Ey(t, EQ+) ∈ B(Ŵ, δ̃) is not explicitly stated in [38] but easily follows from an inspection of

the proof. ✷

Then, for any EQ ∈ S
+
1 (δ) we see that Ey(t, EQ) follows Ŵ and intersects transversally S2(δ) at

some T2 close to τ2 − τ1.

We recall that Eψ(t) denotes the unique vector such that 〈 Eψ(t), Ef ( Eγ (t))〉 = 0, ‖ Eψ(t)‖ = 1, and

Eγ (t)+ c Eψ(t) ∈Ein for any c > 0 small enough (it points towards the interior of Ŵ).

We need to introduce two further segments

S̄i(δ)=
{ EQ= Eγ (τi)+ d Eψ(τi) | |d| ≤ δ

}

, i = 1,2.

Lemma 6.2. Let |d| ≤ δ, EQ1 = EQ1(d)= Eγ (τ1)+ d Eψ(τ1) ∈ S̄1(δ). Then the trajectory Ey(t, EQ1)

intersects transversally S̄2(δ
1−ν) in some EQ2 at t = T̄2, where ν > 0 is an arbitrary small con-

stant. Further Ey(t, EQ1) ∈ B(Ŵ, δ1−ν) for any t ∈ [0, T̄2], and

EQ2 =Eγ (τ2)+52(d) Eψ(τ2),

T̄2 ∼|τ1| + τ2 ∼ ln | ln(δ)|
[

1

|λs |
+ 1

λu

]

, as δ→ 0.
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Fig. 10. Solutions of (S) for ε = 0 in (10a) Ein, (10b) Eout .

Finally 52(d) is Cr , monotone increasing,

52(0)= 0 and 5′
2(0)= exp

[ T̄2
∫

0

div
( Ef

(

Eγ (s)
))

ds

]

.

Proof. T̄2 is obtained from (6.8). The rest follows from [23, Theorem 12.15] with trivial changes:

in fact in [23, Theorem 12.15] the statement is developed assuming that Eγ is periodic, so there is

a unique section, say S̄1, and 52 is a Poincaré map. ✷

Now, using the fact that S̄1(δ) is not orthogonal to S
+
1 (δ) and S̄2(δ) is not orthogonal to S2(δ),

independently of δ, we get the following.

Lemma 6.3. Let |d| ≤ δ, and let EQ = EQ(d) = Eγ (τ1) + d Evs ∈ S
+
1 (δ). Then Ey(t, EQ) intersects

transversally S2(δ
1−ν) in some ER at t = T2.

ER =Eγ (τ2)+ c(d)52(d)Evu,

T2 ∼|τ1| + τ2 ∼ ln | ln(δ)|
[

1

|λs |
+ 1

λu

]

, as δ→ 0

where c is a smooth function depending just on the angles between S̄1(δ), S
+
1 (δ), and S̄2(δ),

S2(δ), and c(0) > 0.

From Lemmas 6.1 and 6.3 we easily get the following (see Fig. 10a).

Lemma 6.4. Fix k > 0, 0< δ ≤ δ0 small enough, 0< ν̄ < ν arbitrarily small σ = min{ |λs |
λu
,1}.

Let Ew aim towards Ein, d,D ∈ (0, δ), and set

EP+(d)= d(Evu + kEvs) ∈ L+
+(δ), EQ0

+(D)= Eγ (0)+D Ew ∈ L0(δ).

Then there are 0 < T u
+ (d) < T+(d), T s

+(D) > 0 such that the trajectory Ey(t, EP+(d)) intersects

transversally a first time L0(δ
1+ |λs |

λu
−ν̄
) at t = T u

+ (d) in EQu
+(d) and then L+

+(δ
|λs |
λu

−ν
) at t =

T+(d) in ER+(d), and
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EQu
+(d)= Eγ (0)+9u+(d) Ew where d

1+ |λs |
λu

+ν̄ ≤9u+(d)≤ d1+ |λs |
λu

−ν̄
,

ER+(d)=9+(d)(Evu + kEvs) where d
|λs |
λu

+ν ≤9+(d)≤ d
|λs |
λu

−ν
.

(6.11)

Further Ey(t, EQ0
+(D)) intersects L+

+(δ
|λs |

|λs |+λu−ν̄
) at t = T s

+(D) in ERs+(D), and

ERs+(D)=9s+(D)(Evu + kEvs) where D
|λs |

|λs |+λu +ν̄ ≤9s+(D)≤D
|λs |

|λs |+λu−ν̄
. (6.12)

Moreover Ey(t, EP+(d)) ∈ B(Ŵ, δσ−ν) ∩ Ein for any 0 ≤ t ≤ T+(d), and Ey(t, EQ0
+(D)) ∈

B(Ŵ, δ
|λs |

|λs |+λu−ν
)∩Ein for any 0 ≤ t ≤ T s

+(D), and

T
u

+ (d)∼
| ln(d)|
λu

, T
s

+(D)∼
| ln(D)|
λu + |λs |

, T+(d)∼ T
u

+ (d)+ T
s

+
(

9u+(d)
)

. (6.13)

Remark 6.5. Following [38, Theorem 13.2] we can improve the estimates for 9+(d): we can

obtain a complete expansion to any order via [38, §13.1]. In particular 9+(d) = Ad
|λs |
λu where

A> 0, and if λs + λu = 0 then A= exp[
∫ +∞
−∞ div( Ef ( Eγ (s)))ds]. Notice that the integral defining

A is convergent iff λs+λu = 0. However the estimates in Lemma 6.4 are enough for our purpose.

Repeating the argument of Lemma 6.1 we obtain the following.

Lemma 6.6. Let 0< d < δ, where δ < δ0 is small enough, and set δ̄ = δ
|λs |

|λs |+λu−ν̄ , δ̃ = δ
1+ |λs |

λu
−ν̃ ,

where ν̃ > ν̄ > 0 are arbitrary small constants. Let

EP− = EP−(d)= (−d + d̄2)Evu + Evs
| ln(δ)| ∈ S2(δ).

Then the trajectory Ey(t, EP−) intersects transversally L−
+(δ̄) at t = T s− in5s−(d)(−Evu+kEvs). Fur-

ther, for any EQ−(d)= d(−Evu+kEvs) ∈ L−
+(δ), the trajectory Ey(t, EQ−(d)) intersects transversally

S
−
1 (δ̃) at t = T u− in EQu = EQu(d)= Eξu− +5u−(d)Evs . Moreover, as d → 0, we have

5s−(d)∼ d
|λs |

|λs |+λu |k ln(δ)|−
λu

|λs |+λu , 5u−(d)∼ kd
1+ |λs |

λu | ln(δ)|
|λs |
λu ,

T s−(d)∼
| ln |kd ln(δ)||
λu + |λs |

, T u−(d)∼
| ln |d ln(δ)||

λu
.

(6.14)

Finally Ey(t, EP−) ∈ B(Ŵ, δ̄) for 0 ≤ t ≤ T s− and Ey(t, EQ−) ∈ B(Ŵ, δ̃) for 0 ≤ t ≤ T u− .

Then, from Lemmas 6.6 and 6.3, we get the following, see Fig. 10b.

Lemma 6.7. Fix k > 0, 0< δ ≤ δ0 small enough, 0< ν̄ < ν arbitrarily small, σ = min{ |λs |
λu
,1}.

Let Ew aim towards Ein, d,D ∈ (0, δ), and set

EP−(d)= d(Evu − kEvs) ∈ L+
−(δ) , EQ−

0 (D)= Eγ (0)−D Ew ∈ L0(δ).
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Then there are 0< T −
u (d) < T−(d), T −

s (D) > 0 such that the trajectory Ey(t, EP−(d)) intersects

transversally a first time L0(δ
1+ |λs |

λu
−ν̄
) at t = T −

u (d) in EQ−
u (d) and then L−

+(δ
|λs |
λu

−ν
) at t =

T−(d) in ER−(d); further Ey(t, EQ−
0 (D)) intersects L−

+(δ
|λs |

|λs |+λu −ν̄
) at t = T −

s (D) in ER−
s (D) with

EQ−
u (d)= Eγ (0)−9−

u (d) Ew where d
1+ |λs |

λu
+ν̄ ≤9−

u (d)≤ d1+ |λs |
λu

−ν̄
,

ER−(d)=9−(d)(−Evu + kEvs) where d
|λs |
λu

+ν ≤9−(d)≤ d
|λs |
λu

−ν
,

ER−
s (D)=9−

s (D)(−Evu + kEvs) where D
|λs |

|λs |+λu +ν̄ ≤9−
s (D)≤D

|λs |
|λs |+λu−ν̄

.

(6.15)

Moreover Ey(t, EP−(d)) ∈ B(Ŵ, δσ−ν) ∩ Eout for any 0 ≤ t ≤ T−(d), and Ey(t, EQ−
0 (D)) ∈

B(Ŵ, δ
|λs |

|λs |+λu−ν
)∩Eout for any 0 ≤ t ≤ T −

s (D), and

T
−
u (d)∼

| ln(d)|
λu

, T
−
s (D)∼

| ln(D)|
λu + |λs |

, T−(d)∼ T
−
u (d)+ T

−
s

(

9−
u (d)

)

.

Remark 6.8. Let EP ∈ (As(τ )∪Bs(τ )), EQ ∈ (Au(τ )∪Bu(τ )), and assume ‖ EP − Eζ s(τ )‖ ≤ δ and

‖ EQ− Eζ u(τ )‖ ≤ δ. In the assumptions of Lemmas 4.3, and 4.5 we see that there is k0 > 0 such

that, we have

T s( EP)− τ ≥ | ln(δ| ln(δ)|)|
λu + |λs | − k0ε

, τ − T u( EP )≥ | ln(δ| ln(δ)|)|
λu + |λs | − k0ε

.

The proof follows easily from Lemmas 6.6 and 6.3.

6.2.2. Proofs of Lemmas 4.2, 4.4
Let Ef⊥(Ex) be the vector field such that 〈 Ef⊥(Ex), Ef (Ex)〉 = 0, ‖ Ef⊥(Ex)‖ = ‖ Ef (Ex)‖, i.e. Ef⊥(Ex) is

the Cr function obtained rotating by Ef (Ex) by π/2: we choose the orientation in such a way that
Ef⊥( Eγ (t))= ‖ Ef⊥( Eγ (t))‖ Eψ(t).

Let λ
g

1 , λ
g

2 be the eigenvalues of Egx(0). Then if ‖Ex‖ is small enough we have
‖Eg(Ex)‖
‖ Ef (Ex)‖ ≤

2 max{|λg1 |,|λg2 |}
min{λu,|λs |} . Then let

K := 2 sup
{

‖Eg(Ex)‖/‖ Ef (Ex)‖ | Ex ∈ B(Ŵ,1)∩�
}

and notice that K is bounded. We introduce the auxiliary functions Efin and Efout defined as fol-

lows:

Efin(Ex)= Ef (Ex)+ εK Ef⊥(Ex),
Efout(Ex)= Ef (Ex)− εK Ef⊥(Ex).

(6.16)

We have chosen the functions Efin(Ex) and Efout(Ex) so that the flow of Ėx = Efin(Ex) and of Ėx = Efout(Ex)
on Ŵ aims towards Ein or towards Eout (always assuming that −cEvu ∈Eout for any c > 0 small).

Then we denote by Eyin(t, EP ) and Eyout (t, EP ), respectively, the solutions of ẋ = Efin(Ex) and of

ẋ = Efout(Ex) leaving from EP at t = 0. Notice that the origin is still a saddle critical point for

both the systems, and that the eigenvalues and the eigenvectors of ∂xfin(E0) and ∂xfout (E0) are
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Fig. 11. Illustration of Lemma 6.9.

O(ε) close to the ones of fx(E0). Let W
u,+
in , W

s,+
in be the branches of the unstable and the stable

manifold of ẋ = Efin(Ex), which are close to Wu,+, W s,+, respectively; and similarly we define

W
u,+
out , W

s,+
out . Let Eζ uin, Eζ sin, Eζ uout , Eζ sout be the first intersections of W

u,+
in , W

s,+
in , W

u,+
out , W

s,+
out with

L0(ε1−ν). We denote by W̄u
in the branch of W

u,+
in between the origin and Eζ uin. Analogously we

define W̄ s
in, W̄u

out , W̄
s
out .

Let L̃0
u be the segment between Eζ uin and Eζ uout , L̃0

s the segment between Eζ sin and Eζ sout . Now we

state a simple result illustrated by Fig. 11.

Lemma 6.9. There is c > 0 such that W̄u
in ∈ B(Ŵu, cε) ∩Ein, W̄u

out ∈ B(Ŵu, cε) ∩Eout , W̄ s
out ∈

B(Ŵs, cε)∩Ein, W̄ s
in ∈ B(Ŵs, cε)∩Eout . Further there are positive constants cuin, c

u
out , c

s
in, c

s
out

such that

Eζ uin = Eγ (0)+ (cuinε+ o(ε)) Ew, Eζ uout = Eγ (0)− (cuoutε+ o(ε)) Ew,
Eζ sin = Eγ (0)− (csinε+ o(ε)) Ew, Eζ sout = Eγ (0)+ (csoutε+ o(ε)) Ew

for Ew aiming towards Ein. Finally Eζ u(τ ) ∈ L̃0
u and Eζ s(τ ) ∈ L̃0

s .

Proof. Assume for simplicity that Ew = Eψ(0) in the definition of L0, cf. (4.1). Then, from classi-

cal arguments of Mel’nikov theory, we see that

Eζ uin = Eyin
(

0, Eζ uin
)

= Eγ (0)+Kε

0
∫

−∞

Ef⊥(

Eγ (s)
)

ds + o(ε).

So the claim concerning W̄u
in and Eζ uin easily follows. The others are analogous.

If Ew 6= Eψ(0) but it aims towards Ein, the argument still goes through but we have different

values of the constants c
u,s
in,out (depending on the angle between Ew and Eψ(0)).

The fact that Eζ u(τ ) ∈ L̃0
u, Eζ s(τ ) ∈ L̃0

s follows by construction. ✷
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Let ν > 0 be small and set c̄= max{cuin, cuout , csin, csout }, 0< d < δ, and

EQa(d) := Eγ (0)+ (d + c̄ε) Ew ∈ [Ein ∩L0(δ + c̄ε)] ,
EQb(d) := Eγ (0)− (d + c̄ε) Ew ∈ [Eout ∩L0(δ + c̄ε)] (6.17)

see Fig. 12. Then consider the trajectory Eyin(t, EQa(d)) for t > 0. Notice that

EQa(d)− Eζ sin =
[

d +
(

csin + c̄
)

ε+ o(ε)
]

Ew,

therefore, with a trivial adaption of Lemma 6.4 (cf. (6.12)) we see that there is Ta = T
+
s,in(Din)

with Din = d + (csin + c̄)ε + o(ε) such that Eyin(t, EQa(d)) intersects L+
+ transversally at t = Ta

in ER+
s,in(Din)=9+

s,in(Din)(Evu + kEvs) where

(d + ε)
|λs |

|λs |+λu +ν ≤9+
s,in(Din)≤ (d + ε)

|λs |
|λs |+λu −ν

. (6.18)

Further Eyin(t, EQa(d)) ∈ B(Ŵ, (d + ε)
|λs |

|λs |+λu −ν
) for any 0< t < Ta . Then the curve Ezsa : [0,1] →

R
2 of Lemma 4.2 is a reparametrization of Eyin(t, EQa(d)) such that Ezsa(0) = Eyin(0, EQa(d)) =

EQa(d) ∈ L0 and Ezsa(1)= Eyin(Ta, EQa(d))= ER+
s,in(Din) ∈ L+

+.

Analogously consider the trajectory Eyout (t, EQb(d)) for t > 0. Notice that

EQb(d)− Eζ sout = −
[

d +
(

csout + c̄
)

ε+ o(ε)
]

Ew.

Therefore, with a trivial adaption of Lemma 6.7 (cf. line 3 in (6.15)) we see that there is

Tb = T
−
s,out (Dout ) with Dout = d + (csout + c̄)ε + o(ε) such that Eyout (t, EQb(d)) intersects L−

+
transversally at t = Tb in

ER−
s,out (Dout )=9−

s,out (Dout )(−Evu + kEvs)

where

(d + ε)
|λs |

|λs |+λu +ν ≤9−
s,out (Dout )≤ (d + ε)

|λs |
|λs |+λu−ν

. (6.19)

Further Eyout (t, EQb(d)) ∈ B(Ŵ, (d + ε)
|λs |

|λs |+λu −ν
) for any 0< t < Tb. Then the curve Ezsb : [0,1] →

R
2 of Lemma 4.2 is a reparametrization of Eyout (t, EQb(d)) such that Ezsb(0) = Eyout (0, EQb(d)) =

EQb(d) ∈ L0 and Ezsb(1) = Eyout (Tb, EQb(d)) = ER−
s,out (Dout ) ∈ L−

+. In the notation preceding

Lemma 4.2, by construction, the flow of the non-autonomous system (S) on Zsa and Zsb points

towards the interior of Ks(δ, ε); further recall that L̄0
s is the segment between Ezsa(0) and Ezsb(0),

so that Eζ s(τ ) ∈ L̃0
s ⊂ L̄0

s , hence Lemma 4.2 is proved.

Analogously to prove Lemma 4.4 we follow for t ≤ 0 the trajectories Eyout (t, EQa(d)) and

Eyin(t, EQb(d)), where EQa(d) and EQb(d) are given by (6.17). Then, reasoning as above, we

see that there are T a < 0, T b < 0 such that Eyout (t, EQa(d)) intersects transversally L+
+ at

t = T a and Eyin(t, EQb(d)) intersects transversally L+
− at t = T b. Then Ezua is a reparametriza-

tion of Eyout (t, EQa(d)) such that Ezua(1) = EQa(d) and Ezua(0) = Eyout (T a, EQa(d)), while Ezub is a



U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

ARTICLE IN PRESS

Please cite this article in press as: M. Franca, M. Pospíšil, New global bifurcation diagrams for piecewise smooth

systems: Transversality of homoclinic points does not imply chaos, J. Differential Equations (2018),

https://doi.org/10.1016/j.jde.2018.07.078

JID:YJDEQ AID:9474 /FLA [m1+; v1.287; Prn:2/08/2018; 12:30] P.32 (1-33)

32 M. Franca, M. Pospíšil / J. Differential Equations ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Fig. 12. Proof of Lemma 4.2. Arrows denote the flow of system (S).

reparametrization of Eyin(t, EQb(d)) such that Ezub(1)= EQb(d) and Ezub(0)= Eyin(T b, EQb(d)). Then,

using the notation preceding Lemma 4.2, we see that the flow of the non-autonomous system (S)

on Zsa and Zsb points towards the exterior ofKu(δ, ε). FurtherKu(δ, ε)⊂ B(Ŵ, (δ+ ε)
λu

|λs |+λu−ν
),

and Eζ u(τ ) ∈ L̃0
u ⊂ L̄0

u, hence Lemma 4.4 is proved.
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