
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Lanzani, L., Stein, E.M. (2019). The cauchy-leray integral: Counterexamples to the Lp-theory. INDIANA
UNIVERSITY MATHEMATICS JOURNAL, 68(5), 1609-1621 [10.1512/iumj.2019.68.7786].

Published Version:

The cauchy-leray integral: Counterexamples to the Lp-theory

Published:
DOI: http://doi.org/10.1512/iumj.2019.68.7786

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/873463 since: 2022-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1512/iumj.2019.68.7786
https://hdl.handle.net/11585/873463


THE CAUCHY-LERAY INTEGRAL:
COUNTER-EXAMPLES TO THE Lp-THEORY

LOREDANA LANZANI∗ AND ELIAS M. STEIN∗∗

Abstract. We prove the optimality of the hypotheses guaran-
teeing the Lp-boundedness for the Cauchy-Leray integral in Cn,
n ≥ 2, obtained in [LS-4].

Two domains, both elementary in nature, show that the geomet-
ric requirement of strong C-linear convexity, and the regularity of
order 2, are both necessary.

1. Introduction

The purpose of this paper is to present counter-examples that show
that the Lp results for the Cauchy-Leray integral obtained in [LS-4]
are essentially optimal. A second paper in this series will deal with
counter-examples for the Cauchy-Szegő projection, relevant to [LS-5].

Recall that in the case of the unit ball B in Cn, the Cauchy-Leray
integral and the Cauchy-Szegő projection agree, and the same holds
for the unbounded realization U0 of B. However when n ≥ 2, for
more general domains, these two operators are quite different. For the
former, the result obtained in [LS-4] states:

Suppose D is a bounded domain in Cn whose boundary is of class
C1,1 and which is strongly C-linearly convex. Then the induced Cauchy-
Leray transform is bounded on Lp(bD, dσ) for 1 < p <∞.

Our counter-examples show that these two restrictions on the bound-
ary of D, the geometric condition of strong C-linear convexity, and the
regularity of degree 2, are in fact optimal.
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2 LANZANI AND STEIN

We consider the following simple bounded domains in C2. Here zj =
xj + i yj, j = 1, 2. The first domain is defined by

(1) |z2|2 + x21 + y41 < 1 .

This is the domain given up to a translation by (9) in Section 3. It has
a C∞ (in fact real-analytic) boundary, is strongly pseudo-convex, but
not strongly C-linearly convex. We should point out that the Cauchy-
Szegő projection of this domain is bounded in Lp for any 1 < p < ∞
by earlier results in [KS] and [MS].

The second example is

(2) |z2|2 + |x1|m + y21 < 1 , where 1 < m < 2.

This domain is given (up to a translation) by (20) in Section 5.
The domain has a boundary of class C2−ε, (ε = 2−m), is strongly C-
linearly convex (and hence strongly pseudoconvex in the sense discussed
in Section 5).

We show that for each domain the induced Cauchy-Leray transform
is not bounded on Lp for any p, 1 ≤ p ≤ ∞, in the sense that there
is a function f ∈ Lp(bD, dσ) and a subset S′ ⊂ bD disjoint from the
support of f for which the inequality

‖C(f)‖Lp(S′, dσ) ≤ Ap‖f‖Lp(bD, dσ)
fails. See Theorem 2 for the precise statement.

The idea of the proof is as follows: we assume that Lp-boundedness
holds for one of these domains. Then an appropriate scaling and lim-
iting argument shows that this positive result implies a corresponding
conclusion in a limiting model domain, where it is much easier to supply
an explicit counter-example.

For the first example the limiting domain is the unbounded half-
space {z : 2 Im z2 > x21} (called D0 in (5)), which is holomorphically
equivalent to the more familiar half-space U0, {z : 2 Imz2 > |z1|2},
which itself is holomorphically equivalent to the unit ball. Note that
the last two are strongly C-linearly convex, but D0 is not. The hint
that one might be led to a counter-example for D0, and then for the
domain (1) is that its Cauchy-Leray operator is not “pseudo-local”; (see
(6) which shows that the kernel is singular away from the diagonal).

The analysis of the second domain, represented by (2), is parallel
to that of the first domain. For example, the corresponding limiting
domain is {z : 2 Im z2 > |x1|m}, see (21).

A remark is in order about the family of boundary measures {dµa}a
given in (29) that define the Lp spaces, Lp = Lp(bD, dµa) in the above
results. Three examples of dµa are significant in many circumstances.
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First, the induced Lebesgue measure dσ; second, the Leray-Levi mea-
sure dλ, see (4); and third, the Fefferman measure [B2], [F-1], [G].
When the domain is smooth and strongly pseudo-convex the three mea-
sures give the same Lp spaces, so that the counter-example holds for
the domain (1) for all such measures. In example (2) these measures
are essentially different, yet the counter-example still holds in all cases.

We should also call the reader’s attention to the earlier relevant work
in [BaLa] where counter-examples are given for Cauchy-Leray integrals.
However the less explicit and more complex nature of their construction
and proof limit the results to the case p = 2. It should be stressed that
when n ≥ 2 in general the Cauchy-Leray transform is far from “self-
adjoint” and so failure of L2-boundedness does not imply failure for
any p, p 6= 2.

Acknowledgement. We are grateful to the reviewer of this work
for several helpful suggestions and comments, in particular for pointing
out a duality between our two examples, namely the fact that Example
2 with m = 4/3 is the convex polar of Example 1, see [APS].

2. The Cauchy-Leray integral; the model domain D0

For a bounded domain (say of class C2) D in Cn, with a defining
function ρ, the corresponding Cauchy-Leray integral is

(3) C(f)(z) =

∫
bD

1

∆(w, z)n
f(w) dλ(w) z ∈ D.

Here f is (say) a bounded function on bD,

∆(w, z) = 〈∂ρ(w), w − z〉 =
n∑
j=1

∂ρ(w)

∂wj
(wj − zj),

and

(4) dλ(w) =
j∗

(2πi)n
(
∂ρ ∧ (∂∂ρ)n−1

)
is the Leray-Levi measure (with j∗ the pull-back under the inclusion:
bD ↪→ Cn). We have dλ(w) = Γ(w) dσ(w) , with dσ the induced
Lebesgue measure on bD and

Γ(w) =
(n− 1)!

4πn
L(w) |∇ρ(w)| ,

where L(w) is the determinant of the Levi-form acting on the maximal
complex subspace of the tangent space Tw(bD) at w ∈ bD (See e.g.,
[Ra, Ch. 7].)
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It is worth recalling two intrinsic properties of (3):

• Its invariance under changes of coordinates that are given either
by translations or unitary mappings of the space Cn, see [Bo].
• The independence of the Cauchy-Leray integral (3) of the par-

ticular defining function ρ of D.

We consider first the unbounded “model domain” D0 in C2.
With z = (z1, z2), zj = xj + i yj, it is defined by

(5) D0 = {z : 2 Imz2 > x21} ,

which is to be compared with the more familiar form of D0 given by
{z : 2 Imz2 > |z1|2}. These two domains are biholomorphically equiv-
alent via the mappings z1 ↔ z1, z2 ↔ z2 ± i z21 . Now the complex
tangent space of these domains at the origin is the subspace {(z1, 0)}.
So since |z1|2 = x21 + y21 , and on R2 this is positive definite, this im-
plies that the second domain is strongly C-linearly convex. However
because the form x21 is degenerate along the direction y1, it follows that
strong C-linear convexity fails for the domain (4). (For more about
these convexities see [APS]; [Hö]; [LS-3, Sect. 3.3].)

With ρ0(z) = x21 − 2y2, and ∆0(w, z) = 〈∂ρ0(w), w − z〉, and if we
write w = (w1, w2), wj = uj + i vj, j = 1, 2, a simple calculation gives
that with w and z ∈ bD0,

(6) ∆0(w, z) =
1

2

(
(u1 − x1)2 + 2i (u1(v1 − y1) + u2 − x2

)
.

Now for fixed z ∈ bD0, observe that ∆0(w, z) vanishes on the one-
dimensional variety given by u1 = x1, u1(v1 − y1) + u2 = x2. Also the
Leray-Levi measure dλ0 corresponding to ρ0 is du1 dv1 du2/(4π

2) ≈ dσ0,
the induced Lebesgue measure on bD0, if we are near the origin.

To construct a counterexample for the model domain D0 we first
choose a small constant a, which we will keep fixed throughout (a =
1/12 will do). Then for any δ, 0 < δ < 1, we define the following two
sets in the parameter space:

(7)

 U =
{
|u1| ≤ aδ2 , |v1| ≤ 1

2
, |u2| ≤ aδ2

}
U′ =

{
δ ≤ |x1| ≤ 2δ , |y1| ≤ 1

2
, |x2| ≤ aδ2

}
with w ∈ bD0 written as (u1 + i v1, u2 + i u21/2) and z ∈ bD0 written as
(x1 + i y1, x2 + i x21/2). If S0 and S′0 are the corresponding sets in bD0,
then it follows that ∆0(w, z) 6= 0 whenever w ∈ S0 and z ∈ S′0. Also

σ0(S0) ≈ λ0(S0) ≈ m(U) ≈ δ4 while σ0(S
′
0) ≈ λ0(S

′
0) ≈ m(U′) ≈ δ3
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where σ0 denotes the induced Lebesgue measure on bD0 and m is the
standard Euclidean measure on the three-dimensional parameter space.

We shall now test the presumed inequality

(8) ‖C0(f0)‖Lp(S′0, dσ0) ≤ Ap ‖f0‖Lp(bD0, dσ0) ,

when f0 is assumed to have support in S0. Under these circumstances
C0(f0)(z) is well-defined as an absolutely convergent integral∫

S0

1

|∆0(w, z)|2
f0(w) dλ0(w) ,

when z ∈ S′0, in view of the non-vanishing of ∆0(w, z) for these w and
z. The constant Ap is of course assumed to be independent of f0.

Proposition 1. The inequality (8) fails for f0 = χS0 (the characteristic
function of S0) for every p, 1 ≤ p ≤ ∞.

Proof. Throughout this proof we will use the notation C to denote a
constant which may not be the same in different occurrences.

It is clear by (6) and (7) that we have:

Re ∆0(w, z) ≥
δ2

4
and |Im ∆0(w, z)| ≤ aδ2 + 2aδ2 = 3aδ2.

Then (Re ∆0(w, z))
2 ≥ 2 |Im ∆0(w, z)|2, (which holds if a ≤ 1/12).

But |∆0(w, z)| ≤ Cδ2, thus

Re
1

(∆0(w, z))
2 ≥ Cδ4 .

Now take f0 = χS0 , the characteristic function of S0. Therefore

Re
(
C0(f0)

)
(z) ≥ Cδ−4λ0(S0) ≥ C > 0 , for z ∈ S′0 .

So

‖C0(f0)‖pLp(S′0) ≥ Cλ0(S
′
0) ≥ Cδ3 ,

while

‖f0‖pLp(bD0)
≤ λ0(S0) ≤ Cδ4 .

Since δ3 is notO(δ4) for small δ, (8) cannot hold, when p <∞. The case
p =∞ requires a separate but simpler argument which we omit. �
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3. The first counter-example

We turn to the domain (1) in C2 and it is useful to consider a trans-
late of it, given by

(9) D = {|z2 − i|2 + x21 + y41 < 1} .
We will show after rescaling and a passage to the limit, that we can
reduce consideration of D to D0. From (9) it is clear that

ρ(z) = x21 + y41 + x22 + y22 − 2y2

is a defining function for D, and that ρ is strongly pluri-subharmonic,
so D is strongly pseudo-convex. Moreover, since each of the four one-
variable functions, x21, y

4
1, x22, y

2
2 − 2y2 are strictly convex, the domain

D is itself strictly convex. We note that

Re ∆(w, z) = Re〈∂ρ(w), w − z〉 =
1

2

(
∇ρ(w), w − z

)
R

where (·, ·)R is the real inner product induced on R4 = C2 from 〈·, ·〉.
With w = (w1, w2), wj = uj + i vj , j = 1, 2, we claim that

(10)
(
∇ρ(w), w − z

)
R ≥

≥ (x1 − u1)2 + (x2 − u2)2 + (y2 − v2)2 + (v21 + y21)(v1 − y1)2,
when w, z ∈ bD.

To prove (10) we use the identity

f(β)− f(α) = (β − α)f ′(α) +

β∫
α

(β − α)f ′′(t) dt

for the functions f1 = u21, f2 = u22, f3 = v22−2v2, and f4 = v41. Similarly,
we replace w = (u1 + i v1, u2 + i v2) by z = (x1 + i y1, x2 + i y2) and
add the corresponding identities. Taking into account that ρ(w) =
f1 + f2 + f3 + f4 wih ρ(w) = 0 and the similar fact for ρ(z), together
with the observations that

β∫
α

(β − α)f ′′(t) dt = (β − α)2 if f ′′(t) = 2 ,

and
β∫
α

(β − α)f ′′(t) dt ≥ (β2 + α2)(β − α)2, if f ′′(t) = 12 t2 ,

then yields (10).
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Now (10) shows that if w and z ∈ bD, w 6= z, then z lies on one side
of the (real) tangent plane to bD at w. By convexity of D, the same
holds for z ∈ D \ {w}.

Turning to the Cauchy-Leray integral of D we recall two preliminary
facts. First C(f)(z) is holomorphic in z ∈ D, if f is say an integrable
function on bD. Second, whenever F is a holomorphic function in D
which is continuous in D, and f = F

∣∣
bD

, then C(f)(z) = F (z), z ∈ D.
The latter fact follows from the Cauchy-Fantappiè formalism (see [Ra]
and [LS-3]).

Note that when f is a bounded function supported in a closed set S
in bD, then C(f)(z) is well-defined as a convergent integral whenever
z is outside the support S. So certainly the extendability of C to a
bounded operator on Lp would imply

(11) ‖C(f)‖Lp(S′) ≤ Ap‖f‖Lp
whenever S′ is disjoint from S, with Ap independent of f , S, and S′.

Theorem 2. For any p, 1 ≤ p ≤ ∞, the presumed inequality (11) fails
when tested for a bound Ap independent of f and its support S, and
with S′ disjoint from S.

A further statement along these lines is made possible by the follow-
ing fact (whose proof is given in [LS-2]): whenever f is of class C1 on
the boundary bD, C(f) is extendable to a continuous function on D.
With this we can define the Cauchy-Leray transform C(f) for such f ,
by C(f) = C(f)

∣∣
bD

.

Corollary 3. The mapping f 7→ C(f), initially defined for C1 func-
tions f is not extendable to a bounded operator on Lp(bD).

4. Proof of Theorem 2

We shall obtain a contradiction to (11) by a scaling argument that
leads us back to Proposition 1.

We define the maps τε, ε > 0, on C2 by τε(z1, z2) = (εz1, ε
2z2) and set

Dε = τε−1(D), with D as in (9). Then ρ(z) = x21 + y41 + x22 + y22 − 2y2 is
a defining function for D and ρε(z) = ε−2ρ(τε(z)) is a defining function
for Dε. Note that

ρε(z) = x21 − 2y2 + ε2(y41 + x22 + y22) ,

from which it is clear that the domains Dε increase as ε decreases, with
limit our model domain D0 = {ρ0(z) < 0} and ρ0(z) = x21 − 2y2.

Observe also that

ρε(z)→ ρ0(z) , and ∇ρε(z)→ ∇ρ0(z)
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uniformly on compact subsets of C2.
We next define the “transported” measures dλε on bDε by

(12)

∫
w∈bDε

F (w) dλε(w) = ε−4
∫

w∈bD

F (τε−1(w)) dλ(w)

for any continuous functions F defined on bDε.
Here dλ is the Leray-Levi measure on bD, but note that dλε is not

the Leray-Levi measure on bDε: as a result the operator Cε defined
below is not the Cauchy-Leray integral of bDε. We can also define the
corresponding action of τε on functions f on bD by

τε(f) = f ◦ τε .
Then by what has been said above, τε maps Lp(bD, dλ) to Lp(bDε, dλε)
and we have the “isometry”:

(13) ‖f‖Lp(bD,dλ) = ε4/p ‖ τε(f)‖Lp(bDε,dλε) .
Now let ∆ε(w, z) = 〈∂ρε(w), w − z〉. Then

∆(τε(w), τε(z)) = 〈∂ρ(τεw), τε(w−z)〉 = ε2〈∂ρε(w), w−z〉 = ε2∆ε(w, z) .

Hence

(14) ∆ε(w, z) = ε−2 ∆(τε(w), τε(z)).

We now define the operator Cε, by setting

(15) Cε(F )(z) =

∫
bDε

1

∆ε(w, z)2
F (w) dλε(w)

which is well-defined as the integral above for any bounded function
F , as long as z is outside the support of F . Our next claim is that

(16) Cε(F )(z) = C(F ◦ τε−1)(τε(z)),

for bounded F on bDε, if z ∈ bDε lies outside the support of F . In fact
going back to the definition (3), and using (12) and (14), we see that

C(F ◦ τε−1)(τε(z)) =

∫
bD

1

∆(w, τε(z))2
F (τε−1(w)) dλ(w) =

ε4
∫
bDε

1

∆(τε(w), τε(z))2
F (w) dλε(w) =

∫
bDε

1

∆ε(w, z)2
F (w) dλε(w)

showing (16).
Next, if (11) held, then by (13) we would also have

(17) ‖Cε(F )‖Lp(S′ε,dλε) ≤ Ap‖F‖Lp(bDε,dλε)
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whenever F is a bounded function on bDε and S′ε is a closed subset of
bDε, disjoint from the support of F .

At this point we restrict the attention to the unit ball B in C2, and
we exploit the common coordinate system for bD0 ∩ B, and bDε ∩ B,
when ε is small. That is in this ball, bD0 is the graph over (x1+i y1, x2)
given by (x1 + i y1, x2 + i x21/2), while bDε is the graph given by
(x1 + i y1, x2 + i (x21/2 + Φε(x1, y1, x2))), with Φε(x1, y1, x2) = O(ε2).

Now if in these coordinates we write dλ = Λ(x1, y1, x2) dx1 dy1 dx2
and dλε = Λε(x1, y1, x2) dx1 dy1 dx2, then by (12) we have

(18) Λε(x1, y1, x2) = Λ(ε x1, ε y1, ε
2x2) .

Finally we take S to be the set in bD corresponding to U in (7), and f
to be the function χS, the characteristic function of S. We lift f to func-
tions on bDε and bD0 respectively, by setting F (zε) = f(x1, y1, x2) when
zε = (x1 + i y1, x2 + i (x21/2 + Φε(x1, y1, x2))), and f0(z0) = f(x1, y1, x2)
when z0 = (x1 + i y1, x2 + i x21/2).

We also lift the sets U and U′ in (7), to Sε and S′ε (subsets of bDε)
in the same way. Our claim is with that notation

(19) Cε(F )(zε) → C0(f0)(z0) , if z0 ∈ S′0 .

In fact,

Cε(F )(zε) =

∫
S

1

∆ε(w, zε)2
f(u1, v1, u2) Λε(u1, v1, u2) du1 dv1 du2 .

However by (18) Λε(u1, v1, u2)→ Λ(0, 0, 0), and moreover ∆ε(w, zε)→
∆0(w, z0) because ∇ρε → ∇ρ0, while ∆0(w, z0) 6= 0 if w ∈ S0 and
z0 ∈ S′0. This gives (19).

As a result (17) leads to

‖C0(f0)‖Lp(S′0,dλ0) ≤ Ap‖f0‖Lp(bD0,dλ0)

which contradicts Proposition 1, proving the theorem.

5. The second counter-example

Here the domain will be taken to be

(20) D = {|z2 − i|2 + |x1|m + y22 < 1} , with 1 < m < 2 .

Its model domain is

(21) D0 = {2 Im z2 > |x1|m}.

For any f that is bounded on bD, the Cauchy-Leray integral C(f)(z)
is well-defined for z that lies in the complement of the support of f .
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As in the previous sections we will show that the mapping f 7→ C(f)
fails to be bounded in Lp in the sense that the proposed inequality

(22) ‖C(f)‖Lp(S′,dσ) ≤ Ap‖f‖Lp(bD,dσ)
cannot hold. Here S′ is any set disjoint from the support of f , and the
bound Ap is assumed independent of f and S′.

The proof of this assertion follows the same lines as in Sections 2-4
for the domain (9), and so we will only discuss the minor differences
that occur.

The defining function of D is ρ(z) = |x1|m + y21 + x22 + y22 − 2y2, and
that of D0 is ρ0(z) = |x1|m − 2y2. Note that both domains are of class
C2−α, with α = 2−m. Also since |x1|m , y21 , x22 , y22− 2y2 are strongly
convex functions of one variable, the domain D is strongly convex,
hence strongly C-linearly convex, and in fact strongly pseudoconvex in
the following sense: the domain D is exhausted by an increasing family
of smooth domains {Dγ}γ which are uniformly strongly pseudo-convex,
with defining function: ργ(z) = (x21 + γ)m/2 + y21 + x22 + y22 − 2y2.

This convexity implies that Re ∆(w, z) > 0 for w ∈ bD and z ∈ D,
except when z = w.

Returning to the model domain, if ∆0(w, z) = 〈∂ρ0(w), w − z〉 a
calculation gives

(23) ∆0(w, z) =

= |x1|m−|u1|m+m [u1]
m−1(u1−x1) + i

(
m [u1]

m−1(v1−y1)+2(x2−y2)
)
.

Here we have used the notation

[u1]
m−1 =

1

m

d

du1
|u1|m = |u1|m−1 signu1 .

Now we set

(24)

 U = {|u1| ≤ a δ2 , |v1| ≤ δ2−m , |u2| ≤ δm}

U′ = {δ ≤ |x1| ≤ 2δ , |y1| ≤ δ2−m , |x2| ≤ δm}

and let S0 and S′0 be the corresponding induced sets on bD0.
We have that near the origin

dλ0 ≈ |u1|m−2 du1 dv1 du2, and dσ0 ≈ du1 dv1 du2 ,

where dλ0 and dσ0 are the Leray-Levi measure and the induced Lebesgue
measure on bD0. Thus

(25) λ0(S0) ≈ δ2m

(26) σ0(S0) ≈ δ4 , and σ0(S
′
0) ≈ δ3 .
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By (23) it follows that

Re ∆0(w, z) & δm , while |Im ∆0(w, z)| . δm ,

and if we choose a sufficiently small, then

Re
1(

∆0(w, z)
)2 ≥ c δ−2m if w ∈ S0 , while z ∈ S′0 .

Taking f0 to be the characteristic function of S0, we therefore get
ReC0(f0)(z) ≥ c > 0, for z ∈ S′0. Hence this gives a contradiction
to (22) in the case when C0 is the Cauchy-Leray integral of the model
domain D0.

To pass to the domain D we carry out the scaling via

(27) τε(z1, z2) = (εz1, ε
mz2)

The domain Dε = τε−1(D) has a defining function

ρε(z) = ε−mρ(τε(z)) = ρ0(z) + εm(x22 + y22) + ε2−my21 ,

which converges to ρ0(z) = |x1|m − 2y2.
We also set ∆ε(w, z) = 〈∂ρε(w), w − z〉. The transported measure

dλε on Dε is now defined by the identity

(28)

∫
w∈bDε

F (w) dλε(w) = ε−2m
∫

w∈bD

F (τε−1(w)) dλ(w) ,

(compare with (12)).
Finally, if we assumed that (22) held for the domain D we can then

see by the reasoning in Section 4 that the corresponding result would
hold for the model domain D0 achieving our desired contradiction.

We point out in closing that (22) fails not only for the Lp norms
taken with the induced Lebesgue measure but others as well. Consider
the measures dµa on bD given by

(29) dµa = L a dσ ,
with L the determinant of the Levi-form, and dσ the induced Lebesgue
measure.

Then the argument above shows that (22) fails when

−∞ < a <
1

2−m
,

(because La ≈ |x1|(m−2)a). Here the factor ε−2m in (28) is replaced with
εa(2−m)−2−m to reflect the new transported measures dµa,ε.

The case a = 0 corresponds to induced Lebesgue measure; the case
a = 1, to the Leray-Levi measure dλ, and the case a = 1/3 corresponds
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to the Fefferman measure [B2], [F-1], [G]. (Here the expression “A
corresponds to B ” may take the meaning that A ≈ B.)
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