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Abstract

Transformer-based neural networks represent a success-

ful self-attention mechanism that achieves state-of-the-art

results in language understanding and sequence modeling.

However, their application to visual data and, in particu-

lar, to the dynamic hand gesture recognition task has not

yet been deeply investigated. In this paper, we propose a

transformer-based architecture for the dynamic hand ges-

ture recognition task. We show that the employment of a sin-

gle active depth sensor, specifically the usage of depth maps

and the surface normals estimated from them, achieves

state-of-the-art results, overcoming all the methods avail-

able in the literature on two automotive datasets, namely

NVidia Dynamic Hand Gesture and Briareo. Moreover, we

test the method with other data types available with com-

mon RGB-D devices, such as infrared and color data. We

also assess the performance in terms of inference time and

number of parameters, showing that the proposed frame-

work is suitable for an online in-car infotainment system.

1. Introduction

The recent introduction of affordable RGB-D devices,

which couple RGB cameras with active depth sensors, has

attracted the interest of the research community in Natural

User Interfaces (NUIs), in which the interaction is conveyed

through the body of the user [39, 30] instead of traditional

tools, like keyboards and mouse. In this context, the ability

to recognize dynamic hand gestures, i.e. a combination of

static hand poses and motion, without the use of contact-

based sensors is an enabling and crucial task. The hand

gesture recognition task is commonly tackled through the

use of RNNs [22, 29], such as LSTMs [50, 7], architectures

that are able to model the temporal and sequential nature of

dynamic gestures. Alternatively, authors have proposed to

classify temporal sequences using 3D CNNs [51, 31], stan-

dard CNNs [15, 14] or other machine learning methods, like

HMMs [28, 6] or HOG and SVM [38, 18].

The recent spread of attentive models, which are charac-

terized by the use of self-attention mechanisms, has come

with the introduction of new approaches, such as the Trans-

former [43], which can replace traditional recurrent mod-

ules, such as RNNs and LSTMs. However, these ap-

proaches have not yet been deeply explored for the anal-

ysis of visual data and, in particular, for the dynamic hand

gesture recognition task.

In this paper, we propose a method to classify dynamic

hand gestures based on the Transformer architecture, which

was originally developed for the machine translation and

language modeling tasks. We propose the use of RGB-D or

active depth devices and, in particular, we show that the use

of depth maps and the surface normals estimated from them

leads to state-of-the-art results. In addition, we investigate

the adoption of the other data streams usually provided by

RGB-D sensors, i.e. infrared amplitude and color images,

and derived data, such as optical flow.

The employment of light-invariant data sources – depth and

infrared images – guarantees the applicability of the pro-

posed method for a Human-Computer Interaction (HCI)

system able to work even in presence of dramatic and fast

light changes, as often occurs in the automotive setting [37].

Indeed, the presence of tunnels and trees or bad weather

conditions can strongly influence the quality of the acquired

data in this scenario. Moreover, the use of inexpensive and

compact cameras, which can be easily integrated in the car

cockpit, is an optimal choice in order to avoid obstructions

to the driver’s movements or gaze. It is shown [46, 13] that

the presence of a NUI-based system for the interaction with

the infotainment system of a car can significantly reduce the

driver’s manual and visual distraction [4, 5] often responsi-

ble for fatal road crashes.

For these reasons, the choice of datasets to test the pro-

posed system is automotive-driven: we exploit two pub-

licly released datasets, namely NVidia Dynamic Hand Ges-

ture [33] and Briareo [31]. They are both acquired in a

realistic car simulator through several acquisition sensors

placed in different position inside the car cockpit, as de-

tailed in Section 4.1. When tested on these datasets, the



proposed transformer-based architecture achieves state-of-

the-art results, overcoming existing literature competitors.

Moreover, the proposed method is flexible, since it can be

adapted to the available data types and is able to run in real-

time on a dedicated graphics card.

The proposed architecture is implemented in PyTorch 1.5
and the code is available online 1.

2. Related Work

In the literature, the hand gesture recognition task has

been approached using different strategies which enable the

temporal observation of an action performed by a human.

However, recent architectures [42, 33, 8], which exploit the

potential of 3D Convolution in extracting temporal features

from videos, become milestones as an action recognition

system.

As many tasks in the computer vision field, the hand ges-

ture recognition task can rely on different types and com-

bination of input data. Therefore, from a general point of

view, methods available in the literature can be grouped as

unimodal and multimodal.

In the unimodal case a single input (e.g. RGB, infrared,

depth) is used at a time. Köpüklü et al. [25] adapt state-

of-the-art architectures, i.e. C3D [42] and ResNet [21], in

a lightweight framework composed of a detector, that de-

tects the beginning and the end of a gesture, and the ges-

ture classifier. Since 3D CNNs needs more training data

due to the larger number of parameters with respect to 2D

CNNs, the networks are pre-trained on one of the largest

public hand gesture dataset, namely Jester [32], and then

fine-tuned on other datasets. In [10] authors exploit 3D

hand joints to reconstruct the hand skeleton and then per-

form the gesture classification capturing the motion and

the hand shape through a video sequence. Unfortunately,

their method gets quite low results on datasets without high-

quality hand skeleton annotations. Finally, with the recent

success of self-attention [43] in emulating the human visual

perception, an attention-based network has been introduced

by Dhingra et al. [12]. They use a 3D CNN model in which

3 attention blocks are positioned between the residual mod-

ules in order to learn features at different scales. Since they

train their network from scratch, they obtain good results

only on datasets with a large amount of training data.

In the multimodal setting two or more input types are

exploited for the recognition task. In [35] authors propose

a novel architecture that, exploiting RGB and depth data

together with their computed optical flow (4 different data

types), analyses the motion using a spatial focus attention,

which restricts the focus on specific body parts (e.g. global,

right hand, left hand). Having a total number of 12 features

1https://aimagelab.ing.unimore.it/go/

gesture-recognition-automotive

channels, they face the problem of gesture classification

weighting each channel with respect to its importance to a

specific gesture. A different multimodal approach [26] has

been introduced by the same authors of [25]: in this case,

they apply a data level fusion between an RGB frame and

several optical flow images computed on previous frames.

This information is given as input to a deep network that

extracts spatio-temporal features on which is performed the

gesture classification task with a fully connected network.

An inspiring work by Abavisani et al. [1] proposes a method

that explores the performance of multimodal training and

also its effects on unimodal testing. They fine-tune a pre-

trained 3D CNN network [8] on multiple source data (e.g.

RGB, depth, optical flow). An interesting aspect of this

work is the introduction of a loss, namely spatio-temporal

semantic alignment, which encourages the network to learn

a common understanding on different data types.

Authors of [20, 27, 9] propose transformer-based ap-

proaches similar to ours in order to tackle the action and

the sign language recognition tasks.

In [20], a slightly-modified version of the transformer archi-

tecture is used as part of an action localization and recogni-

tion framework, resembling the structure of Faster R-CNN.

In [27], a transformer-like architecture is used in combina-

tion of a feature extractor to real-time action recognition.

It makes use of 1D convolutional layers between sequential

decoder blocks, but it does not use any kind of positional

encoding thus the temporal relationships are not explicitly

modeled. On the other hand, in our approach the temporal

information about the frame order is encoded through the

positional encodings (PE). Moreover, the method proposed

in [27] is not developed for the usage with depth sensors

and it does not propose the usage of surface normals as a

different depth map representation.

3. Proposed Method

In this section, we present the mathematical formulation

and the transformer-based implementation of our method.

The proposed model can process an input sequence of vari-

able length and outputs the gesture classification. An over-

all view of the architecture is represented in Figure 1.

3.1. Formulation

The proposed gesture recognition architecture can be de-

fined as a function

Γ : Rm×w×h×c → R
n (1)

that predicts a probability distribution over n classes from

a set St ∈ R
m×w×h×c of m sequential frames I , with size

w × h and c channels, acquired in a time range t. In other

words, the function Γ takes a sequence clip and predicts a

class distribution over the considered hand gestures. The

https://aimagelab.ing.unimore.it/go/gesture-recognition-automotive
https://aimagelab.ing.unimore.it/go/gesture-recognition-automotive
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Figure 1. Overview of the proposed method. The temporal feature analysis, computed after the feature extraction performed by the ResNet-

18 model, is highlighted showing the architecture of the transformer encoder and the self-attention block.

function can be decomposed in the following three compo-

nents.

The first operation corresponds to a feature extraction

function F applied at frame level:

f t = F (St) where F : Rm×w×h×c → R
m×k (2)

Here, the extracted features f t consist of m independent vi-

sual features of size k. Therefore, the function F can be

defined as the concatenation of the results of a frame-level

feature extractor:

F (St) = f 0t ⊕ f 1t ⊕ . . .⊕ f mt where f
j
t = G(Sj

t ) (3)

where G : Rw×h×c → R
k is a function that extracts visual

features from a single frame j of the sequence set St. ⊕
denotes the concatenation operator.

The second operation is a temporal combination and

analysis of the visual features extracted through F . This

process can be defined as

ht = H(f t) = H(F (St)) where H : Rm×k → R
l (4)

where H is a temporal function that processes m feature

maps of size k and outputs an aggregated feature map of

size l which encodes the temporal information of St.

Finally, the last operation is a mapping between the ex-

tracted temporal features ht and the n gesture classes:

yt = Y (ht) = Y (H(F (St))) where Y : Rl → R
n (5)

The resulting yt, being a probability distribution over n
classes, is a vector of size n so that

∑n

i=1
yt,i = 1 and

yt,i ∈ [0, 1].

3.2. Implementation

In our implementation, the function Γ is a combination

of multiple neural networks, defined as following.

The function F is the concatenation of the frame-level

features extracted by the function G, which is implemented

as ResNet-18 [21], taken from the first layer up to the last

convolutional and average pooling layers. The network is

designed for color images, but we adapt the first layer to

work with inputs having a lower number of channels c as

proposed in [33]. In practice, the convolutional kernels of

the first layer are adapted to 1-channel images by summing

their channels. In a similar way, they are adapted to 2-

channel images by removing the third channel and rescaling

the first two with a factor of 1.5.

The function H , which has to temporally combine the

frames of the clip St, corresponds to a slightly-modified

Transformer module [43] followed by an average pooling at

frame level. The model can handle sequences of any length

and can be defined formally as

H(x) = AvgPool(Encoders(x+ PE)) (6)

where AvgPool(·) denotes the average pooling operation

over the m frames, while Encoders(·) corresponds to a se-

quence of 6 transformer encoders E, defined in the follow-

ing.

As detailed in [43], we add positional encodings PE to the

input data as a way of including temporal information about

the order of the frames into the model, which does not con-

tain any recurrent module. Among the several positional

encodings [19], we employ the proposal of [43].

Each transformer encoder can be defined as

E(x) = Norm(x+ FC(mhAtt(x))) (7)



where Norm(·) is a normalization layer, FC(·) is a sequence

of two fully connected layers with 1024 units, followed by

drop out (drop probability 0.1) and divided by a ReLU acti-

vation function. The multi-head attention block mhAtt is a

self-attention layer that can be defined as

mhAtt(x) = (Att1(x)⊕ . . .⊕ Att8(x) )W
O (8)

where

Atti(x) = softmax

(

Qi Ki√
dk

)

Vi (9)

Here, Qi = xWQ
i , Ki = xWK

i , Vi = xWV
i are inde-

pendent linear projections of x into a 64-d feature space,

dk = 64 is a scaling factor corresponding to the feature size

of Ki, ⊕ is the concatenation operator and WO is a linear

projection from and to a 512-d feature space.

Finally, the function Y is implemented as a fully con-

nected layer with n hidden units followed by a softmax

layer, resulting in a probability distribution over the n
classes. The predicted gesture corresponds to the class with

the highest probability.

We note that the proposed approach is supposed to re-

ceive a sequence of frames containing the whole gesture or

can applied with a sliding-window approach. The tempo-

ral segmentation, i.e. the detection of the beginning and the

end of each gesture, and the gesture detection, i.e. the dis-

tinction between gesture and no-gesture sequences, are out

of the scope of this paper.

3.3. Data Representation

As mentioned above, we focus our investigation on the

use of data produced by active depth sensors, i.e. depth data

and infrared (amplitude) images. We include also RGB data

since several depth devices available in the market consist

of a combination of infrared and intensity sensors, like the

Microsoft Kinect or Intel RealSense families.

In addition, we propose the use of surface normals, in

which each pixel encodes the three components of the es-

timated surface normal in that point. From depth maps we

obtain a representation containing an estimation of the sur-

face normals, as introduced in [3]. Given a depth map D,

we define Z(x, y) as one of its pixel values. We compute

the direction d = 〈dx, dy, dz〉 of a surface normal as:

d =
(

− ∂Z(x, y)

∂x
, −∂Z(x, y)

∂y
, 1

)

(10)

where ∂Z(x, y)/∂x, ∂Z(x, y)/∂y can be considered the

depth gradients in the x and y directions [34], or rather:

∂Z(x, y)

∂x
≈ Z(x+ 1, y)− Z(x, y)

∂Z(x, y)

∂y
≈ Z(x, y + 1)− Z(x, y)

(11)

Figure 2. Sample depth (first row) and surface normals (last row)

obtained from the Nvidia Dynamic Hand Gesture dataset. As

shown, cameras are placed in a frontal position with respect to the

driver and the noise level is low. Generally, in most of the frames,

only the hand is visible.

Then, the normal vector v̂ = 〈v̂x, v̂y, v̂z〉 is obtained

through a normalization operation [2]:

v̂ =
1

B

(

dx, dy, 1
)

, B =
√

d2x + d2y + 1 (12)

Normals computed from depth maps are not frequently

used in the literature, especially in the case of the hand ges-

ture recognition task with neural architectures. Preliminary

work investigated the use of surface normals for hand pose

estimation [44] or human activity recognition [49, 36]. We

show in the following that this representation is comple-

mentary to the common depth images and that greatly im-

proves the overall accuracy when used in combination with

the original depth data.

In order to compare our work with literature competi-

tors, we also compute the optical flow from consecutive

RGB frames following the implementation of Farnebäck et

al. [17]. It is a well-known data representation that is often

used to improve the performance of the proposed system,

even in the hand recognition task [33, 1], thanks to its ability

to provide an estimation of the magnitude and the direction

of the object (the hands in our case) motion.

3.4. Multimodal Integration

Multimodal architectures are becoming increasingly

common in the literature, for a variety of different tasks.

Since several input types are available from RGB-D sen-

sors, we adopt a neural network architecture that can be eas-

ily adapted to work with a single input type or a multimodal

combination of them. Specifically, the proposed architec-

ture is able to efficiently work in a unimodal way, i.e. with a

single input modality (color, depth, infrared, normals or op-

tical flow). Moreover, two or more unimodal networks can

be used at the same time through a late fusion approach [41]

in which the predicted probability distributions of the single

models are merged into a final classification score. Late fu-

sion strategies are reported to present comparable or even

better results with respect to the state-of-the-art in many



computer vision tasks [48, 16]. In our case, we adopt a

late fusion strategy based on the average of the intermediate

scores to predict the final classification, as follows:

yt =
1

N
·
∑

i

Y (H(F (St,i))) (13)

where N is the total number of tested classifiers, St,i is the

set of sequential frames of the i-th input type and F,H are

the functions defined in Section 3.1. Then, Y (H(F (St,i)))
is the probability distribution of a classifier trained and

tested on a specific input type.

4. Experimental Evaluation

In this section, we present the experimental setting and

the results obtained on two public datasets. Then, we com-

pare with literature methods and discuss the obtained re-

sults. Since surface normals can be considered as a different

representation of depth maps, we include competitors rely-

ing on RGB-D data.

In addition to the core tests with depth images and estimated

surface normals, we test on color and other modalities to

compare with existing literature methods.

4.1. Datasets

Being interested in the usage of depth or RGB-D sen-

sors and in the automotive environment, in which the light

invariance is a key factor, we test our approach on two

datasets, NVGestures [33] and Briareo [31], collected in a

car simulator.

Nvidia Dynamic Hand Gesture. This dataset [33], also

called NVGestures, is the largest dynamic hand gesture

dataset in an automotive setting, in terms of number of ges-

tures, subjects and sequences. Video sequences are acquired

with two sensors: the SoftKinetic DS325, an active RGB-D

sensor, and the DUO 3D, an infrared stereo camera. These

acquisition devices lead to 3 modalities (RGB, depth, IR)

and 5 streams (color, depth, color mapped on depth, IR left,

IR right), available in the dataset. NVGestures is acquired in

an indoor car simulator, the depth camera is placed next to

the infotainment system, while the stereo camera is placed

on top of the acquisition area. Authors did not release the

infrared amplitude recorded by the depth sensor, but they

provided infrared data from the dedicated DUO 3D cam-

era, placed in a different position. The dataset contains 25
different gestures performed by 20 subjects with the right

hand. Each gesture is repeated three times and acquired in

5-second video samples. Gestures range from swipes to ro-

tations and from showing n fingers to showing the “OK”

sign. For further details about this dataset, please refer to

the original paper [33].

In our experiments, we employ the color (RGB), depth, and

infrared (left IR) modalities. In addition, we compute an

Figure 3. Sample depth (first row) and surface normals (last row)

obtained from the Briareo dataset. Differently from the dataset

from Nvidia, this dataset is acquired placing the camera looking

upwards. Moreover, a strong noise signal is present in depth and,

consequently, in surface normals.

estimation of the surface normals from the depth data (see

Section 3.3) and we report visual samples of these data in

Figure 2. In order to compare with literature work, we com-

pute the optical flow on color frames through [17], as done

in previous work [33].

Briareo. This is a recently-released automotive

dataset [31] for the dynamic hand gesture recognition task.

Video sequences are acquired using three synchronized de-

vices: an active depth sensor (Pico Flexx), an infrared stereo

sensor (Leap Motion) and a standard RGB camera. There-

fore, several image types are available: depth and infrared

amplitude, left and right IR, color. In addition, the SDK

of the Leap Motion device has been used to estimate and

record the hand joint positions. Recording devices are

placed in the central tunnel console of a car simulator be-

tween the driver and the passenger seat, looking upwards. In

this case, authors released the infrared amplitude recorded

by the depth sensor, along with the infrared data acquired by

the Leap Motion sensor. The dataset contains 12 different

gestures performed by 40 different subjects (33 males and 7
females) with the right hand. As in NVGestures, each ges-

ture is repeated three times and captures the entire gesture

motion. Gestures are designed for the interaction between

the driver and the car infotainment system. Some examples

are the swipes in the four directions and the “thumb up” and

“phone” signs. For further details about this dataset, please

refer to the original paper [31].

In our experiments, we employ most of the available modal-

ities, i.e. color (RGB), depth, and infrared amplitude. In ad-

dition, we estimate the surface normals from the depth data,

as explained in Section 3.3 and depicted in Figure 3.

4.2. Model Training

We train and test the model with fixed-length clips of

40 frames extracted from the dataset sequences around the



center of the gesture. We empirically set this input size, but

the proposed model can potentially analyze sequences of

any length thanks to its flexible design. For the NVGestures

dataset, we extract the 80 central frames around the gesture

and sample them to obtain 40 equidistant frames. For the

Briareo dataset, which has a lower frame rate, we select the

40 frames containing the gesture movement.

Each input data is normalized individually to obtain zero

mean and unit variance input, with the exception of the sur-

face normals that are normalized to have unit-magnitude

and are contained in the range [−1, 1]. Then, frames are

cropped to 224×224 pixels as required by the chosen frame-

level feature extractor (i.e. ResNet-18). We apply random

rescale (with rescale factor in the range [0.8, 1.2]), random

crop and random rotation between −15 and 15 degrees as

data augmentation, in order to avoid overfitting.

The ResNet-18 architecture is initialized with weights

pre-trained on ImageNet [11] while the remaining of the

architecture is trained from scratch. The architecture is then

trained end-to-end using the Adam optimizer [24] to min-

imize the categorical cross entropy loss. We use a mini-

batch size of 8 video samples, learning rate 1e−4, weight

decay 1e−4 and random dropout. We apply the early stop-

ping based on the accuracy on the validation set, following

the official dataset splits.

A different model is trained for each modality and mul-

tiple modalities are combined at prediction level with the

late fusion approach presented in Section 3.4. Empirically,

we find that other types of fusion, e.g. mid and early fusion,

results in overfitting on the training set, in line with what

found in [33].

4.3. Results using NVGestures dataset

We analyze here the performance on the NVGestures

dataset.

Table 1 compares our method to the literature in the uni-

modal case, i.e. when a single input is fed into the model.

Focusing on depth data, the proposed approach achieves

state-of-the-art results when depth maps are the only used

input. A similar high accuracy is also achieved using sur-

face normals as input, revealing that normals are a discrim-

inative representation for the hand gesture recognition task,

even though no competitors are currently available. Also

the infrared modality overcomes the competitor, even if the

final accuracy is lower. On the other remaining modalities,

i.e. color and optical flow, our method achieves compara-

ble accuracy to the I3D method [8, 1]. However, we note

this method is pre-trained on ImageNet [11] (as our feature

extractor) and on Kinetics [23], which is a large dataset of

action recognition in videos. We hypothesize that the slight

gap between this and our method can be due to this pre-

training step, which was not available for the other types of

the exploited data.

Method Modality Accuracy

color

Spat. st. CNN [40] 54.6%

iDT-HOG [45] 59.1%

Res3ATN [12] 62.7%

C3D [42] 69.3%

R3D-CNN [33] 74.1%

Ours 76.5%

I3D [8]† 78.4%

depth

SNV [47] 70.7%

C3D [42] 78.8%

R3D-CNN [33] 80.3%

I3D [8]† 82.3%

Ours 83.0%

infrared
R3D-CNN [33] 63.5%

Ours 64.7%

iDT-HOF [45] 61.8%

flow

Temp. st. CNN [40] 68.0%

Ours 72.0%

iDT-MBH [45] 76.8%

R3D-CNN [33] 77.8%

I3D [8]† 83.4%

normals Ours 82.4%

color Human [33] 88.4%

Table 1. Unimodal results on NVGestures [33]. Previous results

are taken from the respective papers and from [33, 1]. † indicates

models pre-trained on Kinetics [23], in addition to ImageNet [11].

Moving from the unimodal to the multimodal case, we

show in Table 2 a thorough analysis of the possible mul-

timodal combinations, following the late-fusion approach

reported in Section 3.4. The results are grouped by number

of employed modalities and ordered by accuracy. It can be

seen that, in general, the proposed approach benefits from

the multimodal integration. Moreover, the best perform-

ing methods in each group are those using a combination

of depth and surface normals as input data, confirming that

the partial 3D data obtained by the depth sensors contains

discriminative information for the gesture recognition task.

We highlight that the combination of depth images and sur-

face normals leads to a remarkable accuracy of 87.3%. This

result confirms that these two modalities are complementary

and their combination greatly improves the overall accuracy

compared to the usage of a single modality (which scores

83.0 for the depth and 82.4 for the surface normals). Com-

bining additional modalities (color and infrared) the accu-

racy is slightly incremented, reaching 87.6%.

We also compare our method in the multimodal setting

with state-of-the-art approaches reported in Table 3. Among

other methods that exploit several data types, our approach



# Modality Accuracy

1

infrared (ir) 64.7%

color 76.5%

normals 82.4%

depth 83.0%

2

color + ir 79.0%

depth + ir 81.7%

normals + ir 82.8%

color + depth 84.6%

color + normals 84.6%

depth + normals 87.3%

3

color + ir + depth 85.3%

color + ir + normals 85.3%

color + depth + normals 86.1%

depth + normals + ir 87.1%

4 color + depth + normals + ir 87.6%

Table 2. Multimodal results on NVGestures [33] using several

combinations of modalities. # refers to the number of used modal-

ities.

obtains state-of-the-art accuracy (87.3%) using only depth

data and surface normals, which derive from a single depth

sensor. Therefore, the whole system can depend from a sin-

gle depth or RGB-D device and can run in real time, as will

be shown in Section 4.5. In addition, our method, com-

bining a broader set of modalities (i.e. color, depth, surface

normals, infrared), slightly improves the overall accuracy,

reaching a 87.6 recognition rate.

A wide set of other methods make use of the optical flow,

but still perform worse than our method. However, we note

that the computation of the optical flow on the whole se-

quence of frames heavily affects speed performance, hin-

dering the achievement of real time computation.

Finally, we show the confusion matrix for the best per-

forming multimodal combination (i.e. color + depth + nor-

mals + ir) in Figure 4. Most of the gestures are correctly

classified, but some errors caused by confusion between

pairs of gestures are also visible. As expected, the model

sometimes swaps similar – in terms of hand poses or motion

– gestures, such as “move hand/fingers left/right”, “open-

ing” and “shaking” hand and “push hand down/towards the

camera” .

4.4. Results using Briareo dataset

Table 4 presents the results of the unimodal and the mul-

timodal setting for the Briareo dataset. The results are

grouped by number of employed modalities and ordered by

accuracy.

Considering the unimodal case, the surface normals obtains

the highest accuracy, reaching 95.8%, outperforming the re-

Method Modality Accuracy

Two-st. CNNs [40] color + flow 65.6%

iDT [45] color + flow 73.4%

R3D-CNN [33] color + flow 79.3%

R3D-CNN [33] color + depth + flow 81.5%

R3D-CNN [33] color + depth + ir 82.0%

R3D-CNN [33] depth + flow 82.4%

R3D-CNN [33] all 83.8%

8-MFFs-3f1c [26]* color + flow 84.7%

I3D [8]† color + depth 83.8%

I3D [8]† color + flow 84.4%

I3D [8]† color + depth + flow 85.7%

MTUTRGB-D [1]† color + depth 85.5%

MTUTRGB-D+flow [1]† color + depth 86.1%

MTUTRGB-D+flow [1]† color + depth + flow 86.9%

Ours depth + normals 87.3%

Ours color+depth+normals+ir 87.6%

Human [33] color 88.4%

Table 3. Multimodal results on NVGestures [33], comparison with

competitors. Previous results are taken from the respective papers

and from [33, 1]. † indicates models pre-trained on Kinetics [23],

in addition to ImageNet [11], while * shows models pre-trained on

the Jester gesture dataset [32].
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Figure 4. Confusion matrix for the best performing multimodal

combination (fusion of color, depth, normals, ir) on NVGestures.

Best viewed in color.

sults using other modalities. This confirms that surface nor-

mals estimated from depth are an informative and discrimi-

native representation for the hand gesture recognition task.

Also the infrared source achieves a high accuracy, probably



# Modality Accuracy

1

color 90.6%

depth 92.4%

ir 95.1%

normals 95.8%

2

color + depth 94.1%

depth + ir 95.1%

color + ir 95.5%

depth + normals 96.2%

color + normals 96.5%

ir + normals 97.2%

3

color + depth + ir 95.1%

color + depth + normals 95.8%

color + ir + normals 96.9%

depth + ir + normals 97.2%

4 color + depth + ir + normals 96.2%

Table 4. Unimodal and multimodal results obtained on Briareo. #

refers to the number of used modalities.

due to the position of the infrared sensor, close to the hand.

The combination of multiple modalities, with the late fu-

sion approach presented in Section 3.4, slightly improves

the overall results. The fusion of infrared and normals re-

sults in an overall accuracy of 97.2% which is the highest

result. While the combination of surface normals with in-

frared and depth increases the combined accuracy, the usage

of color data does not provide significant gains.

In Table 5 we compare our method in the multimodal

setting with state-of-the-art approaches. The proposed ap-

proach obtains state-of-the-art accuracy 97.2% using only

infrared data and surface normals, which derive from a sin-

gle active depth sensor. Even with the usage of a single

modality, e.g. surface normals, our method outperforms the

literature competitors by a clear margin. Indeed, it performs

better than methods based on recurrent networks (LSTMs)

and 3D joint features (computed by the Leap Motion SDK),

which require additional computation. Also in this case, the

whole system requires a single active depth device and can

run in real time, as shown in the next section.

4.5. Performance Analysis

We assess the computational requirements of our and

other architectures in terms of number of parameters, in-

ference time on a single GPU, and required VRAM on the

graphics card. We test them on a workstation with an In-

tel Core i7-7700K and a Nvidia GeForce GTX 1080 Ti. As

shown in Table 6, our method has fewer parameters, faster

inference speed and comparable memory usage when used

with a single modality. When applied on multiple modal-

ities, running in parallel on the same hardware, the pro-

Method Modality Accuracy

C3D-HG [31] color 72.2%

C3D-HG [31] depth 76.0%

C3D-HG [31] ir 87.5%

LSTM-HG [31] 3D joint features 94.4%

Ours normals 95.8%

Ours depth + normals 96.2%

Ours ir + normals 97.2%

Table 5. Comparison with the state-of-the-art methods tested on

Briareo.

Model Parameters Inference VRAM

(M) (ms) (GB)

R3D-CNN [33] 38.0 30 1.3

C3D-HG [31] 26.7 55 1.0

Ours (1 modality) 24.3 26.7 1.8

Ours (2 modalities) 48.6 61.7 3.0

Ours (4 modalities) 97.2 108.3 5.3

Table 6. Performance analysis of the proposed method. Specifi-

cally, we report the number of parameters, the inference time and

the amount of video RAM (VRAM) needed to run the system.

posed approach still maintains real time speed and accept-

able memory usage, both in case of 2 modalities and in case

of 4 modalities.

5. Conclusions

In this paper, we propose a transformer-based architec-

ture for the dynamic hand gesture recognition task. Through

an extensive evaluation we show how the frame-level fea-

ture extraction and the temporal aggregation computed by

the transformer, starting from depth and surface normals

combined through a late fusion approach, achieves state-of-

the-art results. Moreover, we investigate the use of other

data types usually provided by RGB-D sensors, such as

color and infrared images. Experimental results obtained

on two automotive datasets, namely NVidia Dynamic Hand

Gesture and Briareo, confirm the feasibility of the proposed

method for the automotive setting, in which the light in-

variance is an enabling element. Even though the tempo-

ral flow is explicitly encoded into the transformer-based ar-

chitecture, there are several “symmetric” gestures that are

occasionally confused. In fact, the main challenges of the

problem are still related to the temporal progression of the

gesture, which will be addressed in future work. The per-

formance analysis shows that the framework is able to run

with real time performance and it requires a limited amount

of video memory, making it suitable for an online infotain-

ment system.
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