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THE RAMSEY PROPERTIES FOR GRASSMANNIANS OVER R, C

DANA BARTOŠOVÁ, JORDI LOPEZ-ABAD, MARTINO LUPINI, AND BRICE MBOMBO

Abstract. In this note we study and obtain factorization theorems for colorings of matrices
and Grassmannians over R and C, which can be considered metric versions of the Dual Ramsey
Theorem for Boolean matrices and of the Graham-Leeb-Rothschild Theorem for Grassmannians
over a finite field.

Introduction

One of the most powerful principles in Ramsey theory is the dual Ramsey theorem of R.
L. Graham and B. L. Rothschild [9]. It trivially implies the classical Ramsey theorem or the
much more involved Hales-Jewett Theorem. The Dual Ramsey theorem is the particular in-
stance of the Rota’s conjecture for Grassmannians over the boolean field F2, and it indeed
implies the Rota’s conjecture for an arbitrary finite field, proved by Graham, Leeb and Roth-
schild (GLR) in [8]. These statements can be categorized as a structural Ramsey theorem,
the Dual Ramsey theorem as the result for finite Boolean algebras or for finite dimensional
vector spaces over the boolean field F2, and the (GLR) Theorem as its natural generalization
to finite dimensional vector spaces over an arbitrary finite field Fp. In this paper we study
the case of the infinite fields F “ R,C in its metric form: Suppose that we endow the n-
dimensional vector space Fn with a norm m. We can naturally identify each k-dimensional
subspace V of Fn with its unit ball BallpV, mq “ tv P V : mpvq ď 1u. Thus, we can measure the
distance between V and W by computing the Hausdorff distance Λm between the compact and
convex sets BallpV, mq and BallpW, mq. Instead of trying to understand only discrete colorings
c : Grpk,Fnq Ñ r :“ t0, 1, ¨ ¨ ¨ , r ´ 1u we can now work with 1-Lipschitz mappings, called here
compact colorings, c : pGrpk,Fnq,Λmq Ñ pK, dKq into a compact metric space pK, dKq and ask
how the restrictions of c to Grassmannians Grpk, V q that are congruent to Grpk,Fmq look like.
In this context, a reasonable notion of congruence Grpk, V q „m Grpk,W q is that pV, mq and
pW, mq are linearly isometric, or equivalently when there is an affine and symmetric bijection
sending the dual unit ball BallpV ˚, m˚q onto the dual unit ball BallpW ˚, m˚q (see the introduction
in §2.1.3 for basic definitions, and [20, Chapter 4] for a complete exposition). Notice that the
set-mapping associated to a linear isometry from V onto W defines a Λm-isometry from Grpk, V q
onto Grpk,W q. The corresponding quotient Grpk,Fnq{ „m is canonically identified with the class
BkpFn, mq of isometric types of k-dimensional subspaces of pFn, mq, a closed subset of the Banach-
Mazur compactum Bk. In this paper we show that for the p-norms }pajqj}p :“ p

ř

j |aj |
pq1{p, if
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p P r1,8rzp2N ` 4q, and for the sup norm }pajqj}8 :“ maxj |aj |, we have that on each quo-
tient BkpFn, } ¨ }pq there is a compatible “Gromov-Hausdorff”-metric γp, called here extrinsic
metric, such that for every k,m P N, every compact metric space pK, dKq and every ε ą 0
there is a dimension n such that for every compact coloring c : pGrpk,Fnq,Λ}¨}pq Ñ pK, dKq

there is some V P Grpm,Fnq that is } ¨ }p-congruent to Fm and there is a compact coloring
pc : pBkpFn, } ¨ }pq, γpq Ñ pK, dKq such that dKppcprW s„mq, cpW qq ď ε for every W P Grpk, V q.

In a similar way, we study factorizations of compact colorings of matrices of two kinds: nˆk-
full rank matrices and n-square matrices of rank k, denoted by Mk

n,k and by Mk
n , respectively.

When the field F is finite, we show that for large enough n, for every coloring c : Mk
n,k Ñ r there

is some matrix R P Mm
n,m in reduced column echelon form and a unique pc : GLpFkq Ñ r such

that cpR ¨ Aq “ pcpredpAqq for every A P Mk
m,k, where redpAq is the k-square invertible matrix

such that A ¨ redpAq is in reduced column echelon form. We prove that colorings of Mk
n are

factorized in a similar way by, in addition, using the full rank factorization of matrices. We then
analyze the colorings of these matrices over the fields R,C, and we compute the corresponding
Ramsey factors in the metric context for the p-norms.

The proofs for the infinite fields are based on the crucial fact that when m is a norm on
the vector space F8, the space of sequences panqn with finitely many non-zero entries, have
an approximate Ramsey property called steady approximate Ramsey property, then there is a
unique Banach space pE such that E :“ pF8, mq can be linearly isometrically embedded into pE,
BkpEq is dense in Bkp pEq, and such that the group Isop pEq of linear isometries of pE, with its
strong operator topology, is extremely amenable, that is, every continuous action of Isop pEq on
a compact space has a fixed point. The corresponding spaces to the p-norms are the Lebesgue
spaces Lpr0, 1s if p ă 8, and the Gurarij space for the sup-norm.

The use of tools from topological dynamics on a pure approximate Ramsey problem is not
accidental. The recent Kechris-Pestov-Todorcevic correspondence in its discrete and metric ver-
sions characterizes the extreme amenability of automorphism groups of Fräıssé (discrete/metric)
structures in terms of the (approximate) Ramsey property of the collection of finitely generated
substructures (see [6, 14, 15]).

The paper is organized as follows. We first study Ramsey properties of matrices over F2 and
then over an arbitrary finite field F. In particular, we provide in Theorem 1.7 another proof of the
Rota’s conjecture as a straightforward consequence of the Dual Ramsey theorem. To do this, we
use basic tools from linear algebra, mainly the reduced column echelon form, that interestingly
corresponds to some surjection being rigid with respect to the antilexicographical ordering, and
that determines the Ramsey property (Proposition 1.9). We finish this section by introducing in
Proposition 1.14 a uniqueness principle for these Ramsey factorizations. The rest of the sections
are devoted to the study of Ramsey factorizations of matrices and Grassmannians over the fields
R,C. Different principles and known facts from Banach space theory play a fundamental role,
so we expose them with enough details. We start the second section by introducing the main
concepts, namely ε-factors, and the Ramsey factors, including the extrinsic metrics, for full rank
nˆ k-matrices, Grassmannians, and nˆ n-matrices of rank k, and we present our main results
in Theorem 2.8, Theorem 2.16 and Theorem 2.25, respectively. The third section is devoted to
the proofs of the factorization results exposed in section two. We recall the steady approximate
Ramsey property pSARP`q of a family of finite dimensional normed spaces and the extreme
amenability of a topological group. We explain in Corollary 3.11 when a normed space of the
form E “ pF8, mq is associated to a unique Fräıssé Banach space pE with an extremely amenable
group of isometries, and how this gives Ramsey factors related to E. In Subsection 3.1 we
analyze these factors and we prove that they are the ones presented in Section two (Theorem
3.12). We finish with an appendix where we analyze the special case of the sup-norm, and we
give explicit definitions of extrinsic metrics.
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1. The Dual Ramsey Theorem and matrices over finite fields

To keep the notation unified, let F8 be the vector space over F consisting of all eventually
zero sequences pajqjPN. Let pujqjPN be the unit basis of F8, that is, each uj is the sequence whose
only non-zero entry is 1 at the jth-coordinate. In this way we identify Fn with the subspace
xujyjăn of F8, and then F8 with the increasing union of all Fn.

Given α, β P N Y t8u, let Mα,βpFq be the collection of α ˆ β-matrices with finitely many
non-zero entries. In a similar manner as before, given n ď α and m ď β, a m ˆ n-matrix
A “ pai,jqiăn,jăm is identified, if needed, with the α ˆ β-matrix B “ pbi,jqiďα,jďβ by keeping
the old ones unchanged bi,j “ ai,j for i ă n and j ă m, and by declaring the new entries as zero
bi,j “ 0 for n ď i ă α and m ď j ă β. So, we write Mα,βpFq “

Ť

nďα,mďβMn,mpFq, increasing
union. Let Mk

α,βpFq be the set of all αˆ β-matrices of rank k with entries in F. To lighten the
notation, when there is no possible confusion, we will write Mα,β, Mk

α,β,... to denote Mα,βpFq,
Mk
α,βpFq,...
There are several equivalent ways to present the dual Ramsey theorem (DRT) of Graham

and Rothschild [9]. Among these, there is a factorization result for Boolean matrices stated
below as Theorem 1.4. Motivated by this, we study Ramsey-theoretical factorization results for
colorings of other classes of matrices. We begin with matrices with entries in a finite field, and
then conclude, in the next section, with matrices over R or C.

It is well known, for example using the Gauss-Jordan elimination method, that an n ˆm-
matrix A has a decomposition A “ redpAq ¨ τpAq where redpAq is in reduced column echelon
form and τpAq is an invertible m ˆm-matrix, that is unique when A has rank m. We prove
that when the field is finite any finite coloring of matrices over a finite field is determined, in a
precise way, by τ . This can be seen as an extension of the well known result of Graham, Leeb,
and Rothschild on Grassmannians over a finite field [8].

Definition 1.1 (Factors). Let X be a set and r P N. An r-coloring of X is a mapping
c : X Ñ r “ t0, 1 . . . , r´ 1u. A subset Y of X is c-monochromatic if c is constant on Y . We say
that a mapping π : X Ñ K is a factor of c : X Ñ r if there is some rc : K Ñ r such that c “ rc˝π.
Finally, π is a factor of c in Y Ď X if π �Y is a factor of c �Y . So, Y is c-monochromatic when
the trivial constant map π : X Ñ t0u “ 1 is a factor of c in Y .

We now recall the Dual Ramsey Theorem (DRT) of Graham and Rothschild [9] (see also [17],
[23]). For convenience, we present its formulation in terms of rigid surjections between finite
linear orderings. Given two linear orderings pR,ăRq and pS,ăSq, a surjective map f : R Ñ S

is called a rigid surjection when min f´1ps0q ăR min f´1ps1q for every s0, s1 P S such that
s0 ăS s1. We let EpipR,Sq be the collection of rigid surjections from R to S.

Theorem 1.2 (Graham–Rothschild). For every finite linear orderings R and S such that
|R| ă |S| and every r P N there exists an integer n such that, considering n naturally ordered,
every r-coloring of Epipn,Rq has a monochromatic set of the form EpipS,Rq ˝ γ “ tσ ˝ γ :
σ P EpipS,Rqu for some γ P Epipn, Sq.

1.1. Ramsey properties of colorings of Boolean matrices. Perhaps the most common
formulation of the dual Ramsey Theorem of Graham and Rothschild is done in terms of par-
titions. Given k,m, n P N, let Empnq be the set of all partitions of n into m pieces. Given
P P Empnq, let xPyk be the set of all partitions Q of n with k pieces that are coarser than P,
i.e., such that each piece of Q is a union of pieces of P.

Theorem (DRT, partitions version). For every k,m P N and r P N there is n P N such that
every r-coloring of Ekpnq has a monochromatic set of the form xPyk for some P P Empnq.
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The following three reformulations of the Dual Ramsey Theorem are structural Ramsey results
for finite Boolean algebras.

Theorem (DRT, Boolean algebras). Let A and B be finite Boolean algebras, and let r P N. Then
there exists a finite Boolean algebra C such that every r-coloring of the set

`C
A
˘

of isomorphic
copies of A inside C admits a monochromatic set of the form

`B0
A
˘

for some B0 P
`C

B
˘

.

Let A be a finite Boolean algebra. Any a P A is represented as

a “
ł

xPΓa
x,

for a unique set of atoms Γa. So, any linear ordering ă on the sets of atoms AtpAq of A
extends to A by defining a ă b iff minăpΓa4Γbq P Γa. Following [14], we will say that pA,ăq
is a canonically ordered (c.o.) Boolean algebra. Given c.o. Boolean algebras A and B, let
EmbăpA,Bq be the collection of ordering-preserving embeddings from A into B, respectively.

Theorem 1.3 (DRT, canonically ordered Boolean algebras). Given c.o. Boolean algebras A
and B and r P N, there is a c.o. Boolean algebra C such that each r-coloring of EmbăpA, Cq has
a monochromatic set of the form % ˝ EmbăpA,Bq for some % P EmbăpB, Cq.

Suppose that A and B are finite Boolean algebras with k and n atoms, respectively. Any
embedding from A to B has a corresponding representing n ˆ k matrix with entries in t0, 1u.
We call the matrices arising in this fashion Boolean matrices. The set of nˆk Boolean matrices
will be denoted by Mba

n,k, i.e., the set of nˆk matrix with entries in t0, 1u whose columns (which
can be identified with subsets of n) form a k-partition of n. We let Moba

n,k be the set of Boolean
nˆ k-matrices that correspond to order-preserving embeddings between c.o. Boolean algebras.
These are precisely the set of Boolean matrices whose columns pPiqiPk furthermore satisfy that
the position of the first non-zero value of Pi is strictly smaller than the position of the first
non-zero value of Pi`1 for every i ă k ´ 1.

In the following, we identify a permutation σ of k with the associated k ˆ k permutation
matrix. This allows one to identify the group Sk of permutations of k with a group of unitary
matrices. Let π : Mba

n,k Ñ Sk be the function assigning to a matrix A the unique element πpAq
of Sk such that A “ Aă ¨ πpAq for some (uniquely determined) matrix Aă P M

oba
n,k . Given an

nˆm-matrix A, we let A ¨Mba
m,k “ tA ¨B : B PMba

m,ku.

Theorem 1.4 (DRT, Boolean matrices). For every k,m P N and r P N there is n such that for
every c : Mba

n,k Ñ r there is R PMoba
n,m such that π is a factor of c in R ¨Mba

m,k. That is, the color
of R ¨B depends only on πpBq “ πpR ¨Bq for every B PMba

m,k.

Proof. Let C be a c.o. Boolean algebra obtained by applying the Dual Ramsey Theorem for
c.o. Boolean algebras—Theorem 1.3—to the power sets Ppkq, Ppmq canonically ordered as
above by s ă t if and only if minps4tq P s, and to the number of colors rSk . Without loss
of generality we can assume that C is equal to Ppnq for some n P ω, since any c.o. Boolean
algebra is of this form. We claim that such an n satisfies the desired conclusions. Indeed, fix
a coloring c : Mba

n,k Ñ r. This induces a coloring f : EmbăpPpkq,Ppnqq Ñ rSk as follows. Let
γ be an element of EmbăpPpkq,Ppnqq, and let Aγ P Mba

n,k be the corresponding representing
matrix. Define then fpγq to be the element pcpAγ ¨ σqqσPSk of rSk . By the choice of C “ Ppnq
there exists % P EmbăpPpmq,Ppnqq such that f is constant on % ˝EmbăpPpkq,Ppmqq. Let now
rc P rSk be the constant value of f . It is now easy to see that R :“ A% satisfies what we want
cpR ¨Bq “ rcpπpBqq for every B PMba

m,k. �
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1.2. Ramsey properties of colorings of matrices over a finite field. It is natural to
consider Ramsey properties of other classes of matrices over a field F. We are going to see that
for F finite there is a factorization result similar to the DRT for Boolean matrices, that extends
the well known theorem, the vector space Ramsey theorem, by Graham, Leeb and Rothschild
on Grassmannians Grpk, V q, the family of all k-dimensional subspaces of a vector space V over
F. In the following, given a sequence pxiq in a vector space E, we let xxiy be its linear span
inside E. Notice that the linear span of the empty sequence p q is the trivial subspace t0u.

Theorem 1.5 (Graham-Leeb-Rothschild [8]; see also [10]). Given k,m, r P N there is n P N
such that every r-coloring of Grpk,Fnq has a monochromatic set of the form Grpk,Rq for some
R P Grpm,Fnq.

This result is a particular case of the factorization theorem for injective matrices. Recall that
a p ˆ q-matrix A “ paijq is in reduced row echelon form (RREF) when there is p0 ď p and (a
unique) strictly increasing sequence pjiqiăp0 of integers ă q such that

i) A ¨ uji “ ui for every i ă p0 and
ii) xA ¨ ujyjăji “ xulylăi for every i ă p0.

When A is in RREF and it has rank p, we define IA as the q ˆ p-matrix with entries in t0, 1u,
and whose nonzero entries are in the positions pji, iq (i ă p). For example for the field F5 and

A “

¨

˝

1 2 0 3 0 1
0 0 1 4 0 2
0 0 0 0 1 3

˛

‚ we have IA “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

(1)

It follows that IA is a right inverse to A, i.e., A ¨ IA “ Idp. A matrix A is in reduced column
echelon form (RCEF) when its transpose At is in RREF. Let En,mpFq, EpFq be the collection
of nˆm-matrices of rank m in RCEF and of full rank matrices in RCEF, respectively. Notice
that En,mpFq is non-empty exactly when n ě m.

Definition 1.6. Let τ : Mk
8,k Ñ GLpFkq be the mapping that assigns to each A PMk

8,kpFq the
unique kˆk-invertible matrix τpAq such that A ¨ τpAq is in RCEF. Let also redcpAq :“ A ¨ τpAq.

Theorem 1.7 (Factorization of colorings of full rank matrices over a finite field). Given k,m, r P
N there is n P N such that for every c : Mk

n,kpFq Ñ r there is R P En,mpFq such that τ is a factor
of c in R ¨Mk

m,kpFq.

This gives immediately the Graham-Leeb-Rothschild Theorem—Theorem 1.5—as every k-
dimensional subspace of Fn can be represented as the linear span of the columns of a matrix in
RCEF. The proof of Theorem 1.7 is a direct consequence of the DRT and the next propositions.
In the following, we fix an ordering ă on the finite field F such that 0 ă 1 are the first two
elements of F. We let Fk be endowed with the corresponding antilexicographic order ăalex and
we define Φn,k : Epipn,Fkq Ñ Mk

n,k as the function assigning to each rigid surjection f the
matrix whose rows are fpjq for every j ă n. A key feature of the antilexicographic order in this
context is that given x P Fk and j ă k we have that x P xulylăj if and only if x ăalex uj .

Lemma 1.8. Φn,kpfq is a full rank matrix in RCEF.

Proof. It is clear that Φn,kpfq is a full rank matrix. We prove that it is in RCEF. Let A be the
transpose of Φn,kpfq. For each i P k, let ji :“ mintj ă n : A ¨ uj “ uiu. Then pjiqiăk is strictly
increasing, since f is a rigid surjection, and if j ă ji, then A ¨ uj ăalex ui, by the definition of
ji, and the rigidity of f . Therefore A ¨ uj P xulylăi. Consequently, A is in RREF. �
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The next is the key relation between matrices in RREF and rigid surjections that will allow
us to use the dual Ramsey Theorem and prove Theorem 1.7.

Proposition 1.9. For A PMk
k,npFq the following are equivalent.

i) A is in RREF.
ii) The linear map TA : Fn Ñ Fk represented by A in the corresponding unit bases is a rigid

surjection and for every i ă k there is a column of A equal to ui.

In particular we have the following.

Corollary 1.10. Suppose that A PMm
n,mpFq and B PMk

m,kpFq.
a) If A and B are in RCEF (resp. RREF) then A ¨B is also in RCEF (resp. RREF).
b) If A is in RCEF then τpA ¨Bq “ τpBq. �

Proof of Proposition 1.9. i)ñii) Suppose that A is in RREF. We will prove that the canonical
linear operator TA : Fn Ñ Fk, TApuiq :“ A ¨ ui for i ă n is a rigid surjection from Fn to Fk
endowed with the antilexicographical order ăalex described before. Let pjiqiăk be the strictly
increasing sequence in n witnessing that A is in RREF. By linearity, TAp0q “ 0. Fix now w P Fk.

Claim 1.10.1. minăalexpTAq
´1pwq “ IA ¨ w.

From this, since IA : Fk Ñ Fn is ăalex-increasing, we obtain that TA is a rigid surjection.

Proof of Claim: Applied to the example in (1) and to w “ p1, 2, 3q, it should be clear that the
spread IA ¨ p1, 2, 3q “ p1, 0, 2, 0, 3, 0q of p1, 2, 3q is the ăalex-least element of the preimage of
p1, 2, 3q under TA. We give a detailed proof. Suppose that pvjqjăn “ v̄ “ minăalextv P Fn :
A ¨ v “ wu. Set z “ pzjqj :“ IApwq. We prove by induction on i ă k that vj “ zj for every
j ě jk´i´1. Suppose that i “ 0. Since for every j ą jk´1 one has that zj “ 0, we obtain
that vj “ 0, by ăalex-minimality of v̄. Let pAqk´1 be the pk ´ 1qth-row of A. It follows that
pAqk´1 “ ujk´1 ` y, where y P xujyjąjk´1 . Hence,

zjk´1 “ wk´1 “ pAqk´1 ¨ v̄ “ vjk´1 .

Suppose that the conclusion holds for i, that is, vj “ zj for every j ě jk´i´1. We will prove
that it also holds for i ` 1. Since v ďalex z, and zj “ 0 for every jk´i1´2 ă j ă jk´i1´1 and
0 ď i1 ď i, we obtain that vj “ 0 for such j’s. Then the pk ´ i ´ 2qnd row of A is of the form
pAqk´i´2 “ ujk´i´2 ` y with y in the span of tuj : j ą jk´i´2, j ‰ jp for all pu. It follows that

zjk´i´2 “ wk´i´2 “ pAqk´i´2 ¨ v̄ “ vjk´i´2 . �

ii)ñi) Now suppose that TA is a rigid surjection from Fn to Fk with respect to the antilexico-
graphical orderings, and that for every i ă k a column of A is ui. For each i ă k, let ji be the
first such column of A. We prove that pjiqiăk witnesses that A is in RREF, that is:

Claim 1.10.2. TAxujyjăji “ xulylăi for every i ă k.

Proof of Claim: The proof is by induction on i. If i “ 0, then TAxujyjăj0 “ t0u because u0 is the
second element of Fn in the antilex ordering, while the first element is the zero vector. Suppose
the result is true for i, and let us extend it to i ` 1. In particular, we know that ji`1 ą ji,
and it is clear that xulylďi Ď TAxujyjďji Ď TAxujyjăji`1 . Suppose towards a contradiction that
there exists j such that ji ă j ă ji`1 and TApujq R xulylďi. Denote by ξ the least such j, and
set y :“ TApuξq. Since y R xulylďi, it follows that ui`1 ďalex y, and since ji`1 is the minimal
j such that TApujq “ ui`1, it follows that in fact ui`1 ăalex y. We are assuming that TA is a
rigid surjection, so

minpTAq´1pui`1q ăalex minpTAq´1pyq ďalex uξ.
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This means that there is some x ăalex uξ such that TApxq “ ui`1; that is, there is some
x P xujyjăξ with TApxq “ ui`1, and this is impossible because by the minimality of ξ we know
that TAxujyjăξ “ xulylďi. � �

Proof of Theorem 1.7. Fix all parameters. We consider Fk and Fm antilexicographically ordered
by ăalex (as explained before). Let n be obtained from the linear orderings pFk,ăalexq, pFm,ăalex
q and the number of colors rλ, where λ “

śk´1
i“0 pp

k ´ piq is the order of the group GLpFkq, by
applying the Dual Ramsey Theorem for rigid surjections (Theorem 1.2). We claim that n
satisfies the desired conclusions. Fix a coloring c : Mk

n,kpFq Ñ r. Let c0 : Epipn,Fkq Ñ rGLpFkq

be the coloring defined by c0pσq :“ pcpΦk,npσq ¨ Γ´1qqΓPGLpFkq for σ P Epipn,Fkq. By the choice
of n, there exists % P Epipn,Fmq such that c0 is constant on EpipFm,Fkq ˝ % with constant value
rc P rGLpFkq. Let R :“ Φn,mp%q. We claim that R and rc satisfy the conclusion of the statement
in the theorem. It follows from Proposition 1.8 that R P En,mpFq. Now let A P Mk

m,kpFq. We
have to prove that cpR ¨ Aq “ rcpτpR ¨ Aqq. First, note that τpR ¨ Aq “ τpAq, because R is in
RCEF. Let B be the transpose of redcpAq (i.e., B is the RREF of the transpose of A), and let
TB : Fm Ñ Fk be the linear operator defined by B in the corresponding canonical bases. We
know by Proposition 1.9 that TB P EpipFm,Fkq.

Claim 1.10.3. Φn,kpTB ˝ %q “ R ¨ redcpAq.

Proof of Claim: Fix j ă m. Then the jth-row pΦn,kpTB ˝ %qqj of Φn,kpTB ˝ %q is the row vector
TBp%pjqq. Hence,

pΦn,kpTB ˝ %qqj “ TBp%pjqq “ ppredcpAqqt ¨ ppRqjqtqt “ pRqj ¨ redcpAq “ pR ¨ redcpAqqj . �

So, given Γ P GLkpFq we have that

cpR ¨Aq “ cpR ¨ redcA ¨ τpAq´1q “ pc0pR ¨ redcAqqpτpAqq “ rcpτpAqq “ rcpτpR ¨Aqq. �

1.2.1. Square matrices of rank k. We present the Ramsey factorization for finite colorings of
square matrices. Recall that every n ˆ m-matrix A of rank k has a full rank decomposition
A “ B ¨ C where B PMk

n,k and C PMk
k,m.

Definition 1.11. Given k and n, let τ p2q : Mk
n,n Ñ GLpFkq be the mapping uniquely defined

by the relation A “ A0 ¨ τ
p2qpAq ¨At

1 for some A0, A1 P En,kpFq.

It is routine to see that τ p2q is well defined.

Theorem 1.12 (Factorization of colorings of square matrices over a finite field). For every
k,m, r P N there is n P N such that for every c : Mk

n,npFq Ñ r there are R0, R1 P En,mpFq such
that τ p2q is a factor of c in R0 ¨M

k
m,mpFq ¨Rt

1.

Proof. Given integers k,m and r, let nFpk,m, rq be the minimal number n such that the fac-
torization statement in Theorem 1.7 holds for the parameters k,m and r, and now let n0 :“
nFpk,m, r

GLpFkqq, and let n :“ nFpk, n0, r
Mk
n0,k

pFq
q. We claim that n works. Fix any r-coloring

f : Mk
n,npFq Ñ r. Let P P En,n0pFq be arbitrary. We define the coloring c : Mk

n,kpFq Ñ r
Mk
n0,k

pFq

by
cpAq :“ pfpA ¨Bt ¨ P tqqBPMk

n0,k
pFq.

The coloring c is well defined because A ¨ Bt ¨ P t is an n ˆ n-matrix of rank k. Let R P En,n0

and c0 : GLpFkq Ñ r
Mk
n0,k

pFq be such that cpR ¨ Aq “ c0pτpAqq for every A P Mk
n0,k
pFq. Define

now the “adjoint” coloring d : Mk
n0,k
pFq Ñ rGLpFkq by

dpBq :“ pc0pΓqpBqqΓPGLpFkq.
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Let S P En0,mpFq and d0 : GLpFkq Ñ rGLpFkq be such that dpS ¨ Bq “ d0pτpBqq for every
B PMk

m,kpFq. We claim that R0 “ R ¨Q and R1 :“ P ¨S work, where Q P En0,mpFq is arbitrary.
Finally, let g : GLpFkq Ñ r be defined by gpΓq “ d0pΓ0qpΓ1q, where Γ “ Γ1 ¨ Γt

0 is an arbitrary
decomposition with Γ0,Γ1 P GLpFkq. Notice that

d0pΓ0qpΓ1q “dpS ¨ P0 ¨ Γ0qpΓ1q “ c0pΓ1qpS ¨ P0 ¨ Γ0q “ cpR ¨ P1 ¨ Γ1qpS ¨ P0 ¨ Γ0q “

“fpR ¨ P1 ¨ Γ1 ¨ Γt
0 ¨ P

t
0 ¨R

t
1q “ fpR ¨ P1 ¨ Γ ¨ P t

0 ¨R
t
1q

where P0 P Em,kpFq and P1 P En0,kpFq are arbitrary. So, g does not depend on the decomposition
Γ “ Γ1 ¨ Γt

0. Similarly one proves that gpτ p2qpAqq “ fpR0 ¨A ¨R
t
1q for all A PMk

m,mpFq. �

1.2.2. Uniqueness. We see that in a natural way the factors we presented are unique. We
introduce the abstract notion of Ramsey factor in this context.

Definition 1.13. Given µ : Mk
8,kpFq Ñ X, X finite, and A Ď

Ť

n,mMn,mpFq, we say that the
couple pµ,Aq is a k-Ramsey factor when

i) µpMk
8,kpFqq “ X.

ii) µpR ¨Aq “ µpAq for every A PMk
m,kpFq and every R P AXMm

n,mpFq.
iii) For every m, r P N there is some n P N such that for every r-coloring c of Mk

n,kpFq there is
R P AXMm

n,mpFq such that µ is a factor of c in R ¨Mk
m,kpFq.

We call X the set of colors of µ, denoted by Xµ.

It follows that pτ, Eq is a k-Ramsey factor, and it is the minimal one in the following precise
sense.

Proposition 1.14. Suppose that pµ,Aq, pν,Bq are k-Ramsey factors.
a) |Xµ| ě |GLpFkq| “

śk´1
j“0p|F|k ´ |F|jq.

b) If A Ď B, then there is a surjection θ : Xµ Ñ Xν such that µ ˝ θ “ ν.
c) If A “ B, then there is a bijection θ : Xµ Ñ Xν such that µ ˝ θ “ ν.

Proof. a): In fact, we prove that if pµ,Aq satisfies iii) of Definition 1.13, then |Xµ| ě |GLpFkq| “
śk´1
j“0p|F|k ´ |F|jq. Find the corresponding n in iii) for m “ k and r “ |GLpFkq|. Fix an

enumeration GLpFkq “ t∆jujăr, let c : Mk
n,kpFq Ñ r be the coloring cpAq :“ j if τpAq “ ∆j .

By iii), there are R P A XMk
n,kpFq and θ : Xµ Ñ GLpFkq such that τpR ¨ Aq “ θpµpR ¨ Aqq for

every A PMk
k,kpFq. It is easy to see that τ : R ¨Mk

k,kpFq Ñ GLpFkq is surjective, hence θ is also
surjective. b) is proved similarly. c): From b) we have that |Xµ| “ |Xν |, and θ in b) must be a
bijection. �

2. Matrices and Grassmannians over R,C

We present factorization results of compact colorings of matrices and Grassmannians over the
fields F “ R,C. There are several such results, depending on the chosen metric on the objects
we color. These factorizations are approximate, because, as we deal with infinite fields, it is
easily seen that the exact ones are not true; on the other hand, they apply to arbitrary colorings
given by Lipschitz mappings with values in a compact metric space. Given α, β P NY t8u, the
collection of matrices Mα,βpFq can be naturally turned into a metric space by fixing two norms
m and n on Fα and Fβ, respectively, and identifying a matrix A PMα,β with the linear operator
TA : Fβ Ñ Fα, TApxq :“ A ¨ x, x as column vector (i.e., a β ˆ 1-matrix). This allows to define
the norm }A}m,n :“ }TA}pFβ ,mq,pFα,nq, and the corresponding distance dm,npA,Bq :“ }A´B}m,n “
}TA ´ TB}pFβ ,mq,pFα,nq. Also, in this way each full rank α ˆ k-matrix A defines a norm νpAq on
Fk, νpAqpxq :“ npA ¨ xq. When m is a norm on F8, by identifying each Fk with xujyjăk, let mk
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be the norm on Fk, mkppajqjăkq :“ mp
ř

jăk ajujq. When there is no possible misunderstanding,
we will write dm to denote dmβ ,mα .

Recall that in general, given two normed spaces X “ pV, mq and Y “ pW, nq, LpX,Y q denotes
the space of continuous (equivalently bounded) linear operators from X to Y , that is again a
normed space by considering the norm }T } :“ supxPBallpXq npT pxqq, where BallpXq “ tx P X :
mpxq ď 1u denotes the unit ball of X. Let LkpX,Y q is the set of those operators of rank k. Since
when V is finite dimensional every linear mapping from V to W is automatically continuous,
in this case, we will use also LpV,W q and LkpV,W q, to denote the collection of linear mappings
from V to W , and those of rank k, respectively. By an isometric embedding we mean a linear
mapping T : X Ñ Y such that npT pxqq “ mpxq for every x P X. The space of these operators is
denoted by EmbpX,Y q.

Of particular importance will be the p-norms. Recall that for every 1 ď p ď 8, `np is the
normed space pFn, } ¨ }pq, where }pajqjăn}p :“ p

ř

jăn |aj |
pq1{p for p ă 8 and }pajqjăn}8 :“

maxjăn |aj |. Similarly one defines the p-norms on F8, that we denote as `8p :“ pF8, } ¨ }pq, and
their completions are usually denoted by `p, for p ă 8 and by c0, when p “ 8.

Roughly speaking, our factorization theorem for full rank matrices (Theorem 2.8) states
that every coloring of such matrices, endowed with the p-metrics for p P r1,`8sz2pN ` 2q is
“approximately determined” by the corresponding ν described above.

Similarly, once a norm m is fixed in Fα, Grpk,Fαq turns into a metric space by considering
a corresponding Hausdorff metric (see (2) below), and each k-dimensional subspace V of Fα
determines a member of the Banach-Mazur compactum Bk, that is, the isometry class τmpV q

of all k-dimensional normed spaces isometric to pV, mq. We prove that when choosing p-norms
on each Fn for n large enough, any coloring of the k-Grassmannians of Fn is approximately
determined by τm on some GrpV, kq. We introduce a more appropriate terminology, in particular
we extend the type of colorings to work with. A metric coloring of a pseudo-metric space
M is a 1-Lipschitz map c from M to a metric space pK, dKq. We will say that c is a K-
coloring. A compact coloring is a metric coloring whose target space is a compact metric
space. For a subset X of a metric space pK, dKq and ε ą 0, the ε-fattening Xε “ tp P K :
there is some q P X with dpp, qq ď εu.

The oscillation oscpc � F q of a compact coloring c : M Ñ pK, dKq on a subset F of M is
the supremum of dKpcpyq, cpy1qq where y, y1 range within F . When oscpc � F q ď ε we also say
that c ε-stabilizes on F , or that F is ε-monochromatic for c. A finite (or discrete) coloring of
M is a function c from M to a finite set X; in the particular case when the target space is a
natural number r (identified with the set t0, 1, . . . , r ´ 1u of its predecessors), we will say that
c is an r-coloring. Given a finite coloring c : M Ñ X and ε ě 0, we say that a subset F of M
is ε-monochromatic for c, or that c ε-stabilizes on F , if there exists some x P X such that F
is included in the ε-neighborhood pc´1pxqqε of c´1pxq. Notice that when X is a finite metric
space and c is assumed to be 1-Lipschitz, we have two notions of ε-monochromatic sets: one by
considering c as a finite coloring, and another by considering c as a 1-Lipschitz coloring. Because
of this, we will always emphasize which kind of coloring we mean each time. In general, every
ε-monochromatic set of c considered as finite coloring is 2ε-monochromatic for c as a compact
coloring, but the converse implication is not always true. However, when pM,dq is a bounded
pseudo-metric space, given finite coloring c : M Ñ X it is possible to define a compact coloring
rc on X such that ε-monochromatic sets for rc are 2ε-monochromatic for c; to see this, let λ be
the diameter of M , and fix a finite coloring c : M Ñ X. Let X 1 :“ cpMq and let K :“ r´λ, λsX 1

be endowed with the sup-distance dKppαxqxPX 1 , pβxqxPX 1q :“ maxxPX 1 |αx´βx|. Let rc : M Ñ K,
rcppq :“ pdpp, c´1pxqqqxPX 1 . This is a 1-Lipschitz mapping that has the property we want. In
this way, it is proved in [6, Proposition 5.9] and [4, Proposition 2.13] that several approximate
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Ramsey properties associated to those colorings turn to be equivalent. To simplify the notation,
when ε “ 0 we will omit the use of the prefix “0-”.

Definition 2.1 (Approximate factors). Let pM,dM q, pN, dN q and pP, dP q be metric spaces,
ε ą 0, and c : pM,dM q Ñ pN, dN q and π : pM,dM q Ñ pP, dP q be metric colorings, i.e., 1-
Lipschitz maps. We say that π is an ε-approximate factor (or simply ε-factor) of c if there is
some metric coloring rc : pP, dP q Ñ pN, dN q such that

sup
xPM

dN pcpxq,rcpπpxqqq ď ε.

That is, “up to ε” c “ rc ˝ π. Given M0 Ď M we say that π is an ε-factor of c in M0 if
π �M0 : M0 Ñ P is an ε-factor of c �M0, i.e., there is some metric coloring rc : P Ñ N such that
supxPM0 dN pcpxq,rcpπpxqqq ď ε.

2.1. The statements. Ramsey factors. As discussed above, given norms m, n on Fm and
Fn respectively, we regard Mn,m as a metric space by considering a n ˆ m-matrix A as the
particular representation of a linear operator TA in the unit bases of suitable normed spaces
pFm, mq and pFn, nq, and then by considering the corresponding operator norm.

2.1.1. Full rank matrices. Given a vector space V , let NV be the set of all norms on V , endowed
with the topology of pointwise convergence.

Proposition 2.2. When dimV ă 8, a compatible metric on NV is

ωpm, nq “ ωV pm, nq :“ log maxt}Id}pV,mq,pV,nq, }Id}pV,nq,pV,mqu,

that will be called the intrinsic metric on NV . Moreover, pNV , ωq has the Heine-Borel property,
that is every ω-bounded and closed subset of NV is compact.

Proof. Fix a linear basis pvkqkăd of V , and define the norm n1p
ř

kăd akvkq :“
ř

kăd |ak|. Let
us see first that ω is a metric on NV such that pNV , ωq has the Heine-Borel property. It
is a well-know and fundamental fact that the norms on a finite dimensional space V are all
equivalent, that is, given m, n P NV there is C ě 1 such that C´1npvq ď mpvq ď Cnpvq for
every v P V : it follows from the Heine-Borel Theorem (after identifying V with Fd via the basis
pvkqkăd) that the unit sphere SphpV, n1q :“ tv P V : n1pvq “ 1u is compact. Let m P NV . Since
mpvq ď

ř

kăd |ak|mpvkq ď pmaxkăd mpvkqqn1pvq, it follows that m : pV, n1q Ñ r0,8r is continuous,
so minn1pvq“1 mpvq “ K ą 0 exists. This means that given a nonzero v P V we have that
mpv{n1pvqq ě K, i.e. mpvq ě Kn1pvq. Hence m and n1 are equivalent, and consequently any two
norms on V are equivalent.

Let ω0pm, nq :“ maxt}Id}pV,mq,pV,nq, }Id}pV,nq,pV,mqu be the multiplicative version of ω. It follows
from the composition rule }T ˝ U} ď }T } ¨ }U} that ω0pm, pq ď ω0pm, nq ¨ ω0pn, pq, hence ω

satisfies the triangle inequality, and that ω is positive because 1 “ }Id}pV,mq,pV,mq ď }Id}pV,mq,pV,nq ¨
}Id}pV,nq,pV,mq, and consequently ω0pm, nq “ maxt}Id}pV,mq,pV,nq, }Id}pV,nq,pV,mqu ě 1. Also, if we
have ωpm, nq “ 0, then ω0pm, nq “ 1, and consequently, m “ n. Suppose that C Ď NV is
closed and bounded, and let C ą 0 be such that C is included in the ω-ball of center n1 and
radius C. Let pC :“ tm � BallpV, n1q : m P Cu. Note that mpvq ď exppCqn1pvq for every v P V

and m P C, so it follows that pC is a set of real-valued exppCq-Lipschitz functions defined on
the compact metric space pBallpV, n1q, dq, where dpv, wq :“ n1pv ´ wq. It follows that pC is
equicontinuous and pointwise bounded, so it follows from the Arzelà-Ascoli Theorem that pC
is compact. Let pmnqn be a sequence in C, set fn :“ mn � BallpV, n1q P pC for each n P N,
and let pfnlqlPN be a converging subsequence with limit f : BallpV, n1q Ñ r0,8r. By pointwise
convergence, it follows that fpv ` wq ď fpvq ` fpwq if v, w, v ` w P BallpV, n1q and that
fptvq “ |t|fpvq if v, tv P BallpV, n1q. Define now mpvq :“ n1pvq ¨ fpv{n1pvqq for every non-
zero v P V , and mp0q :“ 0. We check the subadditivity of m. Let v, w P V be such that
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v ‰ ´w (otherwise, mpv ` wq “ 0 ď mpvq ` mpwq trivially), and let λ ě 1 be such that
n1pvq, n1pwq ď λn1pv ` wq. We have that fppv ` wq{pλn1pv ` wqqq ď fpv{pλn1pv ` wqqq `

fpw{pλn1pv ` wqqq “ pn1pvq{pλn1pv ` wqqqfpv{n1pvqq ` pn1pwq{pλn1pv ` wqqqfpw{n1pwqq, or
in other words λn1pv ` wqfppv ` wq{pλn1pv ` wqqq ď mpvq ` mpwq. But then, mpv ` wq “

n1pv ` wqfppv ` wq{n1pv ` wqq “ λn1pv ` wqfppv ` wq{pλn1pv ` wqqq ď mpvq ` pwq. Similarly
one shows that mptvq “ |t|mpvq for every v P V and t P F. In particular we have that mpvq “ fpvq

if n1pvq ď 1. Also, given a nonzero v P V , mnpv{n1pvqq ě expp´Cq for every n, and hence,
mpvq ě expp´Cqn1pvq ą 0. This means that m P NV . Let us see that ω0pmnl , mq ÑlÑ8 1: Let
K ą 0 be such that n1pvq ď Kmpvq for every v P V . Given ε ą 0, let l0 be such that for
every v P V and every l ě l0 we have that |mnlpvq ´ mpvq| ď pε{Kqn1pvq, and consequently,
|mnlpvq ´ mpvq| ď εmpvq. From this it follows that p1 ´ εqmpvq ď mnlpvq ď p1 ` εqmpvq for every
v P V and l ě l0, and consequently ω0pmnl , mq ď maxt1 ` ε, 1{p1 ´ εqu “ 1{p1 ´ εq for every
l ě l0. Since ε ą 0 was arbitrary, we obtain that ω0pmnl , mq ÑlÑ8 1. Finally, since C is closed
for the ω-topology, m P C.

Let us see that ω0, hence ω, defines the topology of pointwise convergence. Suppose that
pmnqn and m are norms in V . It is easy to see from the definition of ω0 that if ω0pmn, mq ÑnÑ8 1,
then mn ÑnÑ8 m pointwise. Suppose now that mn ÑnÑ8 m pointwise, and let us see first that
tmnun is ω-bounded: Let n0 be such that |mnpvkq ´ mpvkq| ď 1 for every n ě n0 and k ă d. It
follows that for such n ě n0 and every v “

ř

kăd akvk we have that mnpvq ď
ř

kăd |ak|mnpvkq ď
ř

kăd |ak||mnpvkq ´ mpvkq| `
ř

kăd |ak|mpvkq ď p1`maxkăd mpvkqqn1pvq. Therefore, there is some
K ą 0 such that mnpvq ď Kn1pvq for all v P V . On the other hand, working towards a
contradiction, suppose that there is no L ą 0 such that n1pvq ď Lmnpvq for all v P V and
n P N. This means that for each l P N there exist nl P N and vl such that n1pvlq “ 1 and
mnlpvlq ă 1{l. Since BallpV, n1q is compact, without loss of generality, we may assume that pvlql
converges to some v with n1pvq “ 1, and that pnlql is strictly increasing or constant with value
n. None of the cases can happen: if pnlql is strictly increasing, then mpvq “ limlÑ8 mnlpvq ď
limlÑ8 mnlpvlq ` limlÑ8 mnlpv ´ vlq ď K limlÑ8 n1pv ´ vlq “ 0, and this is impossible since
v ‰ 0. If nl “ n for all l, then it follows that mnpvq “ limlÑ8 mnpvlq ď limlÑ8 1{l “ 0, again
impossible.

By the Heine-Borel property of pNV , ωq, it follows that every subsequence of pmnqn has a fur-
ther ω-convergent subsequence; all these limits must be m because by hypothesis pmnqn converges
to m. Hence pmnqn ω-converges to m. �

In particular, each closed ω-ball is compact. Given a normed space E “ pW, } ¨ }q, let NV pEq

be the collection of norms m on V such that there exists a linear isometry T : pV, mq Ñ E. In
general, NV pEq is not closed in NV , although in some natural cases is. We will write Nα to
denote NFα

Definition 2.3. Suppose that V is finite dimensional, E “ pW, } ¨ }q a normed space. Let

νV,E : LdimV pV,W q Ñ NV pEq

be the mapping that assigns to a 1-1 linear mapping T : V Ñ W the norm νV,EpT q on V ,
defined by pνV,EpT qqpxq :“ }T pxq}, that is, the norm on V that makes T an isometric em-
bedding. With a slight abuse of notation, we also write νk,pFα,}¨}q to denote the mapping
A P Mk

α,k ÞÑ νFk,pFα,}¨}qpTAq that assigns to a such matrix A the norm defined for each x P Fk
by pνk,EpAqqpxq :“ }A ¨ x}.

Given a finite dimensional normed space X “ pX, } ¨ }Xq and a normed space E “ pV, } ¨ }Eq,
we define on NXpEq ˆNXpEq the E-extrinsic function

BX,Epm, nq :“ inft}T ´ U}X,E : T P EmbppX, mq, Eq, U P EmbppX, nq, Equ.
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So, BX,Epm, nq computes the minimal distance dX,EpT,Uq between possible representations of
m and n, νX,EpT q “ m, νX,EpUq “ n. In general BX,E is not a compatible metric. Note that
BX,Epm, nq ą 0 for every m ‰ n. To see this, given ε ą 0 and x ‰ 0, choose T P EmbppX, mq, Eq
and U P EmbppX, nq, Eq such that }T ´ U}X,E ď ε{}x}X . It follows that |mpxq ´ npxq| “
|}T pxq} ´ }Upxq}| ď }pT ´Uqpxq} ď ε, and since ε ą 0 is arbitrary, we obtain that mpxq “ npxq.
This means that BX,E is a metric exactly when BX,E satisfies the triangle inequality. The
following is easy to prove.

Proposition 2.4. If BX,E is a compatible metric on NXpEq, then νX,E : pLdimXpX,Eq, dX,Eq Ñ

pNXpEq, BX,Eq is 1-Lipschitz. �

Recall that given a linear operator T : X Ñ Y between normed spaces X and Y ,

}T } “ mintλ ě 0 : T pBallpXqq Ď λ ¨ BallpY qu,

and when X is finite dimensional, let

r´1pT q “ mintλ ě 0 : BallpT pXqq Ď λ ¨ T pBallpXqqu,

that is well-defined: consider the quotient mapping rT : X{ kerT Ñ TX. Since TX is finite
dimensional, it is a Banach space, hence by the open mapping Theorem, it follows that rT is
an isomorphism, and it is not difficult to see that r´1pT q “ }U}, where U is the inverse of
rT . By definition, }T } ¨ r´1pT q ě 1, and when T is 1-1, r´1pT q “ }U}, where U : TX Ñ X

is the inverse operator of T , hence if T : X Ñ Y is an isomorphism, r´1pT q “ }T
´1}. Given

α, β P N Y t8u, and a norm m P N8, let Mk
α,βpm;λq be the collection of matrices in Mk

α,β such
that the corresponding linear operator TA : pFβ, mq Ñ pFα, mq satisfies that }TA}, r´1pTAq ď λ.

1
λ

BallpImTAq Ď TApBallpFβ, mqq Ď λBallpFα, mq.

Let also Mk
α,kpm;ăλq “

Ť

1ďµăλM
k
α,kpm, µq, that is, the matrices A PMk

α,k such }TA}, r´1pTAq ă

λ. Observe that Mk
α,βpm;ă1q “ H, and that the boundary Mk

α,kpm; 1q is the collection of matrices
A defining isometric embeddings TA : pFk, mq Ñ pF8, mq, that will be denoted by Eα,kpmq, and
Epmq :“

Ť

něm En,mpmq. The following is easy to prove, and highlights the interest of this
collection.

Proposition 2.5. Let R PMm
α,m.

a) The multiplication by R operator µR : pMk
m,k, dmq Ñ pMk

α,k, dmq, A ÞÑ µRpAq :“ R ¨A defines
an isometry if and only if R P Eα,mpmq.

b) If R P Eα,mpmq, then νk,pFα,mq ˝ µR “ νk,pFm,mq. �

Proof. a): Suppose that X is a normed space of finite dimension k, Y,Z normed spaces with
dimY ě k and suppose that U P LpY,Zq is such that the composition operator T P LkpX,Y q ÞÑ
U ˝ T P LkpX,Zq is an isometry with respect to the norm metrics. Let us prove that U must
be an isometry. Fix a non-zero vector y P Y . Let pxjqjăk be a normalized basis of X, and let
px˚j qjăk be its biorthogonal sequence. Let also pyjqjăk be a linearly independent sequence in Y
with y0 “ y. For each n ě 1, let Tnpxq “ f0pxqy ` p1{nq

řk´1
j“1 x

˚
j pxqyj , where f0 :“ x˚0{}x

˚
0}. It

is easy to see that Tn, p1{nqTn are 1´ 1. Then, }U ˝ Tn ´ U ˝ p1{nq ¨ Tn} ´ }U ˝ Tn} Ñn 0, and
}U ˝ Tn ´ U ˝ p1{nq ¨ Tn} ´ }Tn} “ }Tn ´ p1{nq ¨ Tn} ´ }Tn} Ñn 0, hence }U ˝ Tn} ´ }Tn} Ñn 0.
Since we have that }Tn} Ñn }f0}

˚}y}, }U ˝ Tn} Ñn }f0}
˚}Upyq} and }f0}

˚ “ 1, we obtain that
}Upyq} “ }y}. b) is trivial. �

Given a normed space E “ pF8, } ¨ }Eq, let NkpE;λq (NkpE;ăλq) be the closed (resp. open)
ball of NkpEq with respect to the multiplicative metric ω0 centered on the norm } ¨ }E in Fk
and with radius λ, i.e., NkpE;λq “ tn P NkpEq : ωpn, } ¨ }E � xujyjăkq ď log λu, similarly for
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NkpE;ăλq. In the next, recall that two metrics d1 and d2 on a set X are uniformly equivalent
when the identity Id : pX, d1q Ñ pX, d2q is an uniform homeomorphism.

Proposition 2.6. a) NkpE;λq “ νk,EpM
k
α,kp} ¨ }E ;λqq and NkpE;ăλq “ νk,EpM

k
α,kp} ¨ }E ;ăλqq.

b) If BX,E and ω are uniformly equivalent on ω-bounded subsets of NXpEq, then every ω-bounded
set is BX,E-totally bounded, thus, the BpFk,mq,E-completion of NkpE;λq and NkpE;ă λq are
compact.

Proof. b): Suppose that A Ď NXpEq is ω-bounded. Since pNX , ωq has the Heine-Borel property,
A is ω-totally bounded. BX,E is uniformly equivalent to ω onA, soA is BX,E-totally bounded. �

Definition 2.7 (Ramsey factors for full-rank matrices). Let m be a norm on F8, set Eα :“
pFα, mq for every α ď 8. We say that m produces Ramsey factors for compact colorings of full
rank matrices, when

i) BEk,E8 is a compatible metric on NkpE8q uniformly equivalent to ω on ω-bounded sets.
ii) Given k,m P N, ε ą 0, λ ą 1 and a compact metric space pK, dKq there is n P N such that

for every 1-Lipschitz coloring c : pMk
n,kpm;λq, dmq Ñ pK, dKq there is R P En,mpmq such that

the restriction νFk,E8 : Mk
8,kpm;ăλq Ñ NkpE8;ăλq is an ε-factor of c in R ¨Mk

m,kpm;ăλq;
that is, there is a 1-Lipschitz coloring rc : pNkpE8;ăλq, BEk,E8q Ñ pK, dKq such that
dKpcpR ¨Aq,rcpνppAqqq ď ε for every A PMk

m,kpm;ăλq.

Theorem 2.8 (p-Factorization of colorings of full rank matrices over R, C). For 1 ď p ď 8,
p R 2N` 4, the p-norm } ¨ }p P N8 produces Ramsey factors for compact colorings of full rank
matrices.

This result is a consequence of a Ramsey-like property of the class of finite dimensional
subspaces of the spaces `p for those values of p. This property is called the steady approximate
Ramsey property pSARP`q (see Definition 3.1), and, in fact, it characterizes the norms on F8
that produce Ramsey factors for compact colorings of full rank matrices. We explain this in
Theorem 3.3.

2.1.2. Grassmannians. Given a normed space E “ pV, } ¨ }Eq the k-Grassmannian Grpk, V q of
V is naturally a topological space, as it can be identified with the subspace of the equivalence
classes of linearly independent sequences pxjqjăk in the topological quotient of Ek by the relation
pxjqjăk „ pyjqjăk iff xxjyjăk “ xyjyjăk. If in addition E is separable, this turns Grpk,Eq :“
Grpk, V q into a Polish space. A natural compatible metric is the gap (or opening) metric (see
[13]), Λk,EpU,W q defined as the Hausdorff distance, with respect to the norm metric in E,
between the unit balls BallpU, } ¨ }Eq and BallpW, } ¨ }Eq, that is,

Λk,EpU,W q :“maxt max
uPBallpU,}¨}Eq

d}¨}E pu,BallpW, } ¨ }Eqq, max
wPBallpW,}¨}Eq

d}¨}E pw,BallpU, } ¨ }Eqqu “

“maxt max
uPBallpU,}¨}Eq

min
wPBallpW,}¨}Eq

}u´ w}E , max
wPBallpW,}¨}Eq

min
uPBallpU,}¨}Eq

}w ´ u}Eu.

(2)

Since Minkowski’s Theorem states that every compact and convex subset K of a finite dimen-
sional vector space is the convex hull of its extreme points EpKq, we can rewrite the opening
metric as

Λk,EpU,W q “ maxt max
uPSphpU,}¨}Eq

d}¨}E pu,BallpW, } ¨ }Eqq, max
wPSphpW,}¨}Eq

d}¨}E pw,BallpU, } ¨ }Equ “

“ maxt max
uPEpBallpU,}¨}Eqq

d}¨}E pu,BallpW, } ¨ }Eqq, max
wPEpBallpW,}¨}Eqq

d}¨}E pw,BallpU, } ¨ }Equ

(3)
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where SphpXq :“ tx P X : }x}X “ 1u is the unit sphere of a normed space X. Let GLpV qy NV

be the canonical action

p∆ ¨ mqpvq :“ mp∆´1pvqq

for every v P V . Notice that the intrinsic metric ω is invariant under this action. Let BV :“
NV {GLpV q be the quotient space. Since ω is invariant under the action, it follows that the
quotient of ω,

rωprms, rnsq :“ inf
∆,ΓPGLpV q

ωp∆ ¨ m,Γ ¨ nq “ inf
∆PGLpV q

ωp∆ ¨ m, nq (4)

defines a compatible metric on the quotient BV , called the quotient metric: First of all, let
us see that the classes rms are closed: For suppose that n is in the closure of rms, and choose
p∆jqjPN in GLpV q such that ωp∆j ¨ m, nq Ój 0. Observe that }∆}pV,mq,pV,nq “ }Id}pV,mq,pV,∆´1¨nq “

}Id}pV,∆¨mq,pV,nq, so ωp∆j ¨ m, nq “ log maxt}∆j}pV,mq,pV,nq, }∆´1
j }pV,nq,pV,mqu. Fix a basis pvjqjăk of

V . Let K ą 0 be such that for large enough j we have that t∆jpvlqulăk Ď K ¨ BallpV, nq, so
we can find L “ tξjuj Ď N infinite such that p∆ξj pvlqqjPN converges to wl for every l ă k.
Define ∆p

ř

jăk ajvjq :“
ř

jăk ajwj . Then ∆j ÑjPL ∆ pointwise, and for v P V , np∆pvqq “
limjÑ8 np∆ξj pvqq ě limjÑ8p}∆´1

ξj
}pV,nq,pV,mqq

´1mpvq ě mpvq. This means that ∆ P GLpFkq.
Similarly one shows that np∆pvqq ď mpvq for every v. Hence, n “ ∆ ¨ m.

In a similar way one shows that the infimum in (4) is a minimum, so if rωprms, rnsq “ 0, then
there is ∆ P GLpV q such that ωp∆ ¨ m, nq “ 0, i.e. n “ ∆ ¨ m.

In addition, BV has the Heine-Borel property, because pNV , ωq has this property. It is a
fundamental fact, called as Auerbach Lemma (see [1, Problem 12.1]) that given a norm m on V
of dimension k there is a linear transformation ∆ such that p∆pujqqjăk is an Auerbach basis of
pV, mq, i.e., a normalized sequence such that mp

ř

jăk aj∆pujqq ě maxjăk |aj | for every sequence
of scalars pajqjăk. Given two norms m, n P NV , let ∆,Γ P GLpV q be such that p∆pujqqjăk
and pΓpujqqjăk are Auerbach bases of pV, mq and of pV, nq, respectively. It follows that given
v “

ř

jăk ajuj , p∆´1 ¨ mqp
ř

jăk ajujq “ mp
ř

jăk aj∆pujqq ď p
ř

jăk mp∆pujqqqmaxjăk |aj | ď
knp

ř

jăk ajΓpujqq “ kpΓ´1 ¨ npvqq and similarly, pΓ´1 ¨ mqpvq ď kp∆´1 ¨ nqpvq. In other words,
ωp∆´1 ¨ m,Γ´1 ¨ nq ď log k, consequently the diameter of BV is at most log k. Since pBV , rωq has
the Heine-Borel property, it is compact, called the Banach-Mazur compactum. The quotient
metric rω is 2-Lipschitz equivalent to the well-known Banach-Mazur metric

dBMprms, rnsq :“ log inf
∆PGLpV q

}∆}pV,mq,pV,nq ¨ }∆´1}pV,nq,pV,mq. (5)

To see this, we rewrite dBMprms, rnsq “ log inf∆PGLpV q }Id}pV,∆¨mq,pV,nq¨}Id}pV,nq,pV,∆¨mq. Since ω0p∆¨
m, nq ě 1 (because ω “ logω0 is a metric), it follows that }Id}pV,∆¨mq,pV,nq ¨}Id}pV,nq,pV,∆¨mq ď ω0p∆¨
m, nq2, and consequently, dBMprms, rnsq ď log inf∆PGLpV qpω0p∆ ¨ m, nq2q “ 2rωprms, rnsq. Now given
∆ P GLpV q, we define Γ :“ ∆{}∆}pV,mq,pV,nq and we have that maxt}Γ}pV,mq,pV,nq, }Γ´1}pV,nq,pV,mqu “

maxt1, }∆}pV,mq,pV,nq ¨ }∆´1}pV,nq,pV,mqu “ }∆}pV,mq,pV,nq ¨ }∆´1}pV,nq,pV,mq, hence, taking the corre-
sponding infimums we obtain that rωprms, rnsq ď dBMprms, rnsq.

Notice that the infimum in (5) is also a minimum, as for rω. Let BV pEq denote the Banach-
Mazur classes corresponding to norms in NV pEq, or, in other words, the isometric types of finite
dimensional subspaces of E of the same dimension as V . In general, BV pEq is not compact,
although obviously BV pEq is compact, since BV is compact. We write Bk, BkpEq and Grpk,Eq
to denote BFk , BFkpEq and Grpk, V q, respectively.

Definition 2.9. Let τk,E : Grpk,Eq Ñ BkpEq be the mapping that assigns to each k-dimensional
normed subspace W of E the isometric type of pW, } ¨ }Eq.
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In other words, for W P Grpk,Eq, τk,EpW q “ rνk,EpT qsBM for some 1-1 linear function
T : Fk ÑW such that ImT “W . We define the E-Kadets mapping γk,E on BkpEq ˆBkpEq by

γk,Eprms, rnsq :“ inftΛk,EpU,W q : U,W P Grpk,Eq, τk,EpUq “ rms, τk,EpW q “ rnsu.

Definition 2.10. γk,E is the E-Kadets metric when it is uniformly equivalent to dBM in BkpEq.

In the literature the Kadets metric γ corresponds to the metric γE for Grassmannians of
any universal space E for separable Banach spaces, for example for the space of continuous
functions on the unit interval Cr0, 1s, or for the Gurarij space G (see Appendix A). For more
information on the Kadets metric we refer the reader to [13]. In general, there is always the
following relation between γk,E and dBM.

Proposition 2.11. For every normed space E, every k ě 2 and every V,W P Grpk,Eq,
dBMpτk,EpV q, τk,EpW qq ď 3k log kΛk,EpV,W q.

Proof. Suppose first that Λk,EpV,W q ě p3kq´1. Since the diameter of Bk is at most logpkq,
we obtain that dBMpτk,EpV q, τk,EpW qq ď logpkq ď 3k logpkqΛk,EpV,W q. Suppose now that
Λk,EpV,W q ă 1{p3kq. Let pxjqjăk be an Auerbach basis of pV, } ¨ }Eq. For each j ă k, let
yj P BallppW, } ¨ }Eqq be such that }xj ´ yj}E ď Λk,EpV,W q. Since

}
ÿ

jăk

λjyj}E ě}
ÿ

jăk

λjxj}E ´ }
ÿ

jăk

λjpxj ´ yjq}E ě }
ÿ

jăk

λjxj}E ´ kΛk,EpV,W qmax
jăk

|λj | ě

ěp1´ kΛk,EpV,W qq}
ÿ

jăk

λjxj}E ą 0. (6)

we obtain that pyjqjăk is a basis of W and T : V Ñ W , T pxjq :“ yj , j ă k is invertible. In
addition, from (6) we have that

}T }pV,}¨}Eq,pW,}¨}Eq ď 1` kΛk,EpV,W q and }T´1}pW,}¨}Eq,pV,}¨}Eq ď
1

1´ kΛk,EpV,W q
We use that p1` xq{p1´ xq ď expp9x{4q if, in particular, 0 ď x ď 1{3, and that log k ě 3{4 for
k ě 2 to conclude that

dBMpτk,EpV q, τk,EpW qq ď log
`

}T }pV,}¨}Eq,pW,}¨}Eq ¨ }T
´1}pW,}¨}Eq,pV,}¨}Eq

˘

ď

ď
9
4kΛEpV,W q ď 3k log kΛk,EpV,W q.

�

Proposition 2.12. If γk,E is Kadets, τk,E : pGrpk,Eq,ΛEq Ñ pBkpEq, γk,Eq is 1-Lipschitz. �

Given E “ pFα, mq, we write Grmpk,Fαq to denote the set of k-dimensional subspaces W of
Fα so that pW, mq is isometric to pFk, mq, i.e., τk,EpW q “ rm � xujyjăks. The next explains the
interest of Grmpk,Fαq and it is proved similarly to Proposition 2.5.

Proposition 2.13. Fix k ď m and W P Grpm,Eq.
a) An invertible linear operator θ : W Ñ Fm defines an isometry Θ : pGrpk,W q,Λk,Eq Ñ
pGrpk,Fmq,Λk,Eq, V ÞÑ θpV q, if and only if θ : pW, mq Ñ pFm, mq is an isometry.

b) τk,pW,mq “ τk,E � Grpk,W q.

Definition 2.14 (Ramsey factors for Grassmannians). A norm m on F8, E “ pF8, mq, produces
Ramsey factors for compact colorings of Grassmannians when

i) γk,E is uniformly equivalent to dBM on BkpEq.
ii) For every k P N, ε ą 0, and every compact metric pK, dKq there is n such that for every

1-Lipschitz c : pGrpk,Fnq,Λk,Eq Ñ pK, dKq there is V P Grmpm,Fnq such that τk,E is an
ε-factor of c in Grpk, V q.
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Remark 2.15. The definition of Kadets demands that γk,E is uniform equivalent with dBM
on BkpEq, not only that they are topologically equivalent. In this way, the metric space
pBkpEq, γk,Eq is pre-compact, that is its metric completion is compact, as it is the topologi-
cal closure of BkpEq in Bk. This implies that τk,E : pGrpk,Eq,ΛEq Ñ {pBkpEq, γk,Eq is a compact
coloring and ii) in Definition 2.14 can be restated as:
ii’) For every k,m P N, ε ą 0, and every compact metric pK, dKq there is n such that for every

1-Lipschitz c : pGrpk,Fnq,Λk,Eq Ñ pK, dKq there is V P Grmpm,Fnq and a 1-Lipschitz
rc : {pBkpEq, γk,Eq Ñ pK, dKq such that supWPGrpk,V q dKprcpτk,EpW qq, cpW qq ď ε.

Theorem 2.16 (Factorization of Grassmannians over R, C). For 1 ď p ď 8, p R 2N ` 4, the
p-norm } ¨ }p P N8 produces Ramsey factors for compact colorings of Grassmannians.

Geometrically, the previous result states that restrictions of compact colorings of Grassman-
nians depend on shapes (or more precisely on the equivalence classes of shapes) of their unit
balls. This result, like the corresponding one for full rank matrices in Theorem 2.8, is a conse-
quence of the steady approximate Ramsey property of the family of finite dimensional subspaces
of the those `p-spaces, done in Theorem 3.3 a).

The following statement can be considered as a version of the Graham-Leeb-Rothschild The-
orem for the fields R,C. Recall that `8p is the vector space F8 of eventually zero sequences
pajqjPN in F endowed with the p-norm.

Corollary 2.17 (Graham-Leeb-Rothschild for R, C). For every 1 ď p ď 8, p R 2N` 4, every
k,m P N, every ε ą 0 and every compact metric space pK, dKq there is n such that every compact
coloring c : pGrpk,Fnq,Λk,`np q Ñ pK, dKq ε-stabilizes on Grpk,W q for some W P Grpm,Fnq.

Proof. It is a well-known fact that for every ε ą 0 and m P N there is some r0 such that
for every r ě r0 the space `rp has a subspace X of dimension m that is 1 ` ε-isomorphic to
`m2 , that is, there is an isomorphism T : X Ñ `m2 such that }T } ¨ }T´1} ď 1 ` ε. (see for
example, [16, Section 5]). Fix now the parameters p, k,m, ε ą 0 and pK, dKq. Let δ ą 0
be such that if rms, rns P Bkp`8p q are such that dBMprms, rnsq ă δ then γk,`8p prms, rnsq ď ε{3.
Let r be such that `rp contains a subspace of dimension m that is p1 ` δ{2q-isomorphic to
`m2 . Let n be the “Ramsey number” corresponding to the parameters k, r, ε{3 and K. We
claim that n works: for suppose that c : pGrpk,Fnq,Λk,Eq Ñ pK, dKq is 1-Lipschitz. Let
V P Grpr,Fnq be isometric to `rp and a 1-Lipschitz mapping rc : pBkp`8p q, γk,`8p q Ñ pK, dKq

such that supZPGrpk,V q dKprcpτk,`8p pZqq, cpZqq ď ε{3. Let W Ď V be a m-dimensional subspace
p1`δ{2q-isomorphic to `m2 . Fix Y,Z P Grpk,W q. Both spaces are obviously p1`δ{2q-isomorphic
to `k2, so it follows that

dBMpτk,`8p pY q, τk,`8p pZqq ď dBMpτk,`8p pY q, r} ¨ }2sq ` dBMpτk,`8p pZq, r} ¨ }2sq ď δ.

By the choice of δ, we obtain that γk,`8p pτk,`8p pY q, τk,`8p pZqq ď ε{3. Hence

dKpcpY q, cpZqq ďdKprcpτk,`8p pY qq, cpY qq ` dKprcpτk,`8p pZqq, cpZqq ` dKprcpτk,`8p pY qq,rcpτk,`8p pZqqq

ď
2ε
3 ` γk,`8p pτk,`8p pY q, τk,`8p pZqq ď ε.

�

Remark 2.18. Recall that Dvoretzky’s Theorem asserts that any finite-dimensional normed
space X of dimension r contains 1 ` ε-isomorphic copies of `m2 with m proportional to logprq
and to a fixed function of ε (see [1, Theorem 12.3.6]). This implies that the following ver-
sion of Corollary 2.17 remains true for every norm on F8: For every norm m on F8, ev-
ery k,m P N, every ε ą 0 and every compact metric space pK, dKq there is n such that
every compact coloring c : pGrpk,Fnq, d1BMq Ñ pK, dKq ε-stabilizes on Grpk,W q for some
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W P Grpm,Fnq. Here we are considering the pseudometric d1BM on Grpk,F8q defined by
d1BMpV,W q :“ dBMpτk,pF8,mqpV q, τk,pF8,mqpW qq. Its proof is similar to that of the previous corol-
lary, skipping the part relating the Banach-Mazur metric and the corresponding Kadets metric.

2.1.3. Square matrices. Given a vector space V , let V ˚ be its (algebraic) dual, the vector space
of linear functions f : V Ñ F; given ∆ P GLpV q, we denote by ∆˚ P GLpV ˚q the adjoint
operator of ∆, defined by the rule p∆˚pfqqpvq :“ fp∆pvqq for every f P V ˚ and every v P V . In
the particular case of V “ Fn, we have that the biorthogonal sequence pu˚j qjăn of the unit basis
pujqjăn defined by u˚j ppakqkănq :“ aj is a basis of pFnq˚ and

ř

jăn ajuj ÞÑ
ř

jăn aju
˚
j is the

canonical identification of pFnq˚ with Fn. The sequence pu˚j qjăn will be called the unit basis of
pFnq˚. It follows easily that if A “ paijqi,jăn is the matrix representing ∆ P GLpFnq in the unit
basis of Fn, then ∆˚ is represented in the corresponding unit basis of pFnq˚ by the transpose
A˚ “ pajiqi,jăn of A. A similar result is true in any finite dimensional space by replacing the
unit basis by a given basis and its biorthogonal.

If in addition X “ pV, mq is a normed space, X˚ will denote the (normed) dual space LpX, pF, |¨
|qq, that is, the vector space of continuous linear functionals f : V Ñ F endowed with the dual
norm m˚pfq :“ supmpxqď1 |fpxq|.

Let GLpV qy NV ˚ be the canonical action

p∆ ¨ nqpfq :“ np∆˚pfqq

for f P V ˚. Observe that the dual mapping ¨˚ : pNV , ωq Ñ pNV ˚ , ωq is a GLpV q-equivariant
isometry, that is, given m P NV , p∆ ¨ mq˚ “ ∆ ¨ m˚. Let GLpV qy NV ˚ ˆNV be the action

∆ ¨ pm, nq :“ p∆ ¨ m,∆ ¨ nq

and let DV be the quotient space pNV ˚ ˆNV q{{GLpV q. With the compatible metric

ω2ppm, nq, pp, qqq :“ ωpm, pq ` ωpn, qq

the product NV ˚ ˆ NV has the Heine-Borel property, so DV with the corresponding quotient
metric rω2,

rω2prpm, nqs, rpp, qqsq “ inf
∆PGLpV q

ω2p∆ ¨ pm, nq, pp, qqq

also has this property. Similarly to the case of dBM and of rω the infimum defining rω2 is in fact
a minimum. Given a normed space E, let DV pEq :“ pNV ˚pEq ˆ NV pEqq{{GLpV q. Its orbits
will be denoted by rms “ rpm0, m1qs. In the next E :“ pFα, } ¨ }Eq and Dk, DkpEq denote DFk

and DFkpEq, respectively.

Definition 2.19. Let ν2
k,E : Mk

α Ñ DkpEq be the function that assigns to an α-squared matrix A
of rank k, the class GLpFkq-orbit of the pair pνk,EpBq, νk,EpCqq for B,C PMk

α,k with A “ B ¨C˚.

The fact that ν2
k,E is well defined follows from the full-rank factorization of matrices.

Proposition 2.20. rpνpFkq˚,EpT0q, νFk,EpT1qqs “ tpνpFkq˚,EpU0q, νFk,EpU1qq : U0 ˝U
˚
1 “ T0 ˝T

˚
1 u.

Proof. If U0, U1 : Fk Ñ E are linear operators of rank k then T0 ˝ T
˚
1 “ U0 ˝ U

˚
1 if and only if

there is some ∆ P GLpFkq such that U0 “ T0 ˝∆´1 and U1 “ T1 ˝∆˚. �

We define on DkpEq ˆDkpEq the function dk,E

dk,Eprms, rnsqq :“ inf
T,U
}T ´ U}E˚,E

where the infimum is over bounded linear mappings T,U : E˚ Ñ E of rank k admitting
decompositions T “ T0˝T

˚
1 and U “ U0˝U

˚
1 with T0, U0 : pFkq˚ Ñ E and T1, U1 : Fk Ñ E of rank

k for j “ 0, 1 and such that pνpFkq˚,EpT0q, νFk,EpT1qq P rms and pνpFkq˚,EpU0q, νFk,EpU1qq P rns.
The following is easy to prove.
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Proposition 2.21. If dk,E is a metric on DkpEq, then ν2
k,E : pMk

α, dE˚,Eq Ñ pDkpEq, dk,Eq is
1-Lipschitz. �

Given a norm m P NFα , let Mk
αpm;λq be the collection of A PMk

α such that }TA}, r´1pTAq ď λ,
where TA : ppFαq˚, m˚q Ñ pFα, mq is the linear operator TAp

ř

j aju
˚
j q “ A ¨ pajqj . The next is the

version of Proposition 2.5 for square matrices.

Proposition 2.22. Let L PMm
α,m and R PMm

m,α.
a) The multiplication by L and R function µL,R : pMk

m, dE˚,Eq Ñ pMk
α, dE˚,Eq, A P Mk

m ÞÑ

µL,RpAq :“ L ¨ A ¨ R P Mk
α is an isometry if and only if there is some α ‰ 0 such that

αL, p1{αqR˚ P Eα,mp} ¨ }Eq.
b) If L,R˚ P Eα,mp} ¨ }Eq, then ν2

k,pFα,}¨}Eq ˝ µL,R “ ν2
k,pFm,}¨}Eq. �

Proof. Suppose that X,Y, Z are finite dimensional spaces with k ď dimX ď dimY, dimZ .
Let L P LpX,Zq and R P LpY,X˚q be such that T P LkpX˚, Xq ÞÑ L ˝ T ˝ R P LpY, Zq is an
isometry. Proceeding as in the proof of Proposition 2.5, we fix a normalized basis pxjqjăl of X
such that R˚px0q ‰ 0, and let px˚j qjăl be its biorthogonal sequence in X˚. For a given p P X,
p ‰ 0, let ppjqjăk be a linearly independent sequence in X with p0 “ p. For each n ě 1, let
Tn, T : X˚ Ñ X be defined for x˚ P X˚ by Tnpx

˚q “ x˚px0qp ` p1{nq
řk´1
j“1 x

˚pxjqpj . Then
Tn, p1{nqTn P LkpX˚, Xq, because xTnpx˚j qyjăk “ xpjyjăk, and }L ˝Tn ˝R´L ˝ p1{nq ¨Tn ˝R}´
}L˝Tn˝R} Ñn 0, and }L˝Tn˝R´L˝p1{nq¨Tn˝R}´}Tn} “ }Tn´p1{nq¨Tn}´}Tn} Ñn 0, hence
}L ˝Tn ˝R}´ }Tn} Ñn 0. We have that }Tn} Ñn }x0}}p} and }L ˝Tn ˝R} Ñn }R

˚px0q}
˚}Lppq}.

This shows that }Lppq} “ p1{}R˚px0q}
˚q}p}, and since p ‰ 0 was arbitrary, we obtain that αL

is an isometric embedding for α “ }R˚px0q}
˚. Observe that T P LkpX˚, Xq ÞÑ pL ˝ T ˝ Rq˚ “

R˚ ˝ T ˚ ˝ L˚ and T P LkpX˚, Xq ÞÑ T ˚ P LkpX˚, Xq are isometries, so T ÞÑ R˚ ˝ T ˝ L˚ is an
isometry, and we have just proved that there is β ‰ 0 such that βR˚ is an isometric embedding.
Finally choosing T ‰ U P LkpX˚, Xq, we have that }T´U} “ }L˝T ˝R´L˝U ˝R} “ αβ}T´U}

hence αβ “ 1.b) is trivial. �

Given λ ě 1, let
Dkpλq :“trpm, nqs P Dk : ωpFkq˚pm, n˚q ď log λu,

Dkpăλq :“trpm, nqs P Dk : ωpFkq˚pm, n˚q ă log λu
and let DkpE;λq :“ Dkpλq XDkpEq, and DkpE;ăλq :“ Dkpăλq XDkpEq.

Proposition 2.23. a) Dkpλq and Dkpăλq are well defined.
b) Dkpλq is compact.
c) DkpE;λq “ ν2

k,EpM
k
αp} ¨ }E ;λqq and DkpE;ăλq “ ν2

k,EpM
k
αp} ¨ }E ;ăλqq.

Proof. a) follows from the fact that for ∆ P GLpFkq we have that ωpFkq˚p∆ ¨ m, p∆ ¨ nq˚q “
ωpFkq˚p∆ ¨ m,∆ ¨ n˚q “ ωpFkq˚pm, n

˚q. b): It is clear that Dkpλq is closed, so by the Heine-Borel
property of pDk, rω2q, we just have to prove that Dkpλq is rω2-bounded: Fix rpm, nqs, rpp, qqs P
Dkpλq, let ∆ P GLpFkq be such that ωFkp∆ ¨n, qq ď logpkq. Then it follows that ωpFkq˚p∆ ¨m, pq ď
ωpFkq˚p∆ ¨ m,∆ ¨ n˚q ` ωpFkq˚p∆ ¨ n˚, q˚q ` ωpFkq˚pp, q

˚q ď 2 log λ ` ωFkp∆ ¨ n, qq ď logpkλ2q. c)
will be proved in Lemma 3.13. �

Definition 2.24 (Ramsey factors for square matrices). A norm m on F8 produces Ramsey
factors for compact colorings of square matrices if

i) dk,E8 is a compatible metric on DkpEq uniformly equivalent to ω2 on ω2-bounded sets.
ii) Given k,m P N, real numbers ε ą 0, λ ě 1, and a compact metric space pK, dKq, there is

n P N such that for every 1-Lipschitz coloring c : pMk
npm;λq, dE˚8,E8q Ñ pK, dKq there are

R0, R1 P En,mpmq such that the restriction ν2
k,E8

: Mk
8pm;ăλq Ñ DkpE8;ăλq is an ε-factor

of c in R0 ¨M
k
mpm,ăλq ¨R

˚
1 .
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Theorem 2.25 (Factorization of colorings of square matrices over R, C). For 1 ď p ď 8,
p R 2N ` 4, the p-norm } ¨ }p P N8 produces Ramsey factors for compact colorings of square
matrices.

This result is again a consequence of the steady approximate Ramsey property of the family
of finite dimensional subspaces of the `p-spaces for p R 2N` 4, done in Theorem 3.3 a).

2.1.4. Uniqueness. We see now how when the metric on matrices/Grassmannians is fixed there
are not so many options of being a Ramsey factor. Suppose that m P N8, k P N and λ ą 1. A
pk, m, λq-Ramsey factor is a pair pµ,Aq where µ : pMk

8,kpm;ăλq, dmq Ñ pKµ, dµq is a 1-Lipschitz
coloring to a compact metric space pKµ, dµq, A Ď Epmq, and

i) The image of µ is dense in Kµ.
ii) µpRAq “ µpAq for every R P AXMm

n,m and A PMk
m,kpm;λq.

iii) For every m, ε ą 0 and every compact metric pL, dLq there is n P N such that if c :
pMk

n,kpm;λq, dmq Ñ pL, dLq is a 1-Lipschitz coloring then there is some R P A such that the
restriction µ : R ¨Mk

m,kpm;ăλq Ñ pKµ, dµq is an ε-factor of c in R ¨Mk
m,kpm;ăλq.

Suppose that m produces Ramsey factors for full rank matrices and set Eα :“ pFα, mq for α ď 8.
We have that νFk,E8pMk

8,kpm;ăλqq “ NkpE;ăλq is BEk,E8-totally bounded: This is because
BEk,E8 and ω are, by hypothesis, uniformly equivalent to ω on NkpE8;ăλq, and this set
is ω-totally bounded because is an ω-bounded set of Nk. This implies that the completion

{NkpE8;ăλq is a compact space. Then it is obvious from the definition of producing Ramsey
factors that νFk,E8 : Mk

8,kpm;ăλq Ñ {NkpE8;ăλq is a pk, m, λq-Ramsey factor, and in fact is the
minimal one.

Proposition 2.26. Suppose that m produces Ramsey factors for full rank matrices, and suppose
that pµ,Aq is a pk, m, λq-Ramsey factor.
a) There is some surjective 1-Lipschitz mapping θ : Kµ Ñ

{NkpE8;ăλq such that νFk,E8 “ θ˝µ.
b) If A “ Epmq, then there is a surjective isometry θ : Kµ Ñ

{NkpE8;ăλq such that νFk,E8 “
θ ˝ µ.

Proof. a): For each integer m we can find 1-Lipschitz mappings θm : pKµ, dµq Ñ {NkpE8;ăλq
and Rm P Enm,mpmq such that BFk,E8pθmpµpRm ¨ Aqq, νFk,E8pRm ¨ Aqq ď 1{2m for every A P

Mk
m,kpm;ăλq. Since A Ď Epmq, by the coherence properties of µ and νFk,E8 , we obtain that

BFk,E8pθmpµpAqq, νk,E8pAqq ď 1{2m for every A PMk
m,kpm;ăλq. (7)

Given A PMk
8,kpm;ăλq, set x :“ µpAq, and let n be such that A PMn,k. Then we know from (7)

that pθmpµpAqqqměn is a Cauchy sequence, and let θpxq P {NkpE8;ăλq be its limit. Notice that
θpµpAqq “ νFk,E8pAq, so, since νFk,E8pMk

8,kpm;ăλqq is dense in {NkpE8;ăλq, we can conclude
that θ is onto. b): proceeding similarly as in a), now using the hypothesis A “ Epmq, one can
produce a surjective 1-Lipschitz mapping % : {NkpE8;ăλq Ñ Kµ such that µ “ %˝νFk,E8 . From
a) we can find a 1-Lipschitz mapping such that θ : Kµ Ñ

{NkpE8;ăλq such that νFk,E8 “ θ ˝µ.
Hence, µ “ % ˝ θ ˝ µ, and since µ has dense range, it follows that p “ % ˝ θppq for every p P Kµ,
and consequently θ is an isometry. �

With the obvious definitions of Ramsey factors for Grassmannians and for square matrices,
the corresponding statements on τk,E8 and ν2

k,E8
are also true.

Remark 2.27. For some norms m, for example the p-norms, the completion {NkpE;ăλq is exactly
NkpE;λq. A sufficient condition is that for every finite dimensional subspaces X and Y of E8
there is a finite dimensional subspace Z of E8 that has isometric copies X0 and Y0 of X and
Y , respectively, such that X0 X Y0 “ t0u.
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3. The proofs: Approximate Ramsey properties and extreme amenability

In Ramsey theory, the usual strategy to prove that a list of colorings is the canonical one is,
given a coloring of a class of embeddings, use the Ramsey property for an appropriate good class
of embeddings and an enlarged number of colors that take now into account the transformation
necessary to make an arbitrary embedding a good one. This is exactly what we did for full
rank matrices over a finite field. On the approximate case, one may follow the same direct
approach and obtain similar results to the ones we presented, but now obliged to deal with
several approximation arguments that make the proofs somehow unnecessarily complicated.
Instead, our approach is to apply a topological principe that is equivalent to a strong version
of an approximate Ramsey property, and that makes the computations much more clear. This
is the extreme amenability of the group of linear isometries of appropriate Banach spaces that
locally are like `8p , for p R 2N ` 4. We introduce some relevant terminology and concepts.
Recall that a Banach space is a complete normed space. Given Banach spaces X “ pX, } ¨ }Xq

and Y “ pY, } ¨ }Y q, and given δ ě 0, let EmbδpX,Y q be the collection of all linear functions
T : X Ñ Y such that p1`δq´1}x}X ď }T pxq}Y ď p1`δq}x}X . Notice that when dimX “ k ă 8

this definition corresponds to Lk1`δpX,Y q presented before. We endow EmbδpX,Y q with the
norm metric }T ´ U}. The following concept was introduced in [6, Definition 5.1] (see also [3]
,[4]).

Definition 3.1. A family G of finite dimensional normed spaces has the Steady Approximate
Ramsey Property` pSARP`q when for every k P N and every ε ą 0 there is δ :“ δpk, εq ą 0 such
that if X,Y P G and dimX “ k, then there exists Z P G such that every 1-Lipschitz coloring
c : EmbδpX,Zq Ñ r0, 1s ε-stabilizes on γ ˝ EmbδpX,Y q for some γ P EmbpY,Zq.

The pSARP`q of the classes t`npun can be seen as a multidimensional Borsuk-Ulam principle
(see [6, §5.1.1] for more information). Also, the pSARP`q of a family F is a strong form of
amalgamation for F : recall that F is an amalgamation class when t0u P F and for every ε ą 0
and k P N there is δ ą 0 such that if X P F has dimension k, Y, Z P F , and γ P EmbδpX,Y q, η P
EmbδpX,Zq, then there are V P F , i P EmbpY, V q and j P EmbpZ, V q such that }i˝γ´j˝η} ď ε.
It is not difficult to see that if F has the pSARP`q then it is an amalgamation class (see [6,
Proposition 5.7] and [4, Claim 2.13.1] for a stable version of it).

To an amalgamation class G it corresponds a unique separable “generic” Banach space E
whose family of finite dimensional substructures, denoted by AgepEq, is minimal containing G.
This is the content of the Fräıssé correspondence on the category of Banach spaces. We write
GE to denote the class of subspaces of E that are isometric to some element of G, and GĎ to
denote the class of subspaces of elements of G; let G” be the class of those spaces X being
isometric to some element of G, and we say that G is hereditary if Y P G, and EmbpX,Y q ‰ H,
then X P G”. Finally, G ĺ H means that every space in G is isometric to some element of H,
and G ” H to denote that G ĺ H ĺ G. Note that if G ” H, then G has the pSARP`q (is an
amalgamation class) if and only if H has the pSARP`q (resp. is an amalgamation class).

Theorem 3.2 (Fräıssé correspondence; [4], [6]). Let G be a class of finite dimensional normed
spaces.

a) If G is an amalgamation class, then there is a unique separable Banach space E, called the
G-Fräıssé limit, and denoted by FLim G, such that GE

Ď is ΛE-dense in AgepEq and E is
Fräıssé, that is for every ε ą 0 and k P N there is δ ą 0 such that the natural action
IsopEq y EmbδpX,Eq is ε-transitive for every X P AgepEq of dimension k (that is, given
γ, η P EmbδpX,Eq there is g P IsopEq such that }g ˝ η ´ γ} ď ε).

b) The following are equivalent:
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i) G is hereditary amalgamation class that is dBM-compact, that is, for every k, the collec-
tion of classes rms of norms m P Nk such that pFk, mq P G” is a closed subset of Bk.

ii) There is a unique separable Fräıssé Banach space E such that AgepEq ” G.

This can be considered as the Banach space version of the Fräıssé correspondence of first
order structures, that, for example, interprets several Random graphs (Rado, Henson graphs),
Boolean algebras (the countable atomless one), or metric spaces (the rational Urysohn space) as
Fräıssé limits. The known examples of families having the pSARP`q are related to the p-norms:
‚ t`npun for all 1 ď p ď 8: For p “ 2, this is a consequence of the fact, via the Kechris-

Pestov-Todorcevic (KPT) correspondence (see [4, Theorem 2.12], [6, Theorem 5.10]), that
the unitary group Isop`2q is extremely amenable, proved by M. Gromov and V. Milman [11],
and the fact that t`n2un is an amalgamation class (see for example [6, Example 2.4.]). The
case 1 ď p ‰ 2 ă 8 follows from the approximate Ramsey property of this class, proved in
[6] and the result of G. Schechtman in [21] stating that t`npun are amalgamation classes. The
case p “ 8 is proved in [4] (see also [2]) using the dual Ramsey Theorem.

‚ AgepLpr0, 1sq for p R 2N` 4: This is a byproduct of the extreme amenability of IsopLpr0, 1sq,
proved by T. Giordano and V. Pestov in [7], the (KPT) correspondence, and the fact that
AgepLpr0, 1sq is an amalgamation class, proved in [6]. On the other direction, when p P 2N`4,
it is shown in [6, Proposition 2.10.] that AgepLpr0, 1sq does not have the pSARP`q because
in these spaces there are finite dimensional isometric subspaces, one well complemented and
the other badly complemented.

‚ F “ AgepCr0, 1sq: This is proved in [4] (see also [2]), directly using injective envelopes and
some approximations, or as a byproduct of the pSARP`q of the family t`n8un and the Kechris-
Pestov-Todorcevic correspondence for Banach spaces.
The pSARP`q characterizes norms on F8 that produce Ramsey factors.

Theorem 3.3. Let m be a norm on F8, E :“ pF8, mq.
a) If AgepEq has the pSARP`q, then m produces Ramsey factors for compact colorings of full-

rank matrices, Grassmannians and square matrices.
b) If m produces Ramsey factors for compact colorings of full rank matrices, AgepEq has the
pSARP`q.

To prove b) we will use the following.

Lemma 3.4. Let m be a norm on F8 that produces Ramsey factors for compact colorings of
full rank matrices, set E :“ pF8, mq. For every k,m, r P N, ε ą 0, and λ Ps1,8r there is some
n P N such that for every discrete coloring c : Mk

n,kpm;λq Ñ r there is some R P En,mpmq such
that

R ¨B P pc´1pcpR ¨AqqqB
pFk,mq,EpνFk,EpAq,νFk,EpBqq`ε

for every A,B PMk
m,kpm;ăλq (8)

Proof. Fix the parameters k,m, r P N, ε, and λ. Let n P N be the outcome of property ii) in
Definition 2.7 when applied to k,m, ε{2, λ and the compact metric space K :“ 2λBallp`r8q.
We claim that n works. Fix c : Mk

n,kpm;λq Ñ r and let f : Mk
n,kpm;λq Ñ K, fpAq :“

pdpA, c´1pjqqqjăr, where for coherence we declare that dpA,Hq :“ 2λ. It is clear that f is
1-Lipschitz, so there is some R P En,mpmq and a 1-Lipschitz rf : NkpE;ăλq Ñ K such that
dKp rfpνFk,EpAqq, fpR ¨ Aqq ď ε{2 for every A P Mk

m,kpm;ăλq. Fix A,B P Mk
m,kpm;ăλq. Then,

dKpfpR ¨ Aq, fpR ¨ Bqq ď BpFk,mq,EpνFk,EpAq, νFk,EpBqq ` ε. Thus, if j :“ cpR ¨ Aq, then the
jth-coordinate of fpR ¨ Aq is zero, hence, the jth-coordinate of cpR ¨ Bq must satisfy that
dpR ¨B, c´1pjqq ď BpFk,mq,EpνFk,EpAq, νFk,EpBqq ` ε, as desired. �



22 D. BARTOŠOVÁ, J. LOPEZ-ABAD, M. LUPINI, AND B. MBOMBO

Proof of b) of Theorem 3.3. The proof of a) is more involved, and it will be done in several
steps later. Let F be the collection of all normed spaces of the form pFk, nq where n P NkpEq is
such that ωpn, } ¨ }1q ď log k. Since the diameter of the Banach-Mazur compactum Bk is at most
log k, it follows that F ” AgepEq, that is, every finite dimensional X Ď E has an isometric
copy in F . This means that the pSARP`q of F and of AgepEq are equivalent. Moreover, we
prove the following equivalent discrete version of the pSARP`q (see [6, Proposition 5.9] and [4,
Proposition 2.13] for a stable version of it):

For every k and ε ą 0 there is a δ ą 0 such that for every r P N and X,Y P F with dimX “ k

there is Z P F such that every discrete coloring c : EmbδpX,Zq Ñ r has an ε-monochromatic
set of the form R ˝ EmbδpX,Y q for some R P EmbpY, Zq.

Fix a dimension k and ε ą 0. Notice that the collection of spaces in F of dimension k is
a ω-bounded set, so, by hypothesis, the metrics BpFk,mq,E and ω are uniformly equivalent on
M :“ tn P NkpEq : pFk, nq P Fu. Let δ ą 0 be such that if n, p P M are such that ωpn, pq ď δ,
then BpFk,mq,Epn, pq ă ε{2. We claim that δ works. For suppose that X “ pFk, nq, Y “ pFm, pq P
F are such that EmbδpX,Y q ‰ H, and r P N. Let m0 ě m and C P Mm

m0,m be such that
p “ νFm,pFm0 ,mqpCq, and let λ ą 1 be such that

TC ˝ EmbδpX,Y q Ď tTB : B PMk
m0,kpm;ăλqu.

We use Lemma 3.4 for the parameters k,m0, r ` 1, ε{2 and λ to find a corresponding n; set
Z :“ pFn, mq. Now suppose that c : EmbδpX,Zq Ñ r. We define pc : Mk

n,kpm;λq Ñ r ` 1 by
pcpAq “ cpTAq if TA P EmbδpX,Zq and by pcpAq “ r otherwise. Let R P En,m0pmq be such that (8)
holds. Let γ :“ TR ˝ TC P EmbpY,Zq. We see that γ ˝ EmbδpX,Y q is ε-monochromatic for c:

Fix some auxiliary η P EmbδpX,Y q, let A P Mk
m0,k

pm;ăλq be such that TA “ TC ˝ η, and
let j :“ cpTR ˝ TC ˝ ηq “ pcpR ¨ Aq. Now given ξ P EmbδpX,Y q, let us see that γ ˝ ξ P
pc´1pjqqε: let B P Mk

m,kpm;ăλq be such that TB “ TC ˝ ξ, and set q :“ νFk,EpBq. Since
η P EmbδpX,Y q, it follows that p1 ` δq´1npxq ď mpTC ˝ ηpxqq “ qpxq ď p1 ` δqnpxq for every
x P Fk, and consequently, ωpn, qq ď δ. Since n :“ νFk,EpAq, we obtain by the choice of δ ą 0
that BpFk,mq,EpνFk,EpAq, νFk,EpBqq ď ε{2. This together with (8) gives that R ¨B P ppc´1pjqqε, so
there must be D PMk

n,kpm;λq such that pcpDq “ j and such that }TD´γ ˝ξ} “ }TD´TR ˝TB} “
dmpD,R ¨Bq ď ε; since j ă r, TD P EmbδpX,Zq, so cpTDq “ pcpDq “ j and we are done. �

The proof of a) of Theorem 3.3 has two main parts. The first one (Theorem 3.8) uses the fact
that if F has the pSARP`q and it is hereditary, then the isometry group G of the Fräıssé limit
FLim F is extremely amenable with its topology of pointwise convergence. This property will
be used as infinitary principles can be used to conclude in Corollary 3.11 and Theorem 3.12, via
compactness arguments, the finitary ones (e.g. infinite vs finite Ramsey, Hindman vs Folkman
theorem, etc.). The fixed point property of G will naturally provide abstract Ramsey factors
that are G-quotients. The second part of the argument is to see that these G-quotients are in
fact the desired Ramsey factors.

Recall that a topological group G is called extremely amenable when every continuous action
of G on a compact Hausdorff space has a fixed point. There is a useful characterization of
extreme amenability in terms of factors through quotients that we pass to explain.

Let pM,dq be a metric space, and let GyM be a continuous action by isometries. We write
rpsG to denote the closure of the G-orbit of p PM , and M{{G to denote the space of closures of
G-orbits of M . Since G acts by isometries the formula

rdGprps, rqsq :“ inftdM pp0, q0q : p0 P rps, q0 P rqsu

defines the quotient pseudometric induced by the quotient map π : M ÞÑ M{{G, and as we
consider closures of orbits, rdG is a metric. It is easily seen that rdG is complete if d is complete.
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Given a compact metric space pK, dKq, let LipppM,dM q, pK, dKqq be the collection of all 1-
Lipschitz colorings from M to K. With the topology of pointwise convergence the collection
LipppM,dM q, pK, dKqq is a compact space, which is metrizable when pM,dM q is separable. The
continuous actionGy pM,dM q induces a natural continuous actionGy LipppM,dM q, pK, dKqq,
defined by setting pg ¨ cqppq :“ cpg´1 ¨ pq for every c P LipppM,dM q, pK, dKqq and p P M . This
is the aforementioned characterization (see [4]).

Proposition 3.5. Suppose that G is a Polish group, and dG is a left-invariant compatible metric
on G. The following assertions are equivalent.

i) G is extremely amenable.
ii) The left translation of G on pG, dGq is finitely oscillation stable [19, Definition 1.1.11], that

is, for every 1-Lipschitz coloring c : G Ñ r0, 1s and every F Ď G finite and ε ą 0 there is
some g P G such that Oscpc � g ¨ F q ď ε.

iii) For every action by isometries G y M of G on a metric space pM,dM q, and for every
1-Lipschitz coloring c : pM,dM q Ñ pK, dKq of pM,dM q, there exists a 1-Lipschitz coloring
pc : M{{G Ñ K such that for every finite F Ď M and ε ą 0 there is some g P G such that
dKpcppq,pcprpsGqq ă ε for every p P g ¨ F .

iv) The same as iii) where F is compact.

Proof. The equivalence of i) and ii) can be found in [19, Theorem 2.1.11]. The implication
iii)ñii) is immediate, since orbit space G{{G is one point. We now establish the implication
i)ñiv): Fix a 1-Lipschitz c : pM,dM q Ñ pK, dKq. Let L be the closure of the G-orbit of c
in LipppM,dM q, pK, dKqq. By the extreme amenability of G, there is some c8 P L such that
G ¨ c8 “ tc8u, so we can define the quotient K-coloring pcprpsGq :“ c8ppq. Let F Ď M be
compact, and let D Ď F be a finite ε{3-dense subset of F . Since c8 is in the closure of the
G-orbit of c, we can find g P G such that dKpc8ppq, pg´1 ¨ cqppqq ă ε{3 for every p P D. Fix
p P F and let q P D be such that dM pp, qq ă ε{3. Both c8 and c are 1-Lipschitz, so it follows
that

dKpc8ppq, pg
´1 ¨ cqppqq ďdKpc8ppq, c8pqqq ` dKpc8pqq, pg

´1 ¨ cqpqqq`

`dKppg
´1 ¨ cqppq, pg´1 ¨ cqpqqq ă 2dM pp, qq `

ε

3 ă ε.

Consequently, given p P F , then dKppcprg ¨ psGq, cpg ¨ pqq “ dKpc8ppq, cpg ¨ pqq ă ε. �

We apply this characterization to groups of linear isometries of a Banach space. Given two
Banach spaces X and Y , recall that LpX,Y q is the Banach space of all bounded linear operators
T : X Ñ Y , endowed with the operator norm }T } :“ sup}x}X“1 }Tx}Y . The adjoint T ˚ : Y ˚ Ñ
X˚ of T , defined for f P Y ˚ as the function T ˚pfq : X Ñ F, pT ˚pfqqpxq :“ fpT pxqq for every x P
X, satisfies, as consequence of the Hahn-Banach Theorem, that }T ˚} “ }T }. Recall that when
T is a finite rank operator, we have defined r´1pT q :“ minta ě 0 : BallpTXq Ď aT pBallpXqqu.
Notice that T ˚ : Y ˚ Ñ X˚ is a finite-rank operator when T is finite-rank, and it holds that
r´1pT

˚q “ r´1pT q. To see this, choose a basis pyjqjăk of TX, and for each j ă k, define
fj : X Ñ TX for x as the jth-coordinate of T pxq in the basis pylqlăk, i.e. by T pxq “

ř

jăk fjpxqyj .
This decomposition of T is written as T “

ř

jăk fjbyj , hence it follows that T ˚ “
ř

jăk δyjbfj ,
where δyj : Y ˚ Ñ F is the evaluation functional f ÞÑ fpyjq. Let us check the equality of
corresponding r´1’s. Recall that the annihilator ZK of a closed subspace Z of X is the closed
subspace of X˚ consisting of the functionals of X that vanish on Z. Then it is a well-known fact
that the canonical mappings θ0 : ZK Ñ pX{Zq˚, pθ0pfqqprxsq :“ fpxq for rxs P X{Z and f P ZK,
and θ1 : Z˚ Ñ X˚{ZK, θ1pgq :“ rhs, where h P X˚ extends g P Z˚ (by Hahn-Banach Theorem),
are both surjective linear isometries (see for example [5, Proposition 2.7]). It is not difficult to
see that ĂT ˚ ˝ θ1 “ θ´1

0 ˝ p rT q˚, where rT : X{ kerT Ñ TX and ĂT ˚ : Y ˚{ kerT ˚ Ñ T ˚pY ˚q are
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the corresponding quotient mappings of T and T ˚ (see the paragraph after Proposition 2.4).
Consequently r´1pT q “ } rT

´1} “ }p rT´1q˚} “ }pp rT q˚q´1} “ }pp rT q˚q´1 ˝ θ0} “ }θ
´1
1 ˝ pĂT ˚q´1} “

}pĂT ˚q´1} “ r´1pT
˚q.

Notice also that when X is finite dimensional, T : X Ñ Y is 1-1 and }T } “ r´1pT q “ 1
corresponds to T being an isometric embedding. The collection of such maps is denoted by
EmbpX,Y q.

In general, given normed spaces F and G, let LλpF,Gq, LăλpF,Gq, be the set of all T P

LpF,Gq with finite dimensional image such that }T }, r´1pT q ď λ, resp. ă λ. Let LkpF,Gq be
the set of all T P LpF,Gq whose image is k-dimensional, and let LkλpF,Gq “ LλpF,GqXLkpF,Gq,
LkăλpF,Gq “ LăλpF,Gq X LkpF,Gq. Let Lk,w˚pF ˚, F q be the metric space of operators T P

LkpF ˚, F q such that T admits a full rank decomposition, i.e., when T “ T0 ˝ T
˚
1 for some

T0 P LkppFkq˚, F q and T1 P LkpFk, F q. Let Lk,w
˚

λ pF ˚, F q :“ Lk,w˚pF ˚, F q X LλpF ˚, F q.
Notice that when X is finite dimensional every linear operator T : X˚ Ñ X of rank k has

a such factorization T “ T0 ˝ T
˚
1 , as we pointed out before for the full rank decomposition of

square matrices of rank k. For a Banach space X, a finite-rank operator T has this factorization
exactly when T is a w˚-to-norm continuous linear operators from X˚ to X. Recall that the
w˚-topology on X˚ is the topology induced by the inclusion X˚ Ď CppX,Fq, the space of
continuous functions from X to F with the topology of pointwise convergence. Suppose that
T is w˚-to-norm continuous. Since the dual unit ball BallpX˚q is w˚-compact by the Banach-
Alaoglu Theorem, it follows that T pBallpX˚qq is norm-compact, and this happens only if T pX˚q
is finite dimensional. As we have seen before, there is a linearly independent sequence pxjqjăk
in X and functionals tϕjujăk Ď pX˚q˚ such that T “

ř

jăk ϕj b xj . Since we are assuming
that T is w˚-to-norm continuous, it follows that each ϕj “ δyj for some yj P X (see for example
[5, Theorem 3.16]). It is easy to see that T “ T0 ˝ T

˚
1 , where T0pu

˚
j q :“ xj and T1pujq :“ yj

for every j ă k and pujqjăk and pu˚j qjăk are the unit bases of Fk and pFkq˚, respectively.
Conversely, if T0pujq “ xj , and T1pujq “ yj for every j ă k then T “ T0 ˝ T

˚
1 “

ř

jăk δyj b xj
is w˚-to-norm continuous. From this characterization is easy to see that the dual operator of
a w˚-to-norm continuous finite-rank operator T : X˚ Ñ X is again a w˚-to-norm continuous
finite-rank operator, since if T “

ř

jăk δyj b xj , then T ˚ “
ř

jăk δxj b yj .
With a slight abuse of notation, let ν2

k,X : Lk,w˚pX˚, Xq Ñ DkpXq be defined by ν2
k,XpT q :“

rνpFkq˚,XpT0q, νFk,XpT1qs, where T “ T0˝T
˚
1 is an arbitrary decomposition with T0 P LkppFkq˚, Xq

and T1 P LkpFk, Xq.

Definition 3.6. Let IsopEq y LpX,Eq be the canonical action by isometries g ¨ T :“ g ˝ T ,
IsopEq2 y Lk,w˚pE˚, Eq be the canonical action by isometries pg, hq ¨ T :“ g ˝ T ˝ h˚ for
pg, hq P IsopEq2 and T P Lk,w˚pE˚, Eq, and let IsopEq y Grpk,Eq be the canonical action by
isometries g ¨ V :“ gpV q.

Note that LkλpX,Eq, LkăλpX,Eq, and Lk,w
˚

λ pX˚, Xq, Lk,w
˚

ăλ pX˚, Xq are IsopEq-closed and
IsopEq2-closed, respectively. The next readily follows from Proposition 3.5, using the fact that
if G is extremely amenable, then G2 is also extremely amenable (see [19, Corollary 6.2.10.]). Its
asymptotic version in Corollary 3.11 together with Theorem 3.12 will prove a) of Theorem 3.3.

Lemma 3.7. Suppose that X,E are Banach spaces, X is finite-dimensional, and IsopEq is
extremely amenable. Let k P N, ε ą 0, 1 ď λ, Y P AgepEq”, and let pK, dKq be a compact
metric space.
a) For every 1-Lipschitz coloring c : pLkăλpX,Eq, dX,Eq Ñ pK, dKq there is R P EmbpY,Eq

such that the quotient map π : LkăλpX,Eq Ñ LkăλpX,Eq{{ IsopEq is an ε-factor of c in
R ˝ LkăλpX,Y q; that is, there is some 1-Lipschitz coloring rc : LkăλpX,Eq{{ IsopEq Ñ K such
that dKprcpπpT qq, cpR ˝ T qq ď ε for every T P LkăλpX,Y q



THE RAMSEY PROPERTY FOR GRASSMANNIANS OVER R 25

b) For every 1-Lipschitz coloring c : pGrpk,Eq,ΛEq Ñ pK, dKq there exists V P GrpdimY,Eq

with pV, }¨}Eq is isometric to Y such that the quotient map π : Grpk,Eq Ñ Grpk,Eq{{ IsopEq is
an ε-factor of c in Grpk, V q; that is, there is some 1-Lipschitz coloring rc : Grpk,Eq{{ IsopEq Ñ
K such that dKprcpπpW qq, cpW qq ď ε for every W P Grpk, V q.

c) For every 1-Lipschitz coloring c : pLk,w
˚

ăλ pE˚, Eq, dE˚,Eq Ñ pK, dKq there are R0, R1 P

EmbpY,Eq such that the quotient map π : Lk,w
˚

ăλ pE˚, Eq Ñ Lk,w
˚

ăλ pE˚, Eq{{ IsopEq2 is an
ε-factor of c in R0 ˝ Lk,w

˚

ăλ pY ˚, Y q ˝ R˚1 ; that is, there is some 1-Lipschitz coloring rc :
Lk,w

˚

ăλ pE˚, Eq{{ IsopEq2 Ñ K such that dKprcpπpT qq, cpR0 ˝ T ˝ R
˚
1qq ď ε for every T P

Lk,w
˚

ăλ pY ˚, Y q. �

The relationship between the pSARP`q of a class of finite dimensional normed spaces and
the extreme amenability of the isometry group of its Fräıssé limit is the next mix of the Fräıssé
and the Kechris-Pestov-Todorcevic correspondences, that we took from [6, Corollary 5.11].

Theorem 3.8. If G is an hereditary family with the pSARP`q, then the Banach-Mazur closure
of G also has the pSARP`q and the Fräıssé limit FLim G is a Fräıssé Banach space whose
isometry group is extremely amenable with its strong operator topology. �

Definition 3.9. Given a normed space E :“ pF8, mq such that AgepEq is an amalgamation
class, we write pE to denote, the Fräıssé limit FLim AgepEq.

The following is an important properties of Fräıssé limits (see [6, Proposition 2.13] for a
proof).

Proposition 3.10. Suppose that E “ pF8, mq is such that AgepEq is an amalgamation class
and F is a separable Banach space. The following are equivalent:
a) AgepF q ĺ AgepEq
b) F can be isometrically embedded into E.
In particular, E can be isometrically embedded.

We will use the following notation. Given a normed space E “ pF8, mq and n P N, we set
En :“ pxujyjăn, mq, and given a normed space X we write AgepXqm to denote the collection of
subspaces of X isometric to some En. The following is the asymptotic version of Lemma 3.7.

Corollary 3.11. Suppose that E “ pF8, mq is such that AgepEq has the pSARP`q, and Agep pEqm
is an amalgamation class. Let k,m P N, ε ą 0 and λ ě 1. Given a compact metric space pK, dKq
there is X P Agep pEqm such that
1) for every 1-Lipschitz coloring c : LkλpEk, Xq Ñ K there is R P EmbpEm, Xq such that the

quotient map π : LkăλpEk, pEq Ñ LkăλpEk, pEq{{ Isop pEq is an ε-factor of c in R ˝LkăλpEk, Emq;
2) for every 1-Lipschitz coloring c : pGrpk,Xq,ΛXq Ñ K there is V P Grpm,XqXAgep pEqm such

that the quotient map π : Grpk, pEq Ñ Grpk, pEq{{ Isop pEq is an ε-factor of c in Grpk, V q;
3) for every 1-Lipschitz coloring c : Lk,w

˚

λ pX˚, Xq Ñ K there are R0, R1 P EmbpEm, Xq such
that the quotient map π : Lk,w

˚

ăλ p pE˚, pEq Ñ Lk,w
˚

ăλ p pE˚, pEq{{ Isop pEq2 is an ε-factor of c in
R0 ˝ Lk,w

˚

ăλ pE˚m, Emq ˝R
˚
1 .

Proof. Suppose for the sake of contradiction, that, for some parameters k,m P N, ε ą 0 and
λ ě 1, and some compact space pK, dKq, there is no such X P Agep pEqm satisfying 1), 2) or 3).
For each X P Agep pEq, and each γ ą 0, let AX,γ be the collection of all Y P Agep pEqm such that
there is some rX Ď Y with dim rX “ dimX and such that Λ

pE
pX, rXq ď γ. In other words, AX,γ

consists of all finite dimensional Y Ď pE isometric to some En that “ε-almost” contain X. It is
easy to see that tAX,γuX,γ is a family of subsets of Agep pEqm with the finite intersection property,
so let U be a non principal ultrafilter on Agep pEqm containing all AX,γ . Since U is an ultrafilter
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there is j “ 1, 2, 3 such that the set Bj :“ tX P Agep pEqm : X does not satisfy j)u belongs to U .
Suppose that j “ 1. For each X P B1 there exists a 1-Lipschitz coloring cX : LkλpEk, Xq Ñ K

providing a counterexample. For each T P LkăλpEk, pEq, let cpT q P K be defined as follows. We
say that cpT q “ p P K if and only if for every γ ą 0 one has that

CγpT q :“ tX P B1 : T P pLkλpEk, Xqqγ and dKpp, cX

´

pT qγ X LkλpEk, Xq
¯

q ď γu P U ,

where pT qγ is the γ-fattening of T with respect to the norm-metric. This is well defined:
fix γ ą 0, and let K “

Ť

iPI V
pγq
i be a finite open covering by dK-balls of radius γ. Let

0 ă δ “ δγ ď ε be the Lebesgue number associated to this covering, that is, δ satisfies that
every C Ď K of diameter at most δ is included in one of the balls of the covering. Notice that
for small enough δ1, if X P AT pEkq,δ1 , then T P pLkλpEk, Xqqδ{2: for suppose that X P AT pEkq,δ1 ,
and let Z Ď X be such that Λ

pE
pT pEkq, Zq ď δ1. For each j ă k, choose xj P BallpZq Ď BallpXq

such that }T pujq{}T pujq} ´ xj}
pE
ď γ, and define S : Ek Ñ X by Spujq :“ }T pujq} ¨ xj , j ă k.

Then, given x :“
ř

jăk ajuj P Ek, }Spxq ´ T pxq} ď
ř

jăk |aj |}T pujq ´ xj} ď Γ ¨ mpxqδ1}T },
where Γ :“ }Id}pEk,mq,pEk,}¨}1q. Hence, }S ´ T } ď Cδ1}T }, and }S} ď p1 ` Γ ¨ δ1q}T }, while
}Spxq} ě }T pxq} ´ }T pxq ´ Spxq} ě pp1{r´1pT qq ´ Γ ¨ }T } ¨ δ1qmpxq for every x P Ek. Since we
are assuming that }T }, r´1pT q ă λ, for small enough δ1 we can have }S ´ T } ď δ{2, }S} ď λ

and p1{r´1pT qq ´ Γ ¨ }T } ¨ δ1 ě 1{λ, i.e. r´1pSq ď λ. Since cX is 1-Lipschitz, the dK-diameter
of cX

`

pT qε X LkλpEk, Xq
˘

is at most 2ε for every ε ą 0. This means that for δ1 ă δ{2,

AT pEkq,δ1 XB1 Ď
ď

iPI

tX P B1 : s. t. T P pLkλpEk, Xqq δ2 and cX

´

pT q δ
2
X LkλpEk, Xq

¯

Ď V
pγq
i u.

Since AT pEkq,δ1 XB1 P U and I is finite, there is some iγ P I such that

tX P B1 : such that T P pLkλpEk, Xqq δ2 and cX

´

pT q δ
2
X LkλpEk, Xq

¯

Ď V
pγq
iγ
u P U .

It follows that the family of closed balls tV pγqiγ
uγą0 has the finite intersection property, so since

K is compact,
Ş

γą0 V
pγq
iγ

‰ H, and this intersection must be a single point p because each

closed ball V pγqiγ
has radius γ. Such p is such that cpT q “ p by definition.

It is easy to see that c is a 1-Lipschitz coloring. Let π : LkăλpEk, pEq Ñ LkăλpEk, pEq{{ Isop pEq be
the quotient mapping. By Lemma 3.7 there exist S P EmbpEm, pEq and a 1-Lipschitz coloring
pc : pLkăλpEk, pEq{{ Isop pEq, pdq Ñ pK, dKq such that dKpcpS ˝ T q,pcpπpT qq ď ε{2 for every T P

LkăλpEk, Emq. Since Agep pEqm is an amalgamation class and since tAX,γuX,γ Ď U , we obtain
that for γ ą 0, the set

Dγ :“ tY P Agep pEqm : there is SY P EmbpEm, Y q such that }SY ´ S} ď γu P U

For a fixed γ ą 0, let F Ď LkăλpEk, Emq be a finite γ-dense subset of it. Observe that if
Y P DγX

Ş

TPF CγpS˝T q, then for each T P F there is γT P LkλpEk, Y q such that }γT´S˝T } ď γ,
dKpcpS˝T q, cY pγT qq ď γ, and there is some SY P EmbpEm, Y q such that }S˝T´SY ˝T } ď γ}T }

for every T P F ; consequently, dKpcY pSY ˝T q, cpS ˝T qq ď γp2`}T }q ď γp2`λq for every T P F .
Since F is γ-dense, given T P LkăλpEk, Emq, choose T 1 P F such that }T ´ T 1} ď γ, and using
that both c and cY are 1-Lipschitz, and that S and SY are isometric embeddings, we get that
dKpcY pSY ˝ T q, cpS ˝ T qq ď γp4` λq. γ is arbitrary, so we obtain that

tY P Agep pEqm : there is SY P EmbpEm, Y q with max
TPLk

ăλ
pEk,Emq

dKpcY pSY ˝ T q, cpS ˝ T qq ď
ε

2u

belongs to U . Y belonging to the previous set, SY and pc contradicts the assumption that cY
is a counterexample, because given T P LkăλpEk, Emq we have that πpT q “ πpSY ˝ T q, hence it
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follows that

dKppcpπpT qq, cY pSY ˝ T qq “dKppcpπpSY ˝ T qq, cY pSY ˝ T qq ď dKppcpπpS ˝ T qq, cpS ˝ T qq`

` dKpcY pSY ˝ T q, cpS ˝ T qq ď ε

The cases j “ 2, 3 are proved similarly, so we leave the details to the reader. �

3.1. Orbit spaces for Fräıssé Banach spaces. We see that the orbit spaces considered in
Corollary 3.11 1, 2, and 3, are homeomorphic to Nkp pEq, Bkp pEq and Dkp pEq, respectively. We
also show that the pE-extrinsic metrics extend the corresponding E-extrinsic ones, finishing the
proof of Theorem 3.3 a).

Theorem 3.12. Suppose E “ pF8, } ¨ }Eq is such that AgepEq is an amalgamation class, X is
a finite dimensional normed space and k P N. Then,
a) The quotient mapping pνX,E : LkpX, pEq{{ Isop pEq Ñ NXp pEq is an homeomorphism that is

a uniform homeomorphism when restricted to A Ď LkpX, pEq{{ Isop pEq such that pνX,EpAq Ď

NXp pEq is ω-bounded. Consequently, B
X, pE

is a compatible metric on NXp pEq that is uniformly
equivalent to ω on ω-bounded sets. Moreover, BX,E “ BX, pE on NXpEq, and NXpEq is dense
in NXp pEq and

b) The quotient mapping rτ
k, pE

: Grpk, pEq{{ Isop pEq Ñ Bkp pEq is a uniform homemorphism, and
consequently, γ

k, pE
and dBM are uniformly equivalent on Bkp pEq. Moreover γ

k, pE
“ γk,E on

BkpEq, and BkpEq is dense in Bkp pEq.
c) The quotient mapping rν2

k, pE
: Lk,w˚pp pEq˚, pEq{{ Isop pEq2 Ñ Dkp pEq is an homeomorphism then

is a uniform homeomorphism when restricted to A Ď Lk,w˚pp pEq˚, pEq{{ Isop pEq2 such that
pν2
k,EpAq Ď Dkp pEq is rω2-bounded. Consequently, d

k, pE
is a compatible metric on Dkp pEq that is

uniformly equivalent to rω2 on rω2-bounded sets. Moreover, dk,E “ d
k, pE

on DkpEq, and DkpEq

is dense in Dkp pEq.

Proof. a): Suppose that dimX “ k. Recall that we consider NX with its natural topology
of pointwise convergence. The mapping ν

X, pE
: LkpX, pEq Ñ NXp pEq is continuous, because

the convergence in norm implies pointwise convergence. We see that ν
X, pE
pT q “ ν

X, pE
pUq if

and only if rT s “ rU s, that is, when the closed orbits of T and U are equal. The reverse
implication is clear; now suppose that ν

X, pE
pT q “ ν

X, pE
pUq. Let Y :“ T pXq be endowed with

the pE-norm, and let θ : Y Ñ X be the inverse of T : X Ñ Y . Then U ˝ θ P EmbpY, pEq; so,
given ε ą 0, there is a global isometry α of pE such that }U ˝ θ ´ α � Y } ď ε, or equivalently,
}U ´ α ˝ T } ď ε. Since ε is arbitrary, we obtain that U P rT s. We show that the quotient
mapping rν

X, pE
: LkpX, pEq{{ Isop pEq Ñ NXp pEq is a homeomorphism. Suppose that pmjqj is a

converging sequence in NXp pEq with limit m P NXp pEq. For each j, let Tj P LkpX, pEq be such
that ν

X, pE
pTjq “ mj , and let T P LkpX, pEq be such that ν

X, pE
pT q “ m.

Claim 3.12.1. prTjsqj is a Cauchy sequence.

Notice that it follows from this, and the fact that the quotient metric rd
X, pE

is complete (here
we use that X and pE are Banach spaces), that prTjsqj converges to some rU s; by the continuity
of ν

X, pE
we have that ν

X, pE
pUq “ m “ ν

X, pE
pT q, so prTjsqj converges to rU s “ rT s. Also, suppose

that A is a bounded subset of NXp pEq. The space pE is Fräıssé, so its age Agep pEq is ω-closed in
NX (because BXp pEq is closed in BX ; see Theorem 3.2 b)). Hence the closure A is compact and it
is included in NXp pEq. Hence, the restriction rν

X, pE
: rν´1

X, pE
pAq Ñ A is a uniform homeomorphism.

Let us prove the previous claim.
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Proof of Claim: Set Y :“ T pXq, normed as subspace of pE, and let θ : Y Ñ X be the inverse
isometry of T : X Ñ Y , and fix ε ą 0; since pE is Fräıssé, there is some δ ą 0 such that the
canonical action Isop pEqy EmbδpY, pEq is ε-transitive; let j0 be such that Tj ˝θ P EmbδpY, pEq for
every j ě j0; this means that if j1, j2 ě j0, then there is α P Isop pEq such that }Tj1 ´ α ˝ Tj2} “
}Tj1 ˝ θ ´ α ˝ Tj2 ˝ θ} ď ε, hence rd

X, pE
prTj1s, rTj2sq ď ε. �

Since B
X, pE
prν
X, pE
pT q, rν

X, pE
pUqq “ rd

X, pE
prT s, rU sq, we obtain that B

X, pE
is compatible metric on

NXp pEq this is uniformly equivalent to ω on ω-bounded sets.
We see now that BX,E “ BX, pE on NXpEq

2. Since E is isometrically embedded into pE (see
Proposition 3.10), we have that B

X, pE
p¨, ¨q ď BX,Ep¨, ¨q on NXpEq

2.

Claim 3.12.2. Suppose that for each j ă n Xj is a finite dimensional normed space and Tj P

LdimXpXj , pEq is such that ν
Xj , pE

pTjq P NXpEq. For every ε ą 0 there is some V P AgepEq
pE
,

and T 1j P LdimXj pXj , V q for j ă n, and g P Isop pEq such that νXj ,EpT 1jq “ ν
Xj , pE

pTjq and
}g ˝ Tj ´ T

1
j}Xj , pE

ď ε for every j ă n.

From the claim, given T P EmbppX, mq, pEq, U P EmbppX, nq, pEq, and ε ą 0, choose V P

AgepEq
pE
, T 1 P EmbppX, mq, V q, U 1 P EmbppX, mq, V q and g P Isop pEq as in the claim. Then,

}T 1´U 1}X,V “ }T
1´U 1}

X, pE
ď }T 1´g˝T }

X, pE
`}g˝T´g˝U}

X, pE
`}U 1´g˝U}

X, pE
ď 2ε`}T´U}

X, pE
.

Since ε ą 0 is arbitrary, we obtain that BX,Epm, nq ď }T ´ U}
X, pE

, and since T,U are arbitrary
with ν

X, pE
pT q “ m and ν

X, pE
pUq “ n, we obtain that BX,Epm, nq ď BX, pEpm, nq.

Proof of Claim: To simplify the notation, for each j ă n we set mj :“ ν
Xj , pE

pTjq, Hj :“ pXj , mjq,
and Kj :“ }IdXj}Xj ,Hj . We use the fact that AgepEq is an amalgamation class to find δ ą 0
such that for every Y,Z, V that can be isometrically embedded into E, with dim Y “ k, and
every γ P EmbδpY,Zq, η P EmbδpY, V q there is W that can be isometrically embedded into E
and i P EmbpZ,W q, j P EmbpV,W q such that }i ˝ γ ´ j ˝ η} ď ε. Since AgepEq

pE
is Λ

pE
-dense in

Agep pEq, we can find Z P AgepEq
pE

such that there is θ P EmbδpY, Zq such that }θ ´ i
Y, pE
} ď ε,

where Y :“
ř

jăn ImTj . By definition, each mj are the norms on Xj that make Tj : Hj Ñ pE

isometric embeddings, i.e., Tj P EmbpHj , pEq. Consequently, Uj :“ θ ˝ Tj P EmbδpHj , Zq. Then,

}Uj ´ Tj}Xj , pE ď }θ ´ iY, pE}Y, pE}Tj} ď ε}Tj}.

We use that AgepEq has the amalgamation property to find V P AgepEq
pE
, I P EmbpZ, V q,

T 1j P EmbpHj , V q for j ă n such that }T 1j ´ I ˝ Uj}Hj ,V ď ε. Thus,

}T 1j ´ I ˝ Uj}Xj , pE ď }T
1
j ´ I ˝ Uj}Hj , pEKj ď εKj .

Since pE is Fräıssé, there is some g P Isop pEq such that }g � Z ´ I} ď ε. Then, for every j ă n,

}g ˝ Tj ´ T
1
j}Xj , pE

ď}g ˝ Tj ´ g ˝ Uj}Xj , pE ` }g ˝ Uj ´ I ˝ Uj}Xj , pE ` }I ˝ Uj ´ T
1
j}Xj , pE

ď

ďεKj ` ε}Uj} ` ε ď εKj ` ε}Tj} ` ε
2Kj ` ε.

Since ε ą 0 is arbitrary, the claim is proved. �

Finally, because AgepEq
pE

is Λ
pE
-dense in Agep pEq, it follows that

Ť

Y PAgepEq
pE

LkpX,Y q is
dense in LkpX,Y q, so, NXpEq is dense in NXp pEq.

b): We have seen in Proposition 2.11 that dBMpτk,XpV q, τk,XpW qq ď 3k log kΛk,XpV,W q for
every normed space X and V,W P Grpk,Xq, and this implies that τ

k, pE
is uniformly continuous.

Let us see now that rτ
k, pE

is 1-1: Suppose that τ
k, pE
pV q “ τ

k, pE
pW q. Since pE is a Fräıssé Banach
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space, for a given ε ą 0 we can find an isometry g P Autp pEq such that Λ
pE
pV, g ¨W q ă ε, and

hence V P rW s.
Now, given ε ą 0, we work to find δ ą 0 such that if V,W P Grpk, pEq are such that

dBMprτk, pEpV q, rτk, pEpW qq ď δ, then rΛ
k, pE
prV s, rW sq “ γk,Epτk, pEpV q, τk, pEpW qq ď ε.

Claim 3.12.3. Suppose that X,Y are normed spaces and γ, η P EmbδpX,Y q are such that
}γ ´ η} ď ε. Then, ΛY pIm γ, Im ηq ď p1` δqpε` δq ` δ.

Proof of Claim: Fix v P BallpIm γq. Let x P X be such that γpxq “ v. Then }x} ď 1` δ. Since
}ηpxq} ď }η}}x} ď p1` δq2, w :“ ηpxq{p1` δq2 P BallpIm ηq and

}w ´ v} ď }ηpxq ´ γpxq} ` }ηpxq ´
ηpxq

p1` δq2 } ď εp1` δq ` }ηpxq} δ
2 ` 2δ
p1` δq2 “ p1` δqpε` δq ` δ.

�

Since pE is Fräıssé, there is some δ ą 0 such that if γ P EmbδpV,Eq then there is some
g P Isop pEq such that }g � V ´ γ} ď ε{2. Finally, let 0 ă δ0 ď δ be such that p1 ` δ0qpε{2 `
δ0q ` δ0 ď ε. We claim that δ0 works. For suppose that V,W P Grpk, pEq are such that
dBMprτk, pEpV q, rτk, pEpW qq ď δ0. Choose γ P Embδ0pV,W q, and let g P Isop pEq be such that
}g � V ´ γ} ď ε{2. It follows from the Claim 3.12.3 that

rΛ
k, pE
prV s, rW sq ď Λ

pE
pW, gpV qq “ Λ

pE
pIm γ, gpV qq ď p1` δ0qp

ε

2 ` δ0q ` δ0 ď ε.

Since rτ
k, pE

is a uniform homeomorphism, the next claim gives that γ
k, pE

and dBM are uniformly
equivalent on Bkp pEq.

Claim 3.12.4. γ
k, pE
pτ
k, pE
pV q, τ

k, pE
pW qq “ rΛ

k, pE
prV s, rW sq for every V,W P Grpk, pEq, where rΛ

k, pE

is the quotient metric on Grpk, pEq{{ Isop pEq2.

Proof of Claim: Given V,W P Grpk, pEq, we have that γk,E is the infimum of Λ
k, pE
pV 1,W 1q where

τ
k, pE
pV 1q “ τ

k, pE
pV q and τ

k, pE
pW 1q “ τ

k, pE
pW q, so it is the infimum of Λ

k, pE
pV 1,W 1q where V 1 P rV s

and W 1 PW , and this is equal to rΛ
k, pE
prV s, rW sq. �

The fact that γ
k, pE

coincides with γk,E on BkpEq is proved similarly to the corresponding fact
in a). We leave the details to the reader. Finally, we see that BkpEq is dense in Bkp pEq. Fix
rms P Bkp pEq, and ε ą 0. Choose a k-dimensional subspace X of pE such that X is isometric to
pFk, mq. Since AgepEq

pE
is Λ

pE
-dense in Agep pEq we can find Y P AgepEq

pE
such that Λ

pE
pY,Xq ď ε.

Let n P Nk be such that pFk, nq is isometric to Y . Since Y P AgepEq
pE
, n P NkpEq, and

γ
k, pE
prms, rnsq ď Λ

pE
pY,Xq ď ε. This shows that BkpEq is dense in Bkp pEq because γ

k, pE
is a

compatible metric in Bkp pEq.
c): We start with the continuity of ν2

k, pE
. Suppose that Tn Ñn T in norm. Then, ImpTnq Ñ

ImpT q in the opening distance Λ
pE
. Now fix a basis pxjqjăk of ImT , and let pyjqjăk be a

linearly independent sequence in pE such that T “ T0 ˝ T
˚
1 , where T0 : pFkq˚ Ñ pE is defined

by T0pu
˚
j q “ xj and T1 : Fk Ñ pE by T1pujq “ yj . Since we know that ImpTnq Ñ ImpT q in

the opening distance Λ
pE
, and since a finite sequence sufficiently close to a linearly independent

sequence is also linearly independent, for large enough n we can choose a basis txnj ujăk of ImTn

such that xnj Ñn xj for every j ă k. Similarly, we define Tn0 : pFkq˚ Ñ pE , Tn0 pu˚j q :“ xnj , and
let Tn1 : Fk Ñ pE be such that Tn “ Tn0 ˝ pT

n
1 q
˚. Let X :“ ppFkq˚, m0q, where m0 :“ ν

pFkq˚, pEpT0q.
Since Tn0 Ñn T0, by continuity of ν

X, pE
, it follows that ν

X, pE
pTn0 q Ñn νX, pEpT0q. On the other
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hand, T0, is 1-1, so

}pTn1 q
˚ ´ pT1q

˚}
p pEq˚,X

“}T0 ˝ pT
n
1 q
˚ ´ T0 ˝ T

˚
1 }p pEq˚, pE ď

ď}Tn ´ T }p pEq˚, pE ` }T0 ˝ pT
n
1 q
˚ ´ Tn0 ˝ pT

n
1 q
˚}
p pEq˚, pE

ď

ď}Tn ´ T }p pEq˚, pE ` }T
n
0 ´ T0}X, pE ¨ }pT

n
1 q
˚}
p pEq˚,X

. (9)

Since Tn Ñn T and Tn0 Ñ T0 both in norm, from (9) we will obtain that Tn1 Ñn T1 in norm
once we show that the numerical sequence p}pTn1 q˚}p pEq˚,Xqn is bounded. To see this, for each
n let γn ą 0 be the maximal γ such that }Tn0 pxq} pE ě γ}x}X for every x P pFkq˚; that is, 1{γn
is the value r´1 of the bounded operator Tn0 when considered from X to pE. Since Tn0 Ñ T0 in
norm and since r´1pT0q “ 1, it follows that γn Ñn 1. Then,

}pTn1 q
˚}
p pEq˚,X

ď p1{γnq}Tn0 ˝ pTn1 q˚}p pEq˚, pE “ p1{γnq}Tn}p pEq˚, pE ,

and using that γn Ñn 1 and }Tn} Ñ }T }, we obtain that p}pTn1 q˚}p pEq˚,Xqn is bounded. As we
said above, we have that hat Tn1 Ñn T1 in norm, and consequently, ν

X, pE
pTn1 q Ñn νX, pEpT1q.

Suppose now that ν2
k, pE
pT q “ ν2

k, pE
pUq. Decompose T “ T0 ˝ T

˚
1 and U “ U0 ˝ U

˚
1 in a way

that ν
pFkq˚, pEpT0q “ ν

pFkq˚, pEpU0q and νFk, pEpT1q “ νFk, pEpU1q. As in the proof of a), we can find
g, h P Isop pEq such that }g ˝ T0 ´ U0} ď ε{p2}U1}q and }h ˝ T1 ´ U1} ď ε{p2}T0}q. Hence,

}g ˝ T ˝ h˚ ´ U} ď}g ˝ T0 ˝ T
˚
1 ˝ h

˚ ´ g ˝ T0 ˝ U
˚
1 } ` }g ˝ T0 ˝ U

˚
1 ´ U0 ˝ U

˚
1 } ď

ď}g} ¨ }T0} ¨ }h ˝ T1 ´ U1} ` }g ˝ T0 ´ U0} ¨ }U1} ď ε.

Since ε ą 0 is arbitrary, rU s “ rT s. We see now that rν2
k, pE

is a homeomorphism. Suppose that
rν2
k, pE
prTnsq Ñn rν2

k, pE
prT sq P Dkp pEq. Our goal is to find a subsequence of prTnsqn that converges

to rT s: Fix X :“ pFk, } ¨ }Xq. We first decompose T “ T0 ˝ T
˚
1 , with T0 P LkpX˚, pEq and

T1 P LkpX, pEq, a subsequence pTnmqm and decompositions Tnm “ Tm0 ˝ pTm1 q
˚ in a way that

both ωpν
X˚, pE

pTm0 q, νX˚, pEpT0qq ă m´1 and ωpν
X, pE
pTm1 q, νX, pEpT1qq ă m´1 for every m P N. It

follows from a) that rTm0 s Ñ rT0s and rTm1 s Ñm rT1s. This easily implies that rTnms Ñm rT s.
The fact that the restrictions rν2

k, pE
: prν2

k, pE
q´1pAq Ñ A are uniform homeomorphisms when A

is rω2-bounded follows from the Heine-Borel property of pDk, rω2q. Let us check now that d
k, pE

coincides with dk,E on DkpEq. Since Lk,w˚pE˚, Eq Ď Lk,w˚pp pEq˚, pEq we obtain that d
k, pE
p¨, ¨q ď

dk,Ep¨, ¨q. For the other inequality we use the next.

Claim 3.12.5. Suppose that T,U P Lk,w˚pp pEq˚, pEq are such that ν2
k, pE
pT q “ rms and ν2

k, pE
pUq “

rns both belong to DkpEq. For every ε ą 0 there are V P AgepEq
pE
, g P Isop pEq and T 1, U 1 P

Lk,w˚pV ˚, V q such that ν2
k,V pT

1q “ rms, ν2
k,V pU

1q “ rns and

}g ˝ T ˝ h˚ ´ i ˝ T 1 ˝ r}
p pEq˚, pE

, }g ˝ U ˝ h´ i ˝ U 1 ˝ r}s
p pEq˚, pE

ď ε,

where i : V Ñ pE is the canonical inclusion, and r : E˚ Ñ V ˚ is the canonical restriction.

Proof of Claim: Decompose T “ T0 ˝ T
˚
1 and U “ U0 ˝ U

˚
1 with T0, U0 P LkppFkq˚, pEq, T1, U1 P

LkpFk, pEq, and set m0 :“ ν
pFkq˚, pEpT0q, m1 :“ νFk, pEpT1q, n0 :“ ν

pFkq˚, pEpU0q, n1 :“ νFk, pEpU1q. Fix a
norm on Fk, X “ pFk, } ¨ }Xq and δ ą 0. Since T0 P EmbpppFkq˚, m0q, pEq, T1 P EmbppFk, m1q, pEq,
U0 P EmbpppFkq˚, n0q, pEq, U1 P EmbppFk, n1q, pEq and by hypothesis m0, n0 P NpFkq˚pEq and
m1, n1 P NFkpEq, we can use Claim 3.12.2 to find V P AgepEq

pE
, g P Isop pEq and operators T 10 P

EmbpppFkq˚, m0q, V q, T 11 P EmbppFk, m1q, V q, U 10 P EmbpppFkq˚, n0q, V q, U 11 P EmbppFk, n1q, V q

such that }g ˝ T0 ´ T
1
0}X˚, pE , }g ˝ U0 ´ U

1
0}X˚, pE , }g ˝ T1 ´ T

1
1}X, pE and }g ˝ U1 ´ U

1
1}X, pE are all at
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most ε. Let T 1 :“ T 10 ˝ pT
1
1q
˚ and U 1 :“ U 10 ˝ pU

1
1q
˚. Then,

}g ˝ T ˝ g˚ ´ i ˝ T 1 ˝ r}
p pEq˚, pE

ď}g ˝ T0 ˝ T
˚
1 ˝ g

˚ ´ T 10 ˝ T
˚
1 ˝ g

˚}
p pEq˚, pE

`

`}T 10 ˝ T
˚
1 ˝ g

˚ ´ T 10 ˝ pT
1
1q
˚ ˝ r}

p pEq˚, pE
ď

ď}g ˝ T0 ´ T
1
0}X˚, pE ¨ }T1}X, pE`

`}T 10}X˚, pE ¨ }T
˚
1 ˝ g

˚ ´ pT 11q
˚ ˝ r}

p pEq˚,X˚
ď

ďε}T1}X, pE ` εp}T0}X˚, pE ` εq,

and similarly one shows that }g ˝U ˝ g˚ ´ i ˝U 1 ˝ r}
p pEq˚, pE

ď ε}U1}X, pE ` εp}U0}X˚, pE ` εq. Since
ε ą 0 is arbitrary, the claim is proved. �

So, given T,U P Lk,w˚pp pEq˚, pEq such that ν2
k, pE
pT q “ rms, ν2

k, pE
pUq “ rns P DkpEq, and

ε ą 0, we use the previous claim to find the corresponding V P AgepEq
pE
, g P Isop pEq and

T 1, U 1 P Lk,w˚pV ˚, V q. Let γ P EmbpV,Eq, and set T0 :“ γ ˝T 1 ˝γ˚ and U0 :“ γ ˝U 1 ˝γ˚. Then,

}T0 ´ U0}E˚,E “ }T
1 ´ U 1}V ˚,V “ }i ˝ T

1 ˝ r ´ i ˝ U 1 ˝ r}E˚,E ď }T ´ U}p pEq˚, pE ` 2ε.

Since ε ą 0 is arbitrary, dk,Eprms, rnsq ď }T ´ U}p pEq˚, pE , and since T,U are arbitrary such that
ν2
k, pE
pT q “ rms and ν2

k, pE
pUq “ rns, we obtain that dk,Eprms, rnsq ď d

k, pE
prms, rnsq.

Finally, DkpEq is dense in Dkp pEq because, by a), NXpEq is dense in NXp pEq for every X. �

We finish with the following fact on bounded sets considered before.

Lemma 3.13. Suppose that E is a normed space, k P N and λ ě 1. Then ν2
k,EpL

k,w˚
λ pE˚, Eqq “

DkpE;λq and ν2
k,EpL

k,w˚
ăλ pE˚, Eqq “ DkpE;ăλq.

Proof. We will use the following simple fact.

Claim 3.13.1. If Y “ pV, } ¨ }Y q is a normed space of dimension k, then pνY,EpT qq
˚pfq “

mint}g}E˚ : T ˚pgq “ fu for every T P LkpY,Eq and f P Y ˚.

Proof of Claim: Fix T P LkpY,Eq and f P Y ˚. We know that T : Z Ñ E is an isometry where
Z :“ pV, nq with n :“ νV,EpT q. Set H :“ pT pY q, } ¨ }Eq, and U : H Ñ Z be the inverse of T . Let
g0 P H

˚ be such that U˚pg0q “ f , and use the Hahn-Banach Theorem to extend g0 to g P E˚
in a way that }g} “ }g0}. It is easily seen that T ˚pgq “ f , and since }T ˚}E˚,Z˚ “ }T }Z,E “ 1,
we obtain the desired equality. �

Fix rpm0, m1qs P DkpE;λq, that is, }Id}ppFkq˚,m0q,ppFkq˚,m˚1 q
, }Id}ppFkq˚,m˚1 q,ppFkq˚,m0q,ď λ. Choose

T0 P LkppFkq˚, Eq and T1 P LkpFk, Eq such that νpFkq˚,EpT0q “ m0 and νFk,EpT1q “ m1. We
claim that T :“ T0 ˝ T

˚
1 P Lk,w

˚

λ pE˚, Eq. Given g P E˚, since T0 : ppFkq˚, m0q Ñ E and
T1 : pFk, m1q Ñ E are isometric embeddings,

}T0pT
˚
1 pgqq}E “ m0pT

˚
1 pgqq ď λm˚1pT

˚
1 pgqq ď λ}g}E˚ ,

hence, }T } ď λ. Let us see now that r´1pT q ď λ, i.e. p1{λq ¨ BallpImpT qq Ď T pBallpE˚qq.
So, suppose that }T pgq}E ď λ´1. It follows that m0pT

˚
1 pgqq “ }T0pT

˚
1 pgqq}E ď λ´1, and hence

m˚1pT
˚
1 pgqq ď 1. By Claim 3.13.1, there is h P E˚ such that T ˚1 phq “ T ˚1 pgq and }h}E˚ ď 1.

Similarly one shows that ν2
k,EpL

k,w˚
ăλ pE˚, Eqq “ DkpE;ăλq. �
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Appendix A. Extrinsic metrics for p “ 8

The case p “ 8 is special because the Fräıssé limit that corresponds to `88 is a universal
space, the Gurarij space G [12]. We are going to see that the G-extrinsic metrics are Lipschitz
equivalent to the intrinsic ones on bounded sets. We start by analyzing BX,G. Given a finite
dimensional normed space X “ pX, } ¨ }Xq, another compatible, more geometrical, metric on
NX is the next. Having in mind that a norm is completely determined by its dual unit ball,
given m, n P NX , let

αXpm, nq :“ dH,}¨}X˚ pBallppX, mq˚q,BallppX, nq˚qq,

where dH,}¨}X˚ p¨, ¨q is the Hausdorff distance with respect to the norm distance induced by }¨}X˚ .
In other words, αXpm, nq measures the d}¨}˚X -distance between the unit balls of pX˚, m˚q and of
pX˚, n˚q. Notice that since the unit balls of finite dimensional normed spaces are compact and
convex, it follows from the Minkowski Theorem that

αXpm, nq “ max
#

sup
fPExtpBallppX,mq˚qq

d}¨}X˚ pf,BallppX, mq˚qq,

sup
gPExtpBallppX,nq˚qq

d}¨}X˚ pg,BallppX, mq˚qq
+

where ExtpKq is the collection of extreme points of a given compact and convex subset K Ď X.
In the next we write SphpXq “ tx P X : }x}X “ 1u to denote the unit sphere of X.

Proposition A.1. Let X “ pX, } ¨ }Xq be a finite dimensional normed space and let m, n P NX .

a) If m, n P NXp`
8
8q, then BX,`88pm, nq “ αXpm, nq. Consequently, in general, BX,Gpm, nq “

αXpm, nq.
b) If m, n P NX satisfy ωpm, } ¨ }Xq, ωpn, } ¨ }Xq ď log λ, then λ´1 ¨ωpm, nq ď αXpm, nq ď λ ¨ωpm, nq.

Proof. a): Fix ε ą 0, and let T,U P LpX, `88q be such that νX,`88pT q “ m, νX,`88pUq “ n, and
}T´U}X,`88 ď BX,`88pm, nq`ε. Given f P BallppX, mq˚q, if g P Ballpp`88q˚q is such that T ˚pgq “ f ,
then dX˚pf,BallppX, nq˚qq ď }f ´U˚pgq}X˚ ď }T ˚´U˚} ď BX,`88pm, nq`ε. Similarly one shows
that dX˚pg,BallppX, mq˚qq ď BX,`88pm, nq` ε for every g P BallppX, nq˚q. Since ε ą 0 is arbitrary,
it follows that αXpm, nq ď BX,`88pm, nq.

Let us show now that BX,`88pm, nq ď αXpm, nq: Fix T,U P LpX, `88q such that νX,`88pT q “ m,
νX,`88pUq “ n. Choose n P N such that ImT, ImU Ď xujyjăn. Recall that }

ř

jăn ajuj}8 “

maxjăn |aj | so Y :“ pxujyjăn, } ¨ }8q is isometric to `n8, hence Y ˚ “ xu˚j yjăn is isometric
to p`n8q˚ “ `n1 and the extreme points of BallpY ˚q are t˘u˚j ujăn. Since T : pX, mq Ñ Y

and U : pX, nq Ñ Y are isometric embeddings, i.e. }T } “ r´1pT q “ }U} “ r´1pUq, it fol-
lows that }T ˚} “ r´1pT

˚q “ }U˚} “ r´1pU
˚q, and this exactly means that the restrictions

T ˚ : BallpY ˚q Ñ BallppX˚, m˚qq and U˚ : BallpY ˚q Ñ BallppX˚, n˚qq are continuous affine
surjections. This implies that ExtpBallppX˚, m˚qqq Ď T ˚pExtpBallpY ˚qqq “ t˘T ˚pu˚j qujăn and
ExtpBallppX˚, m˚qqq Ď t˘U˚pu˚j qujăn. Resuming, we have just seen that in this case

αXpm, nq “ max
jăn

maxtdX˚pT ˚pu˚j q, U˚pBallpY ˚qqq, dX˚pU˚pu˚j q, T ˚pBallpY ˚qqq.u

Here we have used that dX˚pv,Kq “ dX˚p´v,Kq if K Ď X˚ is symmetric, that is, if satisfies
that K “ ´K. For every 0 ď j ă n choose fj , gj P BallpY ˚q such that }T ˚pu˚j q ´ U˚pgjq}X˚ “
dX˚pT

˚pu˚j q, U
˚pBallpY ˚qqq and }U˚pu˚j q ´ T ˚pfjq}X˚ “ dX˚pU

˚pu˚j q, T
˚pBallpY ˚qqq.
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Set Z :“ pxujyjă2n, } ¨ }8q, that is isometric to `2n8 . Let ξ, η P EmbpY, Zq be defined dually
by ξ˚pu˚j q :“ u˚j , ξ˚pu˚n`jq :“ f˚j , η˚pu˚j q :“ gj and η˚pu˚n`jq “ u˚j for 0 ď j ă n. Then,

BX,`88pm, nq ď}ξ ˝ T ´ η ˝ U}X,Z “ }T
˚ ˝ ξ˚ ´ U˚ ˝ η˚}Z˚,X˚ “

“max
jă2n

}T ˚pξ˚pu˚j qq ´ U
˚pη˚pu˚j qq} “ αXpm, nq.

Here we have used that the norm of a bounded operator γ : `k1 Ñ E is }γ} “ maxjăk }T pujq}
where pujqjăk is the unit basis of `k1.

b): Notice that ωpm, nq “ ωpm˚, n˚q, because }Id}pX,mq,pX,nq “ }Id}pX˚,n˚q,pX˚,mq. So, it suffices
to prove that if ωp} ¨ }X , mq, ωp} ¨ }X , nq ď log λ, then

1
λ
¨ ωpm, nq ď dH,}¨}X pBallpX, mq,BallpX, nqq ď λ ¨ ωpm, nq (10)

To simplify the notation we set dpm, nq :“ dH,}¨}X pBallpX, mq,BallpX, nqq. We assume that
dpm, nq ą 0 since otherwise m “ n and the inequalities to check are trivially true. Let us show
the first inequality in (10). Without of generality we assume that there is x P SphpX, mq such
that 0 ă dpm, nq “ dXpx,BallpX, nqq. Then npxq ą 1 and

dpm, nq “dXpx,BallpX, nqq ď }x´ x

npxq
}X “ }x}X

ˇ

ˇ

ˇ

ˇ

1´ 1
npxq

ˇ

ˇ

ˇ

ˇ

ď λ

ˆ

1´ 1
npxq

˙

ď

ďλ

ˆ

1´ 1
exppωpm, nqq

˙

ď λωpm, nq.

Let us prove the second inequality in (10). Fix x P X such that mpxq “ 1, and let y P X be such
that npyq ď 1 and }x´ y}X ď dpm, nq. It follows that

npxq ď npyq ` npx´ yq ď 1` λ}x´ y}X ď 1` λdpm, nq ď exppλ ¨ dpm, nqq.

Since x with mpxq “ 1 was arbitrary, it follows that }Id}pX,mq,pX,nq ď exppλ ¨ dpm, nqq, and similarly
one shows that }Id}pX,nq,pX,mq ď exppλ ¨ dpm, nqq. Consequently, ωpm, nq ď λdpm, nq. �

We see now that the G-Kadets mapping γk “ γk,G is Lipschitz equivalent to the Banach-
Mazur metric on Bk.

Corollary A.2. dBM and γk,G are Lipschitz equivalent on Bk. In fact, for k ě 2 and m, n P Nk,

1
3k log kdBMprms, rnsq ď γprms, rnsq ď plog kqdBMprms, rnsq.

Proof. We have seen in Proposition 2.11 that dBMprms, rnsq ď 3k log kγk,Eprms, rnsq for every
normed space E and m, n P NkpEq, so we only have to prove the first inequality above. Fix two
norms m, n P Nk, set X :“ pFk, mq and Y :“ pFk, nq. The following result is a slight modification
of [18, Proposition 6.2].

Claim A.2.1. Suppose that F and G are two finite-dimensional normed spaces, and T : F Ñ G

is a 1-1 linear operator such that }T } ě 1. There is a normed space H, I P EmbpF,Hq and
J P EmbpG,Hq such that:

i) If }T´1} ě 1, then }I ´ J ˝ T } ď }T } ¨ }T´1} ´ 1.
ii) If dimF “ dimG and }T } “ 1, then ΛHpIm I, Im Jq ď }T´1} ´ 1.

Proof of Claim: Fix a 1-1 linear operator T : F Ñ G. On the cartesian product F ˆG we define
the seminorm

mpx, yq :“ max
"›

›

›

›

Tx

}T }
` y

›

›

›

›

G

,max
gPD

ˇ

ˇ

ˇ

ˇ

g

}T }
pyq `

pT ˚gqpxq

}T ˚g}F˚

ˇ

ˇ

ˇ

ˇ

*

,
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where D is chosen so that pT ˚q´1p}T´1}´1 ¨ ExtpBallpF ˚qqq Ď D Ď BallpG˚q, and where for a
compact convex set K, ExtpKq is the set of extreme points of K. Let H by the quotient of
F ˆG by the kernel of m with its quotient norm

rmsprpx, yqsq :“ inf
mpx0,y0q“0

mpx0 ` x, y0 ` yq,

and let I : F Ñ H, J : GÑ H be the two canonical injections Ipxq :“ rpx, 0qs, Jpyq :“ rp0, yqs.
Let us see first that I and J are isometric embeddings. Fix x P F and y P G, and let us
check that rmsprpx, 0qsq “ }x}F and rmsprp0, yqsq “ }y}G: suppose that mpx0, y0q “ 0. Then
}T px ` x0q{}T } ` y0}G “ }T pxq{}T }}G ď }x}F , because T px0q{}T } ` y0 “ 0, and similarly
given g P D, |gpy0q{}T } ` ppT

˚gqpxq ` pT ˚gqpx0qq{}T
˚g}F˚ | “ |pT ˚gqpxq{}T ˚g}F˚ | ď }x}F .

This proves that infmpx0,y0q“0 mpx0 ` x, y0q ď }x}F . On the other hand, it is a well-known
that the extreme points of the dual unit ball norm the space (see for example [5, Fact 3.45]),
so we can choose h P ExtpBallpF ˚qq such that hpxq “ }x}F , and let g :“ pT ˚q´1phq{}T´1}.
It follows that T ˚gpxq{}T ˚g} “ phpxq{}T´1}q{p1{}T´1}q “ }x}F , hence mpx, 0q ě }x}F , and
consequently infmpx0,y0q“0 mpx0 ` x, y0q “ }x}F . In a similar way, for px0, y0q with mpx0, y0q “ 0,
}Tx0{}T }`y0`y}G “ }y}G and |pgpy0`yq{}T }`pT

˚gqpx0q{}T
˚pgq}| “ |gpyq{}T }| ď }y}G{}T } ď

}y}G, so mpx0, y0 ` yq “ }y}G. Suppose that }T´1} ě 1. Fix x P BallpF q, and let us see that
rmsprpx,´Txqsq ď mpx,´Txq ď }T }}T´1}´1: We have that }Tx{}T }´Tx}G ď }x}F p}T }´1q ď
}T } ´ 1 ď }T }}T´1} ´ 1, while given g P D we have that |gpTxq{}T } ´ T ˚gpxq{}T ˚g}| “

|gpTxq||1{}T } ´ 1{}T ˚g}| ď }T }|1{}T } ´ 1{}T ˚g}| “ }T }{}T ˚g} ´ 1 ď }T }}T´1} ´ 1, where we
have used that 1{}T´1} ď }T ˚g} ď }T }.

ii): Suppose that in addition dimF “ dimG and that }T } “ 1. We have seen in (3) that
ΛHpIm I, Im Jq “ maxt max

vPSphpIm Iq
dHpv,BallpIm Jqq, max

vPSphpIm Jq
dHpv,BallpIm Iqq,

so we fix first z P SphpIpF qq, that is z “ Ipxq for some x P SphpF q. It follows from i) that }Ipxq´
JpT pxqq} ď }T´1}´1, and since }JpT pxqq} ď }x} ď 1, it follows that dHpIpxq,BallpJpT pF qqqq ď
}T´1}´1. Now suppose z P SphpJGq, and let y P SphpGq be such that z “ Jy. Since T : F Ñ G

is 1-1 and dimF “ dimG it follows that T is a bijection, so let x P F be such that Tx “ y. Note
that 1 “ }Tx}G ď }x}F ď }T´1}, and let us see that mppx{}T´1}q,´yq ď }T´1}´ 1: on one side
}Tx{}T´1} ´ y} “ }Tx}|1{}T´1} ´ 1| ď }T´1} ´ 1, and on the other, given g P D we have that
|gpyq´gpTxq{p}T´1}}T ˚g}q| “ }T ˚gpxq}|1´1{p}T´1}}T ˚g}q| ď }T ˚g}}T´1}´1 ď }T´1}´1. �

Let T : X Ñ Y be such that }T } ¨ }T´1} “ exppdBMprms, rnsqq, and without loss of generality,
we assume that }T } “ 1. We apply Claim A.2.1 to T , and we obtain a normed space Z and
isometric embeddings I : X Ñ Z and J : Y Ñ Z such that (b) holds, that is, ΛZpIm I, Im Jq ď

exppdBMprms, rnsqq ´ 1. Since dBM prms, rnsq ď log k, it follows that exppdBMprms, rnsqq ´ 1 ď
log k ¨ dBMprms, rnsq. Thus γprms, rnsq ď ΛZpX,Y q ď log k ¨ dBMprms, rnsq. �

We conclude by proving that dk,G is Lipschitz equivalent to the following intrinsically defined
metric on Dkpλq. Recall that ω2 is the compatible metric ω2ppm0, m1q, pn0, n1qq :“ ωpm0, n0q `

ωpm1, n1q, and that rω2 is the corresponding quotient metric on Dk.
We start with the following quantitative versions of the continuity of νX,Y and of ν2

k,Y . In
order to simplify the notation, given a linear operator T : X Ñ Y on X “ pV, mq and Y “ pW, mq,
we will write sometimes }T }m,Y , }T }m,n, }T }X,n to denote the norm }T }X,Y .
Lemma A.3. Let Y be a normed space.
a) Suppose that X is a finite dimensional normed space, and T,U P LdimXpX,Y q, are such that

}T ´ U} ď 1{}Id}νX,Y pT q,}¨}X .
Then,

ωpνX,Y pT q, νX,Y pUqq ď }Id}νX,Y pT q,}¨}X ¨ }T ´ U}.
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b) Suppose that T,U P Lk,w
˚

λ pX˚, Xq are such that

2peωpm0,m˚1 q ` λke2ωpm0,m˚1 qq}T ´ U} ď 1 (11)

for some (every) pm0, m1q P ν
2
k,Y pT q. Then,

rω2pν
2
k,Y pT q, ν

2
k,Y pUqq ď 2p2eωpm0,m˚1 q ` 3λke2ωpm0,m˚1 qq}T ´ U}. (12)

Proof. a): Fix x P X. Then,

npxq “ }Upxq}Y ď }T ´ U}X,Y ¨ }x}X ` }T pxq}Y ď }T ´ U}X,Y ¨ }Id}m,}¨}Xmpxq ` mpxq “

“p1` }T ´ U}X,Y }Id}m,}¨}X qmpxq,

and similarly one shows that mpxq ď p1{p1 ´ }T ´ U}X,Y }Id}m,}¨}X qqnpxq. This implies that
exppωpm, nqq ď p1{p1 ´ }T ´ U}X,Y }Id}m,}¨}X qq, and since we are assuming that }T ´ U} ď

1{}Id}m,}¨}X , we obtain the desired inequality ωpm, nq ď }Id}m,}¨}X ¨ }T ´ U}.
b): Let pxjqjăk be an Auerbach basis of ImT . For each j ă k choose fj P X˚ such that

T pfjq “ xj and }fj}X˚ ď λ. This is possible since we are assuming that r´1pT q ď λ.
Let T0, U0 : pFkq˚ Ñ X be linearly defined by T0pu

˚
j q :“ T pfjq “ xj and U0pu

˚
j q :“ Upfjq “:

yj , and let m0 :“ νpFkq˚,XpT0q.

Claim A.3.1. }T0 ´ U0}m0,X ď λk}T ´ U}X˚,X . Consequently, U0 is 1-1.

Proof of Claim: Fix v :“
ř

jăk aju
˚
j P pFkq˚, and set f :“

ř

jăk ajfj . Then, using that pxjqjăn
is an Auerbach basis,

}T0pvq ´ U0pvq}X “}T pfq ´ Upfq}X ď }T ´ U}}f} ď }T ´ U}
ÿ

jăk

|aj | ¨ }fj}X˚ ď

ď}T ´ U}kλmax
jăk

|aj | ď }T ´ U}kλ}
ÿ

jăk

ajxj}X “ kλ}T ´ U}m0pvq.

Let us see now that U0 is 1-1: Suppose that v P pFkq˚ is non-zero. Then

}U0pvq}X ě}T0pvq}X ´ }T0 ´ U0}m0,Xm0pvq “ p1´ }T0 ´ U0}m0,Xqm0pvq ě

ěp1´ kλ}T ´ U}qm0pvq ą 0,

where the last inequality follows from the hypothesis in (11). �

Let n0 :“ νpFkq˚,XpU0q.

Claim A.3.2. ωpm0, n0q ď 2λk}T ´ U}.

Proof of Claim: Fix v P pFkq˚. Then, n0pvq “ }U0pvq}X ď }T0pvq}X ` }T0 ´ U0}m0,Xm0pvq ď

p1` kλ}T ´U}qm0pvq, and this shows that }Id}m0,n0 ď 1` kλ}T ´U}. Similarly one shows that

}Id}n0,m0 ď
1

1´ kλ}T ´ U} , (13)

and by (11) we have that }Id}n0,m0 ď 1{p1 ´ kλ}T ´ U}q ď 1 ` 2kλ}T ´ U}. This means that
ωpm0, n0q ď logp1` 2kλ}T ´ U}q ď 2kλ}T ´ U}. �

Let now T1, U1 P LkpFk, Xq be such that T “ T0 ˝ T
˚
1 and U “ U0 ˝ U

˚
1 . Set m1 :“ νFk,XpT1q

and n1 :“ νFk,XpU1q.

Claim A.3.3. ωpm1, n1q ď 4}Id}m0,m˚1
pp1` kλ}Id}m˚1 ,m0q}T ´ U}X˚,Xq
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Proof of Claim: First, using that }T ˚1 }X˚,m˚1 “ }T1}m1,X “ 1,

}T ˚1 ´ U
˚
1 }X˚,n0 “}U0 ˝ T

˚
1 ´ U0 ˝ U

˚
1 }X˚,X ď }T ´ U}X˚,X ` }U0 ˝ T

˚
1 ´ T0 ˝ T

˚
1 }X˚,X ď

ď}T ´ U}X˚,X ` }U0 ´ T0}m0,X ¨ }T
˚
1 }X˚,m0 “

ď}T ´ U}X˚,X ` }U0 ´ T0}m0,X ¨ }T
˚
1 }X˚,m˚1

}Id}m˚1 ,m0 “

“}T ´ U}X˚,X ` }U0 ´ T0}m0,X}Id}m˚1 ,m0 .

Now using the Claim A.3.1, }T ˚1 ´U˚1 }X˚,m0 ď p1`kλ}Id}m˚1 ,m0q}T ´U}X˚,X . By this, (13), and
the hypothesis (11),

}T1 ´ U1}m1,X “}T
˚
1 ´ U

˚
1 }X˚,m˚1

ď }T ˚1 ´ U
˚
1 }X˚,n0}Id}n0,m0}Id}m0,m˚1

ď

ď
p1` kλ}Id}m˚1 ,m0q}T ´ U}X˚,X

1´ kλ}T ´ U}X˚,X
¨ }Id}m0,m˚1

ď

ď2pp1` kλ}Id}m˚1 ,m0q}T ´ U}X˚,Xq ¨ }Id}m0,m˚1
.

From this we proceed as in the proof of the Claim A.3.2 to obtain that

ωpm1, n1q ď 4}Id}m0,m˚1
pp1` kλ}Id}m˚1 ,m0q}T ´ U}X˚,Xq.

From Claim A.3.2, Claim A.3.3 and the fact that }Id}m0,m˚1
¨ }Id}m˚1 ,m0 ě 1, we obtain the desired

estimation in (12). �

�

We have the following (not sharp) inequalities.

Proposition A.4. For k ě 2 the metrics dk,`88 and rw2 are Lipschitz equivalent on Dkp`
8
8;λq.

In fact, for every rms, rns P Dkp`
8
8;λq we have that

1
16 logpλkqkλ3 rω2prms, rnsq ď dk,`88prms, rnsq ď k2λ3

rω2prms, rnsq. (14)

Proof. We first estimate the rω2-diameter of Dkp`
8
8, λq.

Claim A.4.1. For every rpm0, m1qs, rpn0, n1qs P Dkp`
8
8;λq one has that

rω2prpm0, m1qs, rpn0, n1qsq ď 2plog λ`maxtdBMprm0s, rn0sq, dBMprm1s, rn1squq. (15)

Consequently, diampDkp`
8
8;λqq ď 2 logpλkq.

Proof of Claim: Given rpm0, m1qs, rpn0, n1qs P Dkp`
8
8;λq, we have that ωpm0, m˚1q, ωpn0, n˚1q ď

logpλq. Choose ∆ P GLpFkq with rωprm0s, rn0sq “ ωpm0,∆ ¨ n0q. Then,

ωpm1,∆ ¨ n1q “ωpm˚1 ,∆ ¨ n˚1q ď ωpm˚1 , m0q ` ωpm0,∆ ¨ n0q ` ωp∆ ¨ n0,∆ ¨ n˚1q ď

ď2 log λ` rωprm0s, rn0sq ď 2 log λ` dBMprm0s, rn0sq.

Similarly one shows that ωpm0,∆ ¨ n0q ď 2 log λ ` dBMprm1s, rn1sq if ∆ P GLpFkq is such that
rωprm1s, rn1sq “ ωpm1,∆ ¨ n1q. From here we get easily the inequality in (15). �

Let us see now that rω2prms, rnsq ď 16 logpλkqkλ3dk,`88prms, rnsq for rms, rns P Dkp`
8
8;λq:

Suppose first that dk,`88prms, rnsq ă 1{p8kλ3q. For a fixed ε ą 0, choose T,U P Lk,w
˚

λ p`81 , `
8
8q

such that ν2
k,`88

pT q “ rms “ rpm0, m1qs, ν2
k,`88

pUq “ rns and

}T ´ U} ď mintdk,`88prms, rnsq ` ε,
1

8kλ3 u.
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We have that rms P Dkpλq, that is, ωpm0, m˚1q ď log λ. It follows that 2pexppωpm0, m˚1qq `
λk expp2ωpm0, m˚1qqq ď 2pλ ` kλ3q ď 8kλ3 and consequently T,U , m0 and m1 satisfy (11). This
implies by b) in Proposition A.3 that

rω2prms, rnsq ď2p2eωpm0,m˚1 q ` 3λke2ωpm0,m˚1 qq}T ´ U} ď 2p2λ` 3kλ3q}T ´ U} ď 8kλ3}T ´ U}.

Since ε ą 0 is arbitrary, we get that rω2prms, rnsq ď 8kλ3dk,`88prms, rnsq. Now suppose that
dk,Eprms, rnsq ě 1{p8kλ3q. By the Claim A.4.1, we have that diampDkp`

8
8;λqq ď 2 logpλkq.

Hence, rω2prms, rnsq ď 2 logpλkq ¨ p8kλ3qdk,`88prms, rnsq “ 16 logpλkqkλ3dk,`88prms, rnsq.
It rests to show the second inequality in (14).

Claim A.4.2. For every rms, rns P Dkp`
8
8;λq one has that dk,`88prms, rnsq ď k2λ3

rω2prms, rnsq.

Proof of Claim: As we have pointed out before, the infimum defining the metric rω2 is a min-
imum, so let ∆ P GLpFkq be such that rω2prpm0, m1qs, rpn0, n1qsq “ ωpm0,∆ ¨ n0q ` ωpm1,∆ ¨ n1q.
We use Proposition A.1 a) to find T0, U0 P LppFkq˚, `88q, T1, U1 P LpFk, `88q such that:
v) m0 “ νpFkq˚,`88pT0q, ∆ ¨ n0 “ νpFkq˚,`88pU0q, m1 “ νFk,`88pT1q and ∆ ¨ m1 “ νFk,`88pU1q.
vi) αppFkq˚,m˚1 qpm0,∆¨n0q “ }T0´U0}ppFkq˚,m˚1 q,`

8
8

and αppFkq˚,m0qpm
˚
1 ,∆¨n˚1q “ }T1´U1}ppFkq˚,m0q,`88

.
Let T :“ T0 ˝ T

˚
1 , U :“ U0 ˝ U

˚
1 . It follows that ν2prT sq “ rms, ν2prU sq “ rns, and

dk,`88prms, rnsq ď }T ´ U}`81 ,`88 . Now let g P Sphp`81 q. Then,

}pT ´ Uqpgq}`88 ď}T0pT
˚
1 ´ U

˚
1 qpgq}`88 ` }pT0 ´ U0qpU

˚
1 pgqq}`88 ď

ď}T0}ppFkq˚,m0q,`88
}T ˚1 ´ U

˚
1 }`81 ,ppFkq˚,m0q ` }T0 ´ U0}pFk,m1q˚,`88

}U˚1 }`81 ,pFk,m1q˚ “

“αppFkq˚,m0qpm
˚
1 ,∆ ¨ n˚1q ` αpFk,m1q˚pm0,∆ ¨ n0q (16)

We want to estimate the α quantities above by the corresponding ω ones by using Proposition
A.1 b). It follows by the estimation on the diameter diampDkp`

8
8;λqq ď 2 logpλkq on Claim

A.4.1, and the fact that ωpm0, m˚1q ď logpλq,

maxt}Id}∆¨n˚1 ,m0 , }Id}∆¨n0,m˚1
u ďmaxt}Id}m˚1 ,m0 ¨ }Id}∆¨n˚1 ,m˚1 , }Id}m0,m˚1

¨ }Id}∆¨n0,m0u ď

ďλmaxt}Id}∆¨n˚1 ,m˚1 , }Id}∆¨n0,m0u “ λmaxt}Id}∆¨n1,m1 , }Id}∆¨n0,m0u ď

ďλerω2prms,rnsq ď k2λ3,

and similarly one shows that maxt}Id}m0,∆¨n˚1
, }Id}m˚1 ,∆¨n0u ď k2λ3. This means that

ωpm0,∆ ¨ m˚1q, ωpm
˚
1 ,∆ ¨ n0q ď k2λ3.

It follows from this, the inequality in (16) and Proposition A.1 b) that

dk,`88prms, rnsq ď }T ´U}`81 ,`88 ď k2λ3pωpm1,∆ ¨ n1q`ωpm0,∆ ¨ n0qq ď k2λ3
rω2prms, rnsq. � �

We do not know a similar explicit description of the extrinsic metrics for p’s other than 8.
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