Elastomeric/antibacterial properties in novel random Ricinus communis based-copolyesters

Grazia Totaro,^a Laura Sisti,^{*a} Nicole Bozzi Cionci,^b Gonzalo A. Martinez,^a Diana Di Gioia,^b Annamaria Celli.^a

^aDipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy. ^bDipartimento di Scienze e Tecnologie Agroalimentari, Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy

Corresponding Author: laura.sisti@unibo.it

Figure S1. ¹H NMR (400 MHz) spectrum of poly(ricinoleic acid) in CDCl₃ (a' end group). ¹H NMR (400 MHz, CDCl₃, δ): 0.80-0.88 (t, 3H; C^mH₃), 1.20-1.38 (m, 16H; C^cH₂ and C^lH₂),1.42-1.56 and 1.56-1.70 (m, 2H; CⁱH₂ and C^bH₂), 1.95-2.10 (m, 2H; C^dH₂), 2.23-2.40 (m, 4H; C^aH₂ and C^gH₂), 4.82-4.92 (m, 1H; C^hH), 5.28-5.36 and 5.40-5.50 (2m, 2H; C^fH and C^eH).

Figure S2. ¹H NMR (400 MHz) spectrum of poly(propylene isophthalate) in CDCl₃ (a' end group, * ether linkages PD-PD, ** impurity).

¹H NMR (400 MHz, CDCl₃ δ): 2.22-2.34 (m, 2H; C^bH₂), 4.47-4.56 (t, 4H; C^aH₂), 7.43-7.49 (t, 1H; C^eH), 8.15-8.20 (d, 2H; C^dH), 8.62-8.66 (t, 1H; C^cH).

Figure S3. ¹H NMR (400 MHz) spectrum of poly(propylene terephthalate) in CDCl₃/TFA (b' end group, * cyclics) [1].

¹H NMR (400 MHz, CDCl₃/TFA, δ): 2.24-2.52 (m, 2H; C^aH₂), 4.45-4.66 (m, 4H; C^bH₂), 7.98-8.26 (s, 4H; C^cH₂).

Figure S4. ¹H NMR (400 MHz) spectrum of poly(propylene isophthalate-*co*-ricinoleic acid) (P(PI*co*-RA) 90/10) in CDCl₃/TFA (a^{**} end group).

¹H NMR (400 MHz, CDCl₃/TFA, δ): 0.80-0.95 (t, 3H; C^rH₃), 1.20-1.48 (m, 16H; C^qH₂ and C^hH₂),1.55-1.65 and 1.65-1.75 (m, 2H; C^pH₂ and C^gH₂), 1.80-2.10 (m, 2H; CⁱH₂), 2.10-2.20 (m, 2H; CⁿH₂), 2.23-2.40 (m, 2H; C^bH₂), 2.40-2.50 (m, 2H; C^fH₂), 4.15-4.30 (m, 2H; C^a'H₂), 4.35-4.45 (m, 2H; C^a'H₂), 4.45-4.55 (m, 4H; C^aH₂), 5.10-5.20 (m, 1H; C^oH), 5.35-5.45 and 5.45-5.50 (2m, 2H; C^mH and C^lH), 7.42-7.55 (m, 1H; C^eH), 8.15-8.25 (d, 2H; C^dH), 8.60-8.72 (s, 1H; C^eH).

Figure S5. ¹H NMR (400 MHz) spectrum of poly(propylene terephthalate-*co*-ricinoleic acid) (P(PT*co*-RA) 90/10) in CDCl₃/TFA (b''' end group, * cyclics) [1].

¹H NMR (400 MHz, CDCl₃/TFA, δ): 0.86 (t, 3H; C^pH₃), 1.20-1.50 (m, 16H; C^fH₂ and C^oH₂), 1.54-1.69 (m, 2H; CⁿH₂), 1.68-1.82 (m, 2H; C^eH₂), 1.94-2.10 (m, 2H; C^gH₂), 2.14-2.26 (m, 4H; C^lH₂), 2.26-2.45 (m, 2H; C^aH₂), 2.45-2.56 (m, 4H; C^dH₂), 4.30-4.40 (m, 2H; C^b''H₂), 4.45-4.52 (m, 2H; C^b'H₂), 4.53-4.75 (m, 4H; C^bH₂), 5.09-5.25 (m, 1H; C^mH), 5.25-5.44 and 5.45-5.60 (2m, 2H; CⁱH and C^hH), 7.93-8.29 (s, 4H; C^eH₂).

Table S1. Average number of viable cells obtained after 24 h of contact with samples as described in section 2.2.7. The values regarding the bacterial cell suspensions used as positive controls have also been reported.

Sample	E.coli	S.aureus
PRA	0	0
P(PI-co-RA)-75/25	$5.0 \ge 10^2$	6.1 x 10 ⁴
P(PI-co-RA)-82/18	7.8 x 10 ⁴	1.7 x 10 ⁶
P(PI-co-RA)-90/10	1.9 x 10 ⁵	3.8 x 10 ⁶
PPI	1.0 x 10 ⁶	2.3 x 10 ⁶
P(PT-co-RA)-75/25	8.0 x 10 ⁴	6.4 x 10 ⁴
P(PT-co-RA)-90/10	1.4 x 10 ⁵	2.3 x 10 ⁶
PPT	2.2 x 10 ⁵	2.6 x 10 ⁶
Bacterial cell suspension	1.2 x 10 ⁵	$3.0 \ge 10^6$

References

 [1] B. Min, B. Ho Lim, S. Yen Ko, Separation and Identification of Cyclic Oligomers in Poly (trimethylene terephthalate). Journal of the Korean Magnetic Resonance Society 10 (2006) 38 – 45.