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ABSTRACT 53 

Primary diffuse large B-cell lymphoma of the CNS (CNS-DLBCL) is an aggressive disease, with 54 

dismal prognosis despite the use of high dose methotrexate (MTX)-based polychemotherapy. Our 55 

study aimed to expand the biologic profiles of CNS-DLBCL and to correlate them with 56 

clinical/imaging findings to gain diagnostic insight and possibly identify new therapeutic targets. 57 

We selected 61 CNS-DLBCL whose FFPE samples at first diagnosis were available.  These were 58 

investigated by immunohistochemistry, cMYC rearrangements were explored by fluorescence in 59 

situ hybridization and CNS-DLBCL mutated genes were evaluated by Next Generation Sequencing. 60 

CD10, BCL6 and IRF4 were observed in 16%, 83.6% and 93% of cases respectively. As typical of 61 

CNS-lymphoma 10/61 (16.4%) cases were classified as germinal center (GCB) and type and 51/61 62 

(83.6%) as non-germinal center (non-GCB) type according to the Hans algorithm.  Double 63 

expression (DE) status for BCL2 and cMYC was detected in 36/61 (59%) cases while 25/61 (41%) 64 

were non DE. Rearrangement of the cMYC gene was detected in 2 cases, associated with BCL6 65 

translocation only 1 case. MYD88, PIM1, CD79B and TP53 were mutated in 54.5%, 53.5%, 30.2% 66 

and 18.4% cases respectively. Novel mutations not previously reported in CNS-DLBCL were 67 

found: AIP in 23,1%, PI3KCA in 15%, NOTCH1 in 11,4%, GNAS 8.1%, CASP8 in 7.9%, EGFR in 68 

6.4% PTEN in 5.1 and KRAS in 2.6%. Survival was significantly longer for patients with mutated 69 

MYD88 (8.7 months vs. 1.7 months; log-rank test = 5.43; p = 0.020) and for patients with mutated 70 

CD79B (10.8 months vs. 2.5 months; log-rank test = 4.64; p = 0.031).MYD88 and CD79B predicted 71 

a longer survival in patients affected by CNS-DLBCL.  Notably, we identified novel mutations that 72 

enrich mutational landscape of CNS-DLBCL, suggest a role of PTEN-PI3K-AKT and RTK-RAS-73 

MAPK signalling in a subset of CNS-DLBCL and provide new potential therapeutic targets. 74 

 75 

 76 

 77 

 78 



 

4 

 

Introduction 79 

Diffuse large B cell lymphoma of the primary central nervous system (CNS-DLBCL) accounts for 80 

<3% of brain tumor with a peak incidence between the 5th and 6th decade
1
. The most frequent 81 

(60%) localization is the supra-tentorial frontal region. Ocular lesions develop concurrently in 20% 82 

of patients,
1,2 

while extra-neural dissemination is rare.
1,3

 CNS-DLBCL lesions may be single or 83 

multiple, with distinct margins or poorly defined with diffuse parenchyma infiltration .
1
 The 84 

neoplastic population consists of medium/large proliferating blasts, with a mature B phenotype.
1
 85 

Most CNS-DLBCL are BCL6
+
/IRF4

+
 and

1,4 
approximately 80% of CNS-DLBCL are 86 

BCL2
+
/cMYC

+ 
(double expressors), a protein profile that confers poor clinical prognosis; double-87 

hit or triple-hit high grade B-cell lymphomas, with MYC and BCL2 and/or BCL6 rearrangements, 88 

are rare.
5,6

 Despite high-dose polychemotherapy and methotrexate (MTX), the prognosis remains 89 

poor, with a median overall survival (OS) of about 3 years and a median progression free survival 90 

(PFS) of 12 months.
7
 At the bio-pathological level, proliferation and survival of the neoplastic 91 

clones are supported by the constitutive activation of the B-cell receptor (BCR), Toll-like receptor 92 

(TLR) and NF-kB signaling pathways caused by mutations of MYD88 and/or CD79B.
1
 Recently, 93 

the landscape of recurrent genetic drivers in DLBCL has been expanded by Schmitz G et al and 94 

Chapuy B et al. that uncovered genetic subtypes of DLBCL with distinct clinical characteristics, 95 

providing a potential nosology for precision-medicine strategies in DLBCL.
8,9

 These subtypes 96 

showed distinct outcomes after immunochemotherapy with the potential to affect the selection of 97 

targeted therapies owing to their distinct oncogenic abnormalities. Wright et al revealed a high 98 

prevalence of the sub-type termed MCD (based on the co-occurrence of MYD88 p.L265P and 99 

CD79B mutations) in primary CNS-DLBCL, defined by gene aberrations involving MYD88, 100 

CD79B and PIM1.
10 

Their combined genetic, phenotypic, functional, and clinical data suggest that 101 

MCD-subtype may be sensitive to BTK, PI3K, BET, BCL2, and JAK inhibitors.
11

 102 

Despite all attempts, the prognosis of CNS-DLBCL remains poor and new therapeutic approaches 103 

are needed to improve patient survival. With this background, our aim was to characterize and 104 
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correlate the biologic profiles CNS-DLBCL to clinical findings and explore new potential 105 

therapeutic targets. 106 

Methods 107 

Patients’ selection and tumour samples collection. From the review of the medical records of the 108 

Department of Neurosurgery of IRCCS Istituto Delle Scienze Neurologiche, Bologna, we identified 109 

107 pathologically confirmed cases of CNS-DLBCL diagnosed between 2005 and 2020. Of those, 110 

sixty-one cases with formalin fixed paraffin embedded (FFPE) adequate material were included in 111 

the study. The study was approved by local ethics committee (620/2020/OSS/AUSLBO) and it was 112 

performed in accordance with the Declaration of Helsinki. Thirty patients (49.2%) were male and 113 

31 females (50.8%), with an age range between 32 and 82 years and a median age of 66 years (IQR: 114 

57–72). 115 

Immunohistochemistry. Paraffin-embedded sections were deparaffinized in HistoClear and 116 

dehydrated through graded ethanol. The antigen retrieval was performed in the PT-Link (Agilent  117 

Dako, Santa Clara, CA, USA, code PT100/ PT 101), for 5 min at 92°C in EnVision Flex Target 118 

retrieval solution High pH (Agilent Dako, code K 8004). Then, tissue samples were incubated at RT 119 

for 30 minutes with the following antibodies: CD20 (Agilent Dako 1:300, clone L26, code M0755), 120 

CD10 (Leica NewCastle, UK, 1:30, clone 56C6 code CD10-270-L), BCL2 (Abcam, Cambridge , 121 

UK, 1:100, clone E17, code Ab32124), BCL6 (kindly provided by Prof. Falini, indiluted, clone PG-122 

B6p), cMYC (Epitomics, Burlingame, CA 1:80, clone Y69,  code 1472-1,), IRF4 ( kindly provided 123 

by Prof. Falini,  1:3, clone IRF4). Immunostaining has been completed using the Alkaline REAL 124 

Detection System Alkaline Phosphatase/RED Rabbit/Mouse (Agilent Dako, code K5005) and 125 

chromogen (Fast red), provided with the kit. Finally, slides were counterstained with Hematoxylin, 126 

mounted in Glycerine and observed and analysed by Olympus microscope. Slides were observed by 127 

2 expert pathologists (CA, SA). Results were recorded as percentage of positive cells and graded as 128 

follows: + if >30% positive neoplastic cells, for CD10/BCL6/IRF4 according to Hans’ algorithm. 129 
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[11] A case was defined as cMyc or BCL2 positive if ≥40% and ≥50% cells were stained 130 

respectively.
6 

131 

Genetic analysis. 132 

Fluorescence in situ hybridization (FISH). Paraffin embedded tissue were deparaffinized and then 133 

pre-treated with two different antigen retrievals. The slides were before incubated in 1mM EDTA 134 

buffer (pH 8) in a pressure cooker (9 minutes) and after in Pepsin solution (Sigma Aldrich code 135 

P7012) for 14 minutes at 38°C
 12

. The probes and the samples were denatured at 80 °C for 22 min 136 

and then hybridizated at 38°C for 22 hours in a hybridizer (Agilent Dako, Santa Clara, CA USA). 137 

The experiments were conducted using the probes LSI MYC Dual Color Break Apart 138 

Rearrangement (Vysis, Abbott, Downers Grove, Illinois, USA, code 01N63-020, cut-off 3,8%), LSI 139 

BCL2 Dual Color Break Apart Rearrangement (Vysis Abbott, code 05N51-020, cut-off  4,7%) and 140 

LSI BCL6 dual color Break apart Rearrangement t(3q27) (Vysis Abbott, code 01N23-020, cut off  141 

5,5%). Following a stringency washes (0,4XSSC/0,03%NP-40 pH 7,4 solutions at 73°C for 2 min 142 

and with 2XSSC/0,1% NP-40 pH 7 solutions at room temperature for 1 min), the slides were 143 

mounted and counterstained with DAPI I (Vysis Abbott, code 06J49-001). Microscopical analysis 144 

were carried out with an Olympus BX61 microscope and images were recorded using the Cell^F 145 

program. BCL6 and BCL2 rearrangements were investigated only in cases with translocation of the 146 

cMYC gene. 147 

Next Generation Sequencing. DNA from FFPE PCNSL tissue samples was purified by Quick 148 

Extract FFPE DNA Extraction Kit (Epicentre, Madison, WI) with some modifications described by 149 

Ricci C et al.
13 

DNA mutations were detected using the protocol described previously
14

 analysing 150 

the following gene panel: MYD88, CD79B, PIM1, GNAS, NOTCH1, KRAS, PIK3CA, EGFR, 151 

CASP8, AIP, PTEN. In brief, after target enrichment by multiplex PCR, libraries with tagged 152 

primers were generated using Nextera adapters. Each run on MiSEQ platform (Illumina, Palo Alto, 153 

CA) was designed to allocate at least 2K reads/region aimed to have a depth of coverage of at least 154 

2000×. FASTQ files were filtered with PHRED quality score > Q30 and length > 100 bp, and reads 155 
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were mapped in a Galaxy Project environment to the hg38 human reference genome with BWA-156 

MEM, GATK local realignment, HaplotypeCaller and Picard MarkDuplicates.
15 

The BAM files 157 

were visualized using the Integrative Genomic Viewer (IGV) to identify mutations with Variant 158 

Allele Frequency (VAF) of at least 10%; only bidirectional variant calls with more than 10 reads 159 

were reported. 
15 

Next generation sequencing analysis was available in 46 cases, as fifteen FFPE 160 

specimens were over-fixed and not amplifiable. Protein sequence and functional information were 161 

obtained by Uniprot database. 162 

Statistical analysis. Demographic and clinical features were described using absolute frequencies 163 

and percentages for categorical variables, mean and standard deviation for quantitative symmetrical 164 

variables or median and interquartile range (IQR) for quantitative asymmetrical variables. The 165 

associations between immunohistochemistry and radiology, between immunohistochemistry and 166 

mutated genes, and between radiology and mutated genes were investigated using the χ2 test, or 167 

Exact Fisher’s test when expected cell count is less than 5. The Kaplan–Meier product limit was 168 

used to estimate the overall survival (OS) curve. Differences in survival between subgroups were 169 

assessed with the log-rank test. Statistical analysis was performed with IBM SPSS version 25.0 and 170 

Stata 13. The significance level was set at p<0.05. 171 

Results 172 

Phenotypic profile. By immunohistochemistry, diffuse and strong expression of CD20 characterized 173 

all 61 (100%) samples. CD10, BCL6 and IRF4 were observed in 10 (16%), 51 (83.6%) and 57 174 

(93%) of 61 cases respectively. As typical of CNS-lymphoma 10 of 61 (16.4%) cases were 175 

classified as GCB type and 51/61 (83.6%) as non-GCB type according to the Hans algorithm.  176 

BCL2 and cMYC proteins were expressed in 51 (83.6%) and 41 (67.2%) of 61 samples 177 

respectively. Double expression (DE) status for BCL2 and cMYC was detected in 36 (59%) cases 178 

while 25 (41%) were non DE.  The immunohistochemical data is summarized in Table 1. 179 
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Fish analysis. FISH analysis was successful in 59 of 61 (96.7%) samples; cMYC rearrangements 180 

were present in 2 (3.4%) of 59 cases and in one was associated to BCL6 translocation. This latter 181 

harboured MYD88 mutated (p.L265P). 182 

 Next generation sequencing showed MYD88 mutations in 24 (54.5%) of 44, all carrying p.L265P 183 

except one case with p.A260T. Both mutations are located in the Toll/Il-1 Receptor (TIR) domain 184 

of the protein.  185 

Twenty-three cases carried a mutation in proto-oncogene with serine/threonine kinase PIM1 (23/43, 186 

53.5%), with a great variety of different mutations, mostly missense mutations, occurring at protein 187 

kinase domain, of which the p.E135K was the most common involving four cases. In 9 samples 2 or 188 

3 different PIM1 mutations were simultaneously present. CD79B missense mutations were found in 189 

13 cases (of 43, 30.2%), located within immunoreceptor tyrosine-based activation motif (ITAM), 5 190 

of which had p.Y196H, 2 cases p.Y196N, 2 p.Y196S, 2 p.Y196C, 1 p.Y196D, and one the rare 191 

p.E198G.  Concurrent mutations were found: MYD88, PIM1 and CD79B in 4 cases, MYD88 and 192 

PIM1 in 13 cases, MYD88 and CD79B in 9 cases, and CD79B and PIM1 in 8.   193 

Seven cases carried missense mutations in TP53 gene (7 of 38, 18.4%). Additional mutations were 194 

found: NOTCH1 in 4 of 35 (11,4%), AIP in  9 of 39 (23,1%),  GNAS in 3 of 37 (8.1%)  and CASP8 195 

in 3 of 38 (7.9%). 196 

PI3KCA missense mutations were found in 6 of 40 (15%); in 5 cases they produced an amino acid 197 

substitution in the catalytic domain (p.A1046V, p.D1045N, p.G1049S and p.G1049D in two cases). 198 

PTEN and EGFR genes mutations were found in 2 of 39 (5.1%) and 2 of 31 (6.4%) cases 199 

respectively, while p.G12D and in CIS p.G13D mutations of KRAS gene co-occurred in a single 200 

patient (1/39). Table 2 summarizes all these sequencing data.  201 

Clinical findings. The disease presented with a single lesion in 25 of 61 (41%) of patients and with 202 

multiple lesions in 36 of 61 (59%). On MRI, most patients showed deeply located lesions with 203 

homogeneous contrast-enhancement (36 of 50, 72%). Multiple enhancing was seen in 53%. Only 204 

one of 34 patients with DWI performed showed a high ADC value, all others presented 205 
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hyperintense diffusion signal. Perfusion T2-w studies was available in 24 patients, 54% with 2 to 7 206 

times higher value of rCBV. No significant statistical correlations were observed between 207 

biological and clinical parameters and neuroradiological features. 208 

Gross total resection was achieved in 13 of 61 (21%), subtotal resection in 21 (35%) and biopsy in 209 

27 (44%). Twenty-four patients, whose treatment was known, had undergone the matrix protocol 210 

MTX + cytarabine or MATRix regimen. Of the 61 patients included in the study, 57 died during the 211 

follow-up, with a median follow-up time of 3.3 months (95% CI: [2.1 - 5.0]). The longest follow-up 212 

was 69.2 months. Figure 1 shows the Kaplan-Meier survival curve. One-month, 3-month, 6-month 213 

overall survival rates were 88.5% (95% CI: [77.4% - 94.4%]), 52.5% (95% CI: [39.3% - 64.1%]), 214 

and 37.7% (95% CI: [25.7% - 49.6%]), respectively. 215 

No statistically significant correlation was found between cell of origin GCB/non-GCB, BCL2 and 216 

cMYC expression and survival nor between DE or non-DE status and prognosis. Survival was 217 

significantly longer for patients with mutated MYD88 (8.7 months vs. 1.7 months; log-rank test = 218 

5.43; p = 0.020) compared to those without MYD88 mutation, and for patients with mutated CD79B 219 

(10.8 months vs. 2.5 months; log-rank test = 4.64; p = 0.031) compared to those without CD79B 220 

mutation.  221 

Discussion 222 

CNS-DLBCL, together with vitreoretinal and testicular DLBCL, is now grouped in a new category 223 

called large B-cell lymphoma of the immune-privileged sites.
16

 The prognosis of CNS-DLBCL 224 

remains poor and new therapeutic approaches are needed to improve patient survival. OS is lower in 225 

our series than prior studies, this could be due to patient selection bias, which in our study had a 226 

median older age (56 vs 64) and a much higher frequency of multiple lesions (59% vs 30%).
1
 227 

Similar to previously reported, based on our data, single and double hit rearrangements of MYC 228 

gene were rare .
1,6

 Differently from a recent report by Asano et al and Kim et al DE status for BCL2 229 

and cMYC expression did not impact on prognosis in our cohort of patients.
5,17

 230 
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Genomic studies suggest that cell proliferation and survival in CNS-DLBCL are driven by 231 

deregulated TLR and BCR signaling pathways inducing constitutive NFκB activation, with a high 232 

frequency of somatic non-synonymous mutations in MYD88 and CD79B genes.
18-24

 Therefore 233 

inhibitors of TLR/BCR signaling such as ibrutinib, blocking Bruton’s tyrosine kinase (BTK), was 234 

proposed as alternative therapeutic target and seem to be effective in CNS-DLBCL.
25-28 

We found 235 

MYD88 mutations in 54.5% of the cases resulting the most frequently mutated gene in our series; 236 

CD79B mutations considered one of the hallmark of CNS-DLBCL mutational signature, were 237 

demonstrated in 30.2% of the cases. This gene encodes the Ig-beta protein of BCR multimeric 238 

complex and its activating mutations reinforce BCR signalling contributing to sensitivity to 239 

Ibrutinib. Interestingly, survival was significantly longer for patients with mutated MYD88 and 240 

CD79B compared to those with wild type genes. Our findings confirm data reported by Curran et al 241 

and Zhou et al respectively, and are in contrast with two studies reporting a poor prognosis 242 

associated with the MYD88 mutation.
 29-32

 These conflicting results might reflect a selection bias 243 

among small study populations, given the rarity of CNS-DLBCL.  244 

PIM1 was found to be the second most frequently mutated gene (53.5%), with a great variety of 245 

different mutations. PIM1 protein belongs to the Ser/Thr protein kinase family which is 246 

overexpressed in hematopoietic malignancies and in prostate and breast cancers where it was 247 

proposed as new therapeutic target.
33-35

 Although PIM1 mutation status was reported to impact the 248 

outcome, we did not find any correlation with prognosis.
32

 249 

TP53 alterations seem to play a minor role in CNS-DLBCL. Zorofchian et al (26.7%) and other 250 

authors have suggested that disruption of the p53-pathway may be associated with poor PFS.
37,38

  251 

In our series TP53 mutations were not significantly related to prognosis. 252 

Notably, we detected for the first time AIP mutations in CNS-DLBCL (23,1% of the cases). Aryl 253 

hydrocarbon receptor-interacting protein (AIP) is a co-chaperone to heat shock proteins and nuclear 254 

receptors which behaves as tumor suppressor gene. In colorectal, pancreatic and gastric cancer high 255 

expression of AIP is associated with tumour development and more aggressive disease and 256 
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inhibiting aryl hydrocarbon receptor was proposed as potential therapeutic target.
39-41

 Recently AIP 257 

was found to be a positive regulator of BCL6 expression in germinal centers cells, protecting BCL6 258 

from ubiquitin-mediated proteasomal degradation, and deletion of AIP in B cells decrease BCL6 259 

expression, reducing germinal center B cells and diminishing adaptive immune responses.
42

 260 

Furthermore AIP was required for optimal AKT signaling in response to BCR stimulation and 261 

seems to be highly expressed in primary DLBCL compared to healthy tissue with implications for 262 

the pathobiology of this disease.
42

 263 

The NOTCH signalling pathway is widely involved in cellular proliferation, differentiation, and 264 

apoptosis.
43 

We NOTCH1 mutations in 11,4% of the samples: NOTCH1 mutations are distinctive 265 

drivers of systemic DLBCL and were not previously described in CNS-DLBCL.
8
  266 

GNAS and CASP8 were mutated in 8.1% and 7.9% of the cases, respectively. GNAS is the most 267 

frequently mutated G-protein in human cancers and activating mutations in the gene GNAS have 268 

been found in pituitary, thyroid, pancreatic, biliary tract and intestine tumors as well as in Burkitt 269 

lymphoma, systemic DLBCL and Hodgkin lymphoma.
44-47 

Zhou et al reported GNA13 mutations to 270 

be associated with a shorter PFS and overall survival in primary central nervous system lymphoma 271 

patients, however we did not find any correlation with prognosis.
48 

We also identified somatic 272 

mutations CASP8 for which a functional role has not been previously suspected in CNS-DLBCL, 273 

although p.R472* nonsense mutation detected in one of our samples was previously reported in 274 

systemic DLBCL.
49 

CASP8 encodes a member of the cysteine-aspartic acid protease (caspase) 275 

family and sequential activation of caspases plays a central role in the execution-phase of cell 276 

apoptosis. In addition, caspase-8 participates in maintenance of genomic integrity and loss of 277 

caspase-8 in B lymphocytes leads to B-cell malignancies; moreover, CASP8 mutations were found 278 

in mantle cell lymphoma.
50

  279 
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PI3KCA missense mutations, previously described in several types of carcinomas,
1
 were found in 6 280 

of 40 (15%), while PTEN mutations were detected in 2 of 39 samples (5.1%). The 281 

PI3K/AKT/mTOR is an important pro-survival pathway which plays a pivotal role in the 282 

development of malignant tumours being often aberrantly activated in different types of cancer also 283 

including lymphomas.  Zang et al recently showed that PI3K/AKT/mTOR signaling is aberrantly 284 

activated in CNS-DLBCL and correlated with a poor prognosis.
51

 They found that p-mTOR 285 

expression was an independent risk factor in terms of PFS in patients with CNS-DLBCL. 286 

Moreover, Takashima et al found that copy number losses in the PTEN-PI3K-AKT proapoptotic 287 

pathway are associated with poor prognosis in CNS-DLBCL patients while PTEN mutation was 288 

related to shorter OS in the study of Todorovic et al.
52,53

 PI3K/mTOR inhibitors has also become a 289 

potential therapeutic target in CNS-DLBCL. A phase II trial of 37 relapsed/refractory CNS-DLBCL 290 

patients demonstrated that temsirolimus had a positive effect with 54% overall response rate, while 291 

lower response rate of 25% was seen in a clinical trial targeting using the pan-PI3K inhibitor 292 

buparlisib.
54,55

 The use of dual pan-PI3K/mTOR inhibitor bimiralisib (PQR309) in a multicenter 293 

phase I/II trial (NCT02669511) as well as BAY80-6946 (copanlisib) in a phase Ib/II clinical trial 294 

(NCT03581942) are still under investigation in relapsed/refractory CNS-DLBCL. Moreover, 295 

Inhibition of the PI3K isoforms p110α/p110δ or mTOR synergized with ibrutinib to induce cell 296 

death in CD79B-mutant CNS-DLBCL cells suggesting that combined inhibition of BTK and 297 

PI3K/mTOR could overcome the resistance of lymphoma cells to ibrutinib.
56 

So far, no PI3K 298 

mutations were described in CNS-DLBCL and our data provide a strong rational for a clinical 299 

application of inhibitors targeting the PI3K/ AKT/mTOR signalling pathway at least in a subset of 300 

patients.  301 

Finally, mutations in the EGFR and KRAS genes were found in in 6.4% and 2.6% of the cases 302 

respectively that could be promising therapeutic targets. Although copy number alterations with 303 
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amplifications in RTK-RAS-MAPK signalling has been correlated to a poorer prognosis in CNS-304 

DLBCL we didn’t find any association with survival.
 52

 305 

Conclusion 306 

MYD88 and CD79B predict a longer survival in patients affected by CNS-307 

DLBCL. The rearrangements of the MYC gene are rare as well as double hit events involving 308 

BCL6 and/or BCL2 genes in the present series of CNS-DLBCL. COO and DE status does not affect 309 

the prognosis of the 61 CNS-DLBCL cases. Notably, we identified novel mutations that enrich the 310 

mutational landscape of CNS-DLBCL, suggests a role of PTEN-PI3K-AKT and RTK-RAS-MAPK 311 

signalling in a subset of CNS-DLBCL and that provides new potential therapeutic targets. 312 

 313 
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