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Simple Summary: Decline in cognitive function is a major problem for patients undergoing whole-
brain radiotherapy (WBRT). Scientific interest has increased due to the high dropout rate of patients
in the first months after WBRT and the early onset of cognitive decline. Therefore, the study of
antiglutamatergic pharmacological prophylaxis and hippocampal-sparing WBRT techniques has
been deepened based on the knowledge of the mechanisms of hyperglutamatergic neurotoxicity
and the role of some hippocampal areas in cognitive decline. In order to provide a summary of the
evidence in this field, and to foster future research in this setting, this literature review presents
current evidence on the prevention of radiation-induced cognitive decline and particularly on the
role of memantine.

Abstract: Preserving cognitive functions is a priority for most patients with brain metastases. Know-
ing the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal areas in
cognitive decline (CD) led to testing both the antiglutamatergic pharmacological prophylaxis and
hippocampal-sparing whole-brain radiotherapy (WBRT) techniques. These studies showed a relative
reduction in CD four to six months after WBRT. However, the failure to achieve statistical significance
in one study that tested memantine alone (RTOG 0614) led to widespread skepticism about this drug
in the WBRT setting. Moreover, interest grew in the reasons for the strong patient dropout rates
in the first few months after WBRT and for early CD onset. In fact, the latter can only partially be
explained by subclinical tumor progression. An emerging interpretation of the (not only) cognitive
impairment during and immediately after WBRT is the dysfunction of the limbic and hypothalamic
system with its immune and hormonal consequences. This new understanding of WBRT-induced
toxicity may represent the basis for further innovative trials. These studies should aim to: (i) evaluate
in greater detail the cognitive effects and, more generally, the quality of life impairment during
and immediately after WBRT; (ii) study the mechanisms producing these early effects; (iii) test in
clinical studies, the modern and advanced WBRT techniques based on both hippocampal-sparing
and hypothalamic-pituitary-sparing, currently evaluated only in planning studies; (iv) test new
timings of antiglutamatergic drugs administration aimed at preventing not only late toxicity but also
acute effects.
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1. Introduction

Brain metastases (BMs) affect up to 30% of solid tumor patients. Whole-brain ra-
diotherapy (WBRT) has been one of the standard treatments in patients with multiple
BMs, since its introduction in the 1950s [1]. WBRT has been used to improve neurological
symptoms and to reduce the risk of neurological death and intracranial progression [2,3].
However, alongside these benefits, significant treatment-related toxicity can be recorded,
especially in terms of late cognitive decline (CD), with severe impairment of personal and
social qualities of life [4].

The severity of these adverse, progressive, and irreversible events was more evident
after the improvement in survival rates achieved in recent years thanks to advances in
systemic therapies. Although stereotactic radiotherapy and molecular therapies are now
the standard of care in oligometastatic disease, WBRT is still used in multiple BMs not
amenable to other treatments. Therefore, the availability of strategies to prevent or treat
iatrogenic CD is urgent [5].

To date, the available approaches are based on the reduced irradiation of specific
critical brain areas dedicated to memory and thinking [6], and on the use of an antigluta-
matergic drug, memantine, with proven anti-inflammatory properties [7]. However, clinical
trials on interventions to help manage CD have had conflicting results and no standard of
care has yet been established.

Therefore, in order to provide a summary of the evidence in this field, and to foster
future research in this setting, the aim of this literature review is to present current evidence
on the prevention of radiation-induced CD and particularly on the role of memantine.

2. Materials and Methods

A PubMed-based search was conducted from the first date to 25 May 2021. Only
papers written in English were included. We used various combinations of the following
terms, such as memantine, hippocampal-sparing, radiotherapy, neuroprotection, cognition
and neuropsychology.

Abstracts of conference proceedings, study protocols, case reports, systematic or
narrative reviews, meta-analyses, letter-commentaries-editorials, planning studies, imaging
studies, surveys, guidelines-recommendations, or studies reporting duplicate data were
excluded.

A total of 594 studies were identified. After the removal of duplicates, a first selection
was made based on the titles and abstracts. Moreover, a further search in the reference
list of the selected studies was conducted. Finally, 38 papers on memantine for radiation
protection in patients undergoing brain radiation therapy were included in this narrative
review. The narrative review checklist is shown in Table S1.

3. Results
3.1. Memantine and Radiation-Induced Effects on the Central Nervous System
3.1.1. Neuronal Degeneration and Memantine

The pathogenetic basis of neuronal degeneration relies on excessive stimulation by
glutamate, the main excitatory amino acid transmitter in the central nervous system [8].
Glutamate activates neuronal receptors and starts excitatory intracellular signals. The
glutamate receptors are divided into ionotropic and metabotropic [9]. Among the first, N-
methyl-D-aspartate (NMDA) receptors are expressed in a broad area of the central nervous
system on both neuronal and glial cells [10–12]. At physiological concentrations, glutamate
is a fundamental regulator of neuronal plasticity [13] and is involved in learning and mem-
ory processes [14,15], as shown by studies on NMDA-dependent long-term-potentiation
(LTP), neuroembryogenesis and neuronal migration [16]. However, excessive glutamate
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concentrations alter the NMDA/GABA receptor activation ratio, leading to abnormal
and toxic intracellular calcium concentrations and culminating in apoptotic death [17–19].
The glutamatergic excitotoxicity is the basis of neuro-inflammatory processes observed in
neurodegenerative [9,20], ischemic, epileptic, traumatic and psychiatric diseases [15,21].

This evidence led to the rationale for the use of adamantanes, a family of molecules
with a low affinity antagonism for the NMDA receptor [22]. The low affinity and rapid
off-rate kinetic profile make adamantanes the best tolerated antiglutamatergic agents, con-
sidering the dangerous effects on learning and memory processes in case of excessive
neuronal inhibition by a total glutamate inhibition [19]. Their prevalent adverse effects are
headache, dizziness, hypertension, fatigue, constipation and nausea [23,24]. Adamantanes
increase dopaminergic transmission [25–27], genetic expression of Glial cell-derived neu-
ronal growth factor (GDNF) [28,29] and show many other neuroprotective effects [30–32].
All of this explains the plethora of potential clinical applications and research fields, from
microglial neuroinflammation [33] to cerebral infarction [34], cerebral haemorrhage [35],
traumatic brain injury [36], and degenerative disease [24,32,37–41]. Among the tested
molecules, the best results in terms of safety and efficacy were recorded using amantadine
in Parkinson’s disease [22,25,42,43] and memantine in Alzheimer’s disease and Lewy body
dementia [44–47]. In particular, memantine is now widely used since its approval by
the FDA for the treatment of moderate-severe Alzheimer’s disease, as monotherapy or
combined with acetylcholinesterase inhibitors [48–50].

3.1.2. Radiation-Induced Brain Toxicity

Radiation, like degenerative disease-related vascular dysfunctions, is an important
cause of glutamate-induced excitatory stress. Several preclinical studies elucidated the
cascade of events culminating in a rapid proliferation of dendritic spines and synapses,
resulting in abnormal excitatory signals, synaptic loss and irreversible histological al-
terations [51]. In particular, radiation damages hippocampal synaptic structures and
prefrontal-hippocampal cortex connections, critical for the construction of memory con-
tents [52] and providers of neural progenitors [53,54]. Although neurons are classically
considered to be radioresistant due to their post-mitotic state, radiation-induced synaptic
damage was shown to be an early event [55]. The targets of radiation are neurons, consid-
ered as late-responding cells with a low α/β ratio [56,57], and stromal and vascular cells.
Damage to the microvascular endothelium leads to microangiopathies with accelerated
atherosclerosis, reduced neuronal and glial proliferation [58], and white matter hypotro-
phy [59–61] up to necrosis [62]. Reperfusion is also considered to cause brain damage due
to massive ischemia, followed by a wide distribution of reactive oxygen species to which
the brain is highly sensitive [63]. More recently, however, is the evidence on the role of astro-
cytes and microglia in the inflammatory pathway [64] and of specific brain areas [65] called
“reservoirs of neural progenitors”. The latter are particularly sensitive to radiation [66] and
are able to differentiate stem cells into neurons during the entire lifespan [67]. Common
findings after irradiation on MRI are leukoencephalopathy, diffuse white matter change
with possible moderate enhancement due to periventricular demyelination, edema and
radionecrosis [68–73]. The radiation-induced effects are divided into early, late-early and
late [74,75].

The first symptoms occur within hours to days after irradiation and are caused by
alteration of the blood–brain barrier with vasogenic edema and damage to the white matter.
Furthermore, the loss of radiosensitive stem cells occurs in this phase, partly caused by
inflammation [76]. The most frequent symptoms are sleepiness, confusion, short-term
memory and attention deficits, and fatigue [74,77]. The latter are reversible, and although
established guidelines are lacking, steroids are often used for the prevention and treat-
ment of brain edema [78,79]. Due to transient demyelination [80], delayed-early effects
occur after a few weeks and up to six months and are initially dose-dependent and sub-
sequently dose-independent [81]. The most common of these effects are neurapraxia [82],
lethargic syndrome, mental confusion, impaired cognitive function, and fatigue [83–85].
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Moreover, the incidence of these effects shows a peak at the end of radiotherapy (RT),
with subsequent improvement in the following 6–8 weeks and with resolution within a
further 4–6 weeks [86]. The late effects (recorded after 6–12 months) result from chronic
neuroinflammation with persistent demyelination, reduced neurogenesis due to the glial
differentiation shift, microvascular damage with ischemia and hyperglutamatergic toxic
state [87,88]. Symptoms and signs of late, irreversible and progressive damage mainly con-
cern cognitive functions and especially attention, memory and executive functions [68,89].
Less frequent but disabling are ataxic gait, urinary incontinence [90], apathy, and pyramidal
and extrapyramidal syndrome [91].

3.1.3. Cognitive Decline (CD)

Cognition is a predictor of quality of life [92] and survival [93]. It requires sensory, memory,
visuospatial processing, concentration, attention, thought, behavior, personality and mood [94].
Dysfunction in one of these domains can significantly impair an individual’s communication
and language skills, damaging their independence and professional and social functioning [95].
CD is common after therapeutic or prophylactic WBRT [91,96–98], particularly among adult
subjects irradiated in the pediatric age [99,100] who often show impaired memorization
of new content as well as worsened rapid information processing and attention reten-
tion [60,100]. Risk factors for the development of CD are age (<7 years, >60 years), large
irradiation volume, high dose per fraction, chemotherapy, impaired pre-irradiation func-
tional status [101–103], and vascular damage from hypertension and/or diabetes [86,104].
CD most commonly presents with memory loss, an impaired ability to plan activities,
and behavioral changes. Radiation-induced CD is diagnosed in approximately 90% of
irradiated patients and has intermediate severity in most subjects. However, CD can evolve
into dementia in 2–5% of cases after irradiation with the most common fractionation proto-
cols [89,90,105]. CD is worsened by intracranial tumor progression [91,106,107], antiepilep-
tic drugs [108], chemotherapy [109], paraneoplastic syndromes [110] and corticosteroids.
The latter has a well-known dose-dependent impact on mood and circadian rhythms [111]
and treatments over six months may be associated with hippocampal hypotrophy with
impaired memory function [112].

Several neuro-physiopathological studies focused on the loss of neural progenitors
in the subgranular area of the hippocampus, the anatomical site of neural stem cells and
thus on regenerative processes involved in the replacement of depleted neurons. In case of
inflammation, the stem cells of the subgranular zone promote a maturative shift towards
gliogenesis by reducing neurogenesis and cell population in the sites involved in the
construction of memory contents [67,74,113,114]. Furthermore, interest also grew in the
role of the extra-hippocampal regions, particularly the prefrontal cortex [115,116]. In fact,
the radiation-induced acute and delayed effects on synaptic plasticity are proven even
in “non-neurogenic” areas [116] with consequent functional damage to the entire neural
“connectivity” [116].

3.1.4. Radiation-Induced Cognitive Decline (RICD)

WBRT, formerly considered the standard of care for BMs [2,117], is now widely ques-
tioned due to the risk of CD. This negative impact of WBRT was clearly observed in clinical
studies comparing the latter plus radiosurgery versus radiosurgery alone [97,118] and led
to reduced use, especially in oligometastatic patients [119]. Furthermore, WBRT-induced
CD was well documented in pediatric patient trials [120,121]. Moreover, prophylactic
cranial irradiation (PCI) studies in adult subjects [122,123] showed acute CD, with relevant
symptoms up to 2–4 weeks after completion of RT [96]. Finally, it should be noted that
PCI doses (used for micrometastatic disease) are lower than those of therapeutic WBRT
(for macroscopic metastases) and that acute RICD is not always followed by complete
recovery [124]. Figure 1 summarizes the mechanisms of the radiation-induced cognitive
deficit and the possible methods of prevention.
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Figure 1. Mechanisms of radiation-induced cognitive impairment (blue) and possible ways of
prevention (red).

3.2. Main Evidence
3.2.1. RTOG 0614 Study

The histopathological similarities between radiation-induced brain damage and vascu-
lar dementia [125–127] and the evidence of the post-irradiation NMDA-mediated hyperglu-
tamatergic state led investigators to test the impact of anti-dementia drugs on RICD [128].
The first study testing an antiglutamatergic drug (memantine) to prevent RICD was the
RTOG 0614 trial [129]. It was a randomized, double-blind, placebo-controlled study con-
ducted in 143 centers across the United States and Canada, between March 2008 and July
2010, in WBRT-treated BM patients. The primary objective was to evaluate the impact of
memantine-based prophylaxis on memory function six months after WBRT. The study
was powered to detect a difference between the two arms of 0.87 in the Hopkins Verbal
Learning Test-Revised (HVLT-R) score at 24 weeks. Secondary objectives were the impact
of memantine on the executive, attentional and processing cognitive performances, and
on survival outcomes. Inclusion criteria were: good Karnofsky performance status, no
serious internal diseases, stable systemic disease for at least three months, non-impaired
cognitive function upon the Mini-Mental State Examination, no allergy to memantine, no
alcohol abuse, no chronic benzodiazepine intake, and no severe comorbidities. Cognitive
function was assessed based on different domains using specific neuropsychological tests:
the HVLT-R for memory and learning, the Controlled Oral Word Association test for verbal
fluency, and the Trial Making Test (TMT) for processing speed and executive functions.
Patients were randomized to receive WBRT plus placebo versus WBRT plus memantine.
The WBRT dose was 37.5 Gy in 15 fractions, while the memantine intake started within
three days of the first day of WBRT with progressive titration up to a dose of 20 mg daily
(in two daily oral administrations) for a total of 24 weeks. Patients underwent general
clinical, neurological and neuropsychological evaluation at baseline and at 8, 16, 24, and
52 weeks from treatment start. Five hundred and fifty-four patients were enrolled in the
study and 508 were considered eligible.

The trial failed to achieve a statistically significant result regarding the primary end-
point, with the mean decline in the HVLT-R DR test in the memantine and placebo groups
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being 0 and 0.9 at 24 weeks, respectively (p = 0.059). The authors pointed out that only
149 patients were evaluable at 24 weeks, with a statistical power of only 35% to detect an
absolute difference of 0.87. This large dropout rate was attributed to the high percentage of
patients with tumor progression and death in the first months after WBRT. However, the
trial achieved significant differences in secondary endpoints. Indeed, the time to CD, de-
fined as the first decline on any neurocognitive test or a 2 SD drop from baseline for any test,
was significantly improved in the memantine arm (HR 0.87, 95% CI, 0.62 to 0.99; p = 0.01)
with a 21% lower chance of CD at 24 weeks (absolute rates: 53.8% vs. 64.9%). Moreover, the
benefit in executive functions was observed starting from the eighth week. Furthermore,
no differences in survival and toxicity rates were observed. In fact, memantine was well
tolerated, as already observed in double-blind, placebo-controlled trials in dementia [130].
Finally, this trial was considered an example of a clinically but not statistically significant
study [131].

3.2.2. RTOG 0614 Trial-Related Studies

Based on the RTOG 0614 results, other studies evaluated antiglutamatergic drugs
in brain-irradiated patients. One of these analyses tested DCE-MRI (dynamic contrast
MRI) as a possible biomarker of WBRT-induced brain toxicity. Indeed, DCE-MRI was
able to detect slight changes in blood–brain barrier permeability even in the early stages
of Alzheimer’s disease [132–134] as well as in patients irradiated with high doses [135]
or undergoing focused ultrasound [136] for glioma. Therefore, DCE-MRI was evaluated
in detecting changes in vascular permeability in the six months after WBRT. The study
included patients from the ROTG 0614 trial and was based on the evaluation of NAWM
(normal appearance of white matter). The authors reported that even with WBRT doses
(EQD2: 42.2 Gy, assuming α/β = 2), the vascular damage is detectable on the brain DCE-
MRI and that changes in NAWM can predict RICD [137]. Furthermore, minor changes in
NAWM were recorded in patients treated with prophylactic memantine [137], confirming
the neuro- and vascular-protective role of antiglutamatergic drugs.

A subanalysis of the RTOG 0614 trial evaluated the correlation between health-related
quality of life and cognitive function. Of the 447 patients included in the analysis, only
146 completed the questionnaires in week 24 [138]. No differences in quality of life were
observed among the two arms, despite differences in objective cognitive function. The
authors attributed this negative result to the preferential compilation of questionnaires by
the best performing patients with a consequent overestimation of quality of life and an
underestimation of CD data [31].

3.2.3. Hippocampal-Avoidance: The RTOG 0933 Trial

Tsai et al., in a prospective study on 40 patients, reported a significant correlation
between the RT dose delivered to the hippocampus and the incidence of RICD [139].
Therefore, in order to prevent RICD, WBRT techniques aimed at sparing the dentate
gyrus of the hippocampus were developed. In particular, a highly conformed intensity-
modulated technique was employed to bilaterally avoid the dentate gyrus of the hippocam-
pus (hippocampal-avoiding-WBRT, HA-WBRT) [140,141]. Since the incidence of BM within
5 mm of the dentate gyrus is less than 5% [142], HA-WBRT was considered feasible also in
terms of tumor control probability [142,143]. In the RTOG 0933 trial [144], 40 patients were
treated with HA-WBRT and the results were compared to those of a historical WBRT group
with similar clinical characteristics. The study demonstrated reduced CD by 4 months after
RT and an improved quality of life after 6 months, confirming the neuroprotective effect of
HA-WBRT.

3.2.4. Pharmacological Prophylaxis plus Anatomical Sparing: The NRGCC001 Trial

Based on the RTOG 0614 and RTOG 0933 results, the NRGCC001 phase III trial was
designed [145] to compare a standard WBRT arm versus a HA-WBRT arm with memantine
prescribed in both arms. The primary endpoint was CD at four months, while secondary
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endpoints were overall survival, progression-free survival, toxicity and patients reporting
quality of life. Brown et al. reported a significantly prolonged time to CD in the HA-WBRT
arm (HR, 0.74; 95% CI, 0.58 to 0.95; p = 0.02). No significant differences were recorded
at two months. However, significantly worse results in the WBRT arm were registered
from the fourth month in terms of executive performances according to TMB-T (23.3%
vs. 40.4%; p: 0.01), and at 6 months for learning and memory according to HVLTR TR
(11.5% vs. 24.7%; p: 0.049; 16.4% vs. 33.3%; p: 0.02). No differences were recorded in
terms of overall survival, progression-free survival, and toxicity. However, less fatigue
(p: 0.04), less memory deficits (p: 0.01), less difficulty in speaking (p: 0.049), and less
interference of neurological symptoms in daily activities (p: 0.008) were registered in the
HA-WBRT arm. In the multivariate analysis, the only significant predictor of CD was age
(>60 years), while RPA prognostic class, previous brain RT or surgery, and the volume
of systemic disease did not show a significant impact. Despite the limitations of the trial
(non-blinded, short follow-up: 7.9 months), these results led the authors to propose the
combination of antiglutamatergic and hippocampal-sparing as a new standard of care in
WBRT candidate patients, in good functional conditions, and with BMs at least 5 mm away
from the hippocampal region. The results of the main trials on memantine combined with
standard WBRT and HA-WBRT are shown in Table 1.

3.2.5. Scientific Community Reactions

The proposal of the NRGCC001 trial researchers to redefine the therapeutic standard in
patients with BM based on the results of their study has sparked a wide debate. In particular,
many doubts have arisen about the interpretation of the results. [146,147]. Concerns
about short-term results were: (1) at four months, the timing of the primary endpoint,
HVLTR was completed by only 41% of patients; (2) at six months, the CD rate was high
also in the memantine plus HA-WBRT arm; (3) the dropout rate at six months was very
significant (experimental group: 48%; control group: 38%); (4) the time to decline of
any neuropsychological test seems to be a non-specific endpoint to prove a significant
clinical benefit.

Instead, the doubts about the long-term clinical outcomes of HA-WBRT were: (1)
the impact of HA-WBRT on the long-term cognitive profile remains largely unknown (in
the RTOG 0933 trial, the primary endpoint was assessed at four months); (2) a greater
short-term tolerance after HA-WBRT may be associated with an increased risk of late
microvascular complications; (3) in particular, a higher incidence of leukoencephalopathy
was observed later after HA-WBRT compared to the traditional technique with opposite
lateral fields [148].

Other reported issues were the following: (1) the possible imbalance in the biopro-
file of the patients suggested by the separation (even if not significant) between the two
survival curves; (2) the failure to evaluate possible bio-molecular parameters with prog-
nostic impact [149,150] and the impact of immune checkpoint inhibitors (nivolumab, pem-
brolizumab) on cognitive function, potentially different from that of chemotherapy; (3)
the failure to consider the cumulative volume of metastatic disease, potentially impact-
ing cognitive function [151,152]; (4) the lack of stratification between BM at onset or in
relapse/progression with consequently marked inhomogeneity of the patient population;
(5) the failure to assess smoking and comorbidities (vascular diseases, diabetes) poten-
tially related to neurological symptoms [104,153]; (6) the lack of consideration of systemic
treatments which are potentially related to CD [123,154].
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Table 1. Results of the main trials on memantine combined with whole-brain radiotherapy and hippocampal-sparing whole-brain radiotherapy.

Authors/Year [Ref] Trial Study Design Study Characteristic Main Findings

Brown PD et al., 2013 [129] RTOG 0614 Phase III,
Random

Sample size and inclusion criteria: 508 adult
patients with BM (only 149 evaluable at 24 weeks).
Treatment: Patients were randomized to WBRT
plus placebo versus WBRT plus memantine (20
mg/day for 24 weeks, starting within 3 days of
WBRT start)

Similar grade 3–4 toxicity and study compliance in the two arms.
Lower rate of decline in delayed recall (at 24 weeks) in the memantine arm but without
reaching statistical significance (p: 0.059).
Memantine arm:
significantly longer time to CD (53.8% versus 64.9% at 24 weeks; HR: 0.78; 95% CI:
0.62–0.99, p: 0.01).
better executive function at 24 weeks (p: 0.008 at 8 weeks; p: 0.0041 at 16 weeks),
processing speed (p: 0.0137), and delayed recognition (p: 0.0149).

Laack NN et al., 2019 [138] RTOG 0614
(subanalysis)

Phase III,
Random

Subanalysis of the RTOG 0614 trial evaluating the
correlation between health-related quality of life
and cognitive function using FACT-Br and MOS-C

149 patients completed FACT-Br, MOS-C, and objective cognitive assessments at
24 weeks.
Over time:
worsening in all domains of objective cognitive function with no differences in
FACT-Br and MOS-C between the 2 arms.
improvement of emotional and functional well-being (FACT) with stability of the other
FACT-Br domains. Conversely, declined MOS-C scores.

Tsai PF et al., 2015 [139] RTOG 0933 Prospective Sample size and inclusion criteria: 40 patients
participated in an NCF assessment, including
memory, executive function and psychomotor
speed, before and after (4 months) HS-WBRT
(assessments available in 24 patients).
Treatment: therapeutic or prophylactic HS-WBRT.
DVHs were generated for the left hippocampus,
right hippocampus and hippocampal composite
structure by calculating EQD2 (α/β: 2 Gy).

NCF scores are fairly stable before and after HS-WBRT in terms of
hippocampus-dependent memory.
EQD2 values < 12.60 Gy, <8.81 Gy, <7.45 Gy, and <5.83 Gy to 0%, 10%, 50%, and 80%
volume of the hippocampal composite structure were significantly associated with
preserved verbal memory. Specific dosimetric parameters of the left hippocampus
impacted immediate recall of verbal memory (adjusted OR: 4.08; p: 0.042).

Brown PD et al., 2020 [145] NRGCC001 Phase III,
Random

Sample size and inclusion criteria: 518 adult
patients with BM
Treatment: Patients underwent HS-WBRT plus
memantine versus WBRT plus memantine.
Primary endpoint: time to CD (defined as a decline
in at least one of the cognitive tests).
Secondary endpoints: OS, intracranial PFS, toxicity
and patient-reported symptom burden.

HS-WBRT arm:
significantly lower CD risk (adjusted HR: 0.74; 95% CI: 0.58–0.95; p: 0.02), due to the
lesser impairment of learning and memory at 6 months (11.5% versus 24.7% [p: 0.049]
and 16.4% versus 33.3% [p: 0.02], respectively) and executive function at 4 months
(23.3% versus 40.4%; p: 0.01).
no differences in terms of OS, intracranial PFS and toxicity.
at 6 months: less difficulty speaking (p: 0.049), less memory deficits (p: 0.01), and less
fatigue (p: 0.04).

Legend: BM: brain metastases; CD: cognitive decline; DVH: dose-volume histograms; EQD2: biologically equivalent doses in fractions of 2 Gy; FACT-Br: Functional Assessment of
Cancer Therapy-Brain module; HS-WBRT: hippocampal-sparing whole-brain radiotherapy; MOS-C: Medical Outcomes Scale-Cognitive Functioning Scale; NCF: neurocognitive function;
OS: overall survival; PFS: progression-free survival; VMAT: volumetric modulated arch therapy; WBRT: whole-brain radiotherapy.
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Based on these concerns, several authors defined it premature to consider memantine
combined with anatomic sparing as a new therapeutic standard for BM. Furthermore,
they considered more mature neurocognitive results and/or new studies considering
potentially confounding factors and analyses of the patients’ reported outcome measures, as
strongly needed [146,147,155]. However, the authors of the NRGCC001 study, regarding the
comments on their trial, responded as follows [156]: (1) preventing RICD is very important
for patients; (2) non-compliance and deaths did not compromise the NRGCC001 results, as
the adherence rates in the two arms were similar; (3) the randomization process should
have balanced the impact of the possible confounding variables on the primary endpoint
(CD); (4) the long-term results, presented in a preliminary form, showed a persistent benefit
on neurocognitive function [157,158]; (5) the doubts raised about the possible HA-induced
leukoencephalopathy are only hypothetical and therefore should not influence clinical
choices. Finally, the authors reiterated that the methodological quality of the NRGCC001
trial is sufficient for the definition of new standards of care, also according to the NCCN
guidelines [159].

3.2.6. State of Art

The international guidelines are contradictory in considering memantine as a new
therapeutic standard in the BM setting. In fact, the NCCN guidelines included this indica-
tion [159] while the National Institute for Health and Care Excellence (NICE) guidelines
are still awaiting further confirmation [160]. These conflicting opinions influenced the
current clinical practice. In fact, an analysis of the SEER database was conducted, regarding
the prescription of antiglutamatergic drugs for neurocognitive prophylaxis, on 6220 BM
patients older than 65 years and treated with WBRT. The study included subjects treated
between 2007 and 2016 and considered 2013 (publication date of the RTOG 0614 trial) as a
“watershed”. Only 1.10% of patients received memantine between 2007 and 2013, while
the rate rose, albeit slightly (5.14%), between 2013 and 2016 [161]. Subsequently, these
figures further increased (9.36%) [161] but still suggest a widespread distrust of the role of
antiglutamatergic therapy in reducing RICD.

In general, a greater interest in CD prophylaxis in patients undergoing WBRT would
be conceivable, considering: (i) the improved prognosis potentially resulting from an
earlier BM diagnosis and from the availability of more effective systemic treatments in
several solid tumors [162]; (ii) the persistent use of WBRT in at least one-quarter of the
BM patients [163]; (iii) the lack of availability in some centers, especially in less-resourced
settings, of stereotactic RT or techniques capable of delivering HA-WBRT; (iv) the low cost
(<1 dollar/day in most countries) and tolerability of memantine.

Moreover, even if only partially accepted by guidelines and in clinical practice, the
aforementioned topics stimulated the design of several studies of antiglutamatergic prophy-
laxis in the context of RT of pediatric/young adult primary brain neoplasms (NCT03194906),
of RT in the head and neck tumors (NCT03342443), of neuroprotection during breast cancer
chemotherapy (NCT04033419), and in terms of comparison between memantine plus HA
versus radiosurgery in patients with 5–15 metastases (NCT03550391).

Surprisingly enough, clinicians seem to prescribe memantine more often during
prophylactic cranial irradiation (PCI) despite the lack of studies in this setting [164]. Fur-
thermore, PCI, for extensive-stage small-cell lung cancer, is nowadays a controversial area
after the publication of the results of a Japanese trial [165] questioning the survival benefit
after PCI in subjects with extensive-stage small-cell lung cancer [166,167]. In particular, it is
believed that PCI needs to be reconsidered, given the negative impact on cognition and, at
the same time, the growing role of MRI surveillance and anti-check point agents [168–173].

3.3. New Scenarios
The Antitumor Effect of Memantine

Recent findings showed the important role of glutamate in the pathogenesis of glioblas-
toma (GBM). In fact, glutamate overexpression was found in the GBM models, both in
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the in vitro and in vivo studies [18], revealing the ability of these tumors to spontaneously
produce concentrations up to four times the normal [16,174–176]. Moreover, the excess glu-
tamate leads to the hyperactivation of N-methyl-D-aspartate receptors (NMDAR) with local
excitotoxicity, neuroinflammatory cascade and cellular necrosis, typical of GBM [18,177].
Furthermore, NMDA stimulation promotes the growth and pro-invasive release of matrix
metallo-proteinase-2 (MMP-2) from GBM cells [178]. Moreover, recent studies also suggest
that GBM malignancy may depend on increased gliomagenesis due to the AKT pathway
activation [179]. The discovery of the multiple pro-oncogenic effects of glutamate renewed
the interest in antiglutamatergic agents, particularly NMDAR inhibitors [180]. In fact, me-
mantine has shown the ability to: (i) inhibit the proliferation of GBM and medulloblastoma
cell lines, even at the tumor penumbra level, populated by more invasive cellular sub-
clones [179,181–183] and (ii) limit invasive motility through the reduction of pseudopodal
protrusions [181]. Finally, in order to block the main oncogenetic pathways, prodrugs
containing memantine were developed [184] and combinations of memantine and nitric
oxide [185] or temozolomide were tested in the adjuvant setting [186].

4. Discussion

Neuro-oncological research is increasingly oriented towards strategies with an im-
proved therapeutic index through higher local control and lower neurotoxicity rates. Fur-
thermore, it was increasingly evident that cognitive function largely depends on extensive
neuronal connectivity between the basal ganglia and the fronto-parietal cortex. This “neu-
ral network” is damaged by radiation-induced neuroinflammation, systemic therapies,
surgery and local tumor progression through a hyperglutamatergic (with NMDAR hyper-
activation) and excitotoxic state. The bio-molecular, histological and clinical similarities
between vascular and radio-induced decline suggested a possible role of memantine, which
is already used in the primary prevention of neurodegenerative vascular diseases, also in
the prophylaxis of radiation-induced damage. In patients treated with WBRT, memantine
was shown to delay CD time and partially limit its severity. Furthermore, memantine is
well tolerated, even in the case of concomitant antiepileptics, steroids, antidepressants,
hormone therapy and chemotherapy. Moreover, it is the only prophylaxis option in those
countries where the available RT technology does not allow normal tissue sparing. The
primary endpoint (CD) of the main trials was evaluated at six (RTOG0614) and four months
(NRGCC001), being traditionally considered as a late effect. However, most CD occurs
within the first two months after treatment. This “early” CD, recorded in several stud-
ies [96,187], was attributed to a general neurological deterioration from systemic therapies,
WBRT, and above all, from “subclinical” tumor progression [129,131,188].

However, these interpretations are not entirely convincing. In fact, the microscopic
disease is effectively controlled by radiation doses even lower than those delivered by
WBRT, as demonstrated by PCI. More specifically, it is unclear why 25 Gy in 10 fractions
(PCI) could be more effective than 30 Gy in 10 fractions (WBRT) in microscopic tumor
control. Furthermore, it is not clear how a subclinical disease progression can compromise
the neural network up to a “cognitive breakdown”. However, there is a lack of studies
on the causes of early CD, historically attributed to white matter damage from vascular
changes as well as a loss of radiosensitive stem cells from inflammatory mechanisms [76].
This depletion of neurogenic stem cells in the hippocampal dentate gyrus represented
the rationale for the development of HA-WBRT. Nevertheless, HA-WBRT combined with
memantine (in the experimental arm of the NRGCC001 trial) did not fully protect patients
from relevant CD at 4 months. These data, together with the large loss of patients in the
early follow-up period, require further reflection.

More precisely, the question could be: “Is there a link between early CD and severe
patients’ loss in the early follow-up period?” A possible explanation seems to be provided
by further recent neurophysiological evidence. In fact, according to the latter, the subgran-
ular zone of the hippocampus and the subventricular zone of the lateral ventricles are not
the only niches providing neural progenitors [189]. The first demonstrations of a large
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periventricular area expressing neurogenesis markers, also in adults, date back to 2000.
This region also includes, in addition to the already known subgranular and subventricular
zones, the limbic system and the hypothalamus [190,191]. Therefore, since these latter
regions are also sites of neurogenesis, they should also be radiosensitive acute-responders,
contrary to the identification of most brain tissue as a late-response tissue due to its low
mitotic activity. Furthermore, the functional importance of these anatomical structures
could help explain the severity of “early” neurological effects. In fact, the hypothalamus is
responsible for the regulation of energy metabolism, reproduction, thermoregulation and
circadian rhythms, and is involved in the processes of aging. Instead, the limbic system
plays a key role in emotional reactions, behavioral responses, memory and smell. The
existence of an early radio-induced “shock” on these neurogenic structures could explain
the rapid onset signs and symptoms reported by patients undergoing WBRT as “profound
fatigue”, the feeling of “mental fog”, a reduced “sense of taste and poor appetite”, and “not
to feel oneself“ [192].

In other words, clinical frailty (weakness, fatigue) during and immediately after WBRT
occurs simultaneously with the reduction in thyroid and sex hormone levels, recorded in
the first months after WBRT [193]. Furthermore, an “acute illness syndrome” [194] was
defined as anabolic hormone deficiency and poor sexual function. Therefore, together with
the knowledge of CD after WBRT, awareness of neuroendocrine sequelae from the impaired
hypothalamic-pituitary axis is growing [195]. Actually, the strong impact of irradiation
on the hypothalamic-pituitary axis of pediatric subjects undergoing WBRT is well known
but the possibility of a similar effect during WBRT for BM in adult subjects is recent [196].
In particular, there is a growing suspicion that acute hypothalamic dysfunction impairs
the immune system’s ability to respond to infection and tumor progression. All this could
explain, at least partially, the high patient dropout rates occurring shortly after WBRT.

5. Conclusions

Preserving cognitive functions is a priority for most BM patients [197,198]. Knowing
the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal
areas in CD led to testing both antiglutamatergic pharmacological prophylaxis and HA-
WBRT techniques. These studies showed a relative reduction in CD four to six months
after WBRT. However, failing to achieve statistical significance in the study by testing
memantine alone (RTOG 0614) led to widespread skepticism about this drug in the WBRT
setting, which may explain the lack of approval by the FDA and EMA of memantine in
the prevention of radiation-induced CD. Moreover, interest grew in the reasons for the
strong patient dropout in the first few months after WBRT and for early CD onset. In fact,
the latter can only partially be explained by subclinical tumor progression. An emerging
interpretation of the (not only) cognitive impairment during and immediately after WBRT
is the dysfunction of the limbic and hypothalamic system with its immune and hormonal
consequences. This new understanding of WBRT-induced toxicity may represent the basis
for further innovative studies.

These studies should aim to: (i) evaluate in greater detail the cognitive effects and,
more generally, the quality of life impairment during and immediately after WBRT; (ii) study
the mechanisms producing these “early” effects; (iii) test in “clinical studies” advanced
RT techniques based on both hippocampal-sparing and hypothalamic-pituitary-sparing,
currently evaluated only in “planning studies” [196,199–201]; (iv) test new timings of
antiglutamatergic drugs administration (e.g., start memantine a few weeks before WBRT),
aimed at preventing not only late toxicity but also the acute effects; (v) compare stereotactic
RT versus HA-WRT plus memantine based on data showing a reduced risk of CD in
patients with 4–15 BMs treated with stereotactic RT compared to standard WBRT +/−
memantine [202].

Finally, testing innovative RT techniques and pharmacological treatments to prevent CD
would be particularly justified, given the more favorable prognosis compared to patients with
BMs, in the settings of cerebral lymphomas [203] and low-grade gliomas [204,205].
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