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Abstract We consider a Two-Dimensional problem in which one is required to
split a given rectangular bin into the smallest number of items. The resulting items
must be squares to be packed, without overlapping, into the bin so as to cover all
the given rectangle.

We present a mathematical model and a heuristic algorithm that is proved to
find the optimal solution in some special cases. Then, we introduce a relaxation of
the problem and present different exact approaches based on this relaxation. Fi-
nally, we report computational experiments on the performances of the algorithms
on a large set of randomly generated instances.

Keywords Two-Dimensional Packing · Mathematical Models · Exact Algo-
rithms · Computational Experiments

1 Introduction

We consider the problem of splitting a given rectangular bin into the smallest
number of smaller square items having integer sides. These items have to be packed,
without overlapping, with their edges parallel to the edges of the bin, so as to cover
all the given rectangle. Similar problems have been addressed in the computational
geometry literature, where a partitioning of a given region is called a tiling, and
the smaller items are called tiles. Thus, the problem we consider will be denoted
as the Minimum Tiling of a Rectangle by Squares (MTRS).

Several papers in the literature consider the case in which all the produced
tiles must be different from each other. In this case, the rectangle is said to be
perfect. In [5] the problem of finding (if any) a perfect tiling of a given rectangle
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was considered, and a correspondence between feasible solutions of this problem
and a certain class of planar electrical networks was introduced. In [2] some differ-
ent problems concerning packing of squares and rectangles were proposed, namely
the problems of covering a square using a set of p (say) rectangles that have a
given area, so as to minimize either the sum of the perimeters of the rectangles or
the maximum among the p perimeters. For these problems, motivated in hetero-
geneous parallel computing, a proof of NP-completness and some approximation
algorithms were given. A tight logarithmic bound on the optimal solution value of
MTRS was given in [10], where in [22] polylogarithmic lower and upper bounds
for the generalization of the problem to a higher dimension were provided. Re-
cently, the problem of covering a given n×n square with the minimum number of
squares having side at most n− 1 was addressed in [11], where an Integer Linear
Programming (ILP) model for this problem was proposed.

MTRS is strictly related also to two dimensional packing problems (see, e.g.,
[15]). In the Two Dimensional Bin Packing problem (2BP), one is required to
allocate a given set of rectangular items to a minimum number of larger bins; in
the Two Dimensional Strip Packing problem (2SP), items must be packed into
a unique container having finite width and infinite height, so as to minimize the
total height of the packing. However, two main differences arise between MTRS
and these two problems: (i) in MTRS we are required to define the dimensions of
each item, whereas in classical packing problems they are an input of the problem;
(ii) all the used items must be squares.

A natural variant of the problem, and of Two-Dimensional packing problems
in general, arises when the produced pattern must satisfy guillotine constraints.
In this case, each item must be obtainable with a sequence of edge-to-edge cuts
parallel to the edges of the bin, where each cut removes a so-called strip from the
bin (see the left packing in Figure 1). Guillotine Two-Dimensional packing has
received considerable attention in the literature as imposing this requirement has
a minor impact on the solution worsening (see, e.g., [14]) while being a relevant
constraint in real-world applications (e.g., when automatic machines are used to
cut the items). Some industrial cutting processes also limit the way of producing
a guillotine cutting pattern, imposing an upper bound, say k, on the number of
cuts needed to produce each item. The rightmost part of Figure 1 shows a k-stage
pattern for k = 3; ILP models for k-stage packing problems have been given in
[13] and [21] for the cases k = 2 and k = 3, respectively.

MTRS arises as a subproblem of more complex packing problems, and has
some practical applications, e.g., in telecommunications. Consider, for example, the
IEEE 802.16-2009 standard which is the basis of Mobile WiMAX; in this protocol,
data packets have to be transmitted from a base station to mobile users, and
transmission is implemented using different time slots and different frequencies.
This can be modelled as a two-dimensional packing problem in which a rectangular
data bin is used to transmit some rectangular data packets; in this model, widths
and heights represent time slots and frequencies, respectively, see [12] for more
details. Each data packet that is transmitted requires additional information to be
stored (and coded/decoded), that is possibly reduced in case the packet is sent as
a square instead of a rectangle. To maximize the throughput of the system, one
is thus interested in filling the entire data bin with the smallest number of square
items.
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Fig. 1 Example of guillotine pattern, non-guillotine pattern and 3-staged pattern (the num-
bers denote the sizes of the items).

MTRS is also interesting from the computational complexity viewpoint; on
the one hand, it is a very simple problem which is not known to be polynomially
solvable, while on the other hand no proof of NP-hardness has been proposed in
the literature.

The paper is organized as follows. In Section 2 we introduce an Integer Lin-
ear Programming (ILP) model for MTRS, while Section 3 gives two heuristic
algorithms for the problem. In Section 4 we propose a mathematical model for a
relaxation of the problem, and strengthen this relaxation by adding some valid
inequalities; alternative exact algorithms based on this relaxation are then out-
lined in Section 5. Finally, Section 6 reports an extensive computational analysis
of the proposed algorithms on a set of randomly generated instances, and Section
7 draws some conclusions.

2 Problem formulation

In this section we give a formal description of the problem we consider, and intro-
duce a mathematical formulation for its solution.

We are given a rectangular bin having integer width W and integer height
H. The Minimum Tiling of a Rectangle by Squares (MTRS) problem requires to
define n square items, so that:

– each item j has an integer side aj ;
– items are orthogonally allocated to the bin without overlapping;
– the set of square items entirely covers the given bin; and
– the number n of used items is a minimum.

Throughout the paper we assume that H and W are positive integers. Noting
that the cases W = 1 (or H = 1) and W = H would lead to trivial optimal
solutions (with value H and 1, respectively), we will further assume that 1 < W <
H, possibly rotating the rectangle by 90 degrees if necessary.

To provide an Integer Linear Programming (ILP) formulation for MTRS, we
make use of a Cartesian system having axes x and y and assume that the bottom
left corner of the bin is at coordinate (0, 0).
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As we assume W < H, the set of possible items’ sizes is Ṽ = {1, . . . ,W}.
Observing that an item of size t ∈ Ṽ can be placed with its bottom-left corner
at any (i, j)-coordinate such that i ∈ Wt = {1, . . . ,W − t + 1} and j ∈ Ht =
{1, . . . , H − t+ 1}, we can define the following set of decision variables:

αijt =

{
1 if an item of size t is placed in position (i, j);
0 otherwise

(1)

for t ∈ Ṽ , i ∈Wt, j ∈ Ht. This yields the following ILP model for MTRS

min
∑
t∈Ṽ

∑
i∈Wt

∑
j∈Ht

αijt (2)

∑
t∈Ṽ

min(i,W−t+1)∑
u=max(0,i−t+1)

min(j,H−t+1)∑
v=max(0,j−t+1)

αuvt = 1 i = 1, . . . ,W ; j = 1, . . . , H (3)

αijt∈{0, 1} t ∈ Ṽ ;i ∈Wt; j ∈ Ht. (4)

The objective function (2) minimizes the number of items that are used; con-
straints (3) impose that any unit square of the bin, with bottom left corner, say,
at coordinate (i, j), is occupied by exactly one item. Finally, constraints (4) impose
decision variables to be binary.

The formulation above was used in [1] for 2BP and in [11] for the problem
of splitting an n × n square into square items having size at most n − 1. The
model has W 2H variables and W H constraints; this may prevent the possibility
of directly using it in practice for large values of the W and H parameters. On the
contrary, the model can be solved in an efficient way for small values of W and H,
possibly producing approximate solutions for MTRS in case the optimum cannot
be computed.

3 Heuristic Solution of MTRS

In this section we present two heuristic approaches for MTRS. The first one,
described in Section 3.1, is based on a dynamic programming scheme and is par-
ticularly suited for those instances for which the optimal solution corresponds to a
pattern that is guillotinable, see again Figure 1. Conversely the second heuristic,
described in Section 3.2, is more suitable for patterns that are not guillotinable.
Since no dominance exists among the algorithms and the required computing times
for their execution are usually very small, we run both heuristics and take the best
of the two solutions.

3.1 A recursive guillotine heuristic

Our first heuristic is a dynamic programming procedure that iteratively cuts the
given rectangle by means of a guillotine cut in a recursive fashion. If the current
rectangle is a square, then a single item is produced. Otherwise, the rectangle is
divided into two smaller rectangles, to which the procedure is applied recursively.
In this case, to determine the edge-to-edge cut that produces the smallest number
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of items, we try all possible vertical and horizontal guillotine cuts, and select the
one that gives a minimum. More in details, let us introduce a W × H matrix F
such that F (p, q) denotes the minimum number of square items associated with
a p × q rectangle (p = 1, . . . ,W , q = 1, . . . , H) using guillotine patterns only.
Similarly, assume that X(p, q) denotes the associated solution, expressed in terms
of multiset of items. The entries of matrices F and X can be computed according
to the scheme reported in Figure 2.

Algorithm GUILL:

for p = 1 to W do
for q = 1 to H do

if p = q then set F [p, q] := 1 and X[p, q] := {p};
else

let kv := arg min
k=1,...,p−1

{
F [k, q] +F [p− k, q]

}
and Fv := F [kv , q] +F [p− kv , q];

let kh := arg min
k=1,...,q−1

{
F [p, k] +F [p, q−k]

}
and Fh := F [p, kh] +F [p, q−kh];

if Fv ≤ Fh then set F [p, q] := Fv and X[p, q] := X[kv , q] ∪X[p− kv , q];
else set F [p, q] := Fh and X[p, q] := X[p, kh] ∪X[p, q − kh];

endif
endfor

endfor
return solution X[W,H] with value F [W,H]

Fig. 2 Heuristic algorithm that produces the best guillotine solution.

The following observation states that the algorithm provides an optimal solu-
tion to MTRS, if an optimal solution satisfying guillotine constraint exists.

Observation 1 Algorithm GUILL produces the best MTRS solution among those
that satisfy the guillotine constraint.

Proof We first prove that the solution produced by the algorithm satisfies the
guillotine constraint. Indeed, if the given W × H rectangle is a square, then a
single-item solution is produced. Otherwise, the rectangle is split using an edge-
to-edge cut into two smaller rectangles. Assume that the first cut is vertical with
some value k ∈ [1,W−1], i.e., the solution is obtained by the set of items associated
with the k×H rectangle plus those associated with the (W −k)×H rectangle (the
case in which the first cut is horizontal is analogous). By recursion, we can show in
the same way that both these solutions satisfy the guillotine requirement, as they
are composed by either a single item or are obtained merging items associated
with solutions of two smaller rectangles that, by recursion, satisfy the guillotine
constraint.
Now we prove that the produced solution is indeed the optimal among this that
satisfy the guillotine constraint. By contradiction, assume the statement is not
true. Without loss of generality, consider now the smallest (W,H) instance for
which the algorithm fails in producing the best solution among those that are
guillotinable, i.e., assume the recursion scheme is exact for all W ×H rectangles
such that W ≤W , H ≤ H and one of the two inequalities is strict. As the solution
found is guillotinable, it is produced by a first cut which divides the bin into two
smaller parts, and F (W,H) is the sum of the associated optimal values. Thus,
either the solution of one of the smaller parts is not optimal (or both), or a better
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solution exists that uses a different first cut. The first case is ruled out by our
assumption, as both parts are smaller than (W,H). The latter cannot occur as
well, since the algorithm considers all possible vertical and horizontal positions for
applying the first cut, and returns the best solution among them.

Though it requires the computation of all the W ×H entries of matrices F and
X, the algorithm above is very fast in practice, and usually produces solutions
of high quality (see, Section 6). We note that an upper bound for the number
of items produced by this algorithm can be implicitly derived from the results in
[10]. Indeed, assuming W > H/2, the algorithm given in [10, Sec. 5] produces a
guillotinable solution having a number of items not larger than C logW log logW ,
where C is an universal constant. Using Observation 1 we conclude that the same
upper bound holds for our algorithm as well. Finally, we mention that recursive
algorithms were used in the literature for solving (either heuristically or in an
exact way) different two-dimensional packing problems; see, e.g., [7] for a heuristic
algorithm for 2SP, [4] for the approximate solution of the problem of packing
identical rectangles into a rectangle, and [8] for an exact approach to the Two
Dimensional Knapsack problem.

3.2 A non-guillotine heuristic

According to the results of the previous section, MTRS can efficiently be solved
to optimality in case an optimal solution satisfies the guillotine requirement. Un-
fortunately, there are MTRS instances for which the optimal solution corresponds
to a non-guillotinable pattern (see, e.g., the central packing in Figure 1); in these
cases, algorithm GUILL produces a heuristic (non necessarily optimal) solution, i.e.,
an upper bound on the optimal solution value.

Thus, we developed a second heuristic to deal with non-guillotinable patterns
that have the structure depicted in Figure 3, in which one can identify some
rectangles Rj = (wj , hj), each corresponding to a subset of square items, that
encircle a “central” item. This pattern is called simple blocked ring in [20], as it
corresponds to the non-guillotinable pattern with the smallest number of items. It
can be proved that this pattern is the non-guillotinable pattern with the smallest
number of items, and that every pattern that is non-guillotinable includes (or may
be reconducted to) a simple blocked ring structure (see, [20, Ch.3] for details).

The non-guillotine heuristic exploits patterns in which one of the rectangles is
indeed a square (i.e., a single item) having side t, and the central item has side e.
Given the two values t > e, the algorithm

1. determines the sizes of the remaining rectangles:

R1 = (t− e,H − t) R2 = (W − t, t+ e) R3 = (W − w1, H − h2);

2. computes their minimum square guillotine tiling using the dynamic program-
ming algorithm GUILL of Section 3.1; and

3. defines a complete solution adding two squares having sides t and e, respec-
tively.

Note that the algorithms runs in constant time if one has executed the first
heuristic before, and all entries F (p, q) are known ∀p = 1, . . . ,W and ∀q =



Minimum Tiling of a Rectangle by Squares 7

t

R1
R3

R2

e

Fig. 3 Non-guillotine patterns exploited by the heuristic algorithm.

1, . . . , H. Thus, we can execute the algorithm with a large number of tentative
(t, e) pairs; in our implementation we used all values from 1 to W − 1 for both t
and e, provided that e < t and t+ e < H.

4 Lower bounds for MTRS

In this section we introduce a mathematical model for a simple relaxation of
MTRS, allowing to determine a lower bound on the optimal solution value. In
section 4.2 we introduce valid inequalities that can be added to the formulation
to strengthen the resulting lower bound value.

4.1 A one-dimensional relaxation

Recall that Ṽ = {1, . . . ,W} denotes the set of possible items’ sizes. A simple
lower bound on the optimal solution value of an MTRS instance can be obtained
by solving the following ILP model

min
∑
t∈Ṽ

xt (5)

∑
t∈Ṽ

t2 xt = W H (6)

xt ≥ 0 integer t ∈ Ṽ (7)

W∑
q=t

xq ≤ Ut t ∈ Ṽ (8)

∑
t>W/2

t xt ≤ H (9)
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t>H/2

t xt ≤W (10)

where each variable xt indicates the number of t× t items in the solution, and

Ut := min(z̃, bW
t
c bH

t
c) (11)

represents the maximum number of t× t items to be considered (see below) given
a feasible solution with value z̃.

The model defined by (5)–(7) corresponds to the 1-dimensional relaxation of
the problem in which only the area of each candidate item (and of the bin) is taken
into account. A similar relaxation was addressed for the two-dimensional knapsack
problem in [6], where the worst-case performance analysis of the resulting bound
was established. The relaxed problem turns out to be a Change-Making Problem;
although this problem is NP-hard in the general case (see, [16]), efficient algorithms
for its solution have been proposed in the literature (see, e.g., [18]).

As to constraints (8), note that in any feasible solution the maximum number
of t×t items is bounded by bWt c b

H
t c. As we assume a feasible solution of value z̃ is

available, each variable xt can be bounded by Ut, defined by (11). This immediately
leads to inequalities (8). Finally, inequality (9) bounds the total maximum height
of “large” items, i.e., items that are larger than half of the width of the bin and
cannot be packed side by side; similarly, (10) gives an upper bound on the total
width of “tall” items.

4.2 Strengthening the relaxation

Let us add to the previous model the following additional variables

ytp =

{
1 if xt = p;
0 otherwise

(t ∈ Ṽ ; p = 1, . . . , Ut) (12)

that are linked to the x variables as follows

xt =

Ut∑
p=1

p ytp t ∈ Ṽ (13)

and should satisfy immediate constraints that impose at most one such variable
be selected for each possible size t, i.e.,

Ut∑
p=1

ytp ≤ 1 t ∈ Ṽ . (14)

Using the y variables, it is possible to add to the formulation a number of
constraints, as stated by the following results.

Lemma 1 The following inequalities

Ut∑
p=1

ytp +

W∑
q=H−t+1

q>t

xq ≤ 1 t = H −W + 1, . . . ,W (15)

are valid for any feasible packing.
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Proof It is enough to observe that the first term in (15) is 1 only in case some
t × t items have been selected. In this case, no square of side q ≥ H − t + 1 can
be packed. In addition, q + t > H and q > t imply q > H/2, which means that
Uq = 1, i.e., only one q× q item must be considered; this allows to use variable xq
instead of yq1 in (15).

Lemma 2 The following inequalities

W−t∑
q=1

q 6=t

q2 xq ≥ t (W − t) yt1 t = 1, . . . , bW
2
c (16)

and
W−t∑
q=1

q2 xq ≥ t (W − t)xt t = bW
2
c+ 1, . . . ,W − 1 (17)

are valid for any feasible packing.

Proof Let us prove the validity of (17) for a given value of t. First observe that
the inequality is omitted if t = W and is redundant in case xt = 0; thus, assume
xt > 0. Since t > W/2, the t × t items cannot be packed side by side, leaving a
lateral overall free space of area (W − t) × xt. This free space must be entirely
filled with items whose side is at most W − t, which yields (17).
The associated inequality (16) can be proved in a similar way, the only difference
being that we cannot rule out the possibility that t × t items are packed side by
side. Thus, we have to weaken the constraint by considering the case in which only
one such item is packed, i.e., using variable yt1.

Lemma 3 The following inequalities

min{H−t,W}∑
q=1

q 6=t

q2 xq ≥ t (H − t) yt1 t = 1, . . . ,W (18)

and

min{H−kt,W}∑
q=1

q 6=t

q2 xq ≥ (2t−W ) (H − kt) ytk t = bW
2
c+ 1, . . . ,W ; k = 2, . . . , Ut

(19)
are valid for any feasible packing.

Proof For a given value of t, inequality (18) is non redundant only in case yt1 = 1,
i.e., only one t× t item is packed; in this case, the proof of validity is identical to
that for inequalities (16), swapping the roles of W and H and recalling that each
item has size at most W .
As to inequalities (19), let t > W/2 be an item size and k ≥ 2 the number of t× t
items packed in the solution. Noting that these items cannot be packed side by
side, there is a free space (denoted by F in Figure 4) of height H − kt and width
(at least) 2t−W that can allocate only items whose size is at most H − kt, which
concludes the proof.
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t

t

F

Fig. 4 Free area to be covered in the right-hand side of inequalities (19).

The results associated with “large” items in Lemmata 2 and 3 can be general-
ized as follows:

Lemma 4 The following inequalities

W−t∑
q=1

q2 xq ≥
W−1∑
q=t

q (W − q)xq t = bW
2
c+ 1, . . . ,W − 1 (20)

and
min{H−t,W}∑

q=1

q2 xq ≥
W∑
q=t

q (H − q)xq t = bH
2
c+ 1, . . . ,W (21)

are valid for any feasible packing.

Proof Consider inequality (20) for a certain t > W/2, and all items with side
at least t in the solution; as all such items are larger than W/2, they cannot be
packed side by side. Thus, the lateral free area alongside these items is given by
the right-hand side in (20), and must be filled by using items whose size is at most
W − t. The validity of (21) can be proved in a similar way swapping the roles of
W and H.

Finally, we address the special case in which the solution includes a number of
items whose size is equal to the width of the bin.

Lemma 5 Let p ∈ {1, . . . , UW }, and define W = min(W,H − pW ) and H =
max(W,H − pW ). Then, the following inequalities

W−t∑
q=1

q2 xq ≥
W−1∑
q=t

q (W − q)xq −M (1− yWp) t = bW
2
c+ 1, . . . ,W − 1 (22)
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and

min{H−t,W}∑
q=1

q2 xq ≥
W∑
q=t

q (H − q)xq −M (1− yWp) t = bH
2
c+ 1, . . . ,W (23)

where M is a “sufficiently large” value, are valid for any feasible packing.

Proof First, observe that all inequalities associated with a given value of p are
deactivated if yWp = 0, i.e., in case the number of W ×W items in the solution
is different from p. Otherwise, all such items must be packed one above the other,
leaving a residual bin with width W and height H. Thus, (22) and (23) can be
derived exactly as (20) and (21) respectively.

As already observed, each inequality (23) is a conditional constraint that is ac-
tive only if the associated yWp variable is set to 1. Otherwise the big-M coefficient
makes the constraint redundant, provided its value is “large enough” to deactivate
the inequality when yWp = 0. Needless to say, using a too large value may lead to
very weak relaxations, which makes hard the definition of suitable values for big-M
coefficients. However, we observe that modern ILP solvers include some coefficient
strengthenings that typically produce preprocessed models that, according to our
computational experience, are not too hard to solve.

We conclude this section with the following result:

Theorem 1 The optimal solution of ILP model (5)–(10), (13)–(23) provides a
lower bound on the optimal MTRS solution value.

Proof Immediate from Lemmata 1–5.

5 Exact approaches to MTRS

In this section we examine different exact approaches to the solution of MTRS.
The first algorithm applies an ILP solver to the formulation given in Section 2,
whereas the remaining schemes are based on the iterative solution of the relaxation
introduced in Section 4.

5.1 Approach 1: Direct use of an ILP solver

An immediate way for solving MTRS is to run any ILP solver on the mathematical
model (2)–(4) given in Section 2. To take full advantage of the internal heuristics
that are commonly embedded in commercial ILP solvers, the enumerative algo-
rithm can be initialized with a heuristic solution. For example, one can define a
“dummy” solution in which the rectangular bin is split into W × H unit-square
items or, even better, compute a feasible solution by executing the heuristic algo-
rithms described in Section 3.

As already anticipated, this simple formulation may be solved in a very efficient
way for small values of W and H. For larger instances, the solver may not be able
to provide an optimal solution, but can possibly produce an improved heuristic
solution. However, large values of W and H produce a huge number of variables
and constraints, which makes it impossible to solve the associated model and, in
some cases, even to define it due to memory requirement.
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5.2 Approach 2: Enumerate-and-cut algorithm

The second approach is based on the relaxed formulation introduced in Section
4.1, possibly strengthened using the inequalities of Section 4.2.

An exact formulation for MTRS can be derived by adding to the relaxation
above the following inequalities∑

(t,k)∈C

ytk ≤ |C| − 1 C ∈ C (24)

where C denotes the set of subsets of y variables associated with sets of items C
that cannot be completely allocated into the rectangular bin.

In practice, it is not possible to explicitly generate all inequalities (24), as they
are exponentially many. Thus, we developed an algorithm, denoted as Enumerate&Cut,
that starts with no constraints (24); at each iteration the current relaxation is
solved, and feasibility of the current solution is checked, using as a black box the
feasibility test procedure described in Section 5.2.1. If the current item set can be
packed into the bin, the current solution is feasible, hence optimal, for MTRS.
Otherwise, a new item set C ∈ C is determined, the associated inequality (24) is
added on the fly to the formulation, and the procedure is iterated.

This approach can be seen as a Benders’ decomposition ([3]) in which the
feasibility check for the slave corresponds to the problem of checking whether
a given set of items fits into a bin or not. Indeed this feasibility check requires
the solution of an NP-hard problem, and turns out to be by far the most time
consuming part of the computation for this approach.

Finally observe that, given an item set C ∈ C, one can derive a number of valid
inequalities (24). In particular, one can define another item set C′ ⊂ C and check
if all items in C′ can be packed into the W ×H rectangle or not; in this latter case,
a new inequality (24) associated with item set C′ can be defined and added to the
formulation. This procedure can be iterated to define further subsets of items and
possibly produce new cuts. Since the number of potential subsets to be considered
is exponential in |C| and each feasibility test may require some computing time,
in our implementation we prefer to use a non-aggressive policy that keeps the
number of generated cuts under control. In particular, we only consider subsets
C′ defined as C′ = C \ {j}, where j denotes the smallest item in C and C ∈ C,
and stop the procedure as soon as we detect an item set C that allows a feasible
W ×H packing. In the following, we will denote this option as the aggressive cut
generation policy.

5.2.1 Checking feasibility

The problem of checking the feasibility of a given set of items can be stated either
as a 2BP (checking if the optimal solution value is equal to 1) or as a 2SP (checking
if a packing exists with height not larger than H). In our algorithm we used the
latter, and adapted the enumerative scheme (proposed in [17] for 2SP) that packs
one item at a time according to the concepts of envelope and corner points (see
Figure 5). Let S denote the set of items that are actually allocated at a certain
node of the enumerative tree; then, we compute the O(|S|) corner points for the
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Fig. 5 Envelope and corner points associated with item set S = {1, 2, 3, 4, 5}.

current node, and generate a number of descendant nodes, each associated to the
placement of each item j 6∈ S in each corner point (see [17] for details).

To speed up enumeration, at each node we use only simple fathoming criteria,
based on the consideration that any feasible solution cannot leave uncovered areas.
Thus, a backtracking occurs if one of the following conditions holds:

– the area below the current envelope is strictly smaller than the area of the
items is S;

– a corner point exists in which no item j 6∈ S can be allocated;
– an item j 6∈ S exists that cannot be allocated to any corner point.

The algorithm is halted as soon as a feasible solution is found, i.e., when all
items have been allocated without overlapping to the given rectangle, or when it
can prove infeasibility for the current item set.

5.3 Approach 3: Branch-and-cut algorithm

A third exact algorithm, called Branch&Cut, can be obtained by integrating the
feasibility check described in Section 5.2.1 within the ILP solver. In particular,
we assume that the solver can be controlled through a callback function invoked
each time the incumbent is going to be updated—as it happens in many modern
solvers. In our implementation, we run the solver on a relaxed formulation, using
the feasibility check every time a candidate set of items is found. If the current
item set turns out to be infeasible, a new cut is added on the fly; otherwise, the
incumbent solution is updated. In both cases, enumeration continues until the
entire branch-and-bound tree is explored.

The resulting algorithm, that resembles the scheme proposed in [19] for the
Travelling Salesman Problem, may turn out to be advantageous as it explores
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a single tree, including the (generally time consuming) root node that involves
preprocessing, cut generation, and so on. On the other hand, the use of callback
functions may deactivate some properties of the solver, which can turn in a wors-
ening of the algorithm’s performances. In addition, the algorithm may have to
check feasibility for a large number of item sets. For this reason, the algorithm is
improved by stopping the check for the current set of items after a (short) time
limit, so as to restore enumeration. If this happens, possible item sets for which the
check has not been completed are evaluated, sorted according to their cardinality,
after the complete enumeration terminated.

5.4 Approach 4: Hybrid strategy

Algorithm Branch&Cut of Section 5.3 may require the execution of the feasibility
check for many item sets S whose size is larger than the optimal solution value.
This operation may be time consuming, as the performances of the check strongly
depend on the number of items to be allocated, and turns out to be a waste of time
whenever an improving solution is found. Thus, we developed a fourth algorithm,
denoted as Hybrid, that executes the branch-and-cut algorithm of Section 5.3 in
an iterative fashion: at iteration k, only item sets S with |S| = k are evaluated.
The algorithm terminates as soon as a feasible solution is found.

The iterative nature of the algorithm makes it quite similar to the second ap-
proach, described in Section 5.2, with two main differences. First, for each possible
value of the optimal solution, only one branch-and-bound tree is developed. Sec-
ond, the additional constraint on the objective function value allows the solver to
activate many internal propagation procedures, that may be extremely useful in
terms of computing time.

6 Computational experiments

All algorithms described in the previous sections were coded in C language and
run on an Intel Xeon E3-1220 V2 in single-thread mode with a time limit of 600
seconds per instance. All the ILP models were solved by using IBM-ILOG Cplex
12.6.3 (CPLEX in the following), possibly using callback functions.

To test the effectiveness of our algorithms, we randomly generated a large set
of instances, as follows. We first generate the width W of the bin as an uniform
integer in [W,W ], where W > W are two integer parameters. Then, the height H
of the rectangle is generated as a random integer in the interval [αW + 1, βW ],
where β > α ≥ 1 are two additional parameters. We generated instances with
(W,W ) ∈ {(3, 19), (20, 39), (40, 59)} and (α, β) ∈ {(1, 2), (1, 5), (1, 10), (2, 5)}. For
each combination of the parameters (called classes hereafter), we randomly gener-
ated 10 instances, yielding a benchmark of 120 instances. To avoid possible scaling
of the instances, we considered only problems for which W and H are coprime.

In our experiments we considered different ILP models for MTRS. A valid
formulation, that we will denote by F0, is obtained by considering (5)–(10) and
(24). Then, we will consider 3 alternative ways to define stronger formulations,
namely:
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– formulation F1 obtained adding (13)–(15) to F0;
– formulation F2 obtained adding (16)–(19) to F1;
– formulation F3 obtained adding (20)–(23) to F2. As to inequalities (22)–(23),

in our experiments we used M = 10, 000.

In the following, we will denote by L0, L1, L2 and L3 the lower bounds obtained
relaxing inequalities (24) by these four formulations, respectively.

Table 1 reports the results of our experiments for what concerns the heuristic
algorithms of Section 3 and the four relaxations above. Each line of Table 1 gives
results for the 10 instances of the same class. For the heuristic algorithms we
consider the best among the two solutions produced by the algorithms in Sections
3.1 and 3.2, and counted the number of cases in which this solution is equal to
the optimal solution for a given instance (column “best”). In case the optimal was
not available, the heuristic was compared with the best known solution for that
instance. In addition, we report the average ratio between the heuristic and the best
solution values (column “ratio”) and the average computing time for producing the
heuristic solution (“time”); this is a very tight approximation of the computational
effort to execute the dynamic programming algorithm, as computing time for the
non-guillotine heuristic is always negligible. As to lower bounds, we report, for
each relaxation, the percentage ratio between the associated lower bound and the
best solution value (“ratio”) and the required computing time (“time”).

Instances Heuristic L0 L1 L2 L3

W,W α, β best ratio time ratio time ratio time ratio time ratio time
3, 19 1,2 10 1.000 0.000 0.552 0.11 0.663 0.11 0.789 0.05 0.858 0.04

1,5 8 1.017 0.000 0.604 0.05 0.620 0.05 0.866 0.05 0.914 0.05
1,10 9 1.017 0.001 0.662 0.06 0.662 0.04 0.862 0.09 0.898 0.04
2,5 10 1.000 0.000 0.593 0.02 0.593 0.02 0.857 0.02 0.919 0.02

20, 39 1,2 7 1.035 0.000 0.346 0.03 0.449 0.06 0.593 0.07 0.703 0.08
1,5 8 1.018 0.001 0.381 0.04 0.402 0.05 0.583 0.09 0.691 0.08

1,10 9 1.007 0.003 0.510 0.04 0.510 0.04 0.693 0.08 0.760 0.10
2,5 6 1.045 0.002 0.404 0.05 0.404 0.05 0.612 0.10 0.707 0.09

40, 59 1,2 7 1.032 0.002 0.338 0.08 0.401 0.08 0.519 0.19 0.606 0.14
1,5 9 1.010 0.007 0.389 0.06 0.389 0.07 0.569 0.23 0.630 0.19

1,10 8 1.019 0.012 0.435 0.09 0.435 0.07 0.573 0.20 0.678 0.23
2,5 9 1.008 0.007 0.379 0.05 0.379 0.05 0.569 0.25 0.658 0.30

overall 100 1.017 0.003 0.466 0.06 0.492 0.06 0.674 0.12 0.752 0.11

Table 1 Initial heuristic and relaxations on MTRS instances.

The results in Table 1 show that the heuristic algorithm provides very good
solutions, which can be improved only in a few cases by the exact algorithms.
Relaxations L0 and L1 can be computed very efficiently, but the associated lower
bounds are quite poor. Adding inequalities (16)–(19) has a considerable impact
in the strengthening of the relaxation, especially on large instances, though the
required computing times increase by an average factor of 2. Finally, the addition of
inequalities (20)–(23) to define formulation F3 seems to have a minor impact on the
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computing time, while producing some additional improvement of the associated
lower bound.

Our second set of experiments is aimed at evaluating the performances of
the three exact algorithms of Section 5. All these methods start from an initial
formulation, that is strengthened adding valid cuts (24) on the fly; in this round of
experiments, only one valid cut is added at each iteration, i.e., the aggressive cut
generation strategy described in Section 5.2 is not applied. To better understand
the effect of the initial formulation on the performance of the different algorithms,
we executed each algorithms several times, using the four different formulations
mentioned above. At each run, the solver was initialized with the best heuristic
solution obtained applying the algorithms of Sections 3.1 and 3.2.

Table 2 reports, for each algorithm and formulation, the number of instances
(out of 120) solved to proven optimality within the given time limit (equal to 600
seconds) and the average computing time (in seconds, column “time”), the aver-
age number of cuts that were added during enumeration (“#c”) and the average
number of nodes explored (“#n”). Average values are taken with respect to the
instances solved to proven optimality only.

Initial Enumerate&Cut Branch&Cut Hybrid
Formulation opt time #c #n opt time #c #n opt time #c #n

F0 33 34.89 265 166314 42 62.26 3850 32135 42 39.33 4676 31373
F1 33 26.15 215 133011 43 75.74 3185 45546 43 41.77 2037 32927
F2 56 19.95 117 76496 68 56.01 961 30046 67 44.87 782 43116
F3 61 26.64 104 79922 78 54.26 793 43892 81 74.95 878 75155

Table 2 Exact algorithms with different initial formulations.

These results confirm that, for all methods, the tighter the initial formulation
the better the associated results. Indeed, tightening the formulation typically pro-
duces an increase in the number of instances that are solved to optimality, together
with a reduction in the average number of cuts and nodes. Actually, adding all
valid inequalities (13)–(23) to the initial formulation, i.e., considering formulation
F3, seems to be beneficial for all algorithms in terms of capability of producing
MTRS optimal solutions. This is mainly due to the fact that the number of cuts
that are added to enforce two-dimensional feasibility is reduced, with respect to
F1, by a factor ranging from 2.5 to more than 5; as we already observed, indeed,
most of the computing time is typically spent within the feasibility check proce-
dure described in Section 5.2.1. For these reasons, in what follows, we will always
use formulation F3 for our experiments.

Table 3 reports the performances of the three proposed methods without and
with the aggressive cut generation described in Section 5.2. Remind that, in this
case, a number of valid inequalities is generated for each infeasible item set C.

The results of Table 3 show that an aggressive cut policy is beneficial for the
first two algorithms, yielding a reduction of the average computing time of algo-
rithm Enumerate&Cut by one third, and allowing the optimal solution of two more
instances when using algorithm Branch&Cut. Conversely, this tuning produces a
certain slowdown when applied to algorithm Hybrid, that solves less instances than
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aggressive Enumerate&Cut Branch&Cut Hybrid
cut generation opt time #c #n opt time #c #n opt time #c #n

OFF 61 26.64 104 79922 78 54.26 793 47470 81 74.95 878 75155
ON 61 17.67 217 47424 80 70.15 1929 36164 78 72.74 1678 47189

Table 3 Exact algorithms with and without aggressive cut generation.

in the default settings. Finally observe that, as expected, the number of feasibil-
ity cuts (24) generated is considerably larger than in the previous case (typically,
but a factor of 2), whereas the number of nodes is reduced (by an average factor
ranging from 1.3 to 1.6).

According to these computational experiments, the best tuning for algorithms
Enumerate&Cut and Branch&Cut is obtained by applying the aggressive cut policy;
the resulting algorithms will be denoted as Enumerate&Cut+ and Branch&Cut+,
respectively. On the contrary, the best tuning for algorithm Hybrid is given by the
default setting. For the following experiments, we will consider all algorithms in
their best tuning.

Table 4 reports more detailed results for what concerns the exact methods of
Section 5 (executed with their best tuning) and compares their performances with
those obtained with the direct application of an ILP solver to model (2)–(4). In
this case too, each algorithm is initialized with the best heuristic solution obtained
applying the algorithms of Sections 3.1 and 3.2. For each approach we report the
number of instances solved to proven optimality (“opt”), the average computing
time in seconds (“time”) and the number of branch-and-bound nodes (“#n”). To
keep memory requirement under control, we did not try to solve ILP model (2)–
(4) if the number of non-zero coefficients in the constraint matrix exceeded 100
millions. For these instances neither the computing time nor the number of nodes
are considered in the statistics; to allow a more meaningful comparison, we also
report the number of such instances in column “#f”. As to the remaining three
approaches (Enumerate&Cut, Branch&Cut and Hybrid), the numbers of nodes refer
to all the iterations of the algorithms.

Table 5 reports the same information as Table 4 but considering, for each
approach, only the instances that were solved to proven optimality within the
time limit. For this reason we do not report column “#f” for the first approach.

These results suggest that using a state-of-the-art ILP solver may be a viable
option only for instances with small bin sizes, whereas this approach cannot be
used for medium and large instances – in many cases, the model could not even
start for memory reasons. However, when optimality is proven, a very small num-
ber of enumeration nodes are required. Algorithm Enumerate&Cut+ is able to solve
only half of the instances, mainly those of small size. On the contrary, algorithms
Branch&Cut+ and Hybrid have better performances in terms of number of opti-
mal solutions and computing times. In particular, the latter qualifies as the best
algorithms, at least on this testbed, as it is able to solve to optimality more than
2/3 of the instances with an average computing time of 75 seconds.
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Instances CPLEX Enumerate&Cut+ Branch&Cut+ Hybrid

W,W α, β opt time #n #f opt time #n opt time #n opt time #n
3, 19 1,2 10 0.69 0 0 10 0.09 102 10 0.06 90 10 0.09 140

1,5 10 4.55 5 0 10 5.83 4259 10 2.26 607 10 12.03 1756
1,10 10 8.58 0 0 10 0.30 795 10 0.88 184 10 0.26 449
2,5 10 1.57 0 0 10 0.06 71 10 0.03 45 10 0.07 51

20, 39 1,2 10 54.07 3 0 6 246.04 674439 10 105.95 57110 9 126.73 111478
1,5 6 287.72 10 0 4 372.56 589355 8 227.45 64939 8 240.45 171384

1,10 6 336.03 4 0 7 242.16 391693 8 154.13 44324 8 166.60 105966
2,5 5 416.49 24 0 3 426.77 707764 8 223.89 50981 9 196.48 118926

40, 59 1,2 4 490.16 4 0 0 600.00 1448453 2 542.59 192646 2 549.19 627883
1,5 0 600.00 0 3 1 554.01 997449 1 557.30 112380 1 543.49 560025

1,10 0 600.00 0 3 0 600.00 1081316 1 582.47 155831 2 567.30 588105
2,5 0 600.00 0 4 0 600.00 1025331 2 564.18 170853 2 544.43 565300

overall 71 254.53 4 10 61 303.98 576775 80 246.77 70832 81 245.59 237622

Table 4 Exact algorithms on the entire benchmark.

6.1 Perfect tiling

Our last experiments concerns the variant of MTRS in which all the produced
squares must be different. Such a solution, if any, is called a perfect tiling of the
given rectangle.

This constraint can be easily incorporated in model (2)–(4) by adding, for each

possible size t ∈ Ṽ a new constraint
∑
i∈Wt

∑
j∈Ht

αijt ≤ 1 that bounds the number

of items of size t. In a similar way, one can set xt ≤ 1 (t ∈ Ṽ ) to model perfect
tiling in the relaxation introduced in Section 4.1.

Instances CPLEX Enumerate&Cut+ Branch&Cut+ Hybrid

W,W α, β opt time #n opt time #n opt time #n opt time #n
3, 19 1,2 10 0.69 0 10 0.09 102 10 0.06 90 10 0.09 140

1,5 10 4.55 5 10 5.83 4259 10 2.26 607 10 12.03 1756
1,10 10 8.58 0 10 0.30 795 10 0.88 184 10 0.26 449
2,5 10 1.57 0 10 0.06 71 10 0.03 45 10 0.07 51

20, 39 1,2 10 54.07 3 6 10.06 45946 10 105.95 57110 9 74.15 78643
1,5 6 79.53 16 4 31.41 108082 8 134.32 71748 8 150.57 157753

1,10 6 160.05 7 7 88.79 203729 8 42.66 16059 8 58.25 42208
2,5 5 232.97 30 3 22.57 88072 8 129.86 58484 9 151.64 123616

40, 59 1,2 4 325.41 4 0 – – 2 312.95 169031 2 345.93 379680
1,5 0 – – 1 140.14 442275 1 172.98 129173 1 34.93 97143

1,10 0 – – 0 – – 1 424.74 213967 2 436.51 483490
2,5 0 – – 0 – – 2 420.92 230635 2 322.13 410062

overall 71 64.77 5 61 17.67 47424 80 70.15 36164 81 74.95 75155

Table 5 Exact algorithms on instances solved to optimality.
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To test the resulting algorithm in these settings, we ran each algorithm on
the smallest rectangle for which a perfect tiling exists, defined by W = 32 and
H = 33. Actually, all the procedures were able to find an optimal solution of value
9; Figure 6 shows an optimal perfect tiling for the 32× 33 rectangle. In all cases,
the associated computing time was analogous to those reported in Table 4 for
instances of similar sizes, though the initial heuristics were not able to produce a
feasible perfect tiling, thus they were disabled.
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Fig. 6 Perfect tiling of a 32× 33 rectangle (the numbers denote the sizes of the items).

To possibly reduce the erratic behaviour of ILP solvers (see, e.g., [9]) we run
each algorithm 5 times, using different random seeds for the ILP solver (namely,
the default seed and four additional seeds). Table 6 reports computing time and
number of nodes for each run of each algorithm.

CPLEX Enumerate&Cut+ Branch&Cut+ Hybrid

seed time #n time #n time #n time #n
default 98.62 46 6.87 5261 7.35 2312 29.54 5641

1 29.54 0 8.58 6299 37.18 1719 27.93 4727
2 88.54 29 4.92 4225 27.74 2469 29.04 6029
3 100.41 44 6.95 5032 52.18 1545 28.64 6299
4 82.77 24 5.74 4457 68.03 2442 26.93 5499

average 79.98 29 6.61 5054 38.50 2097 28.42 5639

Table 6 Exact algorithms for perfect tiling of a 32× 33 rectangle

The results in Table 6 indicate that, for this specific instance, the best algorithm
is Enumerate&Cut+, that performs consistently better than the other approaches,
with average computing time less than 7 seconds. As to the other algorithms, the
best option is given by algorithm Hybrid that has a computing time (and number
of nodes) that is almost independent on the random seed (which is not the case,
e.g., for algorithm Branch&Cut+).
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7 Conclusions

In this paper we introduced a new two-dimensional packing problem in which
one is required to split a given rectangular bin into a minimum number of non-
overlapping square items. For this problem we proposed an ILP model and a
heuristic algorithm that is proved to produce the optimal solution in relevant situ-
ations. Then, we proposed a mathematical model for a relaxation of the problem,
which is embedded into two enumerative schemes. Computational experiments are
provided to test the effectiveness of the algorithms on a set of randomly gener-
ated instances. The results suggest that the direct use of an ILP solver is a viable
option when small instances are concerned, whereas it is not suitable when large
instances are addressed, or when additional constraints are required, such as those
imposing the produced tiling be perfect. In this case, an alternative approach may
be used, in which an easily solvable relaxation is defined and valid constraints are
added on the fly, until a proven optimal solution is found.
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