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Abstract—The automotive industry increasingly recognizes the
importance of human-machine interaction in enhancing the driv-
ing experience and improving driver safety. Human factors, such
as drowsiness and attention deficits, play a primary role in safe
driving. There are several research and commercial solutions to
address these issues. However, they analyze vehicle behavior and
are unable to assess the driver’s state in a timely manner. A novel
approach to this problem is to monitor the driver’s physiological
signals. In this context, Photoplethysmography (PPG) is a non-
invasive technique that monitors cardiac activity and can provide
information regarding the driver’s state. This work introduces
ANGELS, an embedded system that exploits PPG signals to
monitor drivers in a non-invasive way. ANGELS is a low-cost
and low-power system that can be integrated into the steering
wheel of a car. It acquires and processes the driver’s PPG signals
in real-time and enables heart rate monitoring without requiring
accelerometer data to remove motion artifacts. We perform an
experimental assessment using the Maserati driving simulator.
ANGELS features a mean absolute error on heart rate detection
of 1.19 BPM with a latency of 10 s and power consumption of
only 130 mW. These results demonstrate that it is a reliable and
promising solution for improving driver safety.

Index Terms—Driver monitoring, Photoplethysmography,
driver’s physiological signals, embedded system, peaks detection

I. INTRODUCTION

Recently, Human-Machine Interaction (HMI) is becoming
very pervasive in the automotive field due to its ability to
improve the driving experience and increase driver safety.
In particular, numerous research and commercial solutions
are available for high-end cars to tackle attention deficits
and drowsiness, which are among the leading causes of car
accidents.

Currently, several driving and driver monitoring devices
are often present, such as lane assistants, braking aids, radar
for collision avoidance, and periodic stop warnings. These
solutions provide a safety paradigm that analyzes vehicle
behavior when it becomes unsafe, but they are unable to extract
and monitor the major cause, i.e., the driver’s physiological
state. Monitoring some physiological parameters, on the other
hand, can provide valuable info on a driver’s fatigue and stress
condition [1], allowing the use of predictive methods that can
act proactively in avoiding dangerous situations instead of
reacting only to the end effect, namely vehicle behavior [2,
3].
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Recent studies show how monitoring physiological signals,
with sensors worn or included in the cockpit, can aid the de-
tection of states of fatigue or drowsiness, allowing the vehicle
to inform the driver or take contingency actions. The most
investigated solutions for this purpose are biosignal analysis
(i.e., ECG, PPG, and EEG) [4], as well as eye movements
and blink rate analysis made through camera-based systems
[5]. These techniques are already used on some high-end
cars [6]. Camera-based systems are unobtrusive, even though
variability of light conditions and line-of-sight (e.g., glasses or
sunglasses) severely affect their performance [7]. Moreover,
these systems are complex and expensive, thus available only
to a limited population.

From the clinical perspective, the only direct measurement
of sleep and wake states is carried out through EEG since it
can directly detect autonomic nervous system (ANS) activity.
Unfortunately, this signal is not suitable for unobtrusive use
in the automotive domain, as it requires electrode placement
in direct contact with the skin and on the scalp.

Therefore, it is necessary to use indirect measurements,
which give information on the onset of drowsy states through
the changes in physiological parameters. Electrocardiography
(ECG) and Photoplethysmography (PPG) provide an indirect
measure of the effects of ANS on drowsiness conditions by
monitoring the heart rate (HR) [8]. In particular, ECG is
widely used in research to monitor driver status; however,
it requires simultaneous contact of 2 active electrodes and a
reference electrode. In addition, because it is a signal that
measures an electrical potential, a Right Leg Drive (RLD)
circuit [9] is often required to avoid saturation.

In contrast, PPG is an optical-type signal, based on an
LED-diode pair, that measures the change in blood volume
in the microvascular bed that occurs during a heartbeat and
correlates directly with HR [10]. The variability of PPG
sensor skin-to-electrode contact is a primary cause of signal
artifacts, limiting the reliability of the HR measures. The
most used approach to tackle such limitations is to couple
PPG sensors with accelerometer data and correlate the HR
noise with rapid movements. This approach is very effective
[11] and is a well-established solution in wearable devices
(e.g., wristbands or smartwatches). Unfortunately, combining
inertial data with PPG is impossible if the sensors are directly
embedded into a car cockpit. Therefore, the integration of one
or more PPG sensors in the car (e.g., on the steering wheel)
requires a multimodal approach with a dedicated HW and an



algorithm capable of recognizing and removing noisy data and
calculating HR in real-time without the use of inertial sensors.

In this work, we present ANGELS (smArt steeriNG wheEL
for driver Safety), a low-cost embedded system that can be in-
tegrated into the steering wheel of a car to acquire and process
PPG signals, monitoring HR without the need of accelerometer
data for signal processing. The system is composed of a sensor
consisting of a highly sensitive LED-photodiode pair [12]
developed by ST Microelectronics, which can be integrated
into the steering wheel, and a miniaturized embedded platform
capable of processing the PPG signal in real-time, through a
modified version of the Pan-Tompkins algorithm. As well as
being completely unobtrusive, the presented system features a
small power envelope with a cost in the order of hundreds of
euros. As a result, it could be easily integrated into all cars,
significantly improving driving safety.

On a testing dataset collected in the Maserati driving
simulator, our algorithm achieves a 99.8% Accuracy score,
97.1% Sensibility, and 99.06% Positive Predictive Value (PPV)
in the peak detection task. In terms of HR detection, the Mean
Absolute Error (MAE) is 1.19 BPM. The system operates with
a latency of 10 s featuring 130 mW of power consumption.
Overall, preliminary results suggest that ANGELS is suitable
for real-time applications.

The main contributions of the work are:
• An embedded low-power system that can be integrated

into a steering wheel;
• A novel algorithm for PPG signal analysis based on a

modified version of Pan Tompkins algorithm with an
adaptive threshold for the distance of the peaks;

II. MATERIALS AND METHODS

A. System Descprition

ANGELS is composed of three main blocks: (i) a sensorized
steering wheel with PPG sensor probes, (ii) front-end elec-
tronics, and (iii) a microcontroller (see Fig 1). PPG probes
are directly placed on the steering wheel. In particular, they
are inserted in a commercial leather steering wheel cover. The
steering wheel image in Fig. 1 refers to the first, less integrated
prototype since the final version is covered by a non-disclosure
agreement (NDA). The PPG sensor probes are miniaturized
optical systems for PPG acquisition. They are composed of a
Silicon Photomultipliers (SiPMs) photodetector coupled with
infrared and red LEDs used as optical light sources. The SiPM
detector is fabricated by STMicroelectronics and features a
total area of 4 × 4mm2 and 4871 square microcells with
60 µm of pitch [12]. Probes are encapsulated into a 3D
printed support, and an optical long-pass filter covers the
SiPM to avoid external light interference. The driving comfort
is preserved thanks to the small size of the probes and the
tight integration into the steering wheel. As a result, signal
acquisition and driver monitoring are entirely unobtrusive. The
front-end electronics include a stage for SiPMs (30 V) polar-
ization and LED supply (5 V), a stage for LED drivers, and a
stage for analog-to-digital conversion. The microcontroller is
an STM32F401RE operating at 3.3 V and 84 MHz.

B. Data Acquisition

To evaluate the performance of ANGELS, we conducted
a measurement campaign in partnership with Maserati. AN-
GELS was installed in the static driving simulator located
in the Maserati Innovation Lab in Modena. The Driving
simulator, also known as DIL (Driver-In-the-Loop) simulator,
comprises a simulator room, a server room, and a control
room. Fig. 2 shows the simulator room of the Maserati Static
DIL Simulator; it includes a vehicle cockpit, a semi-cylindrical
screen with a projector, and an audio system. All the engine
and transmission components missing in the vehicle cockpit
are simulated by means of real-time computers placed in the
server room. The virtual scenario is projected onto the white
screen and provides an immersive experience (180° of visual
experience). The simulated scenario involves a two-lane road
with a handful of stimuli. Moreover, the entire setup is con-
tained within a spacious, soundproofed, and dark laboratory
to mitigate the impact of external factors. The study protocol
was specifically designed to induce drowsiness, as the primary
objective of the company was to detect drowsiness in drivers.
Fourteen drivers participated in three night-time sessions, as
this was deemed the optimal time to elicit drowsiness. The
protocol involved a straightforward procedure where each
driver was instructed to continue driving until their driving
style became dangerous, such as swerving off the road or
colliding with other vehicles. This ensured that a dangerous
drowsiness condition was effectively achieved.

C. Algorithm description

One of the main components of ANGELS is a novel
algorithmic approach to detect peaks in the acquired PPG
signal. This robust time-domain algorithm relies on three main
blocks: i) a filtering stage, ii) an artifact removal block, and
iii) a peak detection block based on a modified version of the
PamTompkins algorithm. Fig. 3 shows a block scheme of the
developed algorithm and an example of the PPG elaboration
pipeline for a signal segment.

1) Filtering stage: A Butterworth high-pass filter and low-
pass filter with a cut-off frequency of 0.5 Hz and 10 Hz,
respectively, are applied to the raw PPG signal. Both filters
are applied twice, once backward and once forward, to obtain
a zero-phase filtering. This filtering is performed by the Filter
block depicted in Fig. 3c).

2) Artifact removal: The position of the PPG sensors on the
steering wheel requires a method to cope with the driver’s hand
movements. In this setup, poor or absent contact between the
steering wheel and the palm causes severe signal degradation.
We use a rolling standard deviation to define the quality of
the signal and to reject windows affected by motion artifacts,
represented by the Artifacts Removal block in Fig. 3c). The
rolling standard deviation works on a 1 s time window and
moves one sample at a time; if the standard deviation is greater
than an empirically chosen threshold, a window of 5 s (2.5 s
backward, 2.5 s forward) is removed. Fig. 3b) shows the result
of artifact removal on a signal segment.
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Fig. 1: Block scheme of the proposed system. There are three main blocks, from the left: a sensorized steering wheel with two PPG probes
equipped with a highly sensitive SiPM as photodiode; an analog front-end comprising the probe’s power rail and the ADC converter; a
microcontroller for online data elaboration.

Fig. 2: Static driving simulator of Maserati company [13].

3) Peak detection: The peak detection combines a modi-
fied version of the Pam-Tompkins (PT) algorithm [14] with
an adaptive refractory period. We modified the original PT
algorithm to adapt it to the inherent features of the PPG
signal and to the signal acquisition setup. PT has been initially
introduced for detecting QRS complexes in electrocardiogram
(ECG) signals and consists of several phases. As a first
step of the original algorithm, the signal is preprocessed
through a bandpass filter to remove noise; our design does
not require this stage since the filtering stage already accom-
plishes this task. Then, PT computes the first derivative of the
preprocessed signal to highlight the QRS complex, and this
value is also squared to suppress other signal components.
The final preprocessing stage of PT is a moving window
integration performed on the squared signal to smooth out
the waveform. We found experimental evidence that this stage
is not strictly required for the PPG signal, and we replaced
derivative+squaring+integration with a simpler algorithmic
step saturating to zero all the negative values. Since the signal
is at zero-mean after the initial filtering, the calculation of the
adaptive thresholds works appropriately.

After the signal preprocessing stages, PT finds the temporal

location of the signal peaks by operating a dual threshold
approach. This operation is performed by the Moving Window
Detection block shown in Fig. 3c). Each sample is compared
with a threshold value th1 that estimates signal and noise
peaks: samples greater than the current threshold value are
peak candidates. This first threshold is computed as:

th1 = npk + 0.25 ∗ (spk − npk)

where spk and npk are running estimations of signal and noise
peaks, respectively; both values are updated by the Adaptive
Thresholds Detection block in Fig. 3c) whenever a new peak
is detected:

spk = 0.125 ∗ peak + 0.875 ∗ spk

npk = 0.125 ∗ peak + 0.875 ∗ npk

In addition, the algorithm considers two additional parame-
ters called min_rr_width and max_rr_width, which model
the minimum and maximum distance between adjacent peaks.
min_rr_width is a physiological constraint due to the re-
fractory period during which ventricular depolarization cannot
occur even in the presence of a stimulus. max_rr_width
is initially set to zero, and then it is updated based on the
mean peak-to-peak distance considering the mean of the last
8 signal peaks as 1.6 ∗mean_8_peaks. If no peak candidate
is detected after max_rr_width samples from the previous
one, the algorithm performs a search-back stage using a lower
threshold th2:

thr2 = 0.5 ∗ thr1

Fig. 3d) shows the evolution of the thresholds over the signal
samples.

In our design, max_rr_width is set to the window size
(i.e., max number of preprocessed samples available for a
single computation), and the refractory period min_rr_width
changes adaptively. The algorithm starts with an initial guess
of 50 samples (corresponding to 120 BPM), then this value
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Fig. 3: Block diagram of the developed algorithm and an example of the ANGELS elaboration pipeline for a signal window. In a) there is
a window of raw PPG signal. In b) there is the same window after the algorithm processing: the blue line represents the PPG signal, the
orange dotted line represents the removed corrupted portion of the signal, and the red circles represent the detected peaks. In c) there is a
block diagram of the algorithm with the main steps. In d) there is a detailed part of the processed segment where the purple line is th1 and
the green one is th2.

TABLE I: PPV, Sensitivity and Accuracy for each driver analyzed.

Driver PPV (%) Sensitivity (%) Accuracy (%)
1 99.10 93.45 99.93
2 98.90 98.72 99.98
5 99.42 98.31 99.98
7 99.56 97.12 99.97
9 99.94 98.92 99.99
11 98.10 95.19 99.94

is updated by looking at the mean of the last eight peak-to-
peak distances. To further regularize this estimation, the algo-
rithm applies an adjustment factor 0.01 ∗ fs up/down in case
of ascending/descending trend in the peak-to-peak distance.
Overall, the algorithm sets the first threshold at a conservative
value of 0.5 ∗ fs to detect whether the peak-to-peak distance
is growing or diminishing and then decrements/increments the
refractory period only if its trend is constant. This last part of
the algorithm is handled by the Adapted Min Peaks Distance
block in Fig. 3c).

The original PT algorithm performs peak detection in two
stages To improve robustness, after the bandpass filter and
after the integrating window. This option is not available in
our design since we modified the preprocessing stages, but
experimental results show this does not affect accuracy.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ANGELS
in terms of accuracy, latency, and power consumption. We
test the performance of the peak detection algorithm using the
private dataset described in Sec. II-B. The dataset does not
have a ground truth ECG. Thus, six randomly picked sessions
of the dataset have been manually annotated by an expert to

obtain the correct location of the on-set peaks. To evaluate the
algorithm performance in peak detection, we adopted three
different metrics, namely, Positive Predictive Value (PPV),
Sensitivity, and Accuracy. The following equations specify
how to calculate these metrics.

PPV =

∑n
i=1 TPi∑n

i=1(TPi + FPi)

Sensitivity =

∑n
i=1 TPi∑n

i=1(TPi + FNi)

Accuracy =

∑n
i=1 (TPi + TNi)∑n

i=1 (TPi + FPi + TNi + FNi)

TP, TN,FP, FN , and n are True Positive, True Negative,
False Positive, False Negative, and total samples, respectively.
We set a tolerance window (maximum offset from the anno-
tation for a detected on-seat peak to be considered valid) of
100 ms.

Starting from the detected peaks, we compute the heart rate
on windows of 8 s with an overlap of 6 s. We repeat the same
process using the annotated peaks. Then, we use the mean
absolute error (MAE) to measure the accuracy of the heart
rate estimation. The MAE is defined as follows:

MAE =

∑n
i=1(BPMpred

i −BPM true
i )

n

Where BPMpred indicates the predicted HR (BPM) value,
BPM true indicates the true HR (BPM) value, and n is
the number of windows. We chose this window duration to
compare our solution with other state-of-the-art algorithms
used for PPG-based HR estimation.
In Table I, we report the performance of our algorithm using



TABLE II: State-of-the-art comparison table.

Work Dataset Activities Sign. Pre-Processing Algorithm Post-Proc. MAE

TROIKA, 2014 [15] SPC2015∗ Rest, Running
PPG,
Acc.

0.5-4 Hz filtering,
Downsampling

Signal decomp.,
reconstruct.,

spectral peak track

th.,
hist. track.

2.34 BPM

JOSS, 2015 [16] SPC2015∗ Rest, Running
PPG,
Acc.

0.5-4 Hz filtering,
Downsampling

MMV,
spectral subtract

th.,
hist. track.

1.28 BPM

SpaMa, 2016 [17]

SPC2015∗

SPC20151

Chon Lab2

PPG-Dalia3

Rest, Running,
Rehab. ex.,

Rest, Running
8 daily activities

PPG,
Acc.

0.5-3 Hz filtering,
Downsampling

spectral filtering
based on PSD

hist. track.,
spline interp.

0.89 BPM
3.36 BPM
1.38 BPM

11.06 BPM

Schack2017 [18]
SPC2015∗

PPG-Dalia3
Rest, Running,

8 daily activities
PPG,
Acc.

0.5-6 Hz filtering,
Downsampling

Corr.-based Freq.
indicating func.,

FFT
th.

1.32 BPM
20.5 BPM

FSM, 2018 [19] SPC20151
Rest, Running,

Rehab. ex.
PPG,
Acc.

0.5-4 Hz filtering,
z-score scaling,
Downsampling

Winer filtering FSM 0.99 BPM

TAPIR, 2020 [20]
SPC2015∗

SPC20151

PPG-Dalia3

Rest, Running,
Rehab. ex.,

8 daily activities

PPG,
Acc.

0.5-4 Hz filtering
Adaptive filter
Peak detection

Linear Transform.
Notch filter

2.5 BPM
5.9 BPM
4.6 BPM

Arunkmar, 2020 [21]
SPC2015∗

SPC20151
Rest, Running,

Rehab. ex.
PPG,
Acc.

0.4-3.5 Hz filtering
RLS, NLMS

MA reduction
FFT based HR track.

Phase Voc.
1.03 BPM
1.89 BPM

CurToSS, 2020 [22]
SPC2015∗

SPC20151

PPG-Dalia3

Rest, Running,
Rehab. ex.,

8 daily activities

PPG,
Acc.

0.5-4 Hz filtering
SSR

Curve tracking
N/A

2.2 BPM
4.5 BPM
5.0 BPM

Our Work Maserati Dataset 4 Driving PPG 0.5-10 Hz filtering
Adaptive artifacts removal

Modified PamTompkins
N/A 1.19 BPM †

∗ 12 subjects 1 23 subjects 2 10 subjects 3 15 subjects 4 14 subjects
† The result is validated on 6 subjects randomly picked

TABLE III: Cycles, Latency, and Energy consumption for each block
of the proposed algorithm. All the results are computed on a 10s
window.

Cycles (#) Latency (ms) Energy (mJ)
Filtering stage 250.868k 2.99 0.20
Artifacts removal 191k 2.27 0.15
Peak detection 5120k 60.95 4.02

the adopted metrics for each analyzed driver. We reach an
accuracy higher than 99.9% for all the drivers, with an overall
sensitivity of ∼ 97%. In Table II, we show an accuracy
comparison between our approach and some popular SoA
algorithms used for PPG-based HR estimation. The com-
parison is not directly done on the same dataset because
most SoA algorithms require a combination of PPG and 3D
accelerometer signals. On the contrary, our solution operates
on a PPG signal acquired from a steering wheel and not from a
wristband device. In this situation, the inertial signal cannot be
used to mitigate the effect of the motion artifacts. Nevertheless,
the result obtained in terms of MAE of 1.19 BPM is in line
with the state-of-the-art, demonstrating that our solution is able
to cope with the complex site of acquisition and the resulting
motion artifacts even if the inertial signals are not used to
clean the PPG. Furthermore, the filtering stage coupled with
the artifact removal block ensures the removal of the non-
usable portion of the signal when there is no contact between

the steering wheel and the driver’s hand. The scatter plot in
Fig. 4 shows the correlation between the ground-truth HR
values (on the horizontal axis) and the estimated HR values
(on the vertical axis) for each window and all the drivers. It can
be seen that the vast majority of the data lies on the identity
line meaning that our algorithm correctly estimates the HR
values.

We also tested the proposed solution in terms of latency. As
detailed in Sec. II-C, the algorithm includes different blocks,
so we performed a break-down analysis. Considering that the
filtering is applied backward and forward, it is necessary to
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Fig. 4: Comparison between the HR values, expressed in BPM, from
the reference signals (horizontal axis) and the HRs estimated by
ANGELS (vertical axis).



buffer data before this stage. We use a buffer of 10 s for PPG
data; consequently, the reported latencies are specific for a
window of this duration. As shown in Table III, all the blocks
have a combined latency of 66.21 ms: this value is less than
the window duration; consequently, the latter represents the
maximum latency of the system. Given the specific application
of ANGELS, this latency is manageable because the biological
parameter we want to monitor (i.e., drowsiness and stress)
have a slow change rate with respect to HR. Furthermore, we
measured the power consumption of ANGELS, comprising the
analog front-end, the LED, and the µC, resulting in a total
average power of 130 mW. This result is totally compatible
with an automotive application.

IV. CONCLUSION

The use of biosignal-based HMIs is also becoming widely
used in the automotive domain to improve driving safety and
driver comfort. In this paper, we presented a system that can
acquire PPG signal and process it in real-time to detect heart
rate. The system is integrated into a steering wheel so that it
is completely transparent to the user. It is also able to clean up
the signal by eliminating motion artifacts, which are typical of
the PPG signal, even without the use of accelerometers, which
are used in wearable systems instead. ANGELS achieves
1.19 BPM accuracy in beat detection with a power envelope
of 130 mW. The work will be extended with the analysis of
other sensors that will be integrated into the steering wheel so
as to provide a very robust, low-cost system that can also be
used for cars in the lower-middle market sector.
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