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Linearly-implicit schemes for collisions in musical acoustics
based on energy quadratisationa)

Michele Ducceschi,1,b) Stefan Bilbao,1 Silvin Willemsen,2 and Stefania Serafin2

1Acoustics and Audio Group, University of Edinburgh, 12 Nicolson Square, Edinburgh, EH9 8DF, United Kingdom
2Multisensory Experience Lab, CREATE, Aalborg University, Copenhagen, Denmark

ABSTRACT:
Collision modelling represents an active field of research in musical acoustics. Common examples of collisions

include the hammer-string interaction in the piano, the interaction of strings with fretboards and fingers, the

membrane-wire interaction in the snare drum, reed-beating effects in wind instruments, and others. At the modelling

level, many current approaches make use of conservative potentials in the form of power-laws, and discretisations pro-

posed for such models rely in all cases on iterative root-finding routines. Here, a method based on energy quadratisa-

tion of the nonlinear collision potential is proposed. It is shown that there exists a suitable discretisation of such a

model that may be resolved in a single iteration, while guaranteeing stability via energy conservation. Applications to

the case of lumped as well as fully distributed systems will be given, using both finite-difference and modal methods.
VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0005008

(Received 17 December 2020; revised 20 April 2021; accepted 21 April 2021; published online 24 May 2021)

[Editor: Nicholas J. Giordano] Pages: 3502–3516

I. INTRODUCTION

Collisions play a key role in the operation of many musi-

cal instruments. The most obvious examples are the hammer-

string1 and mallet-membane interactions,2 but there are many

others: fret/string interactions in instruments such as the gui-

tar;3,4 reed-beating effects in wind instruments;5,6 the sitar7

and tanpura;8 and wire/membrane collisions in the snare

drum.9 Some collisions may be modelled as lumped, and con-

sidered to act only over a very small portion of a system (e.g.,

a piano hammer). Others are distributed in spatial extent such

as the wire-membrane interaction. Furthermore, some of

these collisions involve obstacles that are conveniently mod-

elled as rigid (e.g., a fretboard), while in others, the effects of

deformation are critical. The collision force is strongly non-

linear and cannot be approximated through linearisation.

At the numerical level, various approaches are available.

Unilaterally-constrained dynamics may be used to model the

collision of a vibrating object, such as a string, against a rigid,

immovable obstacle;7,10,11 non-smooth dynamical representa-

tions have also been employed for the same purpose.12,13 In

contrast, when the colliding objects are deformable, a com-

mon approach is to model the interaction via a suitable poten-

tial function: under perfectly elastic conditions, the collision

energy is exchanged while remaining conserved overall.14

The potential function depends on the amount of deformation

of the colliding objects, often in power-law fashion.15 Such

models may then be extended to include losses that may take

place during the collision.16 The possibility of modelling a

collision via energy methods is particularly attractive from a

numerical design perspective since this passivity property can

be used as a condition on stability.17 Thus, such potential-

based methods have been extended to cases involving rigid

obstacles, though the interpenetration is now interpreted as a

penalty.8,17 At the numerical level, energy conservation may

be achieved via schemes involving the solution of a system

of nonlinear equations. Though the existence and uniqueness

of the underlying solutions have been proven,8,17 the resulting

numerical schemes can only be approached via iterative root-

finding routines such as e.g., Newton-Raphson. Furthermore,

for collisions taking place in systems of finite spatial extent,

approaches based on modal decompositions are impaired due

to the implicit character of the update equations,18 and effi-

cient solutions are only available in the case of linear barrier

force.19

In this work, a method is presented such that the result-

ing numerical schemes maintain a notion of passivity, via
energy conservation, while avoiding iterative methods; there

is at most the solution of one linear system per update. On

top of the reduction in computational cost, in this case, exis-

tence and uniqueness of solutions follow in an obvious man-

ner. Such schemes are based on the quadratisation of the

collision potential energy, through the introduction of an

auxiliary function treated as a new additional state variable.

Quadratisation strategies allowing for explicit numerical

updates appeared first in the context of Port-Hamiltonian

systems,20,21 for invertible potentials. The introduction of an

additional state variable was proposed within the context of

the Invariant Energy Quadratisation22,23 method. In this

work, the case of a non-invertible potential is considered.

a)This paper is part of a special issue on Modeling of Musical Instruments.
b)Also at: Department of Industrial Engineering (DIN), University of

Bologna, Italy. Electronic mail: michele.ducceschi@unibo.it, ORCID:

0000-0003-4806-5295.
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For distributed collisions, the proposed schemes generalise

naturally to the case of modal-based discretisations, yielding

an efficient update.

The article is organised as follows: Sec. II introduces

the proposed schemes for the simple case of the mass-

barrier collision. In this section, the proposed scheme is

compared against benchmark schemes borrowed from the

literature.8,17 Section III presents the case of the hammer-

string interaction using a finite difference discretisation on

the spatial operators. Section IV extends the previous exam-

ple to a fully distributed barrier and by making use of both

finite difference and modal schemes. Finally, Secs. V and

VI present applications of the proposed schemes for the

cases of the snare drum and the tromba marina.

II. COMPARATIVE STUDY: THE MASS-BARRIER
COLLISION

In this section, the case of a point mass colliding against

a rigid barrier is presented. This section also introduces the

temporal difference operators that will be used throughout

the text.

The mass-barrier collision, though not a musical system

per se, serves as an introductory test case, from which the

properties of the numerical schemes and their main opera-

tional principles can be understood. The motion is expressed

through an ordinary differential equation (ODE) of the fol-

lowing form:

M€u ¼ �Ku�rg/ðgÞ with g ¼ u� z: (1)

Here, M represents the mass of the particle, K is the stiffness

coefficient of the linear restoring force, and u ¼ uðtÞ is the

displacement measured from the rest position, and depen-

dent on time t � 0. g represents the distance between the

mass and a barrier, located at z. Time differentiation is here

indicated with dots, and the gradient is taken with respect to

g, as suggested by the gradient subscript. Here, linear stiff-

ness has been separated out from the general potential, as it

may often be advantageous to approach discretisation

through such a splitting. Equation (1) must be comple-

mented by two initial conditions uð0Þ ¼ u0; _uð0Þ ¼ v0.

From these, one has g0 ¼ u0 � z. Finally, / ¼ /ðgÞ is a

nonlinear potential, that for collisions takes the form

/ðgÞ ¼ Kg

aþ 1
g=2þ jgj=2ð Þaþ1; (2)

where Kg is a stiffness parameter, and where a � 1.

Using the chain rule, when the barrier height z is con-

stant, and assuming g 6¼ 0; _u 6¼ 0, one may write Eq. (1) as

M€u ¼ �Ku� _/= _u: (3)

Upon multiplication of Eq. (3) by _u, one arrives at

_H ¼ 0 where HðtÞ ¼ M _u2

2
þ Ku2

2
þ /; (4)

and thus energy remains constant,

HðtÞ ¼ H0 ¼
M

2
v2

0 þ
K

2
u2

0 þ /ðg0Þ 8t � 0:

Furthermore, boundedness of the solution follows, since

/ðuÞ � 0. Under this condition, from Eq. (4),

0 � juj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H0=K

p
; 0 � j _uj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H0=M

p
; (5)

and thus u and _u are bounded in terms of the initial energy

H0. As will be seen shortly, an iterative, conservative

scheme may be derived as a discretisation of Eq. (3).

Following Ref. 8, the same motion may be described

using Hamilton’s equations,

M _u ¼ p; _p ¼ �ruVðuÞ: (6)

The system in Eq. (6) conserves the energy H ¼ T þV.

Here, T ¼ p2=2M is the kinetic energy, V ¼ Ku2=2 þ/ðuÞ
is the potential energy, and p is the momentum of the parti-

cle. This system may also be discretised directly, as will be

seen shortly.

A. Quadratisation

Non-iterative time discretisations follow from a change

of variables applied to the potential function in Eq. (1).

Consider a quadratisation of the potential function /, as

/ ¼ w2

2
: (7)

One may substitute such form in the expression for the

energy [Eq. (4)], obtaining

HðtÞ ¼ M _u2

2
þ Ku2

2
þ w2

2
: (8)

Notice that, under the condition of non-negativity of /, one

may always perform such a substitution. This form of the

energy includes quadratic terms only. Performing time dif-

ferentiation of Eq. (8), one obtains the following equation of

motion:

M€u ¼ �Ku� wrgwðgÞ: (9)

Formally, Eqs. (1) and (9) are entirely equivalent. They

yield the same solution u(t), as well as the same bounds on

the growth of such solution and its time derivative. Notice

that bounds of Eq. (5) hold in this case too. Looking towards

discrete time implementation (see Sec. II C 3), it is useful to

rewrite Eq. (9) as

M€u ¼ �Ku� wg _w ¼ g _u g ¼ rgw: (10)

Quadratisation strategies appeared in various other con-

texts, such as e.g., Port-Hamiltonian systems,20,21 and fluid

dynamics,23 and they form the core of the Invariant Energy

Quadratisation method,22,23 which is similar to the method
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proposed here, in that an extra auxiliary state variable is

defined.

B. Temporal finite difference operators

The finite difference method is employed for the simu-

lation of the nonlinear equations. Thus, the continuous func-

tion u(t) is approximated at the time nk by the time series un,

where n 2N0, and where k is the time step (and 1=k is the

sample rate.) The basic operators in discrete time are the

identity and shift operators, defined as

1un ¼ un; etþun ¼ unþ1; et�un ¼ un�1: (11)

From these, one may define the time difference operators,

all approximating the first time derivative, as

dtþun ¼ ðetþ � 1Þun

k
¼ du

dt
þ OðkÞ; (12a)

dt�un ¼ ð1� et�Þun

k
¼ du

dt
þ OðkÞ; (12b)

dt�u
n ¼ ðetþ � et�Þun

2k
¼ du

dt
þ Oðk2Þ: (12c)

An approximation to the second time derivative is con-

structed from the above as

dttu
n ¼ dtþdt�un ¼ d2u

dt2
þ Oðk2Þ: (13)

Averaging operators are also used throughout the text and are

ltþun ¼ ðetþ þ 1Þun

2
¼ uðtÞ þ OðkÞ; (14a)

lt�un ¼ ð1þ et�Þun

2
¼ uðtÞ þ OðkÞ: (14b)

Analogous definitions of the difference and averaging opera-

tors hold for time series defined at interleaved time instants

n� 1=2. Finally, an identity used throughout the text is

given here as

ltþ ¼ ðk=2Þdtþ þ 1: (15)

C. Conservative schemes

The finite difference formalism introduced in the previ-

ous section is now used to construct three conservative

schemes. The first scheme is taken from Chatziioannou and

van Walstijn.8 This is a method making use of a discretisa-

tion of Hamilton’s equations given in first order form, and

will be labelled IT-1. The second scheme is taken from

Bilbao et al.,17 discretising directly Eq. (1), and labelled IT-

2. Finally, the proposed scheme follows from a discretisa-

tion of the quadratised Eq. (8), and will be labelled N-IT.

1. Iterative scheme IT-1

Following Chatziioannou and van Walstijn,8 one may

discretise Hamilton’s Eq. (6) as

Mdtþun�1=2 ¼ ltþpn�1=2; (16a)

dtþpn�1=2 ¼ �dtþVðun�1=2Þ=dtþun�1=2: (16b)

Here, un�1=2 and pn�1=2 are known from the previous time

step. Using then Eq. (15) on the right-hand side of Eq. (16a),

and using Eq. (16b), one may arrive at a nonlinear algebraic

equation to be solved at each time step, in the form F(s)¼ 0,

where s ¼ unþ1=2 � un�1=2 and where

FðsÞ ¼ ðc=sÞðVðaþ sÞ � VðaÞÞ þ s� b: (17)

a ¼ un�1=2; b ¼ kpn�1=2=M; c ¼ k2=2M. Energy conserva-

tion arises naturally from Eq. (16), as

dtþh
n�1=2 ¼ 0;

where

h
n�1=2 ¼ ðpn�1=2Þ2=2M þ Vðun�1=2Þ: (18)

Notice that this discrete energy is non-negative by defini-

tion, reflecting the implicit nature of the discretisation of the

linear part of Eq. (16). Existence and uniqueness of the solu-

tion may be shown for Eq. (16), and the resulting update

Eq. (17) may be approached via a suitable root-finding algo-

rithm, such as Newton-Raphson.8

2. Iterative scheme IT-2

A suitable discretisation of Eq. (3) is given in Bilbao

et al.17 as

Mdttu
n ¼ �Kun � dtþðlt�/

nÞ
dt�un

; (19)

where

lt�/
n ¼ /ðunÞ þ /ðun�1Þ

2
:

At each time step, the update may be written as a nonlinear

function in the unknown s ¼ unþ1 � un�1,

GðsÞ ¼ ðc=sÞð/ðaþ sÞ � /ðaÞÞ þ s� b; (20)

where here a ¼ un�1; b ¼ 2Mðdt�unÞ=k � Kun; c ¼ k2=M.

One then solves G(s)¼ 0 using a nonlinear root finder such

as e.g., Newton-Raphson.

This scheme conserves a discrete energy. To see this, it

is enough to multiply Eq. (19) by dt�u, to get

dtþh
n�1=2 ¼ 0;

where the discrete energy has the form

h
n�1=2 ¼ Mðdt�unÞ2

2
þ Kunun�1

2
þ lt�/

n: (21)

The discrete energy is not necessarily non-negative. One

may easily show that a condition for non-negativity of the

total energy is obtained for24
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k < 2
ffiffiffiffiffiffiffiffiffiffi
M=K

p
: (22)

This serves as a necessary and sufficient condition for stabil-

ity for the scheme in Eq. (19) and is independent of the state

u and of the particular form of the nonlinear function /, pro-

vided it is non-negative. Under such a condition, a discrete

counterpart to the bounds [Eq. (5)] may be derived as

0 � jlt�uj �
ffiffiffiffiffiffiffiffiffiffiffi
2h=K

p
; 0 � jdt�uj �

ffiffiffiffiffiffiffiffiffiffiffiffi
2h=M

p
: (23)

Existence and uniqueness may be proven for this scheme as

well.17

3. Non-iterative scheme N-IT

Turning now to Eq. (9), and the form given in Eq. (10),

a particular discretisation is given by the following system:

Mdttu
n ¼ �Kun � ðltþw

n�1=2Þgn; (24a)

dtþw
n�1=2 ¼ gndt�u

n: (24b)

A distinctive feature of this scheme is that now w is treated

as an independent time series. In practice, w is calculated at

interleaved time instants, i.e., w ¼ wn�1=2 and is not an

implicit function of un. Both u and w must be updated at

each time step.

With this in mind, the scheme in Eq. (24) has a

completely explicit form. Furthermore, inserting Eq. (24b)

into Eq. (24a) and multiplying by dt�u leads to a discrete

energy balance,

dtþh
n�1=2 ¼ 0:

The discrete Hamiltonian has the form

h
n�1=2 ¼ Mðdt�unÞ2

2
þ Kunun�1

2
þ wn�1=2
� �2

2
: (25)

It is immediate to verify that the nonlinear potential energy

is non-negative, and thus the stability condition, Eq. (22),

and bounds, Eq. (23), hold in this case too.

One important aspect pertains to the choice of the

explicit gradient gn. Previous preliminary works employed

the following form:

gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kgða=2þ 1=2ÞðgnÞa�1

q
if gn � 0 (26a)

0 if gn < 0: (26b)

8<
:

However, it was observed that some spurious oscillations

are obtained under such choice.27–29 A better approximation,

employed in the remainder of this work, is given by

gn ¼
j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kgða=2þ 1=2ÞðgnÞa�1

q
if gn � 0 (27a)

�2
wn�1=2

g? � gn�1
if gn < 0; (27b)

8>><
>>:

where j ¼ 1 if wn�1=2 � 0, and j ¼ �1 otherwise. Once gn

is computed, one must also check that gngn�1 < 4wn�1=2. If

this condition is violated, then gn is set to zero. This proce-

dure ensures that the collision force is directed outwardly.

Furthermore, g? ¼ u? � z is the update of the system in the

absence of the collision potential, i.e.,

u? ¼ 2un � un�1 � k2Kun=M:

The particular form for Eq. (27b) can be derived by consid-

ering an implicit realisation for g, as

gimp ¼ 2
wnþ1=2 � wn�1=2

gnþ1 � gn�1
:

In the event of no collision at nþ 1=2, then gimp reduces to

Eq. (27b), since wnþ1=2 ¼ 0, and since unþ1 would be

obtained as the solution of the system for zero collision

force, as per Eq. (3). Notice as well that g in Eq. (27) is

given entirely from previous values of the time series u, w,

making the scheme fully explicit.

The existence and uniqueness of the numerical solution,

regardless of the particular form of gn, follow immediately,

as the system is solved by simple division.

D. Numerical experiments

As a first experiment, consider Fig. 1. In the figure, the

three schemes are compared against each other for a barrier

of increasing stiffness. It can be appreciated that the

schemes return consistent solutions: as the barrier stiffness

is increased, the interpenetration becomes smaller. The

numerical energy is conserved to the order of machine accu-

racy for all the three schemes. Notice as well that, as the

stiffness of the barrier is increased, more iterations of the

Newton-Rapshon algorithm are needed for the iterative

schemes, while the computational cost of N-IT remains

fixed. This is an important aspect in view of any real-time

implementation requiring a precise allocation of computing

resources. In fact, while it is possible to estimate the upper

bound on the number of iterations required for Newton-

Raphson,25 the iterative routine may be affected by poor

convergence, or instability in certain cases,25,26 if, for

instance, the initial guess is not carefully estimated, or the if

value of the barrier stiffness is too large.

The experiment in Fig. 2 reports the convergence of the

numerical schemes, computed against a reference analytic

solution for a barrier with linear restoring force. Second-

order accuracy is maintaned for lower stiffness values.

However, for values of Kg such that
ffiffiffiffiffiffiffiffiffiffiffiffi
Kg=M

p
k > 1, the

schemes become first-order accurate, as proven by Taylor-

expanding the schemes about tn ¼ kn.

III. COMPARATIVE STUDY: THE HAMMER-STRING
COLLISION

As a first example of a collision typical of musical

instruments, the hammer-string collision is investigated
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here. The interpenetration in this case may be interpreted as

the compression experienced by the hammer felt during con-

tact with the string. Many works have employed the power

law [Eq. (2)] as a model for this case, though not all include

a conservative discretisation of the resulting dynamics.1,30,31

In a basic configuration, the system may be described

by the following coupled differential equations:

q@2
t u ¼ T0@

2
x uþ dðx� xcÞrg/ðgÞ; (28a)

M €UðtÞ ¼ �rg/ðgÞ: (28b)

Here, u(x, t) is the displacement of the string, U is the dis-

placement of the hammer, and gðtÞ ¼ UðtÞ � uðxc; tÞ is the

hammer felt compression. Partial derivatives with respect to

t and x are written as @t and @x, respectively. q is the string’s

linear density, T0 the applied tension, and M is the mass of

the hammer. xc is the hammer’s strike location along the

string, and the spatial extent of the hammer contact is

modelled by a simple Dirac delta distribution dðx� xcÞ. The

function / is the same as Eq. (2).

The string is assumed initially at rest, and is fixed at the

two ends, i.e., uð0; tÞ ¼ uðL; tÞ ¼ 08t, where it was assumed

that x 2 ½0; L�, with L being the string’s length. The hammer

has initial displacement U0 and initial velocity V0.

The system in Eq. (28) is probably insufficient as a musi-

cal model as such. It is lacking several important features such

as stiffness33 and losses,34 and perhaps a nonlinearity inherent

to the string’s geometrical stretching (see, e.g., Bilbao,35 as

well as Morse and Ingard,36 Chap. 14), though all such fea-

tures may be added into the model without substantial changes

to the template schemes presented here. For the purpose of

illustration, they are therefore neglected at this stage, and one

may refer to the case study on the tromba marina given in

Sec. VI for a working example of a complete system.

The system in Eq. (28) is conservative, with energy

given by

FIG. 1. Mass-barrier collision. In this experiment, M ¼ 10 g, K ¼ 3:95� 103 N/m (giving a linear eigenfrequency of 100 Hz). The mass is initialised with

amplitude u0 ¼ �0:01 m and velocity v0 ¼ 1:5 m/s. The nonlinear exponent is a ¼ 1:3, and the barrier stiffness for each column in the figure is given on

top. The barrier height is z ¼ 0. The sample rate is fs ¼ 44:1 kHz. For all figures, the solid black line corresponds to N-IT, the dashed gray line to the IT-2,

and the dashed black line to IT-1. The four rows, from top to bottom, give the displacement, the energy error � ¼ h
n�1=2=h1=2 � 1, the number of iterations

for the Newton-Rapshon, for the two iterative schemes, with a tolerance threshold s ¼ 10�14, and the collision force for N-IT, computed as gltþw. MATLAB

sample code is available at the companion webpage (Ref. 32).
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HðtÞ ¼ q
2
jj@tujj2 þ

T0

2
jj@xujj2 þ /; (29)

where the L2 norm notation is used, see, e.g., Ref. 17.

Quadratisation of the energy may be performed in the

same fashion as Eq. (8), yielding

HðtÞ ¼ q
2
jj@tujj2 þ

T0

2
jj@xujj2 þ w2

2
; (30)

where again w2 ¼ 2/. The associated equations of motion

read

q@2
t uðx; tÞ ¼ T0@

2
x uðx; tÞ þ dðx� xcÞðwrgwÞ; (31a)

M €UðtÞ ¼ �wrgw: (31b)

A. Spatial finite difference operators

Discrete realisations of both Eqs. (28) and (31) are

given here in terms of appropriate finite difference schemes.

The temporal finite difference operators and notation are as

given in Sec. II B. Here, because of the distributed character

of the string, it is convenient to introduce a matrix-vector

formalism for the spatial difference operators. Thus, the

string is divided into N subintervals by means of N þ 1 grid

points including the end points. Each subinterval is of length

h, the grid spacing. The displacement u(x, t) is approximated

by the grid function un
m, where n is the time step, and m is

the grid index.

In a vector notation, one may then denote the grid func-

tion as un 2 RN�1, where the dimensionality reflects the

fact that, under fixed end conditions, the end points need not

be stored or updated. Spatial difference operators may then

be realised as matrices. The first difference operator is given

as

Du ¼ 1=h u>; 0
� �> � 0; u>

� �>� �
: (32)

Thus, D is a N � ðN � 1Þ rectangular matrix. From this, the

second difference operator is constructed simply as

Dð2Þ ¼ �D>D; (33)

yielding a square ðN � 1Þ � ðN � 1Þ matrix.

FIG. 2. Convergence plots. The error for the three schemes is computed as En ¼ uðtnÞ � un, where uðtnÞ is the analytic solution at time tn ¼ kn, assumed to

be after collision. For the case of a free particle colliding against a linear barrier (a ¼ 1, K ¼ 0, z ¼ 0), uðtnÞ ¼ �ðtn þ u0=v0 � p
ffiffiffiffiffiffiffiffiffiffiffiffi
M=Kg

p
Þv0, where the

mass is assumed to collide from below, and where v0 > 0; u0 < 0. For all panels figures, N-IT is solid black line, IT-1 is dashed black, and IT-2 is dashed

gray. Dashed lines with slopes 1 and 2 are also given. The mass is M ¼ 10 g. The barrier stiffness Kg is given in each panel. The numerical initial conditions

are given as u0 ¼ �v0k½floorð�u0=ðv0kÞ þ 0:5�; u1 ¼ v0k þ u0.
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The impact spatial distribution may as well be given as

a vector. Hence dðx� xcÞ ! r 2 RN�1. Denoting mh

¼ floorðxc=hÞ; � ¼ xc=h� mh, one may set rmh
¼ ð1� �Þ=

h; rmhþ1 ¼ �=h, thus effectively employing linear

interpolation.24

B. Numerical schemes

Two finite difference schemes are given here for the

solutions of Eqs. (28) and (31).

1. Iterative scheme IT-2

A discretisation of Eq. (28) follows immediately from

this formalism as17

qdttu
n ¼ T0Dð2Þun þ rðdtþlt�/

nÞ=ðdt�g
nÞ; (34a)

MdttU
n ¼ �ðdtþlt�/

nÞ=ðdt�g
nÞ; (34b)

gn ¼ Un � hr>un: (34c)

Here, the discrete energy is

h ¼ qh

2
ðdt�uÞ>ðdt�uÞ þ T0h

2
Det�uð Þ> Duð Þ þ lt�/;

which is clearly a discrete counterpart of Eq. (29). While the

nonlinear potential energy is non-negative, the linear part of

the discrete energy is non-negative only under the following

Courant–Friedrichs–Lewy (CFL) condition:24,37

h �
ffiffiffiffiffiffiffiffiffiffi
T0=q

p
k: (35)

Non-negativity of the energy overall allows to derive a

bound on the growth of the norms of the grid functions, thus

effectively ensuring stability.

In order to solve Eq. (34), one first computes the update

of the interpenetration g, by multiplying Eq. (34a) by hr>

and subtracting Eq. (34b), thus effectively projecting the

dynamics onto the collision point. This results in an implicit

scalar equation of the same form as Eq. (20), i.e., G(s)¼ 0,

where here s ¼ gnþ1 � gn�1; a ¼ gn�1; b ¼ 2gn � 2gn�1

�T0k2h=qr>Dð2Þun; c ¼ k2h=qr>rþ k2=M. Existence and

uniqueness of this nonlinear algebraic equation are proven

using the same arguments as before.8,17 Once the interpene-

tration is known, one may update Eqs. (34a) and (34b)

explicitly.

2. Non-iterative scheme N-IT

The system in Eq. (31) may be approximated by the fol-

lowing scheme:

qdttu
n ¼ T0Dð2Þun þ rðltþw

n�1=2Þgn; (36a)

MdttU
n ¼ �ðltþw

n�1=2Þgn; (36b)

dtþw
n�1=2 ¼ gndt�g

n; (36c)

gn ¼ Un � hr>un: (36d)

Here, at each time step, one must solve for the string dis-

placement u, the hammer displacement U, as well as the

auxiliary function w. The explicit gradient gn can be taken

to have the same form as Eq. (27). This scheme has an asso-

ciated discrete energy of the form

h ¼ qh

2
ðdt�uÞ>ðdt�uÞ þ T0h

2
Det�uð Þ> Duð Þ þ w2

2
;

thus effectively discretising Eq. (30). The same arguments

on stability as IT-2 apply here, i.e., the nonlinear energy is

clearly non-negative, and for stability, the CFL condition in

Eq. (35) is a necessary and sufficient condition.

A solution to Eq. (36) may be found by using the iden-

tity from Eq. (15) in both Eqs. (36a) and (36b), and then

expressing the time difference of w using Eq. (36c), so as to

effectively reduce the two equations to a linear system. The

system is written as

1þ k2g2h

4q
rr> � k2g2

4q
r

� k2g2h

4M
r> 1þ k2g2

4M

2
664

3
775 unþ1

Unþ1

	 

¼

b1 þ
k2a

q
r

b2 �
k2a

M

2
664

3
775;

(37)

where b1¼2un�un�1þðT0k2=qÞDð2Þun; b2¼2Un�Un�1,

and a¼�ðg2=4Þgn�1þgwn�1=2. This linear system may be

solved block-wise. Notice in particular that the matrix yields

itself to a fast inversion since it is a rank-1 perturbation of

the identity matrix.38 However, efficient inversion techni-

ques of the system in Eq. (37) will not be explored in this

article.

Once Eq. (37) is solved, one may compute gnþ1 via Eq.

(36d) and then update w via Eq. (36c).

C. Numerical experiments

As a first illustrative example, consider Fig. 3: here, the

snapshots of IT-2 and N-IT are plotted. The hammer here

has a high enough stiffness to serve as a test case.

The same dynamics may be represented in terms of

time series at one output point, rather than as snaphsots.

This is done in Fig. 4. It is seen that, for lower values of the

hammer stiffness, the solutions of the two schemes are per-

fectly superimposed. As the stiffness is increased, some

small differences are noticed, though the two schemes con-

verge to the same solution in the limit of high sample rate.

Energy is again conserved to the order of machine accuracy

during collision.

IV. COMPARATIVE STUDY: THE STRING-FRETBOARD
COLLISION

When collisions are distributed (i.e., taking place across

a spatially extended portion of a system), it may be conve-

nient to think of a density collision potential. Here, colli-

sions of the string against an immovable, distributed

obstacle are considered. One then has z ¼ zðxÞ, and
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gðx; tÞ ¼ zðxÞ � uðx; tÞ. The equation of motion for the string

may then be written as

q@2
t uðx; tÞ ¼ T0@

2
x uðx; tÞ þ rg/ðgÞ; (38)

where now / has dimension of J/m (i.e., it is a potential den-

sity.) The associated energy now reads

HðtÞ ¼ q
2
jj@tujj2 þ

T0

2
jj@xujj2 þ jj

ffiffiffiffi
/

p
jj2; (39)

which is a distributed generalisation of Eq. (29). This form

of the energy lends itself naturally to quadratisation. Using

again w2 ¼ 2/, one gets

HðtÞ ¼ q
2
jj@tujj2 þ

T0

2
jj@xujj2 þ jjwjj

2

2
; (40)

with an associated equation of motion,

q@2
t uðx; tÞ ¼ T0@

2
x uðx; tÞ þ wrgwðgÞ: (41)

A. Numerical schemes

In this section, two applications of the non-iterative

scheme are presented: one making use of a time-space finite

difference scheme, and one making use of a modal projec-

tion for the spatial part. Iterative conservative finite differ-

ence schemes for the string in contact with a distributed

barrier have been employed,17 based on the model Eq. (38),

and extended to the case of frets in a full model of guitar

strings.4 Modal schemes in the context of collision dynamics

have been successfully presented in other works: an implicit

modal update was used in Ref. 13, where the collision force

is resolved at each time step by employing a spatial grid,

thus effectively employing a finite difference formulation;

the special case a ¼ 1 was given in Ref. 19. Here, it is

shown that N-IT yields an efficient modal resolution

that may be applied directly for all values of the barrier

exponent a.

1. Non-iterative finite difference scheme N-IT(FD)

This scheme is a generalisation of Eq. (36). In order to

account for a potential density, one may think of the barrier

as being composed of Nb discrete points. For a continuous

barrier (such as the backboard of a fretless instrument), one

may assume that the barrier points are located at the string’s

grid points, in which case Nb ¼ N � 1. For other kinds of

barrier, one may need to specify points in between the

FIG. 3. (Color online) Snapshots of the hammer-string collision, at times indicated. In this experiment, M ¼ 10 g, a ¼ 1:3; Kg ¼ 1012. The hammer is initial-

ised with initial displacement U0 ¼ �1 mm and velocity V0 ¼ 0:5 m/s. The string has q ¼ 6:3 g/m, tension T0 ¼ 100 N, length L ¼ 0.7 m. In the plots, the

solution of the iterative scheme IT-2 is shifted up by 1 mm, for clarity. MATLAB sample code is available at the companion webpage (Ref. 32).
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string’s grid points (e.g., for fretted instruments). In either

case, one may approximate wðx; tÞ by a vector wn�1=2 2 RNb .

The density distribution can be thought of as an ðN � 1Þ � Nb

sparse matrix R. In practice,

R ¼ r1; r2;…rNb½ �; (42)

where ri 2 RN�1 is the interpolated sparse density vector of

the ith barrier point. It is convenient, formally, to introduce

a diagonal matrix containing all the explicit gradients

gn
i ; i 2 ½1;Nb�. Hence, G ¼ diagðgn

i Þ. Then, define T ¼ RG.

With this notation, a finite difference scheme discretis-

ing Eq. (41) is

qdttu
n ¼ T0Dð2Þun þ Tðltþw

n�1=2Þ; (43a)

dtþw
n�1=2 ¼ Gdt�g

n; (43b)

gn ¼ b� hR>un: (43c)

The discrete energy in this case is

h ¼ qh

2
ðdt�uÞ>ðdt�uÞ þ T0h

2
Det�uð Þ> Duð Þ þ w>w

2
;

which clearly discretises Eq. (40).

Proceeding in a similar manner as before, one may

express this system as

1þ k2h

4q
TT>

 !
unþ1 ¼ bþ k2

q
Ta; (44)

where a ¼ ðh=4ÞT>un�1 þ wn�1=2; b ¼ 2un � un�1

þT0k2=qDð2Þun. The update matrix in Eq. (44) is a rank-Nb

perturbation of the identity matrix, though it is typically a

perturbation of much smaller rank, equal to the number of

points colliding at the time step n for which gi 6¼ 0 (in gen-

eral, just a fraction of the total points.) Efficient inversion

strategies such as the Woodbury identity39 may be employed

here. Note that, when the barrier points are collocated at the

grid locations, the update matrix is in fact diagonal, and the

scheme is fully explicit. Once unþ1 is known, one may

update w using Eq. (43b). Note that, when the barrier points

are collocated at the finite difference grid locations, the

update matrix is in fact diagonal, and the scheme is fully

explicit.

2. Non-iterative modal scheme N-IT(Modal)

A suitable modal expansion for the string’s displace-

ment under fixed conditions is given by

uðx; tÞ ¼ X>ðxÞqðtÞ; XmðxÞ ¼ sin ðmpx=LÞ; (45)

where m 2 ½1;Nm� and Nm is the total number of modes. In

order to account for an appropriate density of barrier points,

the vector d contains the spatial distributions, such as, e.g.,

delta functions. Thus,

d ¼ dðx� x1Þ; dðx� x2Þ;…; dðx� xNb
Þ

� �>
; (46)

where Nb as before is the total number of barrier points.

Thus, d is of length Nb. Then, modal projection is performed

by means of the L2 inner product denoted here for two

square integrable functions f, g as

hf ; gi ¼
ðL

0

fgdx: (47)

Thus, the projected modal equations for Eq. (41) become

FIG. 4. Hammer-String collision: String’s

output displacement. Output is recorded as

lt�un
mo, where mo is the output grid point.

For all panels, the solid black line is the

output of N-IT; the gray dashed line is the

output of IT-2. Output is recorded on

the string at xo ¼ 0:68 L. The hammer

has mass M¼ 10g, and a ¼ 1:3. (a): Kg

¼107, fs ¼ 44100Hz. (b): Kg¼1010, fs
¼44100Hz. (c): Kg¼1012, fs¼ 44100Hz.

(d): Kg¼1012; fs¼5�44100 Hz. (e)

Energy error for panel (a), where

�¼hn�1=2=h1=2�1.
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qhX;X>i@2
t q ¼ T0hX; ðX00Þ>iqþ hX; d>iwrgw:

Owing to modal orthogonality, the matrix hX;X>i is the

identity matrix times the norm of the modes, which in this

case is the same for all the modes, i.e., jjXmjj2 ¼ L=28m.

Similarly, hX; ðX00Þ>i ¼ �L=2K2, where K is a diagonal

matrix with diagonal elements Km;m ¼ mp=L. The matrix

hX; d>i ¼ R is a Nm � Nb a dense matrix containing the

projections of all the modes at each barrier point, column-

wise. As before, define T ¼ RG. Using a finite difference

approximation on the time operators, one gets the following

modal system:

qdttq
n ¼ �T0K

2qn þ ð2=LÞTðltþw
n�1=2Þ; (48a)

dtþw
n�1=2 ¼ Gdt�g

n; (48b)

gn ¼ b� R>qn; (48c)

with modal discrete energy given by

h ¼ qL

4
ðdt�qÞ>ðdt�qÞ þ T0L

4
ðKet�qÞ>Kqþ w>w

2
:

Inspection of the energy yields a stability condition, which

in this case reads

Nm �
2L

pk

ffiffiffiffiffi
q
T0

r
: (49)

The modal update is

1þ k2

2qL
TT>

 !
qnþ1 ¼ bþ 2k2

qL
Ta; (50)

where here a ¼ ð1=4ÞT>qn�1 þ wn�1=2; b ¼ 2qn � qn�1

�ðk2T0=qÞK2qn. Hence, the modal update has the same

form as Eq. (44), except now the matrix T is dense.

B. Numerical experiments

Snapshots of the numerical outcome of the schemes are

presented in Figs. 5 and 6. In both cases, the modal scheme

and the finite difference scheme return consistent solutions,

even after a large number of collisions. Notice that, although

the barrier parameters are selected so to simulate a hard col-

lision, the schemes are perfectly stable and compute the

solution solving one single linear system per update.

In Fig. 5, a bent obstacle similar to the bridge of instru-

ments such as the tanpura is obtained as a quadratic function

FIG. 5. Snapshots of string-backboard collision. The string parameters are the same as Fig. 3. The barrier is described by zðxÞ ¼ �0:02x2 � 0:001x
�0:0001, and has Kg ¼ 1012; a ¼ 1:2. Both N-IT(FD) and N-IT(Modal) are initialised in the first mode of vibration, for zero initial velocity, with peak

modal amplitude 3 mm. N-IT(FD) is solid black line, N-IT(Modal) is gray dashed line. Output is averaged as lt�un.
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of x. In Fig. 6, frets are placed at intermediate string grid

points using linear interpolation.

V. CASE STUDY: THE WIRE-MEMBRANE COLLISION

Power-law contact forces may be applied to the case of

collisions between moving distributed objects, see, e.g., Ref.

40. An interesting case is represented by the wire-membrane

interaction in the snare drum. In this instrument, a set of

wires collide against the snare membrane. The system is

activated after the batter membrane, at the opposite end of

the drum, is set into motion by the player. This produces a

vibration of the air cavity which in turn sets the snare mem-

brane into vibration. Computationally, this is a complex sys-

tem since various subsystems of different wave speeds are

coupled in a nonlinear manner. A full model of this system

was first offered by Bilbao,9 where the wire-membrane col-

lisions are modelled in a semi-conservative manner. Bilbao

et al.17 subsequently used the iterative model to obtain con-

servation of the discrete energy to machine accuracy. Here,

as a test case, only the wire-membrane interaction is shown,

using a non-iterative finite difference scheme.

In this basic configuration, the wire-membrane system

may be described by two coupled partial differential

equations,

qm@
2
t w ¼ TmDw� nðx; yÞwrgw; (51a)

qs@
2
t u ¼ Ts@

2
vuþ wrgw; (51b)

g ¼ hw; ni � u: (51c)

Here, w ¼ wðx; y; tÞ is the displacement of the membrane,

u ¼ uðv; tÞ is the displacement of the wire, and nðx; yÞ is the

operator projecting the linear domain of the wire onto the

membrane. The symbol D indicates the Laplacian. The inner

product definition is here extended to the two-dimensional

domain occupied by the membrane. The index m here stands

for membrane, denoting the surface density and the tension

per unit length in Eq. (51a). The index s is used for string to

denote the linear density and the tension in Eq. (51b).

A. Numerical experiments

Implementation details for the system in Eq. (51) are

not given here. In terms of the membrane, one may use a 2D

cartesian grid over which the differential operators are dis-

cretised. This leads to a staircase representation of the circu-

lar boundary, but it has overall numerous beneficial effects

in terms of numerical dispersion and ease of implementation

compared to, e.g., a polar difference grid, see, e.g., Bilbao24

FIG. 6. Snapshots of string-frets collision. The parameters for the string and barrier are the same as Fig. 5, but the barrier is now a fretted backboard with

twelve frets spaced by one semitone each.
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(Chap. 11). The collision force may be resolved once a suit-

able interpolation is implemented, to switch between the

membrane and string grids. This can be done with a suitable

2D linear interpolator, as the one given by Bilbao24 (Chap.

10). A non-iterative scheme for the collision force can then

be implemented easily from the templates given above.

As an illustration, consider Fig. 7. Here, the wire is ini-

tialised in its first mode of vibration and released. The colli-

sion with the membrane induces a set of waves propagating

in the membrane. The system can be updated at each time

step by solving one single sparse linear system, as a pertur-

bation of rank lower than the wire’s grid points.

VI. CASE STUDY: THE TROMBA MARINA

The Tromba Marina is a medieval bowed monochord

instrument that produces a trumpet-like sound when played

(hence the name tromba, meaning trumpet in Italian) (see

FIG. 7. (Color online) Snapshots of the wire-membrane collision. The wire has qs ¼ 1 g/m, tension Ts ¼ 10 N, length L ¼ 0.2 m. The wire ends are located at

ðx0; y0Þ ¼ ½0:3 R;L=2�; ðxL; yLÞ ¼ ½0:3 R;�L=2� with respect to the centre of the membrane. The membrane has a radius R ¼ 0.15 m, a tension Tm ¼ 2000 N/

m, and a density qm ¼ 0:2 kg/m2. The wire is hanging from a rest position 0.4 mm above the membrane. The wire is initialised in its first mode with a peak

amplitude of 1 mm with respect to its rest position. Animations are available on the companion webpage (Ref. 32).
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Fig. 8). This characteristic sound arises from the fact that the

string rests on a loose shoe-shaped bridge that collides with

the instrument body as the string vibrates (see Fig. 9). This

makes it a suitable test case for the method proposed here.

A working simulation of this instrument where the inter-

actions between different components were based on Eq. (3)

was previously published by the same authors.29 Below, the

details of the simulation using Eq. (27) are shown.

A. Models

The complete instrument is subdivided into three com-

ponents: the bowed string, the bridge, and the body. These

are modelled as a stiff string, mass, and plate, respectively,

all with loss terms.

Consider a damped stiff string of length L, described by

displacement u ¼ uðv; tÞ, with v 2 ½0; L�. Assume a linear

differential operator of the form

Ls ¼ qs@
2
t � @2

v Ts � EI@2
v þ 2qsr

1
s@t

� �
þ 2qsr

0
s@t;

(52)

with linear density qs, cross-sectional area A ¼ pr2, radius r,

tension Ts, Young’s modulus E, area moment of inertia

I ¼ pr4=4, and loss coefficients r1
s and r1

s . The equation of

motion for the bowed string can then be given as

Lsu ¼ �dðv� vbÞFbUðvrelÞ: (53)

Here, Dirac delta function d locates the bowing force at externally

supplied bowing position vb ¼ vbðtÞ, and Fb ¼ FbðtÞ is the

externally supplied bowing force. Finally, U is the dimen-

sionless friction characteristic described in Ref. 29, with rel-

ative velocity (between the bow and the string at the bowing

location) vrel ¼ @tuðvb; tÞ � vb, and externally supplied bow-

ing force vb ¼ vbðtÞ.
Similar to Eq. (1), the bridge is modelled as a simple

point-like mass. Its displacement is w ¼ wðtÞ and its differ-

ential operator is

Lm ¼ Md2=dt2 þ K þMrmd=dt; (54)

with mass M, stiffness K, and loss coefficient rm.

The body is here modelled as a 2D plate whose flexural

displacement is z ¼ zðx; y; tÞ, where ðx; yÞ 2 ½0; Lx� � ½0; Ly�
and where Lx and Ly are the side lengths. Thus,

Lp ¼ qp@
2
t þ DDDþ 2qpr

0
p@t � 2qpr

1
p@tD; (55)

with surface density qp, stiffness coefficient D, and loss

coefficients r0
p and r1

p.

1. Interactions

Interactions between the components are modelled

using N-IT in two different configurations.

The interaction between the bridge and the body is

modelled using Eq. (2), such that

gðtÞ ¼ zðxi; yi; tÞ � wðtÞ (56)

is the difference between the state of the body at input loca-

tion (xi, yi) and the bridge. The input spatial distribution is

here assumed to be a 2D Dirac’s delta dðx� xi; y� yiÞ.
The interaction between the string and the bridge is

using a two-sided version of Eq. (2), allowing the collision

potential to act as a connection, and is modelled as28

uðfÞ ¼ Kf

bþ 1
jfjbþ1; ! ¼

ffiffiffiffiffiffi
2u

p
; (57)

depending on the difference between the state of the bridge

and the string at contact location fðtÞ ¼ wðtÞ � uðvm; tÞ.
Here, Kf is a constant, and b � 1.

The effects of the interactions can be added to the

respective components to yield the complete system

Lsu ¼ dðv� vmÞ!rf!� dðv� vbÞFbUðvrelÞ; (58a)

Lmw ¼ wrgw� !rf!; (58b)

Lpz ¼ �dðx� xi; y� yiÞwrgw: (58c)

B. Numerical experiments

For most implementation details such as a discrete form

of the equations in Eq. (58) and parameter values, one may

refer to previous work.29 The improvements will be dis-

cussed here.

The main improvement is the use of Eq. (27) as a dis-

crete form of Eq. (2). The change to this new form of gn, as

noted above, solves the problem of spurious oscillations

experienced at values of a and b larger than 1. These are

now changed to be 1.3 and the interactions between compo-

nents are now nonlinear.

The full system has been implemented in real time

using Cþþ and the JUCE framework.41 A video showcas-

ing the implementation can be found via.42 Snapshots of the
FIG. 9. (Color online) The tromba marina’s shoe-shaped bridge. The right

side is pressed against the body while the left side is free to rattle.

FIG. 8. (Color online) The tromba marina owned by Nationalmuseet in

Copenhagen, Denmark.
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bowed system can be seen in Fig. 10. As the string is bowed,

it causes the bridge to collide with the body.

VII. CONCLUSIONS

In this work, the problem of simulating collisions com-

monly encountered in musical instruments was investigated.

An energy framework was borrowed from previous works,

so that the collisions are elastic, allowing for nonlinear

energy exchanges between the colliding bodies, although an

extension including nonlinear collision losses can be imple-

mented easily from these templates. Thus, in the lossless

case, motion preserves the energy. By quadratising the non-

linear collision potential, discrete-time difference schemes

were obtained that may be resolved by a single matrix

inverse at each time step, thus avoiding iterative root finding

algorithms as presented in previous works. A number of

comparative studies were offered, to assess the convergence

and stability properties of the proposed schemes against the

benchmark schemes of previous literature, displaying com-

parable behaviour. Pointwise as well as extended collisions

can be simulated in the current framework, taking into

account rigid obstacles as well as deformable, moving bod-

ies. Spatial finite difference schemes as well as modal

schemes are possible in this framework. Finally, the simula-

tion of the tromba marina, including stiffness, losses, and a

bowing mechanism, was offered, where the current collision

framework serves as a model for the rattling bridge connect-

ing the string to the plate.
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