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ABSTRACT
Mobile Edge Computing (MEC) is a key technology for the deployment of next generation (5G
and beyond) mobile networks. The computational power it provides at the edge could allow
providers to fulfill the requirements of use cases in need of ultra-low latency, high bandwidth,
as well as real-time access to the radio network. However, this potential needs to be carefully
administered as the edge is certainly limited in terms of computation capability, as opposed to
the cloud which holds the promise of a virtually infinite power. MEC nodes, though, could still
try to exploit not only their local capacity, but also the one that the neighbor MEC nodes could
offer. Considering that the 5G scenario assumes an ultra-dense distribution of MEC nodes, this
possibility could be feasible, provided that we find an effective way to carefully allocate the
resources available at each edge node.

In this paper, we provide an optimization framework that considers several key aspects of the
resource allocation problem with cooperating MEC nodes. We carefully model and optimize the
allocation of resources, including computation and storage capacity available in network nodes
as well as link capacity. Specifically, our proposed model jointly optimizes (1) the user requests
admission decision (2) their scheduling, also called calendaring (3) and routing as well as (4)
the decision of which nodes will serve such user requests and (5) the amount of processing and
storage capacity reserved on the chosen nodes. Both an exact optimizationmodel and an effective
heuristic, based on sequential fixing, are provided.

Furthermore, we propose a distributed approach for our problem, based on the Alternating
Direction Method of Multipliers (ADMM), so that resource allocation decisions can be made in
a distributed fashion by edge nodes with limited overhead.

We perform an extensive numerical analysis in several real-size network scenarios, using real
positions for radio access points of a mobile operator in the Milan area. Results demonstrate that
the heuristic performs close to the optimum in all considered network scenarios, while exhibiting
a low computing time. This provides an evidence that our proposal is an effective framework for
optimizing resource allocation in next-generation mobile networks.

1. Introduction
Next generation (5G and beyond) mobile networks are currently being deployed, and need to provide services

characterized by ultra-low latency, high bandwidth, as well as real-time access to the radio network. To achieve
these goals, Mobile Edge Computing (MEC) is envisaged to provide an IT service environment and cloud-computing
capabilities at the edge of the mobile network, within the Radio Access Network and in close proximity to mobile
subscribers. Through this approach, the latency experienced by mobile users when they use specific services can be
considerably reduced. However, the computation power that can be offered by a single edge cloud is limited compared
to the one available at a remote cloud. This implies that relying exclusively on a single edge cloud for serving user
requests is not actually possible, thus resulting in the need to devise approaches that either offload the exceeding
traffic to the central cloud or rely on the availability of other close-by edge clouds that could cooperate to help each
other. The cooperation of multiple edge clouds is beneficial to the providers to make full use of the edge computation
resources, but, at the same time, it requires a careful allocation of edge resources to each user request. Considering
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that 5G networks will be likely built in an ultra-dense manner and the edge clouds attached to 5G base stations will
also be massively deployed and connected to each other in a specific mesh topology, this approach appears to be
feasible and certainly deserves a specific analysis. It requires the adoption of proper strategies that, on the one side,
guarantee the user requirements associated to each request aremet and, on the other side, ensure the operator’s resources
are not depleted but used in an optimized manner. Meeting both the expectations of end users and operators is not
straightforward as they are somewhat conflicting with each other. In fact, while from the user viewpoint, requests must
be served within the expected time boundaries, from the provider’s perspective, serving a request should be sufficiently
profitable and not causing the need to exclude other more profitable requests. These requirements result in the need
to develop an approach to control multiple aspects, including the decision to admit or not a request, the scheduling of
admitted requests in order to fulfill the users’ requirements, the assignment of requests to a proper serving node and
the subsequent allocation of the required resources, the proper routing of the requests toward their servants.

As discussed in more details in Section 2, the literature presents approaches that handle some of the aspects men-
tioned above [1–11]. However, to the best of our knowledge, there is no approach tackling all above aspects at the
same time.

Our approach is centered on an optimization framework (an exact model as well as an efficient heuristic approach
based on sequential fixing) that considers all key aspects of the resource allocation problem in the context of Mobile
Edge Computing, by carefully modeling and optimizing the allocation of network resources including computation and
storage capacity available in network nodes as well as link capacity. Specifically, our proposed model and heuristics
jointly optimize (1) the admission decision (which user requests are admitted and served by the network, based on the
profit they can potentially generate with respect to the required resources for serving demands), (2) the scheduling of
admitted user requests, also called calendaring (taking into account the flexibility that some users exhibit in terms of
starting and ending time tolerated for the required services), (3) the routing of these user requests, (4) the decision of
which nodes will serve them as well as (5) the amount of processing and storage capacity reserved on the chosen nodes
that serve such user requests, with the objective of maximizing the operator’s profit.

Besides the classical optimization approach, we propose also a “multi-agent" framework where the resources in
the Mobile Edge Network are managed in a coordinated and decentralized way. The goal of each agent is to dynam-
ically allocate network resources, reacting to (possibly local) network changes in a prompt and effective way. This
could help reducing the experienced latency, thus permitting to satisfy in a more effective way demanding services.
Choosing a distributed approach can also have advantages since edge nodes may be owned and managed by different
entities/operators (and hence a centralized approach might be not suitable), and obtaining a centralized solution could
be infeasible or require a long computing time in large scale scenarios.

In our approach each agent solves the optimization problem in a distributed fashion, with limited overhead, by
relying on an implementation of the Alternating Direction Method of Multipliers [12]. This is a well-established
optimization tool used to decompose a problem into multiple small subproblems that can be solved iteratively. We
extend it using a weighting approach especially tailored to our scheduling problem.

This paper extends the work presented in [13] by strengthening the evaluation of the optimization approach, which
now includes realistic network topologies, and by defining and experimenting with the distributed solution approach,
based on ADMM.

We provide clear quantitative insights regarding the structure of the underlying computational infrastructure, and
we compare our proposed model and heuristic to a greedy approach, which provides a benchmark for our solutions. We
perform a thorough performance analysis of the proposed model and heuristics using real-size network scenarios and
real radio access points positions of a mobile network operator (Vodafone Italy) in the Milan area. Numerical results
demonstrate that our proposed model captures several important aspects of Mobile Edge Computing architectures.
Furthermore, the proposed heuristics perform close to the optimum in all considered network scenarios, with a very
short computing time, thus representing a very promising solution for the design of efficient and cost-effective mobile
networks.

To summarize, our paper makes the following contributions:
• A mathematical model that captures key aspects of Mobile Edge Computing architectures.
• An efficient heuristics, based on a Sequential-Fixing approach [11, 14, 15].
• A fully distributed algorithm based on ADMM, which permits to solve our problem with resource allocation

decisions made directly by edge nodes.
• A thorough numerical evaluation performed in several realistic, large scale topologies. We make all topology

datasets publicly available in a repository.
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Table 1
Comparison of related works in various aspects of resource management.

Reference Admission Scheduling Slicing Offloading Routing Placement Approach Scenario

[1]
√ √

Decentralized Flat MEC
[2]

√

Centralized Flat MEC
[3]

√ √

Centralized Fog
[4]

√

Centralized Multi-layer MEC
[5]

√ √

Centralized Distributed Computing
[6]

√ √ √

Centralized SDN
[7]

√ √

Centralized Data center
[8]

√ √

Decentralized Flat MEC
[9]

√ √

Decentralized Flat MEC
[10]

√ √

Centralized Flat MEC
[16]

√

Decentralized SDN
[17]

√ √

Centralized SDN
[18]

√ √

Centralized Cloud RAN
[19]

√ √

Decentralized Flat MEC
[20]

√

Decentralized Flat MEC
Our work

√ √ √ √ √

Both MEC networks

The paper is organized as follows: Section 2 discusses related work. Section 3 illustrates the problem formulation
and the proposed exact optimization model. Section 4 presents the heuristics we devised, based on a sequential-fixing
approach. Section 5 illustrates a distributed algorithm we propose, based on ADMM, to solve our problem with
resource allocation decisions made directly by edge nodes. The numerical analysis and comparison of the proposed
model and heuristics is performed and discussed in Section 6, including real-life network scenarios. Finally, Section
7 concludes the paper.

2. Related Work
In this section we revise works that consider task offloading and calendaring/scheduling issues; we further discuss

recent works where the ADMM approach has been applied in mobile networking contexts.
In [2], the authors study a task offloadingmodel considering constraints on task queue lengths tominimize the users’

power consumption, while the work in [4] jointly considers task assignment, computing and transmission resources
allocation to minimize system latency in a multi-layer MEC context that is, a set of MEC nodes structured in a multi-
layer tree-shape network where nodes in a same layer have no interaction. The work in [3] studies task distribution
and proactive edge caching in fog networks, that is, networks where edge devices are connected to central nodes, with
latency and reliability constraints to minimize the task computing time. The authors in [5] study traffic processing and
routing policies for service chains in distributed computing networks to maximize network throughput. These works,
however, do not consider the resource scheduling problem. The works in [6, 17, 18] study bandwidth calendaring to
allocate network resources and schedule deadline-constrained data transfers, while in [7] the authors study the problem
of scheduling and routing deadline-constrained flows in data center networks to minimize the energy consumption.
However, the allocation of computing resources is not considered in these works. In [8], the authors study the problem
of dispatching and scheduling jobs in edge-cloud system to minimize the job response time; in [9] the authors study
online deadline-aware task dispatching and scheduling in edge computing to maximize the number of completed tasks.
Finally, the work in [10] proposes a two-time-scale strategy for resource allocation by performing service placement
(per frame) and request scheduling (per slot) to reduce the operation cost and system instability. These works, though,
do not explicitly consider the routing problem that arises.

ADMM [12] has been recently applied in the mobile networking context. The work in [1] studies a MEC slic-
ing framework named Sl-EDGE which allows network operators to instantiate heterogeneous slice services on edge
devices. The authors formulate the edge slicing problem as a mixed-integer linear programming (MILP) model and
design a distributed algorithm based on ADMM such that clusters can locally compute slicing strategies. In [19], the
authors propose a distributed cross-domain resource orchestration algorithm based on ADMM for dynamic network

Bin Xiang et al.: Preprint submitted to Elsevier Page 3 of 38
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Table 2
Summary of used notations.

Parameter Definition

 Set of user requests with different demands
 ,  Set of nodes and links in the edge computing network
 Set of time slots
Be,  e Bandwidth of link e ∈  and unit cost
Dv, �v Computation capacity of node v ∈  and unit cost
Sv, �v Storage capacity of node v and unit cost
sk Source node of request k ∈ 
�k, �k, dk Arrival time, deadline and duration of request k
�k Average arrival rate of request k
�k Processing density of request k
�k Revenue gained from serving request k
mk Amount of storage capacity required to serve request k

Variable Definition

zkt Whether request k starts at time slot t ∈ 
qkv Fraction of request k processed at node v
pkvte Fraction of link e’s bandwidth sliced to request qkv at t
rkvt Fraction of node v’s computation capacity sliced to k at t
�kvt Whether node v processes request k at t

slicing in cellular edge computing, while [20] studies the energy-efficient workload offloading problem and propose a
low-complexity distributed solution based on consensus ADMM. The work in [16] proposes a distributed algorithm
based on ADMM to solve the multi-path fair bandwidth allocation problem in distributed Software Defined Networks
(SDN) with the assumption that the paths are pre-computed once and for all and do not change.

To the best of our knowledge, our work is the first one that considers admission decision, scheduling, slicing,
offloading and routing all together. The other approaches we presented, instead, focus on specific aspects. To offer
an easier comparison with our present work, in Table 1 we provide a summary of the subproblems tackled in each
reference (columns from 2 to 7). Moreover, we specify whether the computation of each approach is centralized or
decentralized (column 8). Finally, we report the context in which each approach has been developed (column 9).
Many of them have been developed in a case that we call Flat MEC, in which multiple MEC nodes coexist but are all
connected to a core network and are not able to interact with each other. This is different from the “Multi-layer MEC”
where, as already mentioned, MEC nodes are structured in a multi-layer tree-shape network and nodes in a same layer
have no interaction. Our approach works in a generalization of the Multi-layer MEC one in which all MEC nodes can
be connected with each other and no differentiation between layers exist. For this reason, we call itMEC network. The
approach in [3] has been defined in a fog context, which is essentially equivalent to Flat MEC. The other approaches
have been defined in the SDN and distributed/cloud computing contexts.

3. Problem Formulation
In this section we formulate the resource calendaring problem, which includes users’ requests admission, their

scheduling and routing. Our target is to maximize the profit, which is expressed as the difference between the revenue
earned by the provider from serving users’ requests and the cost incurred from providing computation and storage
resources at edge nodes, as well as bandwidth capacity. Table 2 summarizes the notation used throughout this section.
For brevity, we simplify expression ∀k ∈  as ∀k, and apply the same rule to other set symbols like  ,  ,  , etc.
throughout the rest of this paper.
3.1. System Overview

We consider an edge cloud network represented by an undirected graph ( , ), where each node v ∈  represents
an edge computing node having Dv and Sv as computation and storage capacity, respectively. The two parameters �vand �v denote, respectively, the cost of computation and storage capacity of node v. Each edge e ∈  corresponds to a
Bin Xiang et al.: Preprint submitted to Elsevier Page 4 of 38
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network link characterized by its bandwidth Be and its cost per unit of flow  e. Let  denote the set of requests, with
different types, offered to the network. We regard each type of request as an aggregated communication-computation
demand, e.g. web, video, game traffic etc., which has to be accommodated in the network and requires some amount
of bandwidth, storage and computation resources. We assume that the calendar (i.e., the arriving time and duration)
of the requests for the upcoming period is known. This can be achieved assuming that customers have announced
their requirements in advance, or that some history-based prediction tool [21] is used. Since an accurate prediction of
network traffic is an important element for network operators, several techniques have been proposed in the literature to
enable efficient resource management, traffic engineering and load balancing [22–26]. The aim of these works is to try
to predict parameters like the near-term transmission rate of a connection or, in general, network traffic profiles, based
on measurements on the past traffic and on service-level agreements established with network users, as a prediction of
future traffic distribution; however, the focus of our paper is not to determine the best traffic predictor. The problem
of optimal allocation of current and future bandwidth resources is studied in [24] in the context of Traffic Engineering
in SDN. Machine Learning approaches have also been proposed to predict the traffic load on the links of a telecom
network [22]. Convolutional Neural Networks have been proposed for predicting network traffic in datacenter networks
[23]. Finally, when precise prediction is difficult to achieve, online algorithms like the one illustrated in [6] could be
considered, to deal with unpredictable incoming demands; these approaches are more fit when an admission decision,
scheduling and resource allocation decisions must be taken instantaneously.

We discretize the time horizon into a set  of equal duration time-slots, where the slot length is �. Each request
k ∈  is defined as a tuple (sk, �k, �k, dk, �k). The parameter sk is the source node of request k; �k, �k and dk define
the arrival time, the latest ending time (deadline) and the duration of request k, respectively. Finally, we consider
a Poisson process for each request k with an average packet arrival rate �k. The arrival and ending times coincide,
respectively, with the arrival of the first packet and the departure of the last packet of request k.

A request k could be processed immediately (for delay-sensitive tasks) after its arrival, or scheduled for later (for
delay-tolerant tasks). Also, it could be entirely processed on the local edge computing node or split into multiple
fractions and processed on other nodes. In any case, it must be completed before the deadline �k. As an example,
Figure 1 shows the arrival time �, deadline � and duration d of requests 1 and 2. Also, it highlights that request 1 is
scheduled to be served from time �1⋆, delayed (shifted) with respect to �1 but still compatible with �1. The ending time
for the request will then depend on �1⋆, d1, processing latency, and link latency along the routing path if (some fraction
of) the request is offloaded to the neighbor edge computing nodes.

Given a calendar of requests  over a time horizon, the proposed optimization approach must: a) schedule the
starting time of each request, b) decide where to compute the requests, and c) route some fractions of the requests
when it is necessary to process them on other edge computing nodes, in order to maximize the profit of the provider.

Possible use cases of the above request model can be illustrated by the following examples. For instance, at each
edge node we have a stateless servant for a specific request type (it could be, for example, a microservice that is deciding
whether some temperature data must trigger an alarm or not) and the network decides where to send a request. When
considering streams of data (that is, multiple packets related one with the other), we should have a way to route to the
same destination the packets belonging to the same stream. In another case, if we have a computation that requires
traffic to be split according to a specific logic (e.g., the typical MapReduce example concerning word counting), the
traffic cannot be split by the network in a simple way, but it should go through some application-specific components
that decide how to split it.

Note that in above model, we do not explicitly model errors and re-transmissions; a simple way to capture these
such features could be to calculate the expectation value of the processing time based on the failure probability, and
correspondingly the number of re-transmission attempts. We leave these extensions as futures research issues.

t0

d1
α1 β1

ξ1? {d1+ processing (& link) latency}

d2

α2 β2

Figure 1: Example of time scheduling of a request.
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3.2. Life Cycle of A Request
A given request k arriving at an edge node v at time �k could be: i) rejected, ii) processed immediately – this is

needed if it is a delay sensitive task – or iii) shifted to a future epoch, if it is delay tolerant. To model the fact that the
delayed (shifted) starting time �k⋆ can vary in the time frame [�k, �k − dk], we express �k⋆ as:

�k⋆ =
∑�k−dk

t=�k
t ⋅ zkt, ∀k, (1)

where zkt is a binary variable that can be 1 at most in one point of time which will correspond to �k⋆ for request k.
Meanwhile, we have:

∑�k−dk

t=�k
zkt ⩽ 1, ∀k. (2)

When zkt = 0 for all possible time slots, this implies that the request is not admitted and, therefore, not scheduled. Note
that by changing the inequality constraint (2) to an equality, the edge cloud will be forced to serve all the incoming
requests, which may be unfeasible in some cases.

A request can be either processed locally in a computing node or split and offloaded to other edge computing nodes.
In the latter case, the processing latency, the storage provisioning constraints and the link latency along a routing path
should be taken into account by the calendaring scheme. Considering a node v that is assigned to process a fraction
qkv ∈ [0, 1] of request k, the ending time at v, denoted by �kvo , can be expressed as:

�kvo = �k⋆ + d
k +

⌈

T kvL
�

⌉

+
⌈

T kvP
�

⌉

, ∀k,∀v, (3)

where T kvL and T kvP are respectively the link latency and processing latency. Note that both �k⋆ and �kvo are integer
values in the time slot set, and � is the time-slot duration. The ending time of each request depends on the last finished
piece, which must be completed before the deadline. Such constraint is expressed as:

max
v∈

{�kvo } ⩽ �k, ∀k. (4)

In the following, we will express the request routing and the two latency components (link and processing latency) in
detail.
3.3. Network Routing

We assume that a request can be split into multiple pieces only at its source node. Each piece can then be offloaded
to another edge computing node independently of the other pieces, but it cannot be further split (we say that each piece
is unsplittable). Each link e ∈  may carry different request pieces, qkv (remind that qkv is the fraction of request k to
be processed at node v). Then, the total flow of request k on link e, fke , can be expressed as the sum of all pieces of k
that pass through such link:

fke =
∑

v∈∶ e∈kv

qkv, ∀k,∀e, (5)

where kv ⊂  denotes the routing path (set of traversed links) for the partial request qkv from source node sk to
node v. The traffic flow conservation constraint is enforced by:

∑

e∈Φ−v

fke −
∑

e∈Φ+v

fke =
{

qkv − 1, if v = sk,
qkv, otherwise, ∀k,∀v, (6)

whereΦ−v andΦ+v are, respectively, the set of incoming and outgoing links of node v. The fulfillment of this constraint
guarantees continuity and acyclicity for the routing path.
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3.4. Link Latency
Let T kvL denote the link latency for routing request k to node v. Each request is routed in a multi-path way, i.e.,

different pieces of the request may be dispatched to different nodes via different paths. The transmission time of the
requests on each link is described by anM|M|1 model [27], hence, ∀k,∀v, T kvL is defined as:

T kvL =

{
∑

e∈kv

1
pkve Be−qkv�k

, if qkv > 0& v ≠ sk,

0, otherwise,
(7)

where pkve is the fraction of bandwidth capacity sliced for the piece of request (qkv) flowing to node v via link e. The
link latency is accounted for only if a piece of request k is processed at node v (i.e., qkv > 0) and v ≠ sk. The following
constraint ensures that the flow of request k on each link of the routing path does not exceed the allocated capacity:

{

qkv�k < pkve Be, if e ∈ kv,
pkve = 0, otherwise, ∀k,∀v,∀e. (8)

Considering that different requests k ∈  can share the same link at a given time slot, the reservation constraint
of a link capacity at any time slot is expressed as:

∑

k∈

∑

v∈
pkvte ⩽ 1, ∀e,∀t, (9)

where pkvte is the fraction of link e’s bandwidth allocated for a piece of request qkv at time slot t. Note that we assume
that the reserved bandwidth for each request over its life period does not change in order to provide consistent service
guarantees. The superscript t in pkvte is used to indicate the life status of the flow. The relation between pkvte and pkve is
given by pkvte = �kvtpkve , where �kvt is a binary variable defined as:

�kvt =

⎧

⎪

⎨

⎪

⎩

1, if �k⋆ ⩽ t < �k⋆ + d
k +

⌈

T kvL
�

⌉

,

0, otherwise,
∀k,∀v,∀t. (10)

3.5. Processing Latency and Storage Provisioning
When a request cannot be entirely processed locally, we assume that such request can be segmented and processed

on different edge computing nodes. Hence, each node can slice its computation capacity to serve several requests
coming from different source nodes. Notice that a request k also requires a fixed amount of storage resources mk on
a node v if k is to be processed on that node. Thus, only if both computation and storage resources on a node are
sufficient, a request could be processed on that node. Let variable rkv denote the fraction of computation capacity Dvsliced for the piece of request qkv�k. The processing of user requests is also described by anM|M|1 model [28, 29].
Let T kvP denote the processing latency of edge computing node v for request k. Then, based on the computational
capacity rkvDv with an amount qkv�k to be served, ∀k,∀v, T kvP is expressed as:

T kvP =

{

1
rkvDv−�kqkv�k

, if qkv > 0,
0, otherwise, (11)

where rkv is the fraction of node v’s computation capacity sliced to request k, and �k is the processing density [30] of
request k measured in “cycles/bit”. In the above equation, when request k is not processed on node v, the latency is
set to 0 and, at the same time, no computation resource should be allocated to request k. The corresponding constraint
is:

{

�kqkv�k < rkvDv, if qkv > 0,
rkv = qkv = 0, otherwise. (12)

qkv and rkv also have to fulfill the consistency constraints:
∑

v∈
qkv =

∑�k−dk

t=�k
zkt, ∀k. (13)
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Remind that the right hand of equation (13) represents whether a request k is admitted in the system or not. If a
request k is rejected by the admission controller, the right hand expression is equal to 0 and qkv = 0 is enforced.

Different requests k ∈  may share an edge computing node at a time slot. Thus, the reservation constraint of a
node computation capacity at any time slot is modeled as follows:

∑

k∈
rkvt ⩽ 1, ∀v,∀t, (14)

where rkvt is the fraction of node v’s computation capacity allocated for request k at time slot t. We assume that the
reserved computation power for each request over its life period will not change due to both the computation scaling
overhead and task reconfiguration overhead. The superscript t in rkvt allows us to keep track of the life status of the
request. The relation between rkvt and rkv is given by rkvt = �kvtrkv, where �kvt is a binary variable defined as:

�kvt =

⎧

⎪

⎨

⎪

⎩

1, if �k⋆ +
⌈

T kvL
�

⌉

⩽ t < �kvo ,

0, otherwise,
∀k,∀t,∀v, (15)

which indicates whether node v processes request k at t. Finally, based on the definition (15), the storage constraint
can be expressed as follows, considering that the storage allocated for an admitted request could be released after the
end of its serving process:

∑

k∈
mk�kvt ⩽ Sv, ∀v,∀t. (16)

In the above formulation, the way we model latency and delay is aligned with other approaches in the literature.
The work of Ma et al. [27] presents a system delay model which has the same components adopted in our paper; the
communication delay in the wireless access is modeled as in our work using anM|M|1-like expression. Moreover,
authors also assume that traffic is processed across a subset of computing nodes and the service time of edge hosts and
cloud instances are exponentially distributed, hence the service processes of mobile edge and cloud can be modeled
asM|M|1 queues in each time interval. The same assumption is made in [31]. In [28], the authors assume that both
the congestion delay and the computation delay at each small-cell Base Station (by considering a Poisson arrival of
the computation tasks) can be modeled as an M|M|1 queuing system; the work in [29] assumes that the baseband
processing of each Virtual Machine (VM) on each User Equipment packet can be described as anM|M|1 processing
queue, where the service time at the VM of each physical server follows an exponential distribution. Finally, the works
[32–35] also adopt similar choices concerning the delay modeling.
3.6. Optimization Problem

Our goal in the resource calendaring problem is to maximize the profit computed as the total revenue obtained
from serving the users’ requests minus the network operation costs in terms of computation, storage and bandwidth
resources, under the constraints (starting and ending times) of requests coming from different nodes:

max
zkt, qkv, pkvte , rkvt, �kvt

∑

t∈

∑

k∈

{

�kzkt −
∑

v∈

{

rkvtDv�v + �kvtmk�v +
∑

e∈
pkvte Be e

}

}

, (0)

s.t. (1) ∼ (16),
where �k is the revenue gained from serving request k. The variables being optimized, reported under themax operator,
are zkt, qkv, pkvte , rkvt, and�kvt. Problem (0) contains both nonlinear and indicator constraints, therefore, it is a mixed-
integer nonlinear programming (MINLP) problem, which is hard to be solved directly [36]. Since this problem contains
the multi-commodity integer flow problem as a special case (in fact, in our work flows can be split only at the edge
nodes and once admitted they cannot be further split and are therefore routed as integer flows), which is known to be
NP-complete [37], it turns out to be NP-hard.

The objective function we have defined in this work is composed of two terms; the first one is the revenue and is
calculated as the product of a real coefficient, �k, and the admission variable zkt. The second term is the cost incurred
by the operator for serving the users’ requests; it is calculated as a function of the computation/storage and bandwidth
resources, and it directly depends on the total amount of traffic of the request to be served. Our choice of a fixed
Bin Xiang et al.: Preprint submitted to Elsevier Page 8 of 38
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Algorithm 1 Sequential Fixing and Scheduling
1: Initialize zkt = 0,∀k, t and profit  = 0 for ( .1);
2: Set b̂kv = 0, r̂kv = 0, p̂kve = 0 (in ⋆), ∀k, v, e;
3: Sort  in descending order as r by �k

dk�kmk�k , k ∈ ;
4: for k ∈ r do
5: Reset admission zkt ⩽ 1, t ∈ [�k, �k − dk];
6: Fk′ ← cℎeck_overlap(k, k′,⋆), ∀k′ ∈ ∖{k};
7: Cv ← maxk′∈∖{k}{b̂k

′vFk′}, ∀v ∈  ;
8: k, Lv ← find_candidates(k,,⋆, Cv);
9: if k ≠ ∅ then
10: B′e ← Be(1 −

∑

(k′,v)∈×|Cv>0 p̂
k′v
e ), ∀e ∈  ;

11: Create graph ′ weighted by B′−1e ;
12: for i ∈ k do
13: Set bkv = 1, rkv ⩽ Lv, ∀v ∈ i;
14: Fix route (
kve ) using Dijkstra;
15: Optimize ( .1) to get profit  and solution ;
16: if  ⩾ 0 then break; ⊳ ( .1) is feasible
17: if  ⩾ ⋆ & k ≠ ∅ then
18: Update ⋆ ← , ⋆ ← ;
19: Admit k and allocate resources based on ⋆;
20: Set ( .1)’s lower bound LB = ⋆;
21: else Reject k (set zkt = 0,∀k, t);

revenue per type of request in this paper is three-fold: i) a pricing model (the revenue) which is proportional to the
amount of traffic of the user’s request and that ignores the type of request may result inappropriate in some scenarios.
In fact, each type of request may require different amount of computation/storage/bandwidth resources. ii) The cost
defined in the second term of the objective function (which could be perceived as the lower bound of the price to be
declared to the user) takes already into account all the aspects mentioned before (in point (i)), including the amount
of traffic of the users’ requests. iii) Finally, a fixed revenue has been introduced to make the model more flexible and
able to admit in the system the requests that can be satisfied with the available resources.

Moreover, we also face the following difficulties: a) routing variables kv and request fraction variables qkv are
“intertwined”: to find the optimal routing, the fraction of each request processed at each node v should be known, and at
the same time, to solve the optimal resource allocation for a request, the routing path should be known; b) (0) contains
indicator functions and constraints, e.g., (7), (10), (15), etc., which cannot be directly and easily processed by most
solvers. To deal with the above critical issues, we propose an equivalent reformulation of (0), which we call ( .1),
that we can efficiently solve with the Branch and Bound method. Intuitively, the reformulation in ( .1) proceeds
as follows: (a) we first handle the difficulties related to variables kv and the corresponding routing constraints,
then (b) we reformulate the link and processing latency constraints (viz., constraints (7) and (11)). Note that, the
objective function of ( .1) is the same as that of (0), while constraints (4)∼(8), (10)∼(12) and (15) in (0) are
reformulated to the constraints (57), (60)∼(62) and (67)∼(79) in ( .1). For the sake of conciseness, we do not
include the reformulation here. The interested readers can refer to Appendix A.

4. Heuristics
To solve our problem in a reasonable computational time, we propose a heuristics named Sequential Fixing and

Scheduling (SFS) which realizes a good trade-off between admitting “valuable” user requests (i.e., the ones that pro-
vide high return to the service provider) and the resources they request in terms of transmission rate, storage and
computation. A greedy approach is then illustrated as benchmark heuristic.
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Initialize variables and parameters
Rank request set K

For k ∈ K: Traverse requests

Check request overlap (Algorithm 2)

Find candidate node set Qk

considering overlap (Algorithm 3)

Candidates Qk 6= ∅ ?

Update bandwidth information B′
e

Yes

For Vi ∈ Qk: Traverse candidates

O > O? & Qk 6= ∅ ?

Update profit O? and solution S?

Admit k and allocate resources based on S?

Yes

Reject k

Set bkv = 1, rkv 6 Lv, ∀v ∈ Vi

Find route using Dijkstra
Optimize P.R1 to get O and S

Break if P.R1 is feasible

No

No

Figure 2: Flowchart of the SFS heuristic.

4.1. Sequential Fixing and Scheduling
SFS is detailed in Algorithm 1, and summarized in the flowchart of Figure 2. We first introduce the following

auxiliary variables bkv that indicates whether request k is processed on node v and 
kve that indicates whether request
piece qkv is routed via link e. The hat notation (like b̂kv) represents the values of the corresponding variables in the
solution set ⋆. We start by sorting all requests in descending order according to the ratio �k

dk�kmk�k ; this ranking is
designed to give a higher weight to requests that generate more revenue and less cost to the operator. Then, we try to
define a schedule where we admit as many requests as possible. For each request k, we check whether its activation
period overlaps with the one of other requests k′ that are already admitted, and in such case we say there is a conflict.
The overlap value Fk′ is determined by the function cℎeck_overlap(⋅) (line 6 of Algorithm 1, details are provided in
Section 4.1.1).

Based on {Fk′ |k′ ∈ ∖{k}}, for each edge node v ∈  , we select the maximum Fk′ for all k′ being processed at
v, and we identify this overlap value with Cv (line 7). Next, we compute the ordered set k, which contains sets i ofbest candidate edge nodes to process request k. In doing so, we consider Cv and limit to Lv the computation resource
of each node in i,∀i ∈ k (line 8 of Algorithm 1; details in Section 4.1.2). If we successfully find some candidates
(k ≠ ∅), we further update the residual bandwidthB′e for all links e and create a weighted graph ′ with the reciprocalbandwidth B′−1e . Then, steps in lines (12-16) are the solution exploration phase based on the set of candidate node
groups, which can handle infeasibility situations in the optimization process. More specifically, we select the first iink that permits to find a profitable solution ( ⩾ 0) according to the following criteria: we outsource k to the nodes
in i and bound the computation resource by setting bkv and rkv. Based on ′, we route each piece of request qkv using
the Dijkstra algorithm (lines 10-14). After fixing variables bkv, 
kve and the constraints related to zkt, rkv in ( .1),
we start to optimize ( .1) to get the profit and the solution denoted, respectively, by  and  . If ( .1) results
infeasible in the current setting ( < 0), we reiterate on the other elements of k. If the result of the new optimization
improves, we update the current best profit ⋆ and solution ⋆, we hence admit request k and allocate resources to it
(including time slots, computation, bandwidth, and storage). We also update the lower bound of ( .1) to LB = ⋆
to accelerate the optimization (line 20). Finally, if the result does not improve or no candidate could be found, we
reject k and clear its corresponding settings of variables.
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Algorithm 2 Check Overlap
Input: k, k′, ⋆(solution); Output: conflict;

1: � = �k′ , � = �k′ ;
2: if ⋆ ≠ ∅ then � = �̂k′⋆ , � = maxv∈ �̂k

′v
o ;

3: overlap ←
{

�k − �, if � > �k,
� − �k, otherwise;

4: conflict ← min( max(overlap, 0)min(�k−�k, �−�) , 1);

4.1.1. Check overlap
The cℎeck_overlap function takes as input k, k′ and the partial solution ⋆ computed up to the current point,

returns Fk′ and proceeds as detailed in Algorithm 2: i) it initializes two local variables � and � with the starting time
�k′ and deadline �k′ of request k′, respectively; ii) it verifies if k′ is admitted; if yes, it updates, respectively, � and �
with the exact starting time �̂k′⋆ and ending time maxv∈ �̂k′vo of k′ according to the solution ⋆; iii) it computes the
(partial) overlapping between k and k′ as: overlap = �k − �, if � > �k; overlap = � − �k, otherwise (a negative
value of overlap means no overlapping); iv) Finally, it calculates and returns the maximum relative overlap value Fk′
between k and k′, which is expressed as min( max(overlap, 0)min(�k−�k, �−�) , 1).

Algorithm 3 Find Candidates
Input: k, , ⋆(solution), Cv(conflict);
Output: k(candidates), Lv(limit);

1: Lv ← 1 −
∑

k′∈|Cv>wc
r̂k′v, ∀v ∈  ; ⊳ wc = 0.6

2: s = {v ∈  | Cv ⩽ wc || Lv ⩾ wl}; ⊳ wl = 0.25
3: v ← (−ℎop(, sk, v), v ∉ {sk′ |k′ ∈ }, Lv), ∀v ∈ s;
4: Sort s in descending order by v;
5: 1 = ∅, DΣ = 0;
6: for v ∈ s do
7: if �k ⩾ wdDΣ then 1 ← 1 ∪ {v}; ⊳ wd = 0.9
8: DΣ ← DΣ +DvLv;
9: k = (1) ∪ ({v}, v ∈ s − 1);

4.1.2. Find candidates
Algorithm 3 determines the appropriate subset of edge nodes that can process traffic requests. We first estimate

Lv, the remaining computation capacity of each node v, based on r̂k′v in the solution ⋆, verifying that the conflicts are
higher than a given thresholdwc (Cv > wc). The thresholdwc reflects the availability of the computation resource for
an in-using node in time conflict. Lowerwc values will lead to a less efficient utilization of the computation resources,
thus producing a less optimal solution, while higher values could lead to a higher bias in the estimation, therefore
leading to an infeasible solution. In the experiments, we choose a proper value wc = 0.6. Then, we define s as theset of nodes v satisfying Cv ⩽ wc || Lv ⩾ wl, where wl is a threshold on the remaining computation; wl controls theminimum remaining computation capacity that a candidate should have. Higherwl values will cause a lower resourceutilization. We choose a small value around wl = 0.25 in the experiments. Note that very low values would cause
overloading of the computing nodes and lead to an infeasible solution. Hence, s represents the set of nodes that are
either in less conflict (for request k) or have enough remaining computation power. For each v ∈ s, we compute three
features (denoted byv), i.e., the negative hop distance between sk and v (−ℎop(, sk, v)), the indicator of whether v is
a source node or not (v ∉ {sk′ |k′ ∈ }) and the estimated left computation capacity Lv (lines 1-3). Based on v, wesort s in descending order to give more priority to a node that 1) is closer to the ingress node for k, 2) better not to be a
source, and 3) has more remaining computation capacity with respect to other nodes. Then, we try to add nodes to 1,until �k < wdDΣ, where DΣ denotes the estimated total computation capacity that can be used and wd is a threshold
controlling the total required computation capacity. Higher wd values will make the computation resource utilization
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more efficient, in cooperation with the solution exploration phase (lines 12-16), while lower values will result in less
efficient utilization of computation resources. In the experiments, we set wd = 0.9. Finally, we return the ordered set
k with 1 at the first place and the left nodes s −1 being separately stored as unit sets of backup candidates (lines5-9). Notice that the values of the thresholds wc∕l∕d are appropriately chosen based on our experiments.
4.2. Greedy approach

Greedy is a heuristics alternative to SFS that we propose as a benchmark in Section 6. The detailed procedures are
listed in Algorithm 4. Greedy shares some common steps with SFS, but it also exhibits several differences in that it
applies different strategies to prioritize requests (line 3) and to search candidate nodes for processing requests (line 6,
Algorithm 5); furthermore, it does not consider requests’ overlap and the exploration of solutions in case of infeasibility.
Note that Greedy could solve problems in a short computing time while still obtaining good solutions, as we discuss in
Section 6.3. More specifically, it first sorts the requests in ascending order by the priority key (−�k, �k, �k) and then
tries to schedule them one by one. The sorting considers the revenue �k of a request in the first place, the starting time
�k in the second place and finally the deadline �k in the third (last) place. Then, for each request k, we try to guarantee
sufficient computation power by using its closest neighbor nodes. The steps for searching candidate nodes are detailed
in Algorithm 5. Compared with the strategy of SFS (Algorithm 3), Greedy estimates the left computation Lv and the
potential set of nodes s (lines 1-2) without considering the request overlap information Cv, and collects candidate
nodes until �k < wgreedyDΣ, where wgreedy is a threshold similar to wd in SFS controlling the required number of
computing nodes. The lowerwgreedy is, the more computation nodes are required. Unlike SFS, the remaining neighbor
nodes are not used for further solution exploration in case of infeasibility; as a result, higher wgreedy values will make
the algorithm individuate fewer computing nodes, whichmay be not sufficient in some cases for processing the requests,
leading to less profitable or infeasible solutions. We set wgreedy = 0.6 in our experiments and evaluate the effect of
wgreedy on the performance in Section 6.3. Finally, this greedy searching strategy brings a faster computation time,
but in general a less optimal solution.
Algorithm 4 Greedy Algorithm
1: Initialize zkt = 0,∀k, t and profit  = 0 for ( .1);
2: Set b̂kv = 0, r̂kv = 0, p̂kve = 0 (in ⋆), ∀k, v, e;
3: Sort  in descending order as r by priority key (−�k, �k, �k);
4: for k ∈ r do
5: Reset admission zkt ⩽ 1, t ∈ [�k, �k − dk];
6: k, Lv ← find_greedy_candidates(k,,⋆);
7: if k ≠ ∅ then
8: B′e ← Be(1 −

∑

(k′,v)∈× p̂
k′v
e ), ∀e ∈  ;

9: Create graph ′ weighted by B′−1e ;
10: Set bkv = 1, rkv ⩽ Lv, ∀v ∈ k;
11: Fix route (
kve ) using Dijkstra;
12: Optimize ( .1) to get profit  and solution ;
13: if  ⩾ ⋆ & k ≠ ∅ then
14: Update ⋆ ← , ⋆ ← ;
15: Admit k and allocate resources based on ⋆;
16: Set ( .1)’s lower bound LB = ⋆;
17: else Reject k (set zkt = 0,∀k, t);

4.3. Complexity Analysis
In this Section we provide a complexity analysis for both the SFS and Greedy approaches.
SFS: Referring to Algorithm 1, the computation complexity comesmostly from the following two aspects: i) the for

loop with |r| iterations (line 4), together with the nested for loop with |k| iterations (line 12), and ii) the optimization
of the reduced problem ( .1) in the nested loop (line 15). Regarding the nested for loop, k represents the set of
candidate nodes groups picked from the neighbor nodes. In the worst case, it ismax{|k|} = ||. However, the actual
value of |k| is, in practice, much lower than || due to the few neighbor nodes that are typically needed for request
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Algorithm 5 Find Greedy Candidates
Input: k, , ⋆(solution);
Output: k(candidates), Lv(limit);

1: Lv ← 1 −
∑

k′∈ r̂
k′v, ∀v ∈  ;

2: s = {v ∈  | Lv > 0};
3: v ← (−ℎop(, sk, v), Lv), ∀v ∈ s;
4: Sort s in descending order by v;
5: k = ∅, DΣ = 0;
6: for v ∈ s do
7: if �k ⩾ wgreedyDΣ then k ← k ∪ {v};
8: DΣ ← DΣ +DvLv;

offloading and the break step (line 16) in the nested loop. Regarding the optimization step, the reduced problem ( .1)
is still anMINLP problem, hence NP-hard, since it still contains both integer and continuous variables (e.g., scheduling
and offloading variables) as well as nonlinear constraints (e.g., latency components). Therefore, for simplicity, we
denote the complexity of optimizing ( .1) as O(f (||,, | |)), where f (⋅) is a complexity function related to the
number of requests, network topology and the time horizon in the problem. Then, the complexity of optimizing ( .1)
is O(f (1,, | |)) since, in each iteration, only one request is involved. Therefore, the final complexity of SFS can be
expressed as O(||||f (1,, | |)). Note that the other steps in Algorithm 1 are basic computations with negligible
complexity compared to the O(f (1,, | |)).

Greedy approach: Compared with Algorithm 1 (SFS), Algorithm 4 has different request prioritizing and candi-
dates seeking strategies, but no request overlap checking and exploration of solutions for infeasible situations. There-
fore, regarding its computation complexity, the main difference is that Greedy does not have the solution exploration
phase. Based on a similar complexity analysis as illustrated above for SFS, the complexity of Greedy can be expressed
as O(||f (1,, | |)).

5. Distributed Resource Allocation
In this Section we illustrate a distributed algorithm for our problem such that resource allocation decisions can be

made directly by edge nodes with limited overhead. To this aim we adopt the Alternating Direction Method of Multi-
pliers [12], which is a well-established optimization tool used to decompose a problem into multiple small subproblems
that can be solved iteratively in a distributed fashion.

ADMM was originally introduced for solving convex problems with fast convergence properties. Recently, it has
been used as an heuristic to approximately solve some nonconvex problems as well, but in this case convergence may
not be guaranteed [38, 39]. In the following, we propose a weighted ADMM algorithm to decompose and solve our
scheduling problem, where a weighting strategy is exploited to balance the priorities of various decision variables
in the optimization model. In practice, we observe that the weighting strategy is important for the fast convergence
of ADMM in all the network scenarios we considered. For the sake of simplicity and clarity, we first present the
ADMM formulation without our weighting scheme, then we present the weighted ADMM algorithm, built with few
reformulations.

Table 3 summarizes the main notations used in this section. In the following, notations like xkvi+1, ykvi+1 and ukvi+1,represent the value of the corresponding variables xkv, ykv and ukv at iteration i+1 of the ADMMalgorithm. Notations
zykv, qykv, rykv, �ykv and pykv represent the sub-blocks of vector ykv, which correspond to the five main decision
variables denoted by symbols z, q, r, � and p, respectively. The same rule is applied to vector ukv.
5.1. ADMM Formulation

Let us recall that our problem aims at scheduling and computing multiple requests from different ingress nodes
in a network with a specific (and generic) topology, where each request can be split and offloaded to the nearby edge
computing nodes. Hence, we can split the problem across both (i) the request set  and (ii) the node set  .

To derive the ADMM formulation of problem ( .1), we proceed to reformulate it in 3 main steps, illustrated in
Figure 3. Specifically, we first select the main decision variables and the corresponding constraints that bind variables
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Table 3
Summary of main notations for the ADMM Formulation.

Symbol Definition

A Diagonal matrix for weight balance in ADMM
xkv Vector of the main decision variables (z̊kv, q̊kv, rkv, �̊kv,pkv)T w.r.t. request k on node v
ykv Variable copy of xkv for splitting the sharing constraints
ukv Vector of the scaled Lagrange multipliers (zukv, qukv, rukv, �ukv, pukv)T
f̊kv(xkv) Negative latent profit (cost - revenue) function w.r.t. request k on node v
� Penalty parameter in the augmented Lagrangian function
� primal, �dual Primal and dual residuals of ADMM
�primal, �dual Primal and dual feasibility tolerances of ADMM

Problem
( .1)

Problem
( .2)

split constraints

compact variables
zk, rkv,�kv,pkv

Problem
( .3)

split consensus variables zkt

reformulate constraints
(17), (18), (19)

Problem
( .4)

copy variables xkv

write 2-block ADMM

Figure 3: Flowchart of ADMM formulation with main procedures.

with respect to k and v, which hinder the distributed optimization of the problem. The main variables are written in
compact form for the sake of clarity and the convenience of derivation. This step transforms the problem into ( .2).
However, ( .2) contains consensus variable zkt, which means that, given a request k, this information is shared by
the edge nodes where the request k might be offloaded to. This also prevents the distributed optimization. Then, to
handle this issue, we split the consensus variable zkt by introducing a local copy of zkt on each possible edge node and
reformulating the corresponding constraints (17), (18) and (19), and transform the problem into ( .3). In ( .3),
both the objective function and variables are splittable across the index k and v, while the main constraints for the
requests and capacities still bind the variables together. Finally, to solve this, we copy the main decision variables
(denoted by xkv), introduce a penalty function based on the constraints, and then formulate the problem into ( .4)
based on 2-block ADMM. ( .4) is a standard ADMM formulation which can be applied for distributed optimization.

In the following, we present in detail the 3 steps of reformulations. Firstly, we write the main decision variables in
the following compact form:

zk = (zkt)Tt∈ , r
kv = (rkvt)Tt∈ , �

kv = (�kvt)Tt∈ , p
kv = (pkvte )Tt∈ ,e∈ ,

where (⋅)T is the transpose of a given matrix. Let us define:

fkv(rkv,�kv,pkv) =
∑

t∈

{

rkvtDv�v + �kvtmk�v +
∑

e∈
pkvte Be e

}

.

Then, the resource calendaring optimization problem (auxiliary variables, like bkv, 
kve , etc., are ignored here), can
be reformulated as follows:

min
∑

k∈

{

∑

v∈
fkv(rkv,�kv,pkv) −

∑

t∈
�kzkt

}

, ( .2)

s.t. �kv⋆ =
∑�k−dk

t=�k
t ⋅ zkt, ∀k,∀v, (17)

∑�k−dk

t=�k
zkt ⩽ 1, ∀k, (18)

∑

v∈
qkv =

∑�k−dk

t=�k
zkt, ∀k, (19)

∑

k∈
rkvt ⩽ 1, ∀v,∀t, (20)

∑

k∈
mk�kvt ⩽ Sv, ∀v,∀t, (21)
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∑

k∈

∑

v∈
pkvte ⩽ 1, ∀e,∀t, (22)

(rkv,�kv,pkv)T ∈ kv, ∀k,∀v, (23)
kv ∶ rest constraints of ( .1), (24)

where kv is the feasible set defined by the rest constraints of ( .1) presented in Appendix A. Note that these
constraints are splittable across the index k and v. For the sake of clarity, we change the previous auxiliary variable
�k⋆ (recall that �k⋆ is the start time of request k) to �kv⋆ in our model, where �kv⋆ can be regarded as the duplicated
information of starting time for request k on node v. Since �kv⋆ ,∀v, refers to the same starting time for request k
expressed in constraint (17), problem  .2 is equivalent to ( .1). Constraints (17), (18) and (19) perform the
admission of a request, formulated by the consensus variable zkt, while (20), (21) and (22) represent the capacity
constraints for processing, storage and bandwidth, which respectively couple the variables {rkv}, {�kv} and {pkv}.

To enable the distributed optimization, we need to split the consensus variable zkt and reformulate the correspond-
ing constraints (17), (18) and (19). To do this, we first introduce z̊kvt as a local copy of zkt for each request on each
possible edge node, and add the consensus constraint z̊kvt = zkt,∀k,∀v,∀t. Constraints (17) and (18) can thus be
rewritten as:

�kv⋆ =
∑�k−dk

t=�k
t ⋅ z̊kvt, ∀k,∀v, (25)

∑�k−dk

t=�k
z̊kvt ⩽ 1, ∀k,∀v. (26)

Then, substituting zkt for 1
||

∑

v∈ z̊
kvt (since z̊kvt = zkt,∀k, v, t) into constraint (19) and introducing an auxiliary

variable q̊kv defined as:

q̊kv = qkv − 1
||

∑�k−dk

t=�k
z̊kvt, ∀k,∀v, (27)

we can reformulate constraint (19) to ∑

v∈ q̊
kv = 0,∀k.

Let z̊kv = (z̊kvt)Tt∈ , �̊kv = mk�kv, and xkv ∶= (z̊kv, q̊kv, rkv, �̊kv,pkv)T. We further reformulate the objective
function with respect to xkv. To do this, we define a function f̊kv(xkv) as:

f̊kv(xkv) = fkv(rkv, �̊kv∕mk,pkv) −
�k

||
∑

t∈
z̊kvt (28)

Based on above, the problem  .2 can be rewritten as
min

∑

k∈

∑

v∈
f̊kv(xkv), ( .3)

s.t. z̊kv = zk, ∀k,∀v, (29)
∑

v∈
q̊kv = 0, ∀k, (30)

∑

k∈
rkv ⩽ 1, ∀v, (31)

∑

k∈
�̊kv ⩽ Sv, ∀v, (32)

∑

k∈

∑

v∈
pkv ⩽ 1, (33)

xkv ∈ ̊kv, ∀k,∀v, (34)
where ̊kv is the new feasible set defined by the constraints in (24) together with (25), (26) and (27). ( .3) is
more compact and clearer than ( .2) in terms of the decision variables and constraints, and the objective function
is now expressed as the sum of independent functions f̊kv(xkv). However, we still have several constraints includingthe request scheduling constraints (29) and (30) as well as the capacities provisioning (31), (32) and (33), which bind
the variables together with respect to the index k for the request and v for the edge node. This makes it difficult to
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compute the optimal solution in a distributed way. For this reason, in the following, we further reformulate ( .3)
into a 2-block ADMM form, as defined in [12], which can instead be optimized in a distributed manner.

To this aim, let us now define an indicator function:

(x) =
{

0 if x ∈ ,
+∞ otherwise, (35)

where is a feasible set defined by constraints (29)∼(33).
By introducing an auxiliary variable ykv ∶= (zykv, qykv, rykv, �ykv, pykv)T as a copy of xkv and setting y =

{ykv}(k,v)∈× , we have the following reformulation:
min
{xkv},y

∑

k∈

∑

v∈
f̊kv(xkv) + (y), ( .4)

s.t. xkv = ykv, ∀k,∀v, (36)
xkv ∈ ̊kv, ∀k,∀v.

5.2. ADMM Solution
To derive the solution for the optimization ( .4), we first write the augmented Lagrangian function as follows:

�({xkv}, y; {ůkv}) =
∑

k∈

∑

v∈

{

f̊kv(xkv) + ⟨ůkv,xkv − ykv⟩ + �
2
||xkv − ykv||2

}

+ (y), (37)

where ůkv is the vector of Lagrange multipliers (or dual variables) and the component ⟨ůkv,xkv − ykv⟩ is the inner
product. The last term (�2 ||xkv − ykv||2) is a penalty term and � is a positive coefficient. The rationale behind in-
troducing such penalty term is that the augmented dual function can be shown to be differentiable under rather mild
conditions on the original problem [12].

Then, based on the 2-block ADMM, we can write the solution (in a scaled form) as:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xkvi+1 ∶= argmin
xkv

{

f̊kv(xkv) + �
2
||xkv − ykvi + ukvi ||

2
}

, s.t. xkv ∈ ̊kv,

yi+1 ∶= argmin
y

{

(y) +
�
2
∑

k∈

∑

v∈
||ykv − xkvi+1 − u

kv
i ||

2
}

,

ukvi+1 ∶= u
kv
i + xkvi+1 − y

kv
i+1,

(38)

(39)

(40)

where i is the iteration index and ukv ∶= (zukv, qukv, rukv, �ukv, pukv)T = ůkv∕� is the scaled dual variable. The steps
for updating xkvi+1 and ukvi+1 can be carried out independently in parallel for each (k, v) ∈ × . Notice that the y-update
requires solving a problem having |||| blocks of variables.

In y-update, since the l2 norm ||ykv − xkvi+1 − u
kv
i ||

2 can be written in a separate form, and constraints (29)∼(33)
are independent of each other, we could split the indicator function (y) and separately update the copying variables
zykv, qykv, rykv, �ykv and pykv. The update solution for each sub-item of ykv is written as follows (for the detailed
derivation, we refer the interested readers to Appendix B):

ykvi+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zykvi+1
qykvi+1
rykvi+1
�ykvi+1
pykvi+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zki+1 + zu
k
i

q̊kvi+1 − q
k
i+1

rkvi+1 − r
v
i+1 + P[0,1∕||](r

v
i+1 + ru

v
i )

�̊kvi+1 − �
v
i+1 + P[0,Sv∕||](�

v
i+1 + �u

v
i )

pkvi+1 − pi+1 + P[0,1∕(||||)](pi+1 + pui)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

where P[a,b](e) = (min{max{aj , ej}, bj})
dim(e)
j=1 denotes the projection of e on box [a, b], and zki+1, qki+1, rvi+1,�vi+1,pi+1

are the average value for each item of xkvi+1. A similar representation is done for ukvi+1.
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Note that the step for updating xkvi+1 can be carried out in parallel for each (k, v) ∈ × . After gathering the average
information of xkvi+1 and ukvi , the updates for ykvi+1 can be independently carried out in parallel for each (k, v) ∈  ×  .
Finally, the updates are applied in parallel to ukvi+1.
5.3. ADMM Convergence

To check the convergence of ADMM, we first compute the primal and dual residuals (denoted by �primali+1 and �duali+1respectively):
⎧

⎪

⎨

⎪

⎩

�primali+1 = ||xkvi+1 − y
kv
i+1||,

�duali+1 = �||ykvi+1 − y
kv
i ||.

(42)
(43)

These values converge to zero as the ADMM algorithm progresses [12]. A recommended stopping criterion of ADMM
is defined in [12] as follows:

�primali+1 ⩽ �primali+1 and �duali+1 ⩽ �duali+1 , (44)

where �primali+1 and �duali+1 are the feasibility tolerances whose expressions are:
⎧

⎪

⎨

⎪

⎩

�primali+1 = �abs
√

n + �relmax{||xkvi+1||, ||y
kv
i+1||},

�duali+1 = �abs
√

n + �rel�||ukvi+1||,

(45)
(46)

where n = dim(xkvi+1) is the dimensionality ofxkvi+1, and �abs and �rel are the absolute and relative tolerances respectively.
In practice, we can set �abs = �rel = 10−5. The choice of these values depends on the application scenario and the
scale of variable values.
5.4. Weighted ADMM

In the augmented Lagrangian function (37), the variables in xkv ∶= (z̊kv, q̊kv, rkv, �̊kv,pkv)T have different di-
mensions, i.e., q̊kv has a dimension of 1, z̊kv, rkv and �̊kv have the same dimension of | |, while the dimension of
pkv is ||| |. Therefore, the penalty term in Lagrangian function (37) equivalently assigns different weights for the
variables. To balance the weights, we design a diagonal weight matrix A = diag(1,

√

| |, 1, 1, 1
√

||
) based on the

dimensions and the l2 norm of the penalty, and then reformulate equation (37) as:

�({xkv}, y; {ůkv}) =
∑

k∈

∑

v∈

{

f̊kv(xkv) + ⟨ůkv,A(xkv − ykv)⟩ + �
2
||A(xkv − ykv)||2

}

+ (y). (47)

Then, the 2-block ADMM solution (in a scaled form) can be written as:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xkvi+1 ∶= argmin
xkv

{

f̊kv(xkv) + �
2
||A(xkv − ykvi + A−1ûkvi )||

2
}

, s.t. xkv ∈ ̊kv,

yi+1 ∶= argmin
y

{

(y) +
�
2
∑

k∈

∑

v∈
||A(ykv − xkvi+1 − A−1ûkvi )||

2
}

,

ûkvi+1 ∶= û
kv
i + A(xkvi+1 − y

kv
i+1).

(48)

(49)

(50)

For above equations, we abuse notation ukv and let ukv = A−1ûkv to simplify the formulations, equation (50) is
transformed to the same form as equation (40). Based on the derivation in Appendix B, the solution for the new y-
update (49) can be also transformed to the same form as the solution (41). Finally, the only change is x-update which
solves equation (48) instead of (38).
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Algorithm 6 Distributed Resource Scheduling
1: Initialize ykv0 = 0, ukv0 = 0, � = 0.2, i = 0;
2: while True do
3: Compute xkvi+1,∀k, v in parallel by optimizing (48) (with ykvi , ukvi );
4: Aggregate xkvi+1 to update ykvi+1,∀k, v in parallel via Equation (41) (with xkvi+1, ukvi );
5: Update ukvi+1,∀k, v in parallel via Equation (40) (with xkvi+1, ykvi+1);
6: Compute primal and dual residuals (�primali+1 , �duali+1 ) via Equations (51) and (52);
7: if �primali+1 ⩽ �primali+1 & �duali+1 ⩽ �duali+1 then
8: Return xkvi+1;
9: Update penalty parameter � via Equation (56);
10: i ∶= i + 1;

Correspondingly, the primal and dual residuals are rewritten as:
⎧

⎪

⎨

⎪

⎩

�primali+1 = ||A(xkvi+1 − y
kv
i+1)||,

�duali+1 = �||ATA(ykvi+1 − y
kv
i )||.

(51)
(52)

And the feasibility tolerances are expressed are:
⎧

⎪

⎨

⎪

⎩

�primali+1 = �abs
√

n + �relmax{||Axkvi+1||, ||Ay
kv
i+1||},

�duali+1 = �abs
√

n + �rel�||AAukvi+1||.

(53)
(54)

To sum up, our ADMM-based distributed resource scheduling is defined in Algorithm 6.
An advantage of ADMM is that the solving of the optimization problem is distributed among all or part of the edge

computing nodes. Specifically, one edge node will play a role of management to distribute and coordinate the whole
optimization process. Each edge node v will separately compute the optimizations for xkvi+1, ∀k (x-update) in its localplace, and each sub-task k could be also computed in parallel inside edge node v (leveraging the different computing
cores or servers) based on the solution (see Equation (38)). After all the computation is done, themanagement nodewill
collect and aggregate the intermediate solution xkvi+1,∀k, v to generate information, e.g., zki+1, zuki , qki+1, rvi+1, etc., (seeEquation (41)), and also update the penalty parameter for the next iteration. Then, this information will be delivered to
all edge nodes for continuing the next optimization round. During each iteration, the management node will check the
convergence conditions to decide whether to finalize the whole tasks and report the final acceptable solution xkvi+1, ∀k, vbased on the convergence condition (44).
5.5. Comment on convergence

To make the ADMM algorithm convergence fast, the penalty parameter (�) can be properly tuned in each iteration
of the solving procedure. In the ADMM update equations, a large value of � gives a large penalty on violations of
primal feasibility and hence tends to produce small primal residuals. Conversely, a small � value tends to reduce
the dual residual, but at the expense of reducing the primal feasibility and producing a larger primal residual. A
general method is introduced in [40, 41] for balancing the variations of both primal and dual residuals, which is mainly
designed for convex programming problems. However, it may show some instability and non-convergence properties in
some application scenarios [42]. Here, we propose problem-specific modifications on this method for the � updating
strategy, which suites to the characteristics of our optimization model (i.e., mixed-integer, non-linear, non-convex
programming). We first introduce the original strategy of [40, 41] as follows.

�i+1 =

⎧

⎪

⎨

⎪

⎩

�i!incr, if ||�primali || > '||�duali ||,
�i∕!decr, if ||�duali || > '||�primali ||,
�i, otherwise,

(55)
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where !incr > 1, !decr > 1 and ' > 1 are parameters. Typical values can be !incr = !decr = 2 and ' = 10. The
idea behind the above strategy (55) is to try to keep the primal and dual residual norms within a small factor (') of
one another as they both converge to zero.

Our proposed strategy is shown as follows:

�i+1 =
{

�i!incr, if ||�primali || > '||�duali || or stuck_in_local_trap,
�i, otherwise. (56)

where stuck_in_local_trap is to detect whether the ADMM algorithm is stuck in a local trap during the solving pro-
cedure. We define the local trap as a state when either of the primal and dual residuals keep unchanged for a certain
interval, e.g., more than 5 iterations. Compared with the strategy in [40, 41], we also eliminate the decreasing statement
of �, which, in practice, is a cause of instability and non-convergence of the algorithm.

We will illustrate in the next section how these approaches permit to make the algorithm converge in practical
network scenarios considered in our numerical evaluation.

6. Numerical Results
In this section we evaluate the performance of the proposed model, the SFS and Greedy heuristics, as well as the

distributed (ADMM-based) resource allocation algorithm in terms of the profit of the operator, expressed as in ( .1),
the serving rate (the fraction of admitted requests) and the computation time to get the solution.

Consequently, the rest of this section is organized as follows: section 6.1 presents the network topologies we
have considered in our numerical evaluation campaign; section 6.2 describes the setup for our experiments; finally,
section 6.3 discusses the results obtained in different network scenarios.
6.1. Network Topologies

We evaluate our optimization approach using multiple network topologies, described hereafter, including several
random graphs as well as a topology built on a real network scenario.
6.1.1. Random graphs

We first consider Erdös-Rényi random graphs [43], setting the desired number of nodes and edges. As the original
Erdös-Rényi algorithm may produce disconnected random graphs with isolated nodes and components, to generate a
connected network graph we patch it with a simple strategy that connects isolated nodes to randomly sampled nodes
(up to 10 nodes) in the graph. We generate several kinds of topologies with different numbers of nodes and edges,
starting from simple ones to larger and more complex networks, as shown in Figure 4. The structural information for all
topologies (including the one obtained in the real network scenario illustrated in the following) is reported in Table 4.
All topology datasets are publicly available in our repository1. These topologies can be considered representative of
various edge network configurations where multiple edge nodes are distributed in various ways over the territory.
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Figure 4: Random network topologies: (a) 5 nodes and 5 edges; (b) 30 nodes and 50 edges. Ingress nodes for each graph
are colored in orange.

1https://github.com/bnxng/Topo4Edge
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(c) Topology on clusters
Figure 5: Città Studi topology with 30 nodes, 35 edges and 6 ingress nodes (marked with gray shadow).

Table 4
Structural information of the topologies used in the experiments.

Topology #Nodes #Edges #Ingress Degree (Min, Max, Avg) Diameter

5N5E 5 5 3 (1.0, 3.0, 2.0) 3
30N50E 30 50 5 (1.0, 7.0, 3.3) 5

CittàStudi 30 35 6 (1.0, 6.0, 2.3) 10

6.1.2. A real network scenario
We further consider a real network scenario, with the actual deployment of Base Stations collected from an open

database, OpenCellID2, which collects information of BSs from all over the world, including their positions. This
topology was first introduced in [44], but in this paper we use it in a different context, solving the resource calendaring
problem in aMEC context. Specifically, we considered the “Città Studi” area around Politecnico diMilano and selected
one mobile operator (Vodafone) with 133 LTE cells falling in such area (see Figure 5(a)).

We then performed a clustering on such cells, as illustrated in Figure 5(b), obtaining 30 clusters.
Finally, we generated the network topology which, as in real mobile scenarios, has a fat tree-like shape with edge

nodes connecting aggregation nodes, in the following way, starting from the cluster centroids:
• we connected any two nodes if their distance is lower than a given threshold (800 meters). By doing so, note that

some “leaf”/edge nodes become connected to more than one aggregation node to increase redundancy and hence
reliability of the final topology, as it happens in real networks. In Figures 5(b) and 5(c) the color (illustrated in the
vertical bars) corresponds to the cluster size (number of cells contained in the cluster), with nodes aggregating
more than 5 cells being regarded as the aggregation nodes;

• we determined the Minimum Spanning Tree of the geometric graph weighted by the distance and cluster size,
while preserving some redundant links mentioned above.

The resulting topology is illustrated in Figure 5(c); the average node degree resulting from the above procedure
is 2.33. In such topology, edge servers can be installed in all nodes.
6.2. Experimental Setup

We implemented our model and heuristics using SCIP (Solving Constraint Integer Programs)3, an open-source
framework that solves constraint integer programming problems. All numerical results presented in this section have
been obtained on a server equipped with an Intel(R) Xeon(R) E5-2640 v4 CPU @ 2.40GHz and 126 Gbytes of RAM.
The parameters of SCIP in our experiments are set to their default values. The results illustrated in the following figures
are obtained by averaging over 50 instances, with 97% narrow confidence intervals.

We uniformly extract, at random, source nodes as well as the starting/ending times and duration, and the revenue
gained by the operator in serving each request, in the [100, 300] range. We further generate random request rates on
the ingress edge nodes of the network topologies (see Figures 4(a), 4(b) and 5(c)) according to a Gaussian distribution
N(�k, �2), where �k is uniformly selected in the 30 to 50 Gbps range and � = 0.5. We further consider more complex

2https://www.opencellid.org/
3http://scip.zib.de
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Table 5
Parameters setting - initial (reference) request data (for the case of high incoming request load).

Request ID �k(slot) �k(slot) dk(slot) �k(Gbps) �k(e)

A1 3 12 5 50 200
A2 1 8 3 40 100
A3 5 20 8 45 200
A4 3 16 8 35 300
A5 5 18 6 55 250
A6 7 22 9 30 150

Table 6
Network scenarios considered in the experiments.

Scenario Topology Requests on Ingress Random Split No. of Requests

5N5E3R 5N5E A1-A3 - 3
30N50E30R 30N50E A1-A5 6 30
CittàStudi6R CittàStudi A1-A6 - 6
CittàStudi30R CittàStudi A1-A6 5 30

scenarios by randomly splitting the “heavy” requests on each ingress node to spawn a variety of “small” different
requests; specifically, for topology 30N50E (see Table 4), we generate one request on each of the five ingress nodes,
then split each request into 6 parts to create a network scenario 30N50E30R having a total of 30 requests; for topology
Città Studi, in the same way, we first create a scenario CittàStudi6R having 6 requests where each ingress node holds
one, then each request is split into 5 parts to generate a scenario CittàStudi30R having a total of 30 requests. For
the sake of simplicity, we assume that all links have the same bandwidth (Be = 30 Gbps) and nodes have the same
computation capacity (Dv = 30 Giga cycles/s) and storage capacity (Sv = 40 GB). The costs of using one unit of
these three resources,  e, �v, and �v, are all set to 0.01. Finally, we set the processing density �k = 1 and the storage
requirement mk = 10 for all requests.

In Table 5, we provide a summary of the reference values we define for the main parameters related to requests.
Such values are representative of a scenario with a high load of requests relative to the limited computation. Our
request rates result from the aggregation of requests generated by multiple users connected at a given ingress node.
More specifically, the values of request rate �k are designed to cover several different scenarios, i.e., mice, normal and
elephant request load. We select rate values and requests duration (starting and ending times) which are typical of a
5G usage scenario (eMBB, URLLC, and mMTC) [45]. For instance, a request which has a very short computation
duration and a small rate could represent an URLLC use case, and a mission critical application, while a request with
a higher computation duration and a high rate could represent an eMBB use case and an augmented reality service.
Specifically, the white paper [45] describes a COSMOTE (a provider of Edge Computing infrastructure) 5G testbed
with an Openstack-based multi-cloud infrastructure interconnected with 10 Gbps fiber/copper links. In case of smart
metropolitan areas, the network capabilities and requirements of MEC hosts are investigated in a survey [46], which
shows that every MEC host can use, on average, at least 62.5 Gbps in downlink and 10.41 Gbps in uplink. In [47],
the authors study the network requirements to realize a use case of MEC-based AR assisted remote surgery, which
requires a bandwidth of at least 30 Gbps. In this work we are using parameters for our demands that are in the range
of those indicated in the above works, e.g., in our settings, the request rates at ingress nodes vary from 30 to 50 Gbps,
and the link bandwidth is set to 30 Gbps. In Table 5, almost all requests cannot be served using only the resources
(computation capacity) at their respective ingress nodes. Note that our proposed model and heuristics are general, and
can be applied to optimize resource allocation in all network scenarios with any parameters setting.

Table 6 summarizes for each network scenario we considered in our numerical evaluation the network topology
used, the users requests offered to the network (following Table 5 definitions), how they are split and the total number
of requests.

Parameters’ setting has an impact on the performance of the proposed heuristic algorithms, both in terms of quality
of the obtained solution and execution time. Hereafter, we consider the Greedy algorithm as an example. Table 7
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Table 7
Effect of the wgreedy parameter on the profit obtained by the Greedy approach and corresponding computing time under
three scenarios with computation capacity Dv scaled by 0.6, ∀v.

Scenario
(Dv scaled by 0.6, ∀v)

wgreedy
0.4 0.6 0.8

CittàStudi6R 645.74 (49 s) 838.64 (30 s) 321.10 (7 s)
CittàStudi30R 850.26 (297 s) 837.12 (189 s) 822.73 (125 s)
30N50E30R 740.15 (524 s) 747.96 (665 s) 747.59 (644 s)

illustrates the effect of wgreedy on the profit value and on the corresponding computing time of the Greedy approach
under three demanding scenarios (with limited computation capacity, obtained scaling the Dv parameter by a factor
0.6, ∀v). Thewgreedy parameter permits to strike a balance between the obtained performance and the computing time.
In fact, Greedy obtains a higher profit value atwgreedy = 0.6 in almost all scenarios except CittàStudi30R, where it has
slightly lower profit value than that of point 0.4, but with a much shorter computing time. In scenario CittàStudi6R,
Greedy obtains much better profit at point 0.6 than that obtained at points 0.4 an 0.8 with an increase of a factor 1.3
and 2.6, respectively. Finally, the value of wgreedy used in the following subsections is set to 0.6.
6.3. Discussion of Results

In the following, we first compare the results obtained from both the exact model and the heuristics, including our
ADMM-based approach, for a small network scenario: the 5N5E network with 3 requests (represented by 5N5E3R) in
section 6.3.1. Then, in section 6.3.2, we analyze the effect of different parameters on the solution obtained by the two
heuristics SFS and Greedy for two large network scenarios, i.e., one random topology 30N50E and one real network
scenario Città Studi with 30 requests (represented by 30N50E30R and CittàStudi30R, respectively). For this latter
topology, to model different levels of demand aggregation, we considered a further scenario (denoted by CittàStudi6R)
with 6 requests that are the aggregations of the above 30 requests at the 6 ingress nodes, while maintaining the same
total request rates.
6.3.1. Comparison of the exact model and heuristics
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Figure 6: Profit against request rate (�k) for scenario 5N5E3R.

The 5N5E3R topology allows us to compare to the optimal solution the solutions obtained from the heuristics (SFS
and Greedy) as well as the distributed algorithm ADMM. In fact, the exact model ( .1) could be solved in a reason-
able time only in the small topology (5N5E3R). Figure 6 plots the profit versus the request rate �k keeping the revenue
�k fixed, where Optimal represents the result obtained by solving the exact model ( .1). The decreasing trend of
the profit for all the approaches, when increasing �k, is due to the fact that more resources are needed, hence the cost
incurred by the operator increases while the revenue is fixed. This results into a profit decrease. The profit drops to
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Table 8
Comparison of computing time (seconds).

Scenario Optimal SFS Greedy ADMM

5N5E3R 62 1.3 1.9 59
30N50E30R - 1096 822 6676|890
CittàStudi6R - 19 36 365
CittàStudi30R - 362 325 6631|884

around 300 for SFS, ADMM andOptimal, while around 200 forGreedy. The curves show a step-wise pattern due to the
combinatorial expression of the profit in the objective function of the optimization ( .1) and the only 3 requests con-
tained in instance 5N5E3R. Both ADMM and SFS exhibit excellent performance since their curves practically overlap
that ofOptimal, whileGreedy shows lower performance. In the small network scenario, 5N5E3R, ADMM and SFS can
obtain good results mainly due to two reasons: i) the solution space of the optimization model for 5N5E3R is relatively
small and simple, ii) the algorithms can capture the main issues of the problem: taking into account requests’ priority
and overlapping, namely in deciding their admission into the system, as well as performing an effective exploration of
candidate computing nodes, etc, which all influence significantly the quality of the obtained solution. However, we can
expect that in larger scenarios, a certain gap exists with respect to the optimum. As for the Greedy algorithm, its lower
performance is mainly due to its differences with respect to SFS. Specifically, the Greedy approach adopts different
strategies to prioritize requests and to search candidate nodes for processing requests. Besides, it does not consider
requests’ overlap and the exploration of solutions in case of infeasibility. Therefore, it may show lower performance.

As for the computing time, Table 8 summarizes this performance figure for our proposed algorithm in the consid-
ered network scenarios; for example, in the 5N5E3R scenario, Optimal has an average computing time of 62 s, ADMM
of 59 s, while Greedy takes 1.9 s and SFS just 1.3 s. A detailed discussion on the results of large network scenarios
is provided in the following subsections. As for the two ADMM values related to topologies 30N50E30R and CittàS-
tudi30R, the first is the computing time measured in the simulation server used in our measurement campaign, with 20
CPU Cores, and the second is the estimated computing time for a real edge computing network where the computation
of subproblems can be fully distributed. More details are provided below when discussing the results in Table 9.
6.3.2. Analysis of SFS and Greedy heuristics’ results for large networks

In the following, we illustrate the objective function value, in terms of profit, as a function of different parameters
for the two network scenarios 30N50E30R and CittàStudi30R (Figures 7-11) and serving rate, which is plotted as a
function of the request rate and revenue (�k, �k) (see Figure 9).

Effect of the request rate (�k): Figures 7(a) and 7(b) report the profit as the function of the request rate �k,
scaled from 0.5 to 2.0 with respect to their initial values (see Table 5), for scenarios 30N50E30R and CittàStudi30R,
respectively. As �k increases, the profits for all approaches in the two scenarios decrease, since the revenue from
serving each request is fixed while the system cost for serving the growing requests increases. In Figures 7(a) and 7(b),
the SFS curves show a similar trend as �k increases, whileGreedy curves follow a slightly different pattern, specifically,
the profit in 30N50E30R decreases smoothly as �k increases, while in CittàStudi30R, the profit rapidly decreases after
the scaling point 1.4. Finally, SFS performs better than Greedy in both scenarios with average gaps up to 8% and 9%,
respectively.

Effect of the request rate and revenue (�k, �k): Figures 8(a) and 8(b) illustrate the profit variation versus the
request rate and revenue for scenarios 30N50E30R and CittàStudi30R, respectively. Values of �k and �k, k ∈  are
both scaled, at the same time, from 0.5 to 2.0 with respect to their initial values. Such scaling implicitly indicates that
serving each request provides a revenue proportional to its arrival rate. As (�k, �k) increase, the profits (see Figures 8(a)
and 8(b)) for SFS increase, showing an opposite trend compared with Figures 7(a) and 7(b); the network operator, in
fact, is able to select and admit the requests which can cover the system cost and provide, at the same time, higher
profit. In Figure 8(b), when the scale is larger than 1.7, Greedy shows a slight decreasing trend, since it fails to find a
good solution to balance the cost and profit.

Figures 9(a) and 9(b) illustrate the variations of serving rate versus the request rate and revenue for scenarios
30N50E30R and CittàStudi30R, respectively. In Figure 9(a), when the request rate is low, all user requests can be
served; when it increases, specifically after the point around 1.2, the serving rate of SFS decreases since the system can
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accommodate less requests, which become more demanding, hence costlier in terms of required resources. In scenario
CittàStudi30R (see Figure 9(b)), when the scale factor is lower than 1.25, the serving rates for both approaches slowly
decrease as the request rates increase; after that, the decrease for Greedy becomes rapid while for SFS it is slower.
Finally, SFS exhibits better performance compared to Greedy, with gaps up to 18% for the profit and 20% for the
serving rate.

Effect of the link capacity Be: The variation of the profit as a function of the link capacity Be (scaled from
0.1 to 1.2 with respect to its initial value), is illustrated in Figures 10(a) and 10(b) for scenarios 30N50E30R and
CittàStudi30R, and they show a very similar trend. When Be increases, the profit increases for both SFS and Greedy
in the two scenarios. Both of them increase fast before the scaling point 0.75, reflecting the positive effect of the
available link capacity on the profit. Additionally, SFS performs better than Greedy with clear gaps: up to 77%. For
larger values of the available link capacity, there are naturally enough resources to satisfy the requests’ requirements;
SFS and Greedy hence perform similarly and converge to specific values, and the gap between them also decreases.

Effect of the computation capacity Dv: Figures 11(a) and 11(b) show the variations of the profit against the
edge node computation capacity Dv, scaled with respect to its initial value from 0.5 to 1.5, in scenarios 30N50E30R
and CittàStudi30R. When Dv increases, the profit first increases rapidly and then converges to a specific plateau valuefor all approaches. Note that, for all allocation algorithms, the increase in terms of achieved profit can be up to 300,
while the increase of the serving rate is around 0.4. These trends reflect the strong effect of the available computation
capacity on the profit and serving rate. Additionally, SFS performs better than Greedy with clear gaps (up to 13%
for the profit). With the increase of computation capacity, the performance gap between SFS and Greedy decreases
since the utilization of enhanced algorithms is less critical to perform a good resource allocation, when resources are
abundant. In both network scenarios, SFS allows the operator to achieve higher profit, which stabilizes when the scale
of computation capacity is above the 0.9 value, while Greedy converges after the computation capacity is scaled up to
around 1.1 for 30N50E30R, and around 0.9 for CittàStudi30R.

Finally, in Table 8, SFS exhibits an average computing time of 1096 s in scenario 30N50E30R and of 362 s in
scenario CittàStudi30R, confirming its efficiency in computing good solutions in a short time. The Greedy approach
needs less computation time, on average 822 s in 30N50E30R and 325 s in CittàStudi30R, to obtain a solution, at the
cost of higher performance gaps with respect to the SFS heuristic. Besides, compared with 30N50E30R,CittàStudi30R
requires slightly less computing time to obtain the solutions since its topology has a relatively smaller size and a fat-
tree structure. Generally, when the network scenario is small (e.g., 5N5E3R, CittáStudi6R), SFS can be slightly faster
than Greedy. In this case, we observe that the quality of the heuristic trial solutions for the subproblems influences the
efficiency of the optimization solvers. SFS provides better solutions, compared with Greedy. On the other hand, for
larger networks, the exploration of SFS becomes heavier, which consumes a larger amount of time. Since the Greedy
algorithm does not have this overhead, in such scenarios it runs faster than SFS. For ADMM, a detailed discussion
on both the measured and estimated computing times under the 30N50E30R and CittàStudi30R scenarios is provided
below in Section 6.3.3.
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Figure 7: Profit against scaling parameter �k for scenarios (a) 30N50E30R, (b) CittàStudi30R.
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Figure 8: Profit against scaling parameters (�k, �k) for scenarios (a) 30N50E30R, (b) CittàStudi30R.
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Figure 9: Serving rate against scaling parameters (�k, �k) for scenarios (a) 30N50E30R, (b) CittàStudi30R.
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Figure 10: Profit against scaling parameter Be for scenarios (a) 30N50E30R, (b) CittàStudi30R.

6.3.3. Analysis of ADMM results
To measure the performance of the distributed, ADMM-based algorithm described in Section 5, we run exper-

iments comparing the behavior of ADMM, SFS and Greedy in the CittàStudi6R network scenario with 6 requests.
Figures 12(a), 12(b) and 12(c) illustrate the variation of the profit as a function of scaling parameters �k, Be, and Dv,respectively. The curves in the sub-figures have trends similar to those in Fig. 7, 10 and 11, respectively, thus confirm-
ing the effects of these parameters on the solutions obtained in different network scenarios. The curves also show a
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Figure 11: Profit against scaling parameter Dv for scenarios (a) 30N50E30R, (b) CittàStudi30R.

step-wise pattern (like Figure 6) due to the same reasons highlighted before. Note that the curves practically overlap,
except for very high traffic requests/scaling factors (see Fig. 12(a), particularly with scaling factors below 1.7); the
same behavior can be observed in Fig. 12(b), especially for scaling values larger than 0.9, as well as in Fig. 12(c)
for scaling factors above 0.8). This indicates that our proposed distributed algorithm achieves practically the same
performance as the centralized algorithm (SFS) in a large set of real network settings.

As for the computing time, SFS requires, on average, 19 s, Greedy takes 36 s, and ADMM takes 365 s, with an
average of 143 iterations. The main reason for the higher computing time of ADMM is due to the number of iterations
needed for the convergence, the computing time of each subproblem and also the parallelization of the solving process
for all subproblems in the environment. For instance, regarding topology CittàStudi6R, the maximum number of
subproblems to be computed in parallel for each iteration of ADMM is |||| = 180 and each subproblem takes
around 1 ∼ 2 seconds. To solve the optimization in a reasonable time, we limit the number of neighbor edge nodes
that can be explored to 5 nodes, which reduces the number of the subproblems to 5|| = 30. The disadvantage is that it
degrades the performance ofADMM. In each iteration ofADMM, these subproblems are solved on the simulation server
which has 20 (< 30 subproblems) cores. As mentioned above, in this case, ADMM takes around 365 s with an average
of 143 iterations. In a real edge network environment, all subproblems in each iteration can be solved distributedly on
the edge nodes, and as a result both the performance and the computing time can be certainly improved. For a larger
network scenario, ADMM has higher potential compared to SFS and Greedy w.r.t. the performance and computing
time, since for ADMM these are mainly influenced by the solving process of each subproblem (kv ∈  × ) whose
complexity only depends on | |, i.e., the number of slots considered in the time horizon, while for both SFS andGreedy
algorithms it depends on the complexity of the original problemwhich increases exponentially w.r.t. the problem scale.

Table 9 compares the profit value obtained and the corresponding computing time of different approaches in net-
work scenarios CittàStudi30R and 30N50E30R. Three scaling points for the request rate �k,∀k are selected in each
scenario. Regarding the profit value, ADMM performs better than SFS and Greedy except at scaling point 0.5 in the
30N50E30R scenario, where the profit obtained by ADMM is slightly lower than that achieved by SFS. For the com-
puting time, the Table reports for ADMM two values: one is the computing time measured in a simulation server with
20 CPU cores (the one we used in our measurement campaign), and the other is the estimated computing time for a
real edge computing network where the computation of subproblems can be fully distributed. We estimate the value
based on the following analysis. In the experiments, for requests from different ingress nodes, we make the algorithms
(SFS, Greedy, ADMM) explore the 5 nearest neighbor nodes for each ingress node to limit the exploration space and
accelerate the process assuming their total computation capacity is sufficient. Therefore, for ADMM, the number of
parallelized subproblems is equal to |||nb| = 30 ∗ 5 = 150, and the theoretical computing time in real networks
would be 20∕150 = 1∕7.5 times lower than that obtained with the simulation server; for instance, in the CittàStudi30R
scenario at point 0.5, the estimated computing time is 6676∕7.5 = 890s. Compared with SFS and Greedy, the esti-
mated computing time of ADMM is larger in scenarioCittàStudi30R due to the overhead of ADMM caused by the many
iterations needed for a convergence to the solution. As the problem scale increases, the overhead of ADMM becomes
negligible compared to the total computing time. For instance, in scenario 30N50E30R, the estimated computing time
of ADMM is almost at the same level as in scenario CittàStudi30R, it is also close to the computing time of SFS, and
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Table 9
Comparison among ADMM, SFS and Greedy in large network scenarios w.r.t. profit and computing time.

Approach CittàStudi30R (scaling �k,∀k) 30N50E30R (scaling �k,∀k)
0.5 1.0 1.5 0.5 1.0 1.5

Greedy 1113, 341 s 1079, 313 s 1013, 279 s 966, 885 s 906, 815 s 851, 922 s
SFS 1137, 352 s 1104, 375 s 1081, 343 s 999, 875 s 970.6, 1032 s 881, 1126 s

ADMM 1142, 6676|890 s 1116, 6536|871 s 1092, 7907|1054 s 980, 6631|884 s 970.8, 7866|1049 s 951, 8144|1086 s

even lower than it at point 1.5. For SFS and Greedy, due to the higher complexity, the computing time increases of
about 2.8 times in scenario 30N50E30R.

Another aspect to be considered is that the performance of ADMM depends on the initial penalty parameter � and
the updating strategy (see Algorithm 6), which can be further tuned to achieve the best performance. In this work, we
use empirical and intuitive settings for ADMM, for simplicity, and at the same time, to demonstrate the potential of a
distributed algorithm applied in the resource scheduling for edge computing networks. A rigorous fine tuning will be
the subject of future work.

Finally, we would like to emphasize that a key advantage of ADMM is that the optimization for resource scheduling
can be solved distributedly on all edge computing nodes, while providing a very good solution for the operator. This
feature of ADMM is very important: it allows the operator to alleviate the problems deriving from a single point
of failure and to obtain a good scheduling solution in an environment where, in several practical situations, only a
distributed scheme can be applied for optimizing the resource allocation and scheduling.
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Figure 12: Profit against scaling parameters �k, Be, and Dv for scenarios CittàStudi6R.

7. Conclusion
In this paper we formulated and solved the resource calendaring problem in mobile networks equipped withMobile

Edge Computing capabilities. Specifically, we first proposed an exact optimization model and an effective heuristic
able to obtain a near-optimal solution in all the considered, real-size network scenarios.

We further proposed a distributed resource allocation algorithm, based on the ADMM method, that we extended
using a weighting approach especially tailored to our problem, which allows each node to take local decisions coordi-
nating its actions with the other nodes, converging reasonably fast to near-optimal solutions, as we illustrated in our
numerical evaluation which includes both random geometric graphs and realistic mobile network topologies obtained
from actual cell positions.

The decisions we optimized include admission control for the user requests offered to the network, their calendaring
(scheduling) and bandwidth constrained routing, as well as the determination of which nodes provide the required
computation and storage capacity. Calendaring, in particular, permits to exploit the intrinsic flexibility in the services
demanded by different users, whose starting time can be shifted without penalizing the utility perceived by the user
while, at the same time, permitting a better resource utilization in the network.

Other future research directions include more experiments on the ADMM approach, considering larger networks
and fine tuning the initial penalty parameter and the updating strategy, as well as the implementation of the approach
Bin Xiang et al.: Preprint submitted to Elsevier Page 27 of 38



Resource Calendaring for Mobile Edge Computing: Centralized and Decentralized Optimization Approaches

on a real network testbed. It would further be interesting to devise and numerically analyze other objective functions
with a more sophisticated pricing model (e.g., with a fixed and a variable/proportional part according to the requests
types and requirements [48]) for edge computing services. Another interesting point that is worth investigating is to
extend the model capturing errors and subsequent retransmissions in the processing problem, which has an impact on
the experienced latency and deadlines of users’ requests.
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Appendix A Problem Reformulation
Problem 0 formulated in Section 3 cannot be solved directly and efficiently due to following reasons:
• We perform optimal routing (the routing path kv is a variable in our model, since many paths may exist from

each request source node sk to a generic node v in the network); furthermore, we must ensure that the properties
of no-splitting, continuity and acyclicity are respected for our routing solution.

• Variables kv and qkv are “intertwined”: to find the optimal routing, the fraction of request processed at each
node v should be known, and at the same time, to solve the optimal allocation for a request, the routing path
should be known.

• 0 contains indicator functions and constraints, e.g., (7), (10), (15), etc., which cannot be directly and easily
processed by most solvers.

To deal with these challenging issues, we propose an equivalent reformulation of 0, which can be solved very
efficiently with the Branch and Bound method. Moreover, based on the reformulated problem, we propose an heuristic
algorithm which can get near-optimal solutions in a short computing time.
A.1 Network Routing

To determine the routing pathkv, we first introduce a binary variable 
kve defined as follows:


kve =
{

1, if e ∈ kv,
0, otherwise, ∀k,∀v,∀e,

which indicates whether e is used in the routing path kv or not. Note that only if request k is processed on node v
(i.e., bkv = 1) and v ≠ sk, the corresponding routing path is defined. Then we have:

{


kske = 0, ∀k,∀e,

kve ⩽ bkv, ∀k,∀v,∀e.

(57)

Based on the definitions introduced in the previous subsection, the traffic flow fke can be transformed as:
fke =

∑

v∈

kve q

kv,∀k,∀e. (58)
Nowwe need to simplify the traffic flow conservation constraint (see Eq. (6)). To this aim, and to simplify notation,

we first introduce in the network topology a “dummy” entry node 0 which connects to all source nodes sk, k ∈ . All
requests are coming through this dummy node and going to each source node with volume �k, i.e. fke = 1,∀k,∀e ∈  ,
where  = {(0, sk) | k ∈ } is the dummy link set. Then, we extend the definition of Φ−v to Φ−v = {(v′, v) ∈  ∪ }.
Equation (6) is hence transformed as:

∑

e∈Φ−v

fke −
∑

e∈Φ+v

fke = q
kv, ∀k,∀v. (59)

Correspondingly, we add the following constraints to the set  of dummy links:


kve =
{

bkv, if e = (0, sk)
0, otherwise, ∀k,∀v,∀e ∈  . (60)

The final stage of our procedure is the definition of the constraints that guarantee all desirable properties that a
routing path must respect: the fact that a single path is used (a request piece is no more splittable), the flow conservation
constraints that provide continuity to the chosen path, and finally the absence of cycles in the routing path kv. We
would like to highlight that the request k can be only split at source node sk, and each portion of such traffic is destined
to an edge node v, and this is the reason why we have multiple routing paths kv, v ∈ {1, 2,⋯}.

To this aim, we introduce the following conditions:
• For an arbitrary node v′, the number of incoming links used by a pathkv is one, and thus variables 
kve should

satisfy the following condition:
∑

e∈Φ−
v′

kve ⩽ 1, ∀k,∀v,∀v′. (61)
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• The flow conservation constraint (see Eq. (59)) implements the continuity of a traffic flow.
• Every routing path should have an end or a destination to avoid loops. This can be ensured by the following

equation:

kv(v,v′) = 0, ∀k,∀(v, v

′) ∈  . (62)
Satisfying them along with the constraints illustrated before can guarantee that such properties of the routing path are
respected. The proof is as follows:
Proof. a) Substitute Eq. (58) into (59) and make the following transformation:

∑

v′∈
qkv

′
(
∑

e∈Φ−v


kv
′

e −
∑

e∈Φ+v


kv
′

e ) = qkv, ∀k,∀v. (63)

b) Based on constraints (57) and (60), we have:
if qkv′ = 0, then ∑

e∈Φ−v


kv
′

e −
∑

e∈Φ+v


kv
′

e = 0.

c) From a) and b), we have:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

e∈Φ−v


kve −
∑

e∈Φ+v


kve = 1, ∀k,∀v | qkv > 0,

∑

e∈Φ−v


kv
′

e −
∑

e∈Φ+v


kv
′

e = 0, ∀k,∀v,∀v′ ≠ v.

d) Based on c), constraint (60), conditions (61) and (62) can be written as:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

e∈Φ−
sk


kve = 1, ∀k,∀v | qkv > 0,

∑

e∈Φ−v


kve = 1, ∀k,∀v | qkv > 0,

∑

e∈Φ−v


kv
′

e =
∑

e∈Φ+v


kv
′

e ⩽ 1, ∀k,∀v,∀v′ ≠ v.

(64)

(65)

(66)

Their practical meaning is explained as follows:
• (64) ensures dummy link (0, sk) to be the zeroth link in any routing path kv if qkv > 0,
• (65) ensures node v to be the end node of the last link in any routing path kv if qkv > 0,
• (66) ensures that if v ∈ ∖{v′} is an intermediate node in a routing pathkv′ , v should have only one incoming

link and one outgoing link. It also indicates the continuity of a request flow.
e) Given a non-empty routing pathkv′ (qkv′ > 0), check its validity by using the above conditions:
• Let v = sk in (66), then based on (64), ∑e∈Φ+v


kv′e = 1. Next, we assume e1 = (sk, v1) is the first link of the
routing path kv′ , then 
kv′e1

= 1;
• If v1 = v′, then the path is found, otherwise, we continue with the following steps:
• Let v = v1 in (66), due to 
kv′e1

= 1, ∑e∈Φ+v1

kv′e = 1. Next, we assume e2 = (v1, v2) is the second link of kv′ ,

then 
kv′e2
= 1;

• We continue to check the path following the way as above the two steps until the final target vn = v′ is reached,along the whole path (sk → v′) = (e1, e2,⋯ , en).
Thus, if all the conditions are satisfied, kv′ must be a valid routing path having the three properties.
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Based on the above reformulation of routing, the flow conservation constraints can be further improved as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

e∈Φ−v


kve = bkv, ∀k,∀v,

∑

e∈Φ−
v′


kve =
∑

e∈Φ+
v′


kve , ∀k,∀v,∀v
′ ≠ v.

(67)

(68)

A.2 Link Latency
Based on the above definition of the routing variable 
kve , we can rewrite constraint (8) as:
{

qkv�k − (1 − 
kve )Λ
k < pkve Be,

pkve ⩽ 
kve ,
∀k,∀v,∀e, (69)

where Λk = �k + c and c = 1 is a constant. Note that the term (1 − 
kve ) permits to implement condition e ∈ kv in
Eq. (8).

We now introduce variable ℎkve , defined as follows:

ℎkve = 1
pkve Be − qkv�k + (1 − 
kve )Λk

, ∀k,∀v,∀e. (70)

This permits to transform Eq. (7) as T kvL =
∑

e∈ 

kv
e ℎ

kv
e . We then need to linearize the product of the binary variable


kve and the continuous variable ℎkve , and to this aim we introduce an auxiliary variable gkve = 
kve ℎ
kv
e , thus also

eliminate T kvL .
We first compute the value range of ℎkve by considering the two cases: if 
kve = 0, the range is [(Λk)−1, c−1],

where c = Λk − �k, and if 
kve = 1, the range is [B−1e , ((�k − �k − dk)�)−1] based on constraint (4). In detail, if

kve = 0, then pkve = 0 and the denominator of ℎkve becomes Λk − qkv�k, considering qkv ∈ [0, 1], the range of ℎkve is
computed as [(Λk)−1, c−1]; if 
kve = 1, the denominator of ℎkve becomes pkvBe − qkv�k, therefore, the upper limit of
the denominator is Be. Given that ℎkve represents the single link latency which must be less than the allowed maximum
latency (�k−�k−dk)�, therefore, the range of ℎkve is [B−1e , ((�k−�k−dk)�)−1]. Then, the linearization is performed
by the following constraints.

{


kve B
−1
e ⩽ gkve ⩽ 
kve ((�

k − �k − dk)�)−1,
(1 − 
kve )(Λ

k)−1 ⩽ ℎkve − gkve ⩽ (1 − 
kve )c
−1. (71)

At the same time, the link latency is rewritten as:
T kvL =

∑

e∈
gkve .

Since pkvte = �kvtpkve is the product of binary and continuous variables, we linearize it as:
{

0 ⩽ pkvte ⩽ �kvt,
0 ⩽ pkve − pkvte ⩽ 1 − �kvt, ∀k,∀v,∀t,∀e. (72)

Please remind that �kvt is a binary variable which is equal to 1 if �k⋆ ⩽ t < �k⋆ + d
k +

⌈

T kvL
�

⌉

, and 0 otherwise
(see Eq. (10)). As we can see both upper and lower bounds of t are variables. We reformulate �kvt by the following
constraints:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�k⋆ − t ⩽ (�
k − dk)(1 − �kvt),

t − (�k⋆ + d
k + �kvL ) < (m − d

k + 1)(1 − �kvt),
0 ⩽

∑

t′∈ �
kvt′ − (dk + �kvL ) ⩽ (�

k − �k)(1 − bkv),

0 ⩽ �kvL −
T kvL
� < 1,

∀k,∀v,∀t, (73)
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where �kvL is an auxiliary integer variable for expanding the ceil operation over T kvL� . The first and the second inequalities
respectively enforce �kvt = 0, when t < �k⋆ and t ⩾ (�k⋆ + dk + �kvL ), which is the ending time of the link transmission.
The third one enforces �kvt = 1 when t is in the range [�k⋆, �k⋆ + dk +

⌈

T kvL
�

⌉

) and bkv = 1.

A.3 Processing Latency and Storage Provisioning
Equation (11) is a nonlinear indicator function of the variables rkv and qkv. To handle this issue, we first introduce

an auxiliary variable bkv to indicate whether request k is processed on node v. According to the definition of qkv, we
have the following constraint:

qkv ⩽ bkv ⩽Mqkv, ∀k,∀v, (74)
whereM > 0 is a big value and such constraint implies that if qkv = 0, the request k is not processed on node v, i.e.
bkv = 0. Based on the above, we can rewrite constraint (12) as:

{

�kqkv�k − (1 − bkv) < rkvDv,
rkv ⩽ bkv, ∀k,∀v. (75)

Note that the term (1 − bkv) permits to implement condition qkv > 0 in Eq. (12).
In equation (11), we observe that if bkv = 1, we have:

1
rkvDv − �kqkv�k

> 1
Dv

⩾ 1
Dmax

,

whereDmax = maxv∈ Dv, otherwise rkvDv− �kqkv�k = 0 resulting in T kvP → ∞. To handle this case, we first define
a new variable T kvP ′ as follows:

T kvP ′ =
1

rkvDv − �kqkv�k + (1 − bkv)Dmax
. (76)

From this equation, we have bkv = 1 ⇒ T kvP ′ = T kvP > 1
Dmax

and bkv = 0 ⇒ T kvP ′ =
1

Dmax
, T kvP = 0. More in

detail, this indicates that if a request k is accepted and processed on a set of nodes sub ⊆  (i.e., bkv = 1, v ∈ sub),
the processing latency is determined by maxv∈sub T kvP > 1

Dmax
, therefore, T kvP ′ satisfies the related constraints and

represents the exact processing latency when request k is accepted. Instead if k is rejected, then we have zkt = 0, bkv =
0,∀v, t. Based on constraint (4) specifying that the ending time depends on the maximum latency and considering that
a rational and meaningful request should satisfy dk+

⌈

1
Dmax�

⌉

< �k−�k, we have �kvo = dk+
⌈

T kv
P ′

�

⌉

< �k. Therefore,
T kvP ′ is a valid representation for the processing latency and the reformulation has no influence on the solution of the
optimization problem.

Since rkvt = �kvtrkv is the product of binary and continuous variables, we linearize it as:
{

0 ⩽ rkvt ⩽ �kvt,
0 ⩽ rkv − rkvt ⩽ 1 − �kvt, ∀k,∀v,∀t. (77)

Recall that �kvt is a binary variable which is equal to 1 if �k⋆+
⌈

T kvL
�

⌉

⩽ t < �kvo , and 0, otherwise (see Eq. (15)). We
can see in �kvt that both upper and lower bounds of t are variables. We reformulate �kvt by the following constraints:
The derivation is very similar to the one for �kvt (see inequality (73)) due to the similar definitions of the variables.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�k⋆ + �
kv
L − t ⩽ (�k − dk)(1 − �kvt),

t − �kvo < (m − dk + 1)(1 − �kvt),
0 ⩽

∑

t′∈ �
kvt′ − (dk + �kvP ′ ) ⩽ (�

k − �k)(1 − bkv),

0 ⩽ �kvP ′ −
T kv
P ′

� < 1,

∀k,∀v,∀t, (78)
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where �kvP ′ is an auxiliary integer variable for expanding the ceil operation over T kv
P ′

� . Based on above, the deadline
constraint (4) can be rewritten as:

�k⋆ + d
k + �kvL + �kvP ′ ⩽ �k, ∀k,∀v. (79)

A.4 Final Reformulated Problem
Based on the above derivation, the reformulated optimization ( .1) is written as follows:

max
∑

t∈

∑

k∈

{

�kzkt −
∑

v∈

{

rkvtDv�v + �kvtmk�v +
∑

e∈
pkvte Be e

}

}

, ( .1)

s.t. (1) ∼ (3), (9), (13) ∼ (14), (16),
(57), (60) ∼ (62), (67) ∼ (79),

which is equivalent to the optimization (0). Since constraints (70) and (76) are quadratic while the others are linear,
( .1) is a mixed-integer quadratically constrained programming (MIQCP) problem, for which commercial and open
source solvers can be used, as we discussed in the numerical evaluation section.

Appendix B ADMM Solution Derivation
This appendix derives the analytic solution for y-update in ADMM, i.e., the optimization in equation (39), which

is recalled for the sake of clarity hereafter:
yi+1 ∶= argmin

y

{

(y) +
�
2
∑

k∈

∑

v∈
||ykv − xkvi+1 − u

kv
i ||

2
}

.

In order to solve the above y-update, we split the l2 norm ||ykv − xkvi+1 − u
kv
i ||

2 and the indicator function (y),
and separately update the independent copying variables zykv, qykv, rykv, �ykv and pykv. In the following, we present
the detailed derivation of solution for each subproblem related to ykv.

• For zykv, which is a copy of variable z̊kv related to the admission control of requests, we can rewrite the update
as:

min
{zykv}

∑

k∈

∑

v∈
||zykv − z̊kvi+1 − zukvi ||

2,

s.t. zykv = zk, ∀k,∀v.

Based on the consensus constraint, the above minimization problem can be splitted into || independent unconstrained
problems and each subproblem (k) can be written as:

min
zk

∑

v∈
||zk − z̊kvi+1 − zukvi ||

2.

Taking the derivative of the above objective function w.r.t. zk equal to 0, we could get the solution of zk. Since
zykv = zk,∀k,∀v, the solution of zykv is written as:

zykv =
1
||

∑

v′∈
(z̊kv

′

i+1 + zukv
′

i )

= zki+1 + zu
k
i , (80)

where zki+1 and zu
k
i denote respectively the two average terms.

• For qykv, which is a copy of variable q̊kv indicating the fractions of requests processed on different edge nodes,
the update in (39) can be also splitted to || independent problems, and each subproblem (k) can be written as:

min
{qykv}

∑

v∈
||qykv − q̊kvi+1 − qukvi ||

2,
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s.t. ∑

v∈ qykv = 0.

This subproblem is a convex optimization problem. We can use the method of Lagrange multipliers to optimally solve
it. To do so, we first write the Lagrangian function as:

(qykv, �) =
∑

v∈
||qykv − q̊kvi+1 − qukvi ||

2 + �
∑

v∈
qykv,

where � ≠ 0 is the Lagrange multiplier. Then, the KKT conditions can be written as:
{ )

)qykv
(qykv, �) = 0,

)
)�(qy

kv, �) = 0.
(81)

Based on the above equations, we can obtain the following solution:

qykv = q̊kvi+1 + qukvi − 1
||

∑

v′∈

{

q̊kv
′

i+1 + qukv
′

i

}

= q̊kvi+1 + qukvi − qki+1 − qu
k
i , (82)

where qki+1 and qu
k
i denote respectively the two average terms.

• For rykv, which is a copy of variable rkv representing the computation capacities of edge nodes allocated to
different requests, in a similar way, we could split the update in (39) to || independent unconstrained problems, and
each subproblem (v) is written as:

min
{rykv}


rv ({rykv}) +

�
2
∑

k∈
||rykv − rkvi+1 − rukvi ||

2,

where rv = {rykv |
∑

k∈ rykv ⩽ 1, rykv ⩾ 0} corresponding to the constraint (31) (we recall its formulation:
∑

k∈ rkv ⩽ 1) which is the reservation constraint of an edge node computation capacity. We can simplify the above
minimization problem by introducing ry

v = 1
||

∑

k∈ rykv. The derivation is detailed as follows.
The above minimization can be rewritten as:

min
rykv,ry

v

r

v (||ry
v) + �

2
∑

k∈
||rykv − rkvi+1 − rukvi ||

2,

s.t. ry
v = 1

||

∑

k∈
rykv,

where rv
= {x | 0 ⩽ x ⩽ 1} corresponding to set rv, which represents the constraint 0 ⩽ ||ry

v =
∑

k∈ rykv ⩽ 1.
Minimizing over rykv with ry

v fixed and following the same way of solving qykv, we have the solution:

rykv = rkvi+1 + rukvi + ry
v − 1

||

∑

k′∈

{

rk′vi+1 + ruk
′v
i

}

= rkvi+1 + rukvi + ry
v − rvi+1 − ru

v
i , (83)

where rvi+1 and ru
v
i denote respectively the two average terms. Then, substituting (83) back into the minimization, we

get the following unconstrained problem:
min
ry
v


r

v (||ry
v) + ||

�
2
||ry

v − rvi+1 − ru
v
i ||

2. (84)

Then, the update of rykv is reduced to an optimization over the variable ryv.• For �ykv, which is a copy of variable �̊kv related to the computation capacity and storage provisioning of edge
nodes, the update has the similar structure as the one of rykv. Following the same procedure of rykv update, the problem
Bin Xiang et al.: Preprint submitted to Elsevier Page 35 of 38



Resource Calendaring for Mobile Edge Computing: Centralized and Decentralized Optimization Approaches

can be splitted to || independent unconstrained problems. We first introduce a variable �yv = 1
||

∑

k∈ �ykv and
obtain the solution based on �y

v:

�ykv = �̊kvi+1 + �ukvi + �y
v − 1

||

∑

k′∈

{

�̊k
′v
i+1 + �uk

′v
i

}

= �̊kvi+1 + �ukvi + �y
v − �vi+1 − �u

v
i , (85)

where �vi+1 and �uvi denote respectively the two average terms. �yv can be computed through optimizing the following
unconstrained problem:

min
�y
v


�

v (||�y
v) + ||

�
2
||�y

v − �vi+1 − �u
v
i ||

2, (86)

where �v
= {x | 0 ⩽ x ⩽ Sv} corresponding to constraint (32) (here we recall its formulation, that is ∑k∈ �̊

kv ⩽
Sv) which is the reservation constraint of an edge node storage capacity.• For pykv, which is a copy of variable pkv representing the fractions of link bandwidth sliced to different requests,
following the same procedure of rykv update, we first introduce a variable py = 1

||||
∑

k∈
∑

v∈ pykv and obtain
the solution based on py:

pykv = pkvi+1 + pukvi + py −
1

||||
∑

k′∈

∑

v′∈

{

pk′v′i+1 + puk
′v′
i

}

= pkvi+1 + pukvi + py − pi+1 − pui, (87)
where pi+1 and pui denote respectively the two average terms. py can be computed through optimizing the following
unconstrained problem:

min
py


p
(||||py) + ||||�

2
||py − pi+1 − pui||2, (88)

where p = {x | 0 ⩽ x ⩽ 1} corresponding to the constraint (33) (we report for clarity its formulation here:
∑

k∈
∑

v∈ pkv ⩽ 1) which is the reservation constraint of a link capacity.
Based on the above simplified updates for ykv, substituting equations (80), (82), (83), (85) and (87) into (40) (whose

expression is recalled here: ukvi+1 ∶= ukvi + xkvi+1 − y
kv
i+1), we have:

ukvi+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

z̊kvi+1 − zykvi+1
qki+1

rvi+1 − ry
v
i+1

�vi+1 − �y
v
i+1

pi+1 − pyi+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zukvi
qu
k
i

ru
v
i

�u
v
i

pui

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zukvi+1
qu
k
i+1

ru
v
i+1

�u
v
i+1

pui+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (89)

Equation (89) shows that the values of components (q, r, �, p) in ukvi+1 are equal to their corresponding average
values, respectively. Thus, we further simplify equations (82), (83), (85) and (87) as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

qykvi+1 = q̊
kv
i+1 − q

k
i+1,

rykvi+1 = r
kv
i+1 − r

v
i+1 + ry

v,

�ykvi+1 = �̊
kv
i+1 − �

v
i+1 + �y

v,

pykvi+1 = p
kv
i+1 − pi+1 + py,

(90)
(91)
(92)
(93)
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where the variables ryv, �yv, py are determined by the following optimizations based on above derivations:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ry
v
i+1 = argmin

ry
v

{


r

v (||ry
v) + ||

�
2
||ry

v − rvi+1 − ru
v
i ||

2
}

,

�y
v
i+1 = argmin

�y
v

{


�

v (||�y
v) + ||

�
2
||�y

v − �vi+1 − �u
v
i ||

2
}

,

pyi+1 = argmin
py

{


p
(||||py) + ||||�

2
||py − pi+1 − pui||2

}

.

(94)

(95)

(96)

In the above optimizations (94), (95) and (96), all of them are composed of two components: i) the indicator
function on decision variable which can be regarded as the constraint, e.g., 

r
v (||ry

v), ii) the l2 norm which
represents the Euclidean distance, e.g., ||ryv − (rvi+1 + ru

v
i )||

2. Thus, they are equivalent to three different Euclidean
projections onto the convex sets rv

, �
v and p, which have the following closed form solutions:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

rykvi+1 = r
kv
i+1 − r

v
i+1 + P[0,1∕||](r

v
i+1 + ru

v
i )

�ykvi+1 = �̊
kv
i+1 − �

v
i+1 + P[0,Sv∕||](�

v
i+1 + �u

v
i )

pykvi+1 = p
kv
i+1 − pi+1 + P[0,1∕(||||)](pi+1 + pui)

(97)
(98)
(99)

where P[a,b](e) = (min{max{aj , ej}, bj})
dim(e)
j=1 denotes the projection of e on box [a, b], and zki+1, qki+1, rvi+1,�vi+1,pi+1

are the average value for each item of xkvi+1. Note that a similar representation is applicable to ukvi+1.
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