
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Lagrangian Evolution Approach to Surface-Patch Quadrangulation / Serena Morigi; Martin Huska; Matej
Medla ; Karol Mikula. - In: APPLICATIONS OF MATHEMATICS. - ISSN 0862-7940. - STAMPA. - 66:4(2021), pp.
509-551. [10.21136/AM.2021.0366-19]

Published Version:

Lagrangian Evolution Approach to Surface-Patch Quadrangulation

Published:
DOI: http://doi.org/10.21136/AM.2021.0366-19

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/831907 since: 2023-07-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.21136/AM.2021.0366-19
https://hdl.handle.net/11585/831907


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Húska, M., Medl’a, M., Mikula, K. et al. Lagrangian evolution approach to surface-
patch quadrangulation. Appl Math 66, 509–551 (2021) 

The final published version is available online at 
https://dx.doi.org/10.21136/AM.2021.0366-19   

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.21136/AM.2021.0366-19
https://dx.doi.org/10.21136/AM.2021.0366-19


KOREKTURY am-036619.tex 15.3. 2021

LAGRANGIAN EVOLUTION APPROACH TO SURFACE-PATCH

QUADRANGULATION

Martin Húska, Bologna, Matej Medl’a, Bratislava,

Karol Mikula, Bratislava, Serena Morigi, Bologna

(Received December 17, 2019)

Abstract. We present a method for the generation of a pure quad mesh approximating a
discrete manifold of arbitrary topology that preserves the patch layout characterizing the
intrinsic object structure. A three-step procedure constitutes the core of our approach which
first extracts the patch layout of the object by a topological partitioning of the digital shape,
then computes the minimal surface given by the boundaries of the patch layout (basic quad
layout) and then evolves it towards the object boundaries. The Lagrangian evolution of
the initial surface (basic quad layout) in the direction of the gradient of the signed distance
function is smoothed by a mean curvature term. The direct control over the global quality
of the generated quad mesh is provided by two types of tangential redistributions: area-
based, to equally distribute the size of the quads, and angle-based, to preserve quad corner
angles. Experimental results showed that the proposed method generates pure quad meshes
of arbitrary topology objects, composed of well-shaped evenly distributed elements with few
extraordinary vertices.

MSC 2020 : 35K55, 35K93, 65M08

Keywords: Lagrangian evolution; patch layout; non-conforming mesh; mesh partitioning

1. Introduction

Quad meshes, i.e., meshes made entirely of quadrilaterals, have been widely used

for many years to represent 3D models in applications like, e.g., CAD/CAM, com-

puter graphics and scientific computing, because a number of tasks are better suited

to quad meshes than to triangular meshes. In these applications, a patch layout of

the 3D model, defined as a partition of the 2-manifold surface into non-overlapping

This work has been supported by Grants APVV-15-0522, VEGA 1/0608/15, and by the
“National Group for Scientific Computation (GNCS-INDAM)”.
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patches, is highly desirable to support standard operations like e.g. texturing, non-

uniform rational basis spline (NURBS) fitting or adaptive simulations.

A patch layout easily encodes the underlying high-level geometric and topo-

logical structure, thus allowing an easy processing of the underlying surface in

a well structured manner. Tools in solid shape modelling supported by bound-

ary representations (B-Reps) strongly rely on the patch layout of 2-manifold sur-

faces, which, in this case, is represented by a partition of the 2-manifold into

non-overlapping, in general 0-genus, n-side patches such that any two patches

share an edge, part of an edge, a vertex or are connected by a chain of adjacent

patches. Tensor-product NURBS surfaces and T-splines, naturally associated to

quad meshes, are preferred for the patch representation being the dominant industry

standards.

In general, a patch layout supports the representation of an arbitrary topology

object with a pure quad mesh. However, since regular quad meshes are limited to

represent surfaces of disk or toroidal topology, one must necessarily resort to semi-

regular quad meshes to cover an arbitrary topology manifold. A semi-regular quad

mesh is defined by stitching, in a conforming way, several regular 2D arrays of quads

side to side. In a semi-regular quad mesh, all vertices that are internal to patches or

lie along their boundary edges are regular, while only vertices that lie at corners of

patches may possibly be extraordinary [37], [29].

A consistent amount of work has pursued the goal of creating semi-regular quad

meshes by constructing an ad hoc 4-side patch layout which can easily ensure the

stitching side by side of the generated patches [7], [16], [37]. However, the satisfaction

of the conforming constrain leads inevitably towards patch layouts which yield a very

large number of patches and are not anymore representative of the high-level struc-

tural information which instead has to strictly meet the application needs. Allowing

for non-conforming n-side patch layout, for which the intersection of two patches

may not be the whole edge or vertex, but a part of an edge, offers higher flexibility

in reduction of the number of patches and better representativeness of the object

structures. However, at the same time, this introduces an intrinsic difficulty in the

generation of 4-side high-quality quad sub-meshes associated to each patch, while

consistently stitching them together.

Given an unstructured triangular meshM△, acquired for example from a scanning

process of an arbitrary topology object, and an n-side, possibly non-conforming,

patch layout characterizing the intrinsic high-level object structure, in this work

we propose an automated method for the generation of a pure high-quality quad

mesh approximating the discrete manifold M△ that preserves the provided n-side

non-conforming patch layout, while maintaining the desirable feature of a regular

quadrangulation inside the patches.
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Traditionally, quad mesh processing algorithms were focused on generating mesh

elements with optimal shape and regularity. The most desirable properties pursued in

generating quadrilateral meshes usually are: a minimal number of extraordinary ver-

tices (EV) (internal vertices that do not have exactly four neighbours); high-quality

elements, i.e., quadrilaterals as close to squares or rectangles as possible; structural

information, i.e., the alignment of the elements to mesh features like edges and cor-

ners. A discussion of specific characteristics of quad meshes, as well as a survey of

recent research on quad mesh processing is provided in [2], [4].

(a) M△ (b)
⋃

i

Mi (c)
⋃

i

Si (d) M�

Figure 1. The fundamental steps of the proposed method: (a) Input mesh M△; (b) Patch
layout; (c) Basic Quad Layout S from two different camera views; (d) Resulting
pure quad mesh M�.

In our approach, the resulting mesh M� has the following properties:

⊲ M� is a non-conformingly semi-regular mesh that accurately represents an arbi-

trary topology 3D shape by a small number of regular sub-meshes, obtained by

sampling and evolving a specific non-conforming patch layout that well represents

the salient features of the shape;

⊲ M� is composed of well-shaped quad mesh elements which, in terms of edges and

angles, are as close to squares or rectangles as possible, distributed with uniform

area density.

The overall process consists of three main phases summarized in Algorithm

Surface-Patch Quadrangulation and illustrated in Figure 1.

Algorithm: Surface-Patch Quadrangulation

Input: Triangular Mesh M△, required average quad edge length h

Output: Pure Quadrilateral Mesh M�

1: {Mi}
K
i=1 ←− Mesh Partitioning(M△)

2: {Si}
K
i=1 ←− Basic Quad Layout({Mi}

K
i=1, h)

3: M� ←− Basic Quad Layout evolution({Si}
K
i=1, {Mi}

K
i=1)
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Given an input surface, which is represented by an unstructured triangular

mesh M△, see Figure 1(a), we first extract its patch layout in Phase 1 by partition-

ing it into K patches Mi of 0-genus having one boundary, see Figure 1(b). From

the given partitioning (chartification), in Phase 2, we describe a new procedure

to generate the Basic Quad Layout S. We define the Basic Quad Layout as the

minimal surface version of the underlying shape, where the surface pieces are joined

together and represented by quad meshes, according to the boundary of the given

patch layout. The Basic Quad Layout structure S of mesh M△ consists of the union

of K surfaces Si, each discretized by a quad grid, according to a given desired edge

length h that matches the boundary of the patch, see Figure 1(c). The Basic Quad

Layout S is then evolved in Phase 3 towards the input triangulation M△ to create

a pure quadrilateral mesh M� which well approximates the given 3D shape, see

Figure 1(d).

In the present work, both Phase 1 and 2 could admit as input only the cloud

of points/vertices on M△, however, the connectivity information is used in the last

Phase 3, the Basic Quad Layout Evolution.

The Lagrangian evolution of the Basic Quad Layout is a novel approach to the

quad mesh generation. The proposed evolution model follows the direction of the

gradient of a signed distance function smoothed by a mean curvature term. The

direct control over the global quality of the generated quad mesh is provided by two

types of tangential redistributions: area-based, to equally distribute the size of the

quads, and angle-based, to preserve quad corner angles.

The rest of the paper is organized as follows. In Section 2, previous work on quad

mesh processing and surface evolution is discussed. In Section 3, the chartification

method used in the mesh partitioning step is briefly presented. Section 4 describes the

new procedure to generate the Basic Quad Layout, while in Section 5 we introduce the

proposed evolution framework by a suitable Lagrangian evolution model. Besides the

mathematical foundations which are partially described in the Appendix, we provide

a description of an efficient implementation based on finite volume discretization.

Finally, Section 6 presents some examples and performance evaluations, and we

conclude the paper in Section 7 by discussing potential improvements of the method,

extensions and future research directions.

2. Related work

2.1. Quad mesh generation. Converting an unstructured mesh into a more

regular and structured model is a challenging problem, which has attracted a con-

siderable amount of research in recent years. The literature is quite extensive, we

refer the reader to [2], [4] for a general and exhaustive overview of quadrangulation
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methods. We survey in the following only the most closely related works which can

be categorized as global mesh optimization and patch-layout-based techniques.

Traditional techniques in global mesh optimization include the Direct Tri to Quad

conversion and Voronoi-based methods. The first targets directly the problem of

converting triangular (or polygonal) input mesh into a quadrangular one utilizing lo-

cal connectivity operations, e.g., gluing two adjacent triangles into one quad, which

makes it highly input-dependent and in general it produces an unstructured quad

mesh [35]. Voronoi-based methods use Centroidal Voronoi Tessellation (CVT) to

optimize a sampling quality measure. CVTs can be used to generate quad (or quad-

dominant) meshes as in [39], [21]. More recent global mesh optimization methods

explicitly control local properties of quad elements in the mesh by means of the

guiding fields. Usually the quadrangulation process is divided into three steps: Ori-

entation Field Generation (the most popular is the Ro-Sy field [20]), Sizing Field

Generation, and Quad Mesh Synthesis. Local solutions proposed in [38], [20] provide

favorable CPU times, however, the number of singularities (extraordinary vertices) is

high and they in general produce only quad dominant or valence semi-regular quad

meshes.

Patch-layout-based methods rely on the construction of a one-to-one mapping of

the original surface onto a set of n-side patches. Afterwards, the final quadrangula-

tion is obtained by sampling each patch by a regular grid. State-of-the-art methods

use 4-side patches which naturally lead to a conforming patch layout and semi-regular

pure-quad mesh.

Recently, a novel approach to quad layout and mesh generation was introduced

driven by a carefully defined curve skeleton of the shape (via Reeb Graphs or con-

straint Laplacian smoothing) that captures the intrinsic features of the processed

shape. Then the skeleton information is used in the construction of quad layout and

direct quadrilateral mesh generation, see [37].

In [7], [16] the set of quad charts of the global chartification of the input mesh is

obtained by using the Morse-Smale Complex of Laplacian Eigenfunctions. Creating

a global quadrilateral charting is equivalent to determining the singularity points.

A user-assisted method to interactively localize the singularity points is proposed

in [36], while in [3] a mixed-integer solver is developed to automatically identify

these points.

The proposed surface-patch quadrangulation belongs to the patch-layout-based

class of methods where the patch layout is obtained similarly to [7] driven by compact

support quasi-eigenfunctions of the Laplace-Beltrami operator [17], thus embedding

the high-level object structural information.

However, by relaxing the conformity constrain as in [29], we obtain an n-side patch

layout, with n > 4, which offers more flexibility for reduction of the number of patches
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while maintaining the representativeness of the salient parts of the object. Finally,

the Lagrangian surface evolution distinguishes our quadrangulation proposal from

the other parametrization-based representatives of this class and results in regular

pure-quad grids for each patch oriented to curvature directions.

2.2. Lagrangian surface evolution by partial differential equations. There

are two main techniques dealing with the modelling of surface evolution, the Eulerian

and the Lagrangian approaches. Among the Eulerian methods the level-set approach

is probably the one mostly used [32], [31], although the so-called phase-field methods

are used as well. The level-set methods are utilized in various contexts, ranging

from purely physical applications, e.g., front dynamics, to the image processing and

computer vision applications such as image segmentation or 3D point cloud surface

reconstruction, see e.g. [32], [11]. Since the sampled vertices of the input surface can

be understood as a 3D point cloud, in our work we have been inspired by the work by

Zhao et al. [42], which, to our knowledge, represents the first level-set approach to the

point cloud reconstruction and thus an implicit surface finding and representation.

However, the level-set methods evolve the surface implicitly as an isosurface of

a three-dimensional level-set function. The corresponding partial differential equa-

tions (PDEs) solved numerically are spatially three-dimensional which can make the

numerical solution computationally heavy, especially due to the fact that the final

surface reconstruction is obtained as a steady state of the level-set function evolution.

With this respect, we mention the work [19] which introduces a computationally effi-

cient semi-implicit method to Zhao et al.’s surface reconstruction approach. Another

inherent property of the level-set method is that one has to create an explicit discrete

surface representation from its implicit form.

In order to avoid this task and to deal numerically with spatially just 2D prob-

lems, the Lagrangian approaches arise naturally. They evolve the surface explicitly,

usually approximated by triangular or quadrilateral meshes. A Lagrangian method

for 3D point cloud surface reconstruction by directly evolving a triangular mesh was

suggested in [6].

In general, any surface evolution can be split into its normal and tangential direc-

tions. The normal component of the motion provides the overall image of the surface

evolution. The tangential motion is used to stabilize the Lagrangian computational

methods but it also allows to control the quality of triangular or quadrilateral sur-

face discretization. The important role of the tangential redistribution of points on

evolving curves and surfaces has been emphasized in many publications since the

mid-nineties, see e.g. [15], [18], [26], [27], [33], [14] for 2D and 3D curve evolutions,

and [1], [28], [25], [6], [10], [23] for surface evolutions. From the point of view of

spatial discretizations, two main numerical approaches are used for the evolution
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of triangular and quadrilateral surface meshes, the finite volume method [24], [26]

leading in the basic setting to the well-known cotangent scheme, and finite element

methods introduced by Dziuk for surfaces evolving by the mean curvature in 1991

[8] and then followed by [1], [10] etc.

As noted above, the tangential movement of surface discretization points is neces-

sary for stability of the numerical computations—it prevents self-intersections of the

surface and the shape degeneration of finite elements or finite volumes that may arise

from a naive numerical approximation. The uniform [26] or curvature-dependent [23]

finite volume area redistribution can be successfully performed and a control of the

angle redistribution in triangular and quadrilateral meshes is also highly desirable.

In the present work we use the finite volume spatial approximation for evolving sur-

faces represented by a quad mesh and the surface time evolution is accompanied by

a suitable area and angle redistribution. Together with the stability of computations,

this tangential redistribution enables the control over quad shapes already during the

evolution and at the final stage, thus allowing us to obtain high-quality quad mesh

surfaces.

3. Phase 1: Mesh partitioning

Let us consider a triangle mesh M△ = (V, T ), representing a piecewise linear

approximation of a 2-manifoldM embedded in R
3, where V ∈ R

nV ×3 is a set of nV

vertices and T ∈ N
nT×3 is a set of nT triangles that define the connectivity of the

mesh.

The partitioning of M△ is the decomposition ofM△ into K non-overlapping open

sub-meshes (patches) Mi of 0-genus with one boundary connected component such

thatM△ =
K
⋃

i=1

Mi. Each sub-meshMi is characterized by a tripletMi = (Vi, Ti, Bi),

where Vi is a set of vertices, Ti a set of triangles and Bi is a list of boundary

vertices in Vi.

Recently in [17] an efficient strategy to obtain such mesh decomposition has been

proposed. The partitioning relies on the so-called Lp Compressed Modes that is

a sparser version of the Compressed Manifold Modes [30]. The approach iteratively

decomposes the mesh into K sub-meshes. The resulting patches define the patch

layout of M and represent the salient parts of M with the minimum number of

patches K satisfying the required genus and boundary criteria.

Without loss of generality, in this work we utilize in Phase 1 the partitioning

method introduced in [17]. However, Algorithm Surface-Patch Quadrangulation

can be easily adapted also to different patch layouts, e.g. [7], [16], [37].
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4. Phase 2: Build of the basic quad layout

Given a patch layout ofM, we create an associated Basic Quad Layout S =
K
⋃

i=1

Si,

where each sub-part Si is a surface with boundary curves approximating Bi, thus

matching C0 the common boundary between Si and Sj , see Figure 1(b)–(c). The

benefit of S will be revealed later in the surface approximation by a quadrilateral

mesh. However, the layout itself can represent a sort of topology signature of the

objectM that can be used in different contexts, e.g., in the generation of the so-called

B-Reps in solid modelling.

The overall procedure to fulfill this aim consists of the following three simple steps

for each Si, i = 1, . . . ,K:

(1) Construction of the boundary ∂Si of Si;

(2) Resolution settings of the boundary of the quadrilateral patch Si;

(3) Construction of the minimal surface Si for the given ∂Si.

The result of this phase is the Basic Quad Layout S represented by K surface

patches Si, each associated to its correspondingMi. As we will describe later in this

section, the use of the Basic Quad Layout S will lead to quadrilateral representation

M� of M composed of a number of regular grids that goes from a minimum of K

up to a maximum of 5K.

P3

P1
P2

Ml Cil

Mk

Cik =Cki

Mj

Cij(cij(t))

Mi

Figure 2. A synthetic scheme of Si boundary construction.

4.1. Step 1: Construction of the boundary of Si. The goal of this step is to

split the boundaries Bi, i = 1, . . . ,K, into a collection of boundary pieces Cij each

sharing exactly two sub-meshesMi andMj, and approximate them by spline curves.

Figure 2 illustrates a synthetic scheme where the three pieces Cij , Cik, Cil for the

sub-mesh Mi are marked by dashed red lines.

We first locate a set of vertices P ⊂ V (marked in blue in Figure 2) that lie on

the common boundary of at least three patches ofM. Formally, each element of P
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is defined as Bi

⋂

Bj

⋂

Bk, i 6= j 6= k, where the triplet {i, j, k} is taken as all the

unique combinations out of {1, . . . ,K}. The vertices in P define the locations for

the split of each Bi, i = 1, . . . ,K.

Once the set P is selected, we proceed by looping through each patch boundary Bi

and by splitting it into pieces Cij , which start and end at elements of P , forming the

set C, which reads

C := {Cij ; Cij = Bi ∩Bj ∀ (i, j)}.

We notice that Cij = Cji for all (i, j).

In the case a boundary Bi does not contain any vertex of P , then Cij ≡ Bi, i.e.,

it represents the whole boundary between the two patches Mi and Mj.

Finally, we create an index list Ii for each Bi of the references to elements of C

such that Bi =
⋃

j∈Ii

Cij . In Figure 2 we have Ii = (j, k, l).

At last, we represent each boundary piece Cij by a least square approximating

cubic spline cij(t), t ∈ [0, 1], such that the spline is clamped at the first and the last

point of Cij .

Therefore, the boundary of each Si is defined as

(4.1) ∂Si(t) =
⋃

j∈Ii

cij(t).

4.2. Step 2: Resolution settings of the boundary of the quadrilateral

patch Si. Preliminarily to Step 3, where each Si will be constructed, we prepare

the boundary of the quadrilateral patch Si by the following process flow:

2.1. Uniform sampling of ∂Si(t) into points bi, setting of the quadrilateral grid res-

olution, placement of the four corner vertices.

2.2. Classification of Si as flat or protrusion patch.

4.2.1. Sampling of ∂Si(t) and resolution setting. Given the desired edge

length h for the quads in M�, each patch boundary ∂Si is uniformly discretized by

a list of boundary points bi obtained as

(4.2) bi =
⋃

j∈Ii

{

cij(tk) ; tk ∈ [0, 1], k = 1, . . . ,
[ |Cij |

h

]}

,

where [·] represents the rounding to the closest even number and |Cij | denotes the

chord length of a piecewise linear curve computed as

|Cij | =

#Cij−1
∑

l=1

‖Cl+1
ij − Cl

ij‖

with Cl
ij and Cl+1

ij being consecutive points in the list Cij .
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Once the boundary list bi is obtained, we split it into four parts to match the

boundary of a quadrilateral grid of resolution (mi, ni) that will discretize Si.

To that aim, we apply the Principal Component Analysis to the vector field of the

principal curvature directions at the points Vi of Mi to generate a pair of vectors

{w1, w2} which are used to properly align the four sides of the quadrilateral patch Si

to the main principal curvature directions as this leads to better shaped (e.g., flatter)

quads and improves surface approximation.

The grid resolution is set for each Si as (mi = ⌊#bi/4⌋, ni = ⌈#bi/4⌉), and the

boundaries of the mi×ni grid which discretizes Si are placed on the boundary bi by

fixing two adjacent corners, centering them around w1, such that Si is well aligned

with its neighbouring patches.

Coherent stitching between the adjacent patches Si and Sj is finally guaranteed

by imposing the same points of bi on the shared boundary.

4.2.2. Classification of Si. Each patch Si, i = 1, . . . ,K, is classified according

to the shape of its corresponding sub-mesh Mi as

⊲ M
(1)
i —flat surface,

⊲ M
(2)
i —protrusion.

m

n

m

n

k

Figure 3. Examples of patches Si associated to typesM
(1)
i (top) andM

(2)
i (bottom). From

left to right: sub-meshes Mi, sketches of their associated grids, patches Si.

Examples of the patch types M
(1)
i and M

(2)
i are illustrated in Figure 3 (top-left)

and Figure 3 (bottom-left), respectively, together with their associated suitable grids
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in Figure 3 (center) used to discretize the corresponding Si illustrated in Figure 3

(right). The boundaries are highlighted in red and the corners are marked by circles.

The classification is done as follows. For each patch Mi we compute the triangu-

lation area Ai =
∑

j

|T j
i | that we want to cover by quads of size h × h. Thus, the

expected number of quads in Si is approximately given by q
e
i = Ai/h

2.

For a flat surfaceM
(1)
i the regular grid discretization of Si requires the number of

quads q
(1)
i = mi × ni. If q

(1)
i ≈ qei , then Si is a flat patch, otherwise Mi represents

a protrusion patch M
(2)
i and the associated Si patch is discretized by a grid with

additional ki layers forming q
(2)
i = mi×ni+2ki(mi+ni) quads, see Figure 3 (bottom).

The number ki is chosen as the smallest value satisfying q
(2)
i ≈ qei .

In step 3 described in Section 4.3, each patch Si will be discretized into a quadrilat-

eral grid according to itsMi type, as illustrated in Figure 3 (right). This classification

will allow us to preserve uniform discretization following the natural shape of each

sub-part Mi.

4.3. Step 3: Construction of the Basic Quad Layout S. The Basic Quad

Layout is the union of the surfaces Si, i = 1, . . . ,K, with prescribed boundary

∂Si, which are constructed by solving on the spatial domain Ω ⊂ R
3 the following

boundary value problem:

(4.3)

{

∆xSi = 0,

∂Si = bi.

The spatial domain Ω corresponds to one of the two domains illustrated in Figure 3

and it is discretized by nodal points xj , j = 1, . . . , n, in grids of resolution (mi, ni)

or (mi, ni, ki) according to the Si’s patch type M
(1)
i or M

(2)
i .

The discretization of the Laplace-Beltrami differential operator (LBO) in (4.3) is

based on the uniformly weighted umbrella scheme which uses the grid connectivity

information, see Figure 3, on a locally triangulated neighbourhood of each vertex

xj ∈ Si [22]. Thus, the boundary value problem (4.3) leads to the solution of three

linear systems LX = B, where the system matrix L represents the discretization of

LBO and it is highly sparse, diagonally dominant, positive semi-definite, while X

are the three coordinates for the grid points xj in Si to be computed. The linear

systems can be efficiently solved by the preconditioned Conjugate Gradient method.

This construction guarantees that two neighbouring patches Si and Sj are consis-

tently stitched together.

In addition, Phase 3 described in Section 5 will allow for the following two evolution

strategies: evolution of each Si separately by fixing its boundary, or, alternatively,

evolution of the Basic Quad Layout S as a whole.
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We implemented the second strategy more efficiently by first evolving each Si

separately to create an accurate approximation to each salient part Mi, and then

jointly moving the surface S, mainly in the tangential direction, to improve the

quality of the final quadrilateral mesh.

We finally remark that the constructed Basic Quad Layout S is a non-conformingly

pure quad semi-regular mesh which has at most#EV = #P+4K extraordinary ver-

tices, and this number will not increase any more during the final evolution Phase 3.

5. Phase 3: Basic quad layout evolution

In this section we describe the evolution of the Basic Quad Layout S towards

points onM approximated by points onM△, to obtain a pure quadrilateral approx-

imation M� to the given shape.

To that aim we apply Lagrangian-type evolution with area- and angle-oriented

tangential redistribution.

5.1. Lagrangian evolution model. Let us consider a family of parametric sur-

faces {x(t, u, v) ; (u, v) ∈ [0, 1]2, t ∈ [0, tend]} obtained by evolving in time t an initial

surface x(0, ·, ·) = S, where S is the Basic Quad Layout or one of its patches Si.

The evolution is driven by the following partial differential equation:

∂x

∂t
= VN +VT = βN+VT,

x(0, ·, ·) = S,(5.1)

where VT is the evolution in tangential direction along the surface defined as

(5.2) VT(t, u, v) = α(t, u, v)xu + λ(t, u, v)xv,

with

(5.3) xu =
∂x(t, u, v)

∂u
, xv =

∂x(t, u, v)

∂v

representing the partial derivatives of x(t, u, v), which span the tangent plane;

and VN represents the evolution by speed β in the outward unit normal direction N

to the surface computed as

(5.4) N =
xu × xv

|xu × xv|
.
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The outward unit normal N is considered with respect to the whole Basic Quad

Layout S also in the case when we evolve only a patch Si.

The component in the normal direction VN affects the surface image, while, at

least in the continuous setting, VT has no impact on the surface image. However,

as shown in literature, see e.g. [25], this kind of tangential movement is very useful

especially in the case of Lagrangian-type evolutions. At a specific time t, the result

of (5.1) is a 2-manifoldM(t) = x(t, ·, ·) and at the final time x(tend, ·, ·) = M�, the

desired quadrilateral approximation to the given shape M△.

5.1.1. Evolution in the normal direction. Our aim is to prescribe the normal-

direction evolutionVN in (5.1) in such a way that the evolving surface will be moving

towards the given shape. An intuitive way would be to set an advection in the normal

direction

(5.5) VN = −(∇|d(x)| ·N)N,

where d(x) represents the signed distance function to the given shape [41]. The signed

distance function is defined to be positive inside the overall Basic Quad Layout S and

negative outside. Let us notice that in our definition |d(x)| represents the distance

function in the usual sense.

Since in general the distance function d(x) is non-smooth, a smooth evolution is

achieved by adding an additional term depending on the mean curvature H ofM,

thus obtaining

(5.6) VN = HN− (∇|d(x)| ·N)N,

where the mean curvature vector field in (5.6) can be expressed in terms of the

Laplace-Beltrami operator as

(5.7) HN = ∆xx = ∇x · ∇xx.

Let us notice that in (5.7) we understand the mean curvature as a sum of principal

curvatures instead of their average.

The divergence operator of a vector field w = Axu + Λxv, lying in the tangent

space ofM, is defined following [12] as

(5.8) ∇x ·w = ∇x · (Axu + Λxv) =
1

g
((gA)u + (gΛ)v),

where g (see (5.16)) is a scalar field on M related to the surface parametrization;

and the intrinsic gradient of a generic scalar function ϕ(·, ·) is defined by [12] as

(5.9) ∇xϕ =
(xv · xv)ϕu − (xu · xv)ϕv

g2
xu +

(xu · xu)ϕv − (xu · xv)ϕu

g2
xv.

13



In order to control the trade-off between the advection and diffusion terms in (5.6),

we introduce two functions ε(d(x)) and η(d(x)) depending on the signed distance

function d(·) at point x, and modify (5.6) to

(5.10) VN = ε(d(x))∆xx+ η(d(x))N.

The role of the coefficient ε(d(x)) in the diffusion term is to obtain stronger

smoothing of the evolving surface in the case x(·) is far from M△; therefore ε(d(x))

is defined by

(5.11) ε(d(x)) = c1(1− e−d(x)2/c2),

where c1 and c2 are parameters controlling the shape of ε(·); in particular c2 controls

the transition width of the function, and c1 controls its amplitude. In Figure 4 we

plot the function ε(t) for different values of c2, and c1 = 1.
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0.8

1.0
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0.2
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0.6

0.8

1.0

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1− e
−d(x)2

1− e
−d(x)2/5

1− e
−d(x)2/11

Figure 4. Function ε(t) with c1 = 1 and varying c2 = {1, 5, 11}.

The function η(d(x)) in (5.10) is given by

(5.12) η(d(x)) = d(x)
(

| − ∇d(x) ·N|+
√

1− (∇d(x) ·N)2
)

.

The signed distance function d(x) in (5.12) that multiplies the brackets has two

purposes. It accelerates the movement if the surface is far away from the triangulation

and it flips the movement direction if it is outside of the triangulation. The first term

in the parentheses represents the modification of (5.5). This term can be insufficient

in the case the normal vector N and ∇d(x) are perpendicular. The second term in

the parentheses deals with this problem. It is the length of projection of −∇d(x)

onto the tangential plane. As a consequence it diminishes when −∇d(x) is parallel to

the normal vector of the surface N and if −∇d(x)⊥N, then η(d(x)) is proportional

to the distance d(x).

An insight into η(·) is sketched in Figure 5 in which a surface patch Si (drawn

in solid green) evolves towards the triangulation patch Mi of a hat object (drawn

in solid red). At time step t = 0, see the bottom part of Figure 5, the usual term

14



−∇|d(x)|·N would indicate to evolve Si towards a different patchMj adjacent toMi.

In this case the second term in (5.12) is zero, thus the absolute value | − ∇d(x) ·N|

forces the surface to evolve in the direction N. At time t = 1 we have −∇d(x)⊥N,

in this case the first term is zero while the second term results in d(x), thus, forcing

the surface to evolve farther in the normal direction. For t = 2 both terms in (5.12)

are positive, dictating the movement along N. At last, at t = 3 we have a possible

overflow of the evolving surface x(t, ·). The second term in (5.12) results in almost

zero, while the first part dictates the evolution in the normal direction. However,

since d(x) < 0, the surface x(t, ·) will move back towards Mi.

Summarizing, the evolution in the normal direction in (5.1) is driven by (5.10)

consisting of an advection in the normal direction with speed (5.12) and a smoothing

diffusion force (5.11) controlling the mean curvature flow of the surface.

Mj

Mi

N

−∇dSi =x(0, ·)

x(1, ·)

x(2, ·)

x(3, ·)

Figure 5. Influence of η(·) in (5.12) acting on x(t, ·) (green coloured lines) evolving towards
a patchMi, coloured in solid red. From bottom to top the different configurations
of the vectors N and −∇d are shown at a point of the evolving surface x(t, ·) for
t ∈ {0, 1, 2, 3}.

5.1.2. Redistribution in the tangential direction. The goal to maintain

a well-shaped quad mesh during the evolution motivates us to incorporate into the

model (5.1) the tangential control of two important properties of the quad mesh: the

area size and the angles of the quad elements. To this aim the tangential component

in (5.1) is defined as

(5.13) VT = V
r
T
+V

n
T
,

where the vector Vr
T
contributes to the quad size control and the vector Vn

T
handles

the control of the angles of the quads. Then for the components α, λ of VT in (5.2)

it holds that

(5.14) α(u, v) = αr(u, v) + αn(u, v), λ(u, v) = λr(u, v) + λn(u, v).
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In the following, we first describe the angle-based redistribution term V
n
T
in terms

of xu and xv and then we give the background for the area control term V
r
T
.

5.1.3. Angle-based redistribution. The purpose of this redistribution is to

control the angles of quadrilaterals that are composing the surface. Let us assume

that the surface is divided into quadrilateral patches. In the discrete setting these

patches are represented by the quads which compose the surface. The angle redis-

tribution is directly dependent on the vectors xu and xv. Let xi, i = 1, . . . , n, be

a corner point of a quadrilateral patch and n be the number of all corner points of

quadrilateral patches on the surface. Let N�(xi) be a set of quadrilateral patches

that contain xi and let #N�(xi) be its cardinality. Let x
j
u,x

j
v be the tangent vectors

of the jth neighbouring quadrilateral patch.

V
n

T

xi

x
4

u
x
3

v

x
4

v

x
1

u

x
1

v
x
2

u

x
3

u

x
2

v

Figure 6. A scheme illustrating the construction of the vector Vn
T
(red colour) in a local

neighbourhood of a surface point xi.

At each corner point xi, i = 1, . . . , n, the angle-based tangential velocity V
n
T
is

constructed as

(5.15) V
n
T
= proj

T

(

ωn

#N�(xi)

∑

j∈N�(xi)

(

1 +
x
j
u

|xj
u|
·
x
j
v

|xj
v|

)

(xj
u + x

j
v)

)

.

Formula (5.15) utilizes the fact that the cosine of the angle between two vectors can

be computed as the inner product (xj
u/|x

j
u|)·(x

j
v/|x

j
v|) and such weights are forced to

be positive by a simple shift. Intuitively, in the case of an acute angle, moving xi in

the direction xj
u + x

j
v enlarges the angle between x

j
u and x

j
v. As the resulting vector

does not have to lie in the tangent plane, we project it on the tangent plane utilizing

proj
T
(V) = V− (V ·N)N. Since each parametrization contributes to the movement

of xi in a different direction, the expected behaviour will be a compromise among the

parametrizations, leading to a mean angle at a vertex along the neighbouring quads
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in the discrete setting. Such angle-based tangential movement of corner points is then

extended to the inner points of quadrilateral patches, e.g., by a bilinear interpolation.

Parameter ωn controls the strength of the angle redistribution and it is set constant

for all xi.

In Figure 6 we give an example of the construction of the vector Vn
T
in (5.15)

for a corner point xi with four adjacent quadrilateral patches. The vectors resulting

from the inner products between two adjacent quadrilateral patches are highlighted

in blue and the resulting tangential vector Vn
T
is drawn in red.

5.1.4. Area-based redistribution. Unlike the angle-based redistribution term

V
n
T
, which directly depends on the parametrization, the area-based redistribution

term V
r
T
depends only on the local area density g ofM defined as

(5.16) g = |xu × xv| =

√

det

[

xu · xu xu · xv

xv · xu xv · xv

]

.

We are interested in the evolution of g with respect to the normal and tangential

velocities in (5.1). The time evolution of g is described in Lemma 5.1.

Lemma 5.1. Let x(t, ·) be a smooth parametric surface representing the embed-

ding of an evolving 2-manifold in R
3 in time t according to (5.1). Then the local

area density g of x(t, ·) evolves as

(5.17) gt = −gHβ + g∇x ·VT,

where H is the mean curvature scalar field and ∇x ·VT is the surface divergence of

the tangential vector field VT defined in (5.8).

For completeness and the readers’ convenience we postpone the proof to Ap-

pendix (A).

If we want the surface area density g to converge to a prescribed area density c

during the evolution, we impose the evolution of g w.r.t. the area A of the surface as

(5.18)
( g

A

)

t
=

( c

A
−

g

A

)

ωr,

where the scalar parameter ωr controls the speed of convergence. Let us notice that

for ωr = 0, there is no change in time, thus, the density remains preserved as it

was at the beginning of the evolution. Formula (5.18) allows to manipulate the local

density g in order to asymptotically reach the prescribed value c as t→∞.
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In our case we want g to converge to a uniform area density distribution. The

uniform area density distribution is constant all over the space and each valid area

density has to integrate to the area of the surface. For this reason c is given by

c =

∫ 1

0

∫ 1

0
g du dv

∫ 1

0

∫ 1

0 du dv
= A.

Let us suppose that the vectors Vn
T
and βN are already known. The quad area

control will be performed in the discrete setting through the control of the finite

volume areas.

A relation between VT and g that satisfies (5.18) is summarized in Theorem 5.1

in terms of the divergence operator.

Theorem 5.1. Let x(t, ·) be a smooth parametric surface representing the em-

bedding of an evolving 2-manifold in R
3 according to (5.1). Then x(t, ·) evolves

to a surface with area density c if the divergence of the tangential vector field V
r
T

satisfies the following relation:

(5.19) ∇x ·V
r
T
= −∇x ·V

n
T
+Hβ −

1

A

∫∫

M

Hβ dM+
( c

g
− 1

)

ωr.

The proof of Theorem 5.1 is postponed to Appendix (B). Moreover, in order to

move the boundary points only along the boundary ∂M of an open surfaceM, we

can prescribe the following natural boundary condition:

(5.20) V
r
T
· n|∂M = 0.

Corollary 5.1 provides a unique solution to formula (5.19) in Theorem 5.1 in terms

of a potential field ϕ.

Corollary 5.1. Let us assume that Vr
T
is a gradient vector field of a potential ϕ.

By fixing the value of ϕ at one point of the surface x and imposing the homogeneous

Neumann boundary conditions for an open surface, equation (5.19) has a unique

solution given by solving the following equation:

(5.21) ∆xϕ = ∇x · ∇xϕ = −∇x ·V
n
T
+Hβ −

1

A

∫∫

M

Hβ dM+
( c

g
− 1

)

ωr.

By imposing only the Neumann boundary conditions for an open surface problem,

(5.21) attains infinitely many solutions which differ only by a constant, thus the

gradient Vr
T

= ∇xϕ is naturally the same for each solution. However, a unique

solution for (5.21) can be obtained by imposing a Dirichlet boundary condition at

one point of x.
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5.2. Numerical scheme. In this section we derive the numerical scheme for

the Basic Quad Layout evolution driven by the PDE model (5.1). For the spatial

discretization, we adopt the finite volume approach, while a semi-implicit scheme is

considered in time to linearize the Laplace-Beltrami operator and other non-linear

terms in (5.1).

In the preliminary step, the distance function d(x) to M△ is discretized on a vox-

elized grid inside the M△’s bounding box. Each voxel is represented by a cube of

edge length given by 1% of the longest bounding box edge. The values are approx-

imated using the Fast Sweeping Algorithm [40] and modified to a signed distance

function by a simple flooding algorithm, which changes the sign of all external voxels

relative to M△.

In what follows, we first introduce the finite volume method (FVM) that is used

to spatially discretize the quad-based surface PDE evolution model.

Let us consider a piecewise bilinear discretization of the Basic Quad Layout pro-

duced in Phase 2 represented by a quad mesh M� := ({xi}
n
i=1, Q), where {xi}

n
i=1 is

a set of n vertices and Q is the set of quads. Then we denote by N�(xi) = {q ∈ Q;

xi ∈ q} the quad 1-ring neighbourhood and by #N�(xi) the number of quads sur-

rounding (sharing) the vertex xi.

The finite volume method assumes in general that the continuous surface M is

approximated by the union of so-called control volumes Vi, i = 1, . . . , n, built around

each vertex xi. In the case of an evolving surface, the control volume Vi naturally

changes with the evolving vertex.

Let us introduce the local vertex and quad indexing in the barycentric control

volume Vi around vertex xi as illustrated in Figure 7 for #N�(xi) = 5. The local

vertex indices in a quad Qj are denoted by x
k
j , k ∈ {0, . . . , 3} with x

0
j = xi, where the

index j refers to the neighbouring quads. Therefore, the barycentric finite volume Vi

around the vertex xi consists of mi = #N�(xi) one-quarter-quads of the neighbour-

ing quads Qj as illustrated in Figure 7. The boundary of Vi in the one-quarter-quad

Qj , j ∈ N�(xi) is prescribed by the vertices r
k
j given as follows:

r
1
j =

1

2
(x0

j + x
1
j),

r
2
j =

1

4
(x0

j + x
1
j + x

2
j + x

3
j),

r
3
j =

1

2
(x0

j + x
3
j),

and the area of the finite volume Vi is then given by

m(Vi) =
1

2

∑

j∈N�(xi)

|(r1j − x
0
j)× (r2j − x

0
j )|+ |(r

2
j − x

0
j )× (r3j − x

0
j)|.
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Figure 7. Finite volume Vi (shaded grey area) with local indexing of quads, corner points
and edges.

5.2.1. Finite volume scheme for the evolution model. Unlike the finite

differences method, the FVM aims to approximate the solution of an evolutionary

PDE model in terms of integrals over the control volumes Vi. Thus we integrate (5.1)

over the finite volume Vi, where for VN we use (5.10). We get

(5.22)

∫

Vi

xt dM =

∫

Vi

ε(d(x))∆xxdM+

∫

Vi

η(d(x))N dM

+

∫

Vi

V
n
T
dM +

∫

Vi

V
r
T
dM.

Assuming the functions ε(·) in (5.11) and η(·) in (5.12) are given by constant

values over the control volume Vi, i.e., εi = ε(d(xi)), ηi = η(d(xi)), and applying

Green’s theorem we can rewrite (5.22) to

(5.23)

∫

Vi

xt dM = εi

∫

∂Vi

∇xx · ni ds+ ηi

∫

Vi

N dM+

∫

Vi

V
n
T
dM+

∫

Vi

V
r
T
dM.

The first term on the right-hand side of (5.23), using the definition of finite vol-

umes, can be rewritten as

(5.24) εi

∫

∂Vi

∇xx · ni ds = εi
∑

j∈N�(xi)

∫

ej

∇xx · nj ds = εi
∑

j∈N�(xi)

∫

ej

∂x

∂nj
ds,

where ej is an edge of the finite volume Vi in a quad Qj that consists of two

edges e1j and e3j , and nj denotes the unit normal to ej . Moreover, e
1
j and e3j can

be parametrized as

e1j(̺) = (r2j − r
1
j )̺+ r

1
j , ̺ ∈ [0, 1],

e3j(φ) = (r2j − r
3
j )φ+ r

3
j , φ ∈ [0, 1].
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Thus, we can divide each term of the sum (5.24) into a sum of integrals along e1j
and e3j , j = 1, . . . ,#N�(xi),

(5.25) εi

∫

∂Vi

∇xx · n ds = εi
∑

j∈N�(xi)

∫

e1
j

∂x

∂n1
j

ds+

∫

e3
j

∂x

∂n3
j

ds.

The normal derivatives are approximated using bilinear interpolation and the de-

tailed formulas are derived in the Appendix (C). Using formula (7.16) from the

Appendix (C), we can approximate (5.25), thus (5.24), as

(5.26) εi

∫

∂Vi

∇xx · n ds

≈ εi
∑

j∈N�(xi)

m(e1j)

|N1
j |

[1

4
(−3x0

j + 3x1
j − x

3
j + x

2
j)−

a1j
2
(−x0

j − x
1
j + x

3
j + x

2
j )
]

+
m(e3j)

|N3
j |

[1

4
(−3x0

j − x
1
j + 3x3

j + x
2
j )−

a3j
2
(−x0

j + x
1
j − x

3
j + x

2
j )
]

,

where N1
j , N

3
j , a

1
j , a

3
j are defined in (7.12)–(7.13) and m(ekj ) = |r

2
j − r

k
j | denotes the

Euclidean length of edge ekj .

The second term on the right-hand side of (5.23) can be rewritten as

(5.27) ηi

∫

Vi

N dM =
ηi
2

∑

j∈N�(xi)

(r1j − x
0
j )× (r2j − x

0
j) + (r2j − x

0
j)× (r3j − x

0
j ).

For the numerical approximation of the third term on the right-hand side of (5.23),

the integral of Vn
T
defined by equation (5.15), we first approximate the derivatives

on the jth quad x
j
u, x

j
v by

(5.28) x
j
u ≈ x

1
j − x

0
j , x

j
v ≈ x

3
j − x

0
j ,

and then by multiplying it by the area of the finite volume, we get

(5.29)

∫

Vi

V
n
T
dM≈

m(Vi)

#N�(xi)

×
∑

j∈N�(xi)

(

1 +
x
1
j − x

0
j

|x1
j − x

0
j |
·
x
3
j − x

0
j

|x3
j − x

0
j |

)

(x1
j − x

0
j + x

3
j − x

0
j).

Concerning the fourth term of the right-hand side of (5.23), under the assumption

that the values of the potential ϕ are already computed, as described in Section 5.3,
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V
r
T
is determined as the surface gradient of ϕ and it can be computed using the

following identity, see e.g. [9],

(5.30)

∫

Vi

V
r
T
dM =

∫

Vi

∇xϕdM =

∫

∂Vi

ϕn ds−

∫

Vi

ϕHN dM.

The boundary integral on the right-hand side of (5.30) is approximated using the

bilinear interpolation, see Appendix (C),

(5.31)

∫

∂Vi

ϕn ds =
∑

j∈N�(xi)

∫

e1
j

ϕn1
j ds+

∫

e3
j

ϕn3
j ds

≈
∑

j∈N�(xi)

∫

e1
j

ϕ
N

1
j

|N1
j |

ds+

∫

e3
j

ϕ
N

3
j

|N3
j |

ds

≈
∑

j∈N�(xi)

m(e1j)
(3

8
ϕi +

3

8
ϕ1
j +

1

8
ϕ2
j +

1

8
ϕ3
j

) N
1
j

|N1
j |

+m(e3j)
(3

8
ϕi +

3

8
ϕ2
j +

1

8
ϕ1
j +

1

8
ϕ3
j

) N
3
j

|N3
j |
,

where ϕk
j is the value of the function ϕ at point xk

j .

The second integral term of (5.30) is approximated by taking ϕ constant on the

finite volume and by applying Green’s theorem:

(5.32)

∫

Vi

ϕHN dM = ϕi

∫

Vi

HN dM = ϕi

∫

∂Vi

∂x

∂ni
ds = ϕi

∫

∂Vi

ni ds

≈ ϕi

(

∑

j∈N�(xi)

∫

e1
j

N
1
j

|N1
j |

ds+

∫

e3
j

N
3
j

|N3
j |

ds

)

≈ ϕi

(

∑

j∈N�(xi)

m(e1j)
N

1
j

|N1
j |

+m(e3j)
N

3
j

|N3
j |

)

.

Putting (5.31) and (5.32) together, the last term on the right-hand side of (5.23)

is approximated as

(5.33)

∫

Vi

V
r
T
dM≈

∑

j∈N�(xi)

m(e1j)
(

−
5

8
ϕi +

3

8
ϕ1
j +

1

8
ϕ2
j +

1

8
ϕ3
j

) N
1
j

|N1
j |

+m(e3j)
(

−
5

8
ϕi +

3

8
ϕ2
j +

1

8
ϕ1
j +

1

8
ϕ3
j

) N
3
j

|N3
j |
.

Finally, the left-hand side term in (5.23) is approximated by means of the forward

finite difference as

(5.34)

∫

Vi

xt dM = m(Vi)
(

x
t+∆t
i − x

t
i

∆t

)

.
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Then the approximations (5.26), (5.27), (5.29) and (5.33) are treated in time semi-

implicitly, that means the linear terms are assumed in the time step t+∆t and the

non-linear terms are evaluated in the time step t. Thus, the solution of (5.23) reduces

to the following system of linear equations:

(5.35) At
xx

t+∆t = btx,

where xt+∆t = {xt+∆t
1 , . . . ,xt+∆t

n }. The system matrix At
x is sparse and in general

non-symmetric, thus the linear system is solved in every time step by BiCGStab

linear solver [34] with Incomplete LUT preconditioner (Incomplete LU factorization

with dual-threshold strategy).

5.3. Computing the potential field ϕ. We recall that in order to obtain V
r
T
,

or equivalently the fourth term on the right-hand side in (5.23), we first have to

compute the potential field ϕ in (5.21).

Integrating (5.21) over the finite volume Vi we get

(5.36)

∫

Vi

∆xϕdM = −

∫

Vi

∇x ·V
n
T
dM +

∫

Vi

Hβ dM

−

∫

Vi

1

A

∫∫

M

Hβ dM dM+

∫

Vi

( c

g
− 1

)

ωr dM.

The left-hand side term in (5.36) leads to the same coefficient matrix as (5.26) for

εi = 1.

The first term on the right-hand side in (5.36) can be approximated utilizing the

divergence theorem and equation (5.31) as

(5.37)

∫

Vi

∇x ·V
n
T
dM =

∫

∂Vi

V
n
T
· n dM

≈
∑

j∈N�(xi)

m(e1j)
1

8
(3Vn,0

T
+ 3Vn,1

T
+V

n,3
T

+V
n,2
T

) ·
N

1
j

|N1
j |

+m(e3j)
1

8
(3Vn,0

T
+V

n,1
T

+ 3Vn,3
T

+V
n,2
T

) ·
N

3
j

|N3
j |
.

The second term can be approximated utilizing relations (7.12), (7.13), (7.16),

since ∆xx = HN, as

(5.38)

∫

Vi

Hβ dM =

∫

Vi

HN·βN dM≈ βiNi ·
∑

j∈N�(xi)

(

m(e1j)
N

1
j

|N1
j |
+m(e3j)

N
3
j

|N3
j |

)

,
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where the scalar βi at the vertex xi represents the normal evolution speed, and is

defined as

βi = εiHi + ηi,

where

Hi = Ni ·
∑

j∈N�(xi)

(

m(e1j)
N

1
j

|N1
j |

+m(e3j)
N

3
j

|N3
j |

)/

m(Vi).

The third term on the right-hand side in (5.36) represents the mean value of Hβ

along the surface and can be approximated as

(5.39)

∫

Vi

1

A

∫∫

M

Hβ dM dM≈
m(Vi)

A

n
∑

i=1

m(Vi)Hiβi,

where the area A ≈
n
∑

i=1

m(Vi).

Regarding the fourth term on the right-hand side of (5.36), if we want in the

discrete setting every finite volume Vi to have the same area, we would set c = A.

The value of c is approximated as

c = A ≈
n
∑

j=1

m(Vj)

and the value of g is dependent on the number of quads forming the finite volume

and it is approximated as g ≈ m(Vi)
/

Ξ, where Ξ = #N�(xi)/
∑n

j #N�(xj).Thus,

the fourth term on the right-hand side of (5.36) can be approximated as

(5.40)

∫

Vi

(

c

g
− 1

)

ωr dM≈

(

A

m(Vi)
/

Ξ
− 1

)

ωrm(Vi)

=

(

A(#N�(xi))
∑n

j #N�(xj)
−m(Vi)

)

ωr.

Putting the integral approximations into (5.36), we obtain a sparse linear system

of n equations for the unknown values of the potential ϕi, i = 1, . . . , n, at vertices

xi : Aϕϕ
t+∆t = bϕ, where ϕ

t+∆t = (ϕ1, . . . , ϕn)
⊤. According to Corollary 5.1 the

equation for the point x1 is replaced by the equation ϕ1 = 0. The system is solved

at every time step t.

5.4. Algorithm Basic Quad Layout evolution. The Algorithm Basic Qu-

ad Layout evolution summarizes the procedure described in Phase 3 to obtain

from the Basic Quad Layout S a pure quad mesh approximation M� of an input

surface represented by M△. We propose two approaches to Phase 3 (Basic Quad

Layout Evolution):
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⊲ ALG 1 evolves each patch Si of the surface Basic Quad Layout S separately, while

fixing its boundary (imposing Dirichlet boundary conditions)

⊲ ALG 2 allows to evolve jointly also the boundary of each Si, thus obtaining a better

quad quality over the whole mesh as well as a better vertex distribution around

the boundary of each Si.

The strategy ALG 1 turns out to be useful when specific parts of the shape are

aimed to be edited while maintaining the prescribed partitioning boundaries given

by the patch layout. This is the case, for example, of the B-Rep of objects in solid

modelling.

For a more efficient implementation, ALG 2 can be implemented as a post-process

to ALG 1 setting x
0 = M� obtained from ALG 1. This allows for both a parallel

implementation and efficiency in the solutions of smaller-dimension linear systems.

For all the experiments reported in the numerical section, we will refer to ALG 2 as

the latter, more efficient implementation.

Both strategies ALG 1 and ALG 2 stop the surface evolution when the following

criterion is satisfied:

‖xt+∆t − x
t‖∞ 6 dth

with dth a given threshold.

Algorithm: Basic Quad Layout evolution

Input: Basic Quad Layout {Si}
K
i=1, partitioning {Mi}

K
i=1

Output: pure quad mesh M�

Parameters: time step τ ,

redistribution speed parameters ωr, ωn

Preliminary Process:

· compute d(·) from {Mi}
K
i=1 using [40]

· enrich d(·) with a sign by a flooding algorithm.

ALG 1

for i = 1, . . . ,K do:

· set x0 = Si

· t← 0

do: · compute βN, Vn
T
using (5.26)–(5.27), (5.29)

· construct At
ϕ, b

t
ϕ using (5.36)–(5.40)

· solve At
ϕϕ = btϕ for ϕ

· construct At
x, b

t
x using (5.26)–(5.27), (5.29)–(5.34)

· solve At
xx

t+∆t = btx for x
t+∆t, Dirichlet BC

· t← t+∆t

while ‖xt+∆t − x
t‖∞ 6 dth

end for
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ALG 2

for i = 1, . . . ,K do:

· set x0 = S

· t← 0

do: · compute βN, Vn
T
using (5.26)–(5.27), (5.29)

· construct At
ϕ, b

t
ϕ using (5.36)–(5.40)

· solve At
ϕϕ = btϕ for ϕ

· construct At
x, b

t
x using (5.26)–(5.27), (5.29)–(5.34)

· solve At
xx

t+∆t = btx for x
t+∆t

· t← t+∆t

while ‖xt+∆t − x
t‖∞ 6 dth

end for

6. Numerical experiments

We validated the proposed surface-patch quadrangulation algorithm on several

input meshes. Data on the input triangular meshes M△ considered in the examples

is reported in Table 1. From the second to the fifth column we report the number

of vertices (#V△), triangles (#T△), number of patches K produced from the input

mesh M△ by Phase 1, and the number of internal vertices that do not have six

neighbours (extraordinary vertices #EV△), which gives an insight into the input

mesh structure. From now on we will refer to V△ for the vertices of the triangular

mesh M△ and similarly V� for the quad mesh vertices in M�.

#V△ #T△ K #EV△

dolphin 7573 15142 11 2588

fertility 19994 40000 19 12092

hand 6607 13210 10 2827

horse 8078 16152 11 4712

plane 7470 14936 12 1076

pliers 5110 10216 4 1712

sole 11133 21946 1 8198

teddy 9548 19092 10 2822

teddy 2 1029 2056 10 633

wolf 4712 9420 17 2825

Table 1. Input data set M△.

Concerning the setting of the parameters involved in the quadrangulation algo-

rithm, we proceed as follows. The edge length h in the initial grids of the Basic
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Quad Layout S is set in the range h ∈ [0.025, 0.04]. However, the edge lengths at

the end of the evolution step may slightly differ. In Phase 3, we set c1 = 0.03,

c2 = 0.002 for the mean curvature flow weighting function ε in (5.11) and the ini-

tial time step τ = 1. The tolerance dth for the stopping criterion of Algorithm

Basic Quad Layout evolution is set to be dth = 5 × 10−5. For the redistribution

speeds ωr and ωn we chose the following strategy. In the inner do loop of Algorithm

Basic Quad Layout evolution we first set ωr = ωn = 1 to equally balance the area-

oriented and angle-oriented redistributions and then we decreased τ = 0.5, ωr = 0.5

and ωn = 0.1 when ‖xt+∆t − x
t‖∞ 6 2 × 10−4, thus obtaining a good compromise

between the mesh quad areas and quad angles.

The code for Phase 1 and Phase 2 is written in Matlab while the evolution in

Phase 3 is implemented in C++ language. The experimental tests have been per-

formed on Intelr CoreTM i7-5820K 6-Core 3.30 GHz machine, with 64 GB/RAM and

RadeonTM RX 460 graphics card in a Windows OS. The codes were executed without

any additional machine support, e.g., parallelization, GPU support, register usage.

The visualizations were created using ParaView and its VTK visualization toolkit.

6.1. Example 1: Mesh quadrangulation quality. In this experiment, we

tested our algorithm on different meshes, investigating the quality of the results in

terms of uniformity and closeness to the input shape M△. We impose h = 0.025 in

Phase 2 for all examples in this experiment.

We measure the quad mesh quality by metrics on the final edge lengths h, the

quad areas Q and the angles ∡. In particular, we resort on the following metrics:

⊲ (h̄, σh), mean edge length and standard deviation from h̄,

⊲ (Q, σQ), mean area of the quads and standard deviation from Q,

⊲ (∡, σ∡), mean angle of the quad corners in degrees and standard deviation from ∡.

Moreover, with respect to the reconstruction accuracy, we evaluate the following

metrics on the distance function values:

⊲ (d, σd), mean value of the distance function d = n−1
n
∑

i=1

|d(xi)|, xi ∈ V�, and the

standard deviation,

⊲ d∞, the maximum distance d∞ := ‖d(x)‖∞ = max
i=1,...,n

|d(xi)|, xi ∈ V�.

In Figures 8–9 we report some examples of the quadrilateral meshes obtained by

running the Algorithm Surface-Patch Quadrangulation where both the proposals

ALG 1 and ALG 2 have been applied in Phase 3. For each mesh in Figures 8–9 we

visualize in the first column the input Basic Quad Layout S together with an outline

of the input shape, where each patch Si of S is coloured differently; in the second and

the third column, we report the outputs of ALG 1 and ALG 2, respectively, coloured
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Figure 8. Example 1: Reconstruction results of different meshes. From left to right: input
Basic Quad Layout S with the outline of M△ in transparent, result of ALG 1 and
result of ALG 2.

in false colours in the range [blue,red] according to the quad areas of the mesh.

As expected, in the third column of Figures 8–9, which illustrates the output of

ALG 2, we can appreciate the uniform colour distribution that was obtained thanks

to the boundary moving strategy. Moreover, even when ALG 2 is applied, the original
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Figure 9. Example 1: Reconstruction results of different meshes. From left to right: input
Basic Quad Layout S with the outline of M△ in transparent, result of ALG 1 and
result of ALG 2.

patch layout is well-preserved. The details of the resulting meshes M� illustrated

in Figure 8–9 are listed in Table 2. The number of extraordinary vertices (#EV�)

is much lower than #EV△ of the input mesh M△ in Table 1, indicating that the

results M� are valence semi-regular meshes. Moreover, even for different values of

the edge length h used, thanks to the construction of S in Phase 2, the number of

extraordinary vertices remains unchanged.
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#V� #Q� #EV�

dolphin 7482 7480 60

fertility 6768 6774 113

hand 7200 7198 52

horse 5164 5162 58

plane 8057 8055 64

pliers 2649 2647 20

sole 21442 21070 4

teddy 8610 8608 56

teddy 2 6018 6016 52

wolf 14348 14346 92

Table 2. Example 1: Output data set M� for meshes illustrated in Figures 8 and 9.

In addition to the qualitative evaluation illustrated in Figures 8–9, we report in

Table 3 the quality measures for both ALG 1 and ALG 2 marked by upper indices

for each mesh name in the first column. Both algorithms produce well-shaped quad

mesh elements in terms of angles (almost 90 degrees in the sixth column ∡) and area

density (small value of σQ). ALG 2 allows for a more uniform quad area distribution

(σQ is smaller for ALG 2 than for ALG 1) and a more accurate reconstruction (σd is

smaller for ALG 2). Let us notice that although we did not expect h to be preserved,

the mean edge length h̄ is relatively close to the chosen h.

The last two columns of Table 3 report the timing for the evolution Phase 3

in terms of the number of iterations (#its) needed for convergence to the given

threshold dth and time per one iteration in milliseconds. In particular, the #its

column for ALG 1 reports the medium number of iterations per patch while for ALG 2

#its reports the number of iterations needed as the postprocess toM� of ALG 1. We

notice that the number of iterations naturally depends on the Basic Quad Layout

and on the distance to be reached by the evolution, see e.g. pliers and plane, w.r.t.

shorter distances as in teddy or dolphin.

6.2. Example 2: Effect of the tangential redistribution terms. To evaluate

the benefit of the tangential redistributions during the evolution in Phase 3, we first

evolved the Basic Quad Layout S of the teddy mesh using ALG 2 balancing the quad

areas and angle distortions. In Figure 10 (first row) the evolution of one patch Si of S

in four selected time steps is reported. Then we re-ran the algorithm first without

the angle contribution V
n
T
term and then without the area contribution V

r
T
. The

comparisons related to the resulting patch Si w.r.t. the balanced first evolution are

reported in the second row in Figure 10. On the left (result without the Vn
T
term),

the angle-distortion values δ(∡) in false colours are over-imposed on the quad mesh.
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The angle-distortion δ(∡) at a vertex xi is computed as

δ(∡)|xi
=

∑

j∈N�(xi)
|γj −

1
2π|

#N�(xi)
,

where γj represents the angle size at xi in the neighbouring quad Qj.

On the right (result without the V
r
T
term), the quads are coloured according

to their areas m(Q) using false colours. In the last row of Figure 10, we report

the histograms corresponding to the value distributions shown in the second row

of Figure 10. The blue bins represent the value distribution without the relative

tangential term, while the red bins correspond to the resulting values using both

tangential contributions.

We can conclude that both tangential terms are important for the quality of the

resulting mesh elements, while the leading contribution is represented by the area

redistribution term V
r
T
.

(h̄, σh) (Q, σQ) (∡, σ∡) (d, σd) d∞ #its 1 its

×10−3 ×10−5 deg ×10−6 ×10−5 msec

dolphin1 20.11 5.59 35.07 3.26 89.9 21.9 −0.55 7.43 6.40 44 11

dolphin2 20.02 5.56 35.06 0.71 89.9 19.9 −0.08 1.06 0.33 61 135

fertility1 16.42 4.31 22.22 2.70 89.7 26.7 0.00 0.47 2.13 53 7

fertility2 15.91 4.15 22.17 1.09 89.8 20.9 0.00 0.00 0.01 60 130

hand1 22.15 5.05 43.41 3.95 89.9 21.9 −0.61 9.49 15.30 116 9

hand2 22.04 5.21 43.38 0.71 89.9 19.4 −0.01 0.78 1.06 60 121

horse1 23.63 6.85 48.28 6.18 89.8 21.5 −6.89 22.25 9.94 59 6

horse2 23.63 6.85 48.22 1.19 89.8 19.6 −0.11 1.76 2.43 63 82

plane1 18.77 5.88 29.70 1.61 89.9 22.2 0.00 0.04 0.50 104 15

plane2 18.53 5.87 29.70 0.83 89.9 18.6 0.00 0.04 0.18 50 154

pliers1 30.12 16.20 61.80 2.75 89.9 19.2 0.01 0.02 0.24 525 9

pliers2 30.17 16.16 61.80 1.70 89.9 17.4 0.01 0.01 0.20 34 48

teddy1 22.18 6.80 41.75 2.80 89.9 22.5 −2.25 17.84 2.20 47 13

teddy2 22.04 6.78 41.78 0.77 89.9 20.0 −0.20 0.97 1.67 48 164

wolf1 15.88 5.16 20.70 1.60 89.8 22.4 −0.06 7.36 36.40 86 11

wolf2 15.54 4.98 20.70 0.63 89.8 18.0 −0.04 0.62 6.40 147 248

Table 3. Example 1: Reconstruction quality metrics for the meshes reported in Figures 8
and 9.
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Figure 10. Example 2: Demonstration of the influence of the tangential redistribution
terms. First row: Selected time steps of patch evolution for teddy mesh. Second
row (left): Comparison of the resulting mesh part with (left) and without (right)
the angle redistribution term. Second row (right): Comparison of the resulting
mesh part with (left) and without (right) the area redistribution term. Third
row: corresponding histogram value distributions relative to the results in the
second row.

6.3. Example 3: Robustness to the mesh resolution. In this experiment we

investigated the robustness of the proposed algorithm ALG 2 to the changes on the

input (M△) and output (M�) mesh resolutions. To this aim we considered two input

meshesM△ of different resolutions: teddy (high density) and teddy 2 (low density),

see Figure 11 top left and bottom left, respectively. To produce teddy 2, we have de-

creased the inputM△ mesh resolution of teddy down to 10%, see teddy 2 in Table 1.
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teddy

teddy 2 (sparse)

Figure 11. Example 3: Quad mesh results under different resolutions for teddy mesh (top
left) and teddy 2 mesh (bottom left). From left to right the results M� for
chosen edge lengths h = {0.04, 0.02, 0.01}, together with details of the recon-
structed meshes with original triangulations over-imposed in blue (second and
third row).

We produced the Basic Quad Layout S for both the teddy meshes using three

different resolutions controlled by decreasing h in the range {0.04, 0.02, 0.01} and we

evolved the associated layouts. The corresponding results M� of ALG 2 are reported

in Figure 11 in the first and last row. Each resolution result in Figure 11 is accom-

panied with a detail of the arm together with the original triangulation coloured
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in blue. From the visual inspection of the reported results we can state that our

algorithm is robust to the input-output mesh resolution.

In order to evaluate the accuracy of the reconstructions, we measured the Haus-

dorff distance, implemented in the software Metro [5], which is defined between two

meshes X and Y as

dH(X,Y ) = max
{

sup
x∈X

(

inf
y∈Y

dist(x, y)
)

, sup
y∈Y

(

inf
x∈X

dist(x, y)
)}

.

The Hausdorff distances between M△ and M� for the meshes illustrated in Fig-

ure 11 are reported in Table 4. In the last column (teddy) and the last row (teddy 2)

of Table 4 we report the distances between the input triangulation M△ and the cor-

responding quad mesh results M� for the different edge length parameter values h.

Decreasing the edge length h, the reconstructed shape M� improves, as confirmed

by the decreasing Hausdorff distances.

(a) (b) (c)

(d) (e) (f)

Figure 12. Example 4: quad mesh generation from 3D scanned objects: (a) input triangu-
lation M△; (b) the Basic Quad Layout S; (c) “logo” NURBS surface; (d) M�;
(e) a detail of M�; (f) Boolean operation between the surfaces.

In the central part of Table 4, at position (1, 1) the reader can find the distance

between the two input triangulations, while the rest of the first row lists the Hausdorff

distances between the teddy input triangulation M△ and the resulting meshes M�

34



for teddy 2 and vice versa for the rest of the first column. Also in this case, we

notice that for smaller values of h, the given shape is better approximated, thus,

approaching the same distance as between the input triangulations M△. The rest of

the central part of Table 4 reports for different values of h the distances between the

reconstructed M� for teddy and the resulting M� for teddy 2.

teddy 2 teddy

M△ M� M� M�

dH(X,Y )× 10−3 h = 0.04 h = 0.02 h = 0.01 dH(M△,M�)

teddy M△ 14.50 28.31 16.95 14.50 0.00

M�, h = 0.04 17.27 28.32 17.38 18.14 22.60

M�, h = 0.02 12.99 26.02 15.48 13.38 12.78

M�, h = 0.01 13.68 28.57 16.54 13.68 3.01

teddy 2 dH(M△,M�) 0.00 22.68 13.58 5.80

Table 4. Example 3: Hausdorff distances between the results reported in Figure 11.

6.4. Example 4: Sole. Finally we illustrate a simple example of CAD application

where the Boolean operation between two NURBS surfaces (the “logo” and the sole)

can be realized by first remeshing the 3D scanned object (representing the sole) into

a quad regular grid, thus providing a NURBS representation.

The 3D scanned object, representing a sole of a shoe, given as a triangular mesh

M△, is shown in Figure 12(a) (see Table 1 for detailed data). The 1-patch Basic Quad

Layout S constructed from the boundary of M△ (see Figure 12(b) where the input

shape is over-imposed in semi-transparency) is then evolved by the proposed quad

mesh generation algorithm. The resulting mesh M� is illustrated in Figure 12(d)

together with a zoomed detail of the object in Figure 12(e), and the corresponding

data is reported in Table 2. The quad mesh sole and the “logo” are then combined

together by Boolean intersection obtaining the surface in Figure 12(f).

7. Conclusion

The generation of pure quad meshes built on a consistent object patch-layout is

of paramount importance on a variety of application domains ranging from Finite

Element Analysis to solid modelling and computer graphics. In general, quad meshes

hold the potential to simplify and improve efficiency of many algorithms in surface

processing. In the context of FEM, the geometry is often available in the form of quad

patches, each preferably represented by quad elements as uniform as possible with

respect to areas and right angles. Preliminarily to many editing processes, CAD
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applications require to convert a 3D scanned object into a minimal set of salient

patches easily treatable in terms of NURBS or of T-spline surfaces.

Towards these targets, we introduced a framework which, first, constructs a Ba-

sic Quad Layout underlying a 0-genus partitioning of an input discrete manifold,

and then evolves it following a Lagrangian-type evolution model to finally generate

a patch-based pure quad mesh which accurately approximates the original shape.

The evolution model is robust, however, in order to globally preserve a uniform quad

distribution it only considers 0-genus patches with one boundary. Extensions to

cylindrical 0-genus patches, produced by a possibly more sophisticated partitioning

method, are left for further investigation. Our algorithm guarantees various aspects

of the resulting meshes, such as the low number of singularities and patches, and the

quality of geometry approximation. Concerning the quad element quality it provides

a good compromise between uniform area and right angle distribution. However,

the edge length fixed on the patch boundaries in Phase 2 is not eventually preserved

during the evolution. A fully satisfactory, future, quad mesh generation method

could include the edge length control into the evolution model. Finally, we observe

that our framework is capable of extracting meaningful Basic Quad Layouts from

complex shapes which represent precious shape descriptors. This is an interesting

topic for future investigations.

Appendix

(A) P r o o f of Lemma 5.1. The local density g of the surface evolving by (5.1)

can be controlled by the tangential movement. In our case by a right choice of

parameters α and λ in (5.2). The relation of how g changes in time depending on α

and λ (and prescribed β) is derived in the sequel.

Starting with the following relation between gt, xu and xv:

(7.1) gt = |xu × xv|t =
xu × xv

|xu × xv|
· (xu × xv)t,

the term (xu × xv)t can be expanded as

(7.2) (xu × xv)t = (xu)t × xv + xu × (xv)t

= (xt)u × xv + xu × (xt)v

= (βN + αxu + λxv)u × xv + xu × (βN + αxu + λxv)v

= (βN)u × xv + (αxu + λxv)u × xv

+ xu × (βN)v + xu × (αxu + λxv)v.
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For clarity reasons, let us further focus on (7.2) split into two parts, by collecting

the terms containing βN and the ones containing αxu + λxv.

Plugging the first part of (7.2) into (7.1), we obtain

xu × xv

|xu × xv|
· ((βN)u × xv + xu × (βN)v)

=
xu × xv

|xu × xv|
· (βuN× xv + βNu × xv + xu × βvN+ xu × βNv)

=
xu × xv

|xu × xv|
· (βNu × xv + xu × βNv)

= β
xu × xv

|xu × xv|
· (Nu × xv + xu ×Nv) = −g Hβ,

where the formula from [13] (Lemma 13.38, page 411) has been used for the mean

curvature.

Similarly, plugging the second, tangential, part of (7.2) into (7.1) we get

xu × xv

|xu × xv|
· ((αxu + λxv)u × xv + xu × (αxu + λxv)v)

=
xu × xv

|xu × xv|
· ((αuxu + αxuu + λuxv + λxvu)× xv

+ xu × (αvxu + αxuv + λvxv + λxvv))

=
xu × xv

|xu × xv|
· (αuxu × xv + αxuu × xv + λuxv × xv + λxvu × xv

+ αvxu × xu + αxu × xuv + λvxu × xv + λxu × xvv)

=
xu × xv

|xu × xv|
· (αuxu × xv + αxuu × xv + λxvu × xv

+ αxu × xuv + λvxu × xv + λxu × xvv)

=

(

αu|xu × xv|+ α
(xu × xv) · (xuu × xv + xu × xuv)

|xu × xv|

+ λv|xu × xv|+ λ
(xu × xv) · (xu × xvv + xvu × xv)

|xu × xv|

)

=

(

αu|xu × xv|+ α
(xu × xv) · (xu × xv)u

|xu × xv|

+ λv|xu × xv|+ λ
(xu × xv) · (xu × xv)v

|xu × xv|

)

= (αu|xu × xv|+ α|xu × xv|u + λv|xu × xv|+ λ|xu × xv|v)

=
|xu × xv|

|xu × xv|
((α|xu × xv|)u + (λ|xu × xv|)v) = g∇x ·VT,

where the formula for the divergence of a vector field (5.8) has been used in the last

step. Combining the preceding two parts together, we obtain (5.17), which completes

the proof. �
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Figure 13. Illustration of the bilinear interpolation at one quad Qj , j ∈ N�(xi) used in the
approximation of normal derivatives.

(B) P r o o f of Theorem 5.1. The proof is based on expanding the left-hand side

of (5.18) to

(7.3)
( g

A

)

t
=

gtA− gAt

A2
,

where gt is given by (5.17), and for At we obtain

At =

(
∫ 1

0

∫ 1

0

g du dv

)

t

=

∫ 1

0

∫ 1

0

gt du dv

= −

∫ 1

0

∫ 1

0

g Hβ du dv +

∫ 1

0

∫ 1

0

g ∇x ·VT du dv

= −

∫∫

M

Hβ dM +

∫∫

M

∇x ·VT dM

= −

∫∫

M

Hβ dM+

∮

∂M

VT · n dS

= −

∫∫

M

Hβ dM+ 0,

where the Gauss theorem was used. Since our surface M is either a closed surface

or a surface with a boundary on which the zero Neumann boundary condition (5.20)

is prescribed, the boundary integral in the above formulation is equal to zero.

Thus, collecting the obtained expressions, we can write

(7.4)
( g

A

)

t
=

(−gHβ + g∇x ·VT)A+ g
∫∫

M
Hβ dM

A2
.

Then, plugging (7.4) into equation (5.18), we get

(7.5)
(−g Hβ + g ∇x ·VT)A+ g

∫∫

M
Hβ dM

A2
=

( c

A
−

g

A

)

ωr.

Using (5.13) for VT in (7.5) and after simple rearrangement we obtain (5.19). �
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(C) Numerical approximation of the normal derivatives. In the following we de-

scribe the bilinear interpolation used to approximate the normal derivatives ∂f/∂n1
j ,

∂f/∂n3
j in (5.24), (5.31), (5.32), (5.37) of a generic scalar function f . An illustration

of the following definitions is presented in Figure 13.

Let us recall Green’s theorem applied to
∫

Vi
∆xf dS that gives rise to the normal

derivatives

(7.6)

∫

∂Vi

∇xf · n ds =
∑

j∈N�(xi)

∫

e1
j

∂f

∂n1
j

ds+

∫

e3
j

∂f

∂n3
j

ds.

The points on Qj , j ∈ N�(xi) can be expressed by

(7.7) x(φ, ̺) = (1−φ)(1−̺)x0
j+φ(1−̺)x1

j+(1−φ)̺x3
j+φ̺x2

j , φ ∈ [0, 1], ̺ ∈ [0, 1],

and similarly the values of f by

(7.8) f(φ, ̺) = (1−φ)(1−̺)f0
j +φ(1−̺)f1

j +(1−φ)̺f3
j +φ̺f2

j , φ ∈ [0, 1], ̺ ∈ [0, 1].

Derivatives of x(φ, ̺) are

(7.9)
∂x

∂̺
(φ, ̺) = −(1− φ)x0

j − φx1
j + (1 − φ)x3

j + φx2
j ,

∂x

∂φ
(φ, ̺) = −(1− ̺)x0

j + (1− ̺)x1
j − ̺x3

j + ̺x2
j .

The non-normalized tangents to the edges e1j and e3j are defined as

T
1
j =

∂x

∂̺

(1

2
,
1

4

)

= −
1

2
x
0
j −

1

2
x
1
j +

1

2
x
3
j +

1

2
x
2
j ,

T
3
j =

∂x

∂φ

(1

4
,
1

2

)

= −
1

2
x
0
j +

1

2
x
1
j −

1

2
x
3
j +

1

2
x
2
j .(7.10)

The derivatives of x define also the following two vectors:

F
1
j =

∂x

∂φ

(1

2
,
1

4

)

= −
3

4
x
0
j + 3/4x1

j − 1/4x3
j + 1/4x2

j ,

F
3
j =

∂x

∂̺

(1

4
,
1

2

)

= −
3

4
x
0
j −

1

4
x
1
j +

3

4
x
3
j +

1

4
x
2
j .(7.11)

Using the vectors defined above, we can compute non-normalized normals to the

edge e1j using the Gram-Schmidt orthogonalization process as

(7.12) N
1
j = F

1
j −

F
1
j · T

1
j

T 1
j · T

1
j

T
1
j

= −
3

4
x
0
j +

3

4
x
1
j −

1

4
x
3
j +

1

4
x
2
j − a1j

(

−
1

2
x
0
j −

1

2
x
1
j +

1

2
x
3
j +

1

2
x
2
j

)

,
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where a1j = (F 1
j · T

1
j )/(T

1
j · T

1
j ). Similarly for the edge e

3
j as

(7.13) N
3
j = F

3
j −

F
3
j · T

3
j

T 3
j · T

3
j

T
3
j

= −
3

4
x
0
j −

1

4
x
1
j +

3

4
x
3
j +

1

4
x
2
j − a3j

(

−
1

2
x
0
j +

1

2
x
1
j −

1

2
x
3
j +

1

2
x
2
j

)

,

where a3j = (F 3
j · T

3
j )/(T

3
j · T

3
j ).

At last, the derivative of f in the normal direction at the edge e1j is approximated as

(7.14)
∂f

∂n1
j

≈
(

−
3

4
f0
j +

3

4
f1
j −

1

4
f3
j +

1

4
f2
j −

a1j
2
(−f0

j − f1
j + f3

j + f2
j )
)

/|N1
j |,

and similarly for ∂f/∂n3
j . Now we can write the approximation of the Laplace-

Beltrami operator applied on a generic function f and integrated over the finite

volume Vi as

(7.15)

∫

∂Vi

∇sf · n ds

≈
∑

j∈N�(xi)

m(e1j)

|N1
j |

[1

4
(−3f0

j + 3f1
j − f3

j + f2
j )−

a1j
2
(−f0

j − f1
j + f3

j + f2
j )
]

+
m(e3j)

|N3
j |

[1

4
(−3f0

j − f1
j + 3f3

j + f2
j )−

a3j
2
(−f0

j + f1
j − f3

j + f2
j )
]

,

while the mean curvature integral, as used e.g. in (5.26), is approximated as

(7.16)

∫

∂Vi

∇sx · n ds

≈
∑

j∈N�(xi)

m(e1j )

|N1
j |

[1

4
(−3x0

j + 3x1
j − x

3
j + x

2
j)−

a1j
2
(−x0

j − x
1
j + x

3
j + x

2
j )
]

+
m(e3j)

|N3
j |

[1

4
(−3x0

j − x
1
j + 3x3

j + x
2
j)−

a3j
2
(−x0

j + x
1
j − x

3
j + x

2
j )
]

.
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