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Abstract
In an era of information abundance and visual saturation, the need for resources to
organise and access the vast expanse of visual data is paramount. Abstract concepts-
such as comfort, power, or freedom-emerge as potent instruments to index andmanage
visual data, particularly in contexts like Cultural Heritage (CH). However, the vari-
ance and disparity in the visual signals that evoke a single abstract concept challenge
conventional approaches to automatic visual management rooted in the Computer
Vision (CV) field. This paper critically engages with the prevalent trend of automat-
ing high-level visual reasoning while placing exclusive reliance on visual signals,
prominently featuring Convolutional Neural Networks (CNNs). We delve into this
trend, scrutinising the knowledge sought by CNNs and the knowledge they ultimately
encapsulate. In this endeavour, we accomplish three main objectives: (1) introduction
of ARTstract, an extensive dataset encompassing cultural images that evoke specific
abstract concepts; (2) presentation of baseline model performances on ARTstract to
elucidate the intricate nuances of image classification based on abstract concepts; and,
critically, (3) utilization of ARTstract as a case study to explore both traditional and
non-traditional avenues of visual interpretability, a trajectory inspired by Offert and
Bell (2021). To more comprehensively understand how CNNs assimilate and reflect
cultural meanings, and to discern the echoes reverberating within these visions, we
unveil SD-AM, a novel approach to explainability that collapses visuals into hyperi-
con images through a fusion of feature visualization techniques and Stable Diffusion
denoising. Overall, this study critically addresses abstract concept image classifica-
tion’s challenges within the CNN paradigm. By embracing innovative methodologies
and providing comprehensive analyses of explainability techniques, we make a sub-
stantial contribution to the broader discourse surrounding automatic high-level visual
understanding, its interpretability, and the ensuing implications for comprehending
culture within the digital era. Through our exploration, we illuminate the multifaceted
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trends, complexities, and opportunities that underlie the fusion of high-level visual
reasoning and computer vision.

Keywords Computer vision · Explainability · Hermeneutics · Stable diffusion ·
Cultural heritage · Computational visual studies

1 Introduction

The proliferation of images in modern mass media has reached unprecedented levels,
with social media platforms alone hosting billions of images every day, and Cultural
Heritage institutions undergoing an unprecedented digitalisation of their image col-
lections (Bevan, 2015). This phenomenon characterises the post-modern era, where
users are overwhelmed by an abundance of information that is not curated (Jansson &
Hracs, 2018), and increasingly latch to movements, such as hyperpop (Fig. 1), which
strive to find some meaning amidst the disarray, by compiling vast fields of disparate
meanings until they reach some semblance of accord (Vassar, 2020).

The conventional adage “knowledge is power” is slowly yielding to the promi-
nence of curation in a contemporary shift from the information age to an era defined
by thoughtful selection and arrangement. In this transition, the ability to sift through
and adeptly manage copious data emerges as the genuine wellspring of influence
(Rosenbaum, 2011; Cohen & Mihailidis, 2013; Jansson & Hracs, 2018). Unsurpris-
ingly, automatic tools to navigate and comprehend vast troves of visual data have
become paramount. Computer vision techniques, powered by Convolutional Neural
Networks (CNNs), have emerged as indispensable tools in this endeavor to classify
and categorize large collections of image data (LeCun et al., 2015), including for cul-
tural images such as advertisements (Ye et al., 2019) and artworks (Cetinic & She,
2022). Simultaneously, there is a pursuit of automating increasingly intricate high-
level visual reasoning tasks that go beyond concrete visuals–such as the prediction
of personality traits (Segalin et al., 2017), political affiliation (Joo et al., 2014), and
even facial beauty (Gray et al., 2010) from visual signals alone. These tasks, which for
humans are deeply intertwined with cultural contexts and biases, have redefined the
expectations placed upon computer vision models, the depth of knowledge they strive
to acquire, and the crucial need for interpretability (Martinez Pandiani & Presutti,
2023).

In this context, abstract concepts (ACs) such as comfort, freedom, or danger become
important tools for advancing the next generation of automated visual organization
and curation. These concepts, which underlie the expression of emotions, opinions,
and ideas through language (Kousta et al., 2011), hold significant influence in cate-
gorizing and managing visual data. This is because visual forms, such as paintings
and photographs, function as vehicles of concepts, not solely by establishing links to
depicted objects through visual attributes, but also through Roland Barthes’ notion
of an image’s connotation-a secondary layer of meaning rooted in culturally encoded
elements (Barthes, 1980). This is particularly evident in the domain of Cultural Her-
itage (CH),where controlled thesauri and classification systems frequently incorporate
abstract concepts to categorize visual materials (Rafferty & Hidderley, 2017). Shared
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Fig. 1 Hyperpop synthesizes divergent meanings, reflecting an era of information abundance and visual
saturation

vocabularies and ontologies such as Iconclass,1 Library of Congress,2 Getty Vocabu-
laries,3 and Art and Architecture Thesaurus4 offer pre-established ACs for association
with visual content.

The potency of ACs in managing visual data lies in their capacity to bridge the gap
between visual forms and cultural meanings, by activating heterogeneous scenes and
situations (Borghi & Binkofski, 2014). However, this power also engenders the chal-
lenge of reconciling the disparities in the visual representation of abstract concepts.
For instance, a single abstract concept can be evoked by widely diverse visual data,
as in Fig. 2. The diversity and divergence present in visual signals evoking individ-
ual abstract concepts present a formidable challenge to conventional methodologies
rooted in the Computer Vision (CV) domain. Although CNNs offer immense promise,
they are intrinsically optimized for tasks characterized by high intra-class similarity
(Benz et al., 2020; Shirali & Hardt, 2023)—qualities that conflict with the inherent
heterogeneity and culturally nuanced nature of abstract concepts. The task of detecting
abstract concepts within visual data thus can be seen as a complex “wicked problem”,
lacking clear-cut solutions and molded by multifaceted cultural intricacies (Rittel,
1967). The increasing utilization of CNNs for wicked problem tasks like abstract
concept detection raises questions about the knowledge assimilated by these models.
Thus, the explainability of these models becomes crucial in understanding how they
handle complex socio-cultural visual reasoning tasks.

Explainability can be seen as a response to the perceived “explanatory deficit” in
technical disciplines (Berry, 2021). It stems from the challenges posed by opaquemod-
els and the recognition of problematic biases that can lead to inequities. The emerging
subfield of eXplainable AI (XAI) advocates for interpretability as a means to address
these issues (Mittelstadt et al., 2016). In this context, the ability to explain predic-

1 https://iconclass.org/
2 https://www.loc.gov/
3 https://www.getty.edu/research/tools/vocabularies/
4 https://www.getty.edu/research/tools/vocabularies/aat/index.html
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Fig. 2 Visual disparity in images that evoke the abstract concept of “death”, collected in our ARTstract
dataset. Clockwise from top left: The Apotheosis of War (1871) by Vasily Vereshchagin, Tretyakov Gallery,
Moscow, Russia, public domain; Panasonic: Where no vacuum has gone before (2014) advertisement by
Y&R;Christ Carrying the Cross (1660) by Jacob Jordaens, Rijksmuseum, Amsterdam, Netherlands, public
domain; The Axe Effect (2003) advertisement by Lowe Bull Calvert Pace; The head of Christ (1864) by
Edouard Manet, public domain; Mess of fish (1940) by Paul Klee, public domain. Images source for the
Ads Dataset (Hussain et al., 2017) and the Artemis Dataset (Achlioptas et al., 2021)

tions is crucial and informative of the heuristic process itself Offert and Bell (2021).
We argue that for the socio-cultural-cognitive task of abstract concept-based image
classification (AC image classification)–which is based on subjective, cultural, and
interoceptive processes–the perils of model reuse without explainability are high, as
it can potentially echo harmful stereotypes or visions of the world based on prejudice,
racism, and other biased worldviews.

In the context of machine vision, we are especially interested in the explainability
techniques of class activation mapping (CAM) and activation maximization (AM),
also known as feature visualization (FV). CAM identifies the salient regions of an
image that are considered important by the model in a classification task. It has been
used, for instance, to identify where CNN models localise symbols in iconography
classification (Vago et al., 2021). FV (AM), on the other hand, involves the generation
of images that visualize what a neuron in a CNN has learned (Erhan et al., 2009). It
has been employed to visualize neurons of models trained on natural images as well
as on artistic images (see Fig. 3). Offert and Bell (2021) contend that they can be
viewed as technical metapictures (Mitchell, 1995) functioning as hypericons: indi-
rect “illustrations,” or “visualizations” in the literal sense of forcibly and subjectively
summarizing and making-visual the non-visual, which can serve as summary images
“a theory of knowledge” (Mitchell, 1995 p. 9) becoming crystallized in a machine
learning model. Following this idea, Offert (2019) suggest a non-traditional approach
to visual explainability that involves examining a large set of feature visualization
images when performing dataset analysis, so that the hermeneutic work extends back
into the technical system itself, operating on both the original dataset and the feature
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Fig. 3 Examples of regularized feature visualizations (FV) showing what specific neurons have learned.
Left: FV for the banana class in an Inception-based CNN trained on ILSVRC2012; image credit: adapted
from Offert and Bell (2021). Center and right: FVs for portrait (center) and landscape (right) classes in an
Inception-based CNN finetuned on an art historical dataset to distinguish between portrait and landscape
classes, trained on ImageNet and finetuned for 10 epochs on an art historical dataset, image credit: adapted
from Offert (2019)

visualization dataset. Through the use of such methods, the technical system becomes
an integral part of the interpretive process rather than an opaque tool.

This paper takes a critical stance towards the prevalent trend of high-level visual
reasoning, driven by Convolutional Neural Networks (CNNs) reliant on visual signals.
The investigation primarily targets abstract concept detection and the explainability
of CNNs within this context, guided by three pivotal research points:

• Dependability on the visual signal: We probe the reliability of the decontextu-
alized visual signal, as used by CNNs, for AC image classification, to assess the
extent to which low-level features can be harnessed for this complex high-level
visual task.

• Insights from explainability techniques: We apply traditional explainabil-
ity techniques, particularly Grad-CAM++, to illuminate the nuances of CNN
behaviour and decision boundaries in AC image classification.

• Hypericons as a non-traditional explainability approach: We present a case
study of the “hypericons via feature visualizations” approach to visual inter-
pretability, inspired by and extending (Offert, 2019; Offert & Bell, 2021), i.e.
operating on both the original dataset and a derived feature visualization dataset
of ‘hypericons’.

The technical contribution of this research can be summarized as follows:

1. formulation and development of the ARTstract dataset,5 a dataset of art images
and their evocation of certain abstract concepts;

2. baseline models and performances on ARTstract for the task of AC image classi-
fication;

3. introduction of the novel stable diffusion-denoised activation maximization (SD-
AM) approach to hypericon creation. SD-AM facilitates the creation of human-
understandable “hypericons,” unlocking the potential to uncover prototype images
encapsulating associations with abstract concepts.

The remainder of this paper is organised as follows. In Section 2, we review
related work, including computer vision work in relation to image classification, digi-

5 https://github.com/delfimpandiani/ARTstract_Seeing_abstract_concepts
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tal humanities, and explainability, as well as related work on explainability and digital
humanities. We also discuss related work on abstract concepts and computer vision.
In Section 3, we introduce the ARTstract dataset, including the original data sources,
abstract concept selection, image selection, data processing, and dataset integration.
In Section 4, we present abstract concept-based image classification baselines, includ-
ing the experimental setup and the results. In Section 5, we discuss our explainability
experiments, including the results fromclass feature visualizations and their denoising,
as well as GradCAM++ feature visualizations. In Section 6, we provide a compre-
hensive discussion of the results, with a focus on contributions, lessons, and future
directions in Section 6. We conclude in Section 8.

2 Related work

To contextualize our study, we examine how the domains of computer vision, explain-
able AI, and digital humanities intersect and contribute to our understanding of AC
image classification and its challenges.

2.1 Computer vision for image classification

The introduction of ILSVRC (Russakovsky et al., 2015), a large-scale image clas-
sification challenge on ImageNet (Deng et al., 2009), marked the introduction of
ever-improving image classification models. Convolutional Neural Networks (CNNs)
represent one of themost widely-usedmethods in image classification tasks and are the
backbone of modern state-of-the-art methods (Chen et al., 2021). A CNN is composed
of several convolutional layers. A convolutional layer learns how to filter an image
by learning the filter’s kernel. By computing the convolution with the learned kernel
over the whole image, the network extracts relevant features for the classification task.
CNNs can be classified into three main classes: classical CNNs, inception CNNs and
residual CNNs (Chen et al., 2021). Classical CNNs, such as VGG (Simonyan & Zis-
serman, 2015), make straightforward use of convolutional layers. Better performances
are achieved using deep network models (i.e. networks with a large number of convo-
lutional layers). The use of increasingly deep networks, however, has been shown to
increase performances only to a certain extent (Chen et al., 2021). To overcome this
limitation inception-based methods, such as InceptionNetV3 (Szegedy et al., 2016),
and residual CNNs, such as ResNet (He et al., 2016), have been proposed. Recently,
following the success of the Transformer architecture (Vaswani et al., 2017; Lin et al.,
2022), transformer-based classification models, such as ViT (Zhai et al., 2022), have
been introduced with promising results.

2.2 Computer vision and digital humanities

Whilst much computer vision (CV)work is focused on analysing digital-born, realistic
photos, several research groups are investigating computer vision for (art-) historical
datasets (cf. Stork, 2009; Rodríguez-Ortega, 2020). As art, cultural and historical
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images are not always photo-realistic, transfer learning is often applied to deal with
differences in style for example to handle paintings (Zinnen et al., 2023) or photos in
historical newspapers (Wevers & Smits, 2020). Furthermore, the types of objects that
are relevant for naturalistic photos (e.g. aeroplanes, cars, etc.) are not always relevant
to tasks in the humanities domain, therefore new datasets and models are trained
for this domain. To process medieval manuscripts, one for example needs to detect
images placed in running text, that present stylised depictions of objects (Bekkouch
et al., 2021). Different research questions demand different objects to be detected,
such as ’smelly’ objects (Zinnen et al., 2022), zoological species (Stork et al., 2021),
railway accidents (Smits, 2023) or musical instruments (Sabatelli et al., 2021). In
general, the perspective humanists bring to CV is that the CV methods are a tool to
answer a research question rather than the objective of the research itself (Wevers &
Smits, 2019; van Noord, 2022). Lately, as the humanities domain has a longstanding
tradition of source criticism (Régimbeau, 2014), which more recently was expanded
to tool criticism (Koolen et al., 2019), there has been a fair amount of attention for
biases in datasets and algorithms (Wevers, 2019; Offert &Bell, 2021; Smits &Wevers,
2022).

2.3 Computer vision and explainability

In this section, we succinctly describe two of the most commonly used techniques
for post-hoc explainability of CNN-based computer vision models (Vilone & Longo,
2020; Ibrahim & Shafiq, 2023), class activation mapping (CAM) and activation max-
imisation (AM).

2.3.1 Class activation mapping (CAM)

An approach to the visual explanation of image classification models is CAM (Zhou
et al., 2016), a method initially proposed to investigate how CNN models trained on
classification tasks are able to generalise on localisation tasks. On the XAI landscape,
CAM methods are used to highlight the regions of an image that are important in the
classification process of a model (Ibrahim & Shafiq, 2023). Given the output of the
last convolutional layer of a CNN that classifies an image, the one that displays the
higher spatial resolution when compared to other layers (Zhou et al., 2016), a visual
explanation map can be computed by enhancing the response of highly-activated
neurons. Different enhancements methods have been proposed: GradCAM (Selvaraju
et al., 2020) and GradCAM++ (Chattopadhyay et al., 2018) use the layer’s gradient to
compute coefficients; XGrad-CAM (Fu et al., 2020) uses of axioms to avoid the use of
heuristic methods; LIFT-CAM (Jung & Oh, 2021) proposes an analytical solution to
the problem.CAMmethods (Vilone&Longo, 2020; Ibrahim&Shafiq, 2023) represent
one of the main methods used to obtain a visual explanation of image classification
models.
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2.3.2 Activation maximisation (AM)

A different approach to the visual explanation of image classification models is the
Activation Maximisation (AM) method (Erhan et al., 2009; Vilone & Longo, 2020),
where the activation of the classification neurons is exploited to synthesise “proto-
typical” images of a class. AM is formulated as an optimisation problem, where an
image is obtained by directly maximising the activation of one or more classification
neurons (Nguyen et al., 2019). The optimisation procedure can be expressed in terms
of gradient ascent when the gradient is accessible (Erhan et al., 2009; Nguyen et al.,
2016, 2019). The resulting image is often hard to interpret from a human point of view.
Different regularisation techniques have been proposed to address this issue, such as
Lα norm (Simonyan et al., 2013) to smooth pixel intensities, Total Variation (TV)
(Mahendran & Vedaldi, 2016) to encourage smoothness of the image (Nguyen et al.,
2019) and gradient enhancing techniques (Bykov et al., 2022). A different approach
to obtain more realistic images and human-understandable images is to synthesise
the image using a generator network, as done in DGN-AM 6 (Nguyen et al., 2016)
by using a Generative Adversarial Network (GAN). This biases the image towards
more realistic-looking images that are easier to interpret from a human’s point of
view. Recently, similar approaches have been used to guide the generation process of
Diffusion Models 7 (Dhariwal & Nichol, 2021). Such methods have shown promising
results in providing post-hoc explanations of classification models (Jeanneret et al.,
2022) but have not been applied to the AM process.

2.4 Explainability and digital humanities

Due to the more reflective nature of humanities research, explainability and trust-
worthiness are core concerns for many humanities scholars (Berry, 2022). In a way,
computer science has borrowed concepts that contribute to explainability from the
humanities domain, such as provenance. There is now a vibrant computational prove-
nance community in computer science (Deutch et al., 2022), but this concept originates
from (art-)history (Moreau et al., 2008). Humanities researchers are questioning the
explainability of digital methods and the impacts these can have on conclusions drawn,
in for example visualisations (Boyd Davis et al., 2021), and hermeneutics (Van Zun-
dert, 2015). Some humanists take it upon themselves to dive into the details of digital
methods in an attempt to understand the impacts of different parameter settings (Evert
et al., 2017; Wevers & Smits, 2019; van Lange, 2022), but this is not possible for
everyone. Methods such as tool criticism (Koolen et al., 2019) can be instrumental
in furthering explainability for digital humanities. An additional view on improving
explainability in digital humanities is to provide as much of the data and code as pos-
sible, for example through new publication methods such as Jupyter notebook-based
articles in the Journal of Digital History.8

6 https://github.com/Evolving-AI-Lab/synthesizing
7 https://github.com/openai/guided-diffusion
8 https://journalofdigitalhistory.org/en
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2.5 Abstract concepts and computer vision

Detecting Abstract Concepts (ACs) from images is a challenging task for computer
vision (Hussain et al., 2017) due to subjectivity, class imbalances, and entropy. Specifi-
cally, ground-truth generation is highly inconsistent, caused bypersonal and situational
factors such as cultural background, personality, and social context (Zhao et al., 2018).
Almost all trainable classes in popular datasets for image classification, such as Ima-
geNet9 andGoogleOpen Images,10 refer to concrete classes (Abgaz et al., 2021; Ahres
& Volk, 2016; Brigato et al., 2022). Moreover, abstract words tend to have higher dis-
persion ratings due to the wide variety of images returned from a query (Kiela &
Bottou, 2014; Lazaridou et al., 2015). Despite these issues, a few works define their
task as grappling with abstract concept detection from images (Abgaz et al., 2021; Ye
et al., 2019; Kalanat & Kovashka, 2022). For example, Kalanat and Kovashka (2022)
builds on previous work (Ye et al., 2019) focusing on classifying advertisement images
based on symbol clusters.

Related work with similar goals in diverse subfields of computer vision includes
visual sentiment analysis (Ortis et al., 2020) in artistic (Zhao et al., 2021), meme
(Sharma et al., 2020) and natural images, including specifically those of groups of
people (Veltmeijer et al., 2021). Social signal processing has attempted to detect
non-concrete social aspects of images, such as persuasive intent, deception, social
relationship type, intimacy, and non-concrete aspects of groups, among others (Joo et
al., 2014; Kantharaju et al., 2020; Solera et al., 2017; Zhang et al., 2018; Varghese &
Thampi, 2018; Vanneste et al., 2021).

To the best of our knowledge, the only publicly available dataset of annotated
images which has a focus on non-concrete nominal concepts is BabelPic (Calabrese
et al., 2020), which presents a methodology to automatically produce a silver dataset
that extends the BabelPic coverage to all BabelNet synsets. Popular datasets such as
ImageNet offer little to no coverage of non-concrete concepts, and JFT, an internal
dataset at Google, includes non-concrete classes but is not publicly released (Deng
et al., 2009; Sun et al., 2017). Datasets containing at least some images annotated
with non-concrete labels can be categorized by image type. For natural images, NUS-
WIDE, Google’s Open Images dataset, MultiSense, VerSe, and Persuasive Portraits
of Politicians include partial coverage of AC labels (Chua et al., 2009; Kuznetsova et
al., 2020; Gella et al., 2019, 2016; Joo et al., 2014). However, most of the abstract
concepts are not trainable classes due to their low instances. Finding datasets of art
and cultural images is even more challenging. Crucial ones includeWikiArt Emotions
Dataset, which contains annotations for emotions evoked in the observer, and which
overlaps with ARTemis, which contains emotion attributions and explanations on art-
works also from WikiArt, including associations with abstract concepts (Mohammad
& Kiritchenko, 2018; Achlioptas et al., 2021). The Ads Dataset, introduced by Hus-
sain et al. (2017), links symbolic (abstract) concepts to specific regions within images,
making it unique in the field. ArtPedia (Stefanini et al., 2019) provides a dataset of
2930 images of paintings with both visual and contextual descriptions, some of which

9 https://www.image-net.org/
10 https://storage.googleapis.com/openimages/web/index.html
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Fig. 4 Four instances of visual cultural images tagged with the abstract concept danger in ARTstract. This
example clearly shows that the abstract concept labels are semantically diffused and associated with visually
variant images. From left to right: The Roaring Forties (1908) by Frederick Judd Waugh, Metropolitan
Museum of Art, public domain; The Hippopotamus and Crocodile Hunt (1615) by Peter Paul Rubens, Alte
Pinakothek in Munich, Germany, public domain; Untitled advertisement by Telecinco against domestic
violence; Tales of Mystery and Imagination by Edgar Allan Poe (1923) by Harry Clarke, Metropolitan
Museum of Art, public domain. Images sourced from the Ads Dataset (Hussain et al., 2017), the Artemis
dataset (Achlioptas et al., 2021), and ArtPedia (Stefanini et al., 2019)

contain abstract concepts. Finally, the Tate Gallery collection metadata of 70,000 art-
works are tagged with Tate’s subject taxonomy, which includes both concrete and
social concepts as subject tags.

3 ARTstract dataset

In alignmentwith our exploration of the intricate challenges posed by abstract concepts
within the realm of computer vision and computational visual studies, we introduce
the ARTstract dataset, a resource that addresses the gaps and complexities discussed
thus far (c.f. Fig. 4). This dataset presents a tool for researchers seeking to delve
into the intersection of visual data and abstract ideas. Comprising an array of high-
resolution images encompassing cultural artworks and advertisements, each associated
with abstract concepts, ARTstract emerges as a significant asset to advance our under-
standing of the interplay between visual content and conceptual meaning. A more
complex, detailed, and knowledge-graph-based version of the dataset is under con-
struction.11

ARTstract was curated by combining sections from four distinct image datasets,
namely ArtPedia, ARTEMIS, the Ads Dataset, and the Tate Collection (see Sec-
tion 3.1 for a comprehensive overview). The inclusion criteria for imageswere twofold:
relevance to abstract concepts and high resolution. By adopting this approach, ART-
stract encapsulates a diverse range of visual materials that have inherently interwoven
abstract ideas within their imagery.

3.1 Original data sources

Artemis Achlioptas et al. (2021) is a large-scale dataset providing data about the
interplay between visual content, its emotional effect, and its language explanations.

11 https://github.com/delfimpandiani/ARTstract-KG
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Artemis focuses on the affective experience triggered by visual artworks and asks
annotators to indicate the dominant emotion they feel for a given image, as well
as to provide a grounded verbal explanation for their emotion choice. The dataset
contains 455K emotion attributions and explanations from humans on 80K artworks
from WikiArt. It provides a rich set of signals for both the objective content and the
affective impact of an image, creating associations with abstract concepts, such as
“freedom” or “love,” or references that go beyond what is directly visible, including
visual similes and metaphors or subjective references to personal experiences.

Artpedia Stefanini et al. (2019) provides a dataset of paintings with both visual and
contextual descriptions. The dataset contains over 2,930 images, and themanual anno-
tation of each sentence as either visual or contextual allows for a comprehensive
analysis of the visual and semantic content of the dataset. Additionally, Artpedia is the
only dataset to contain both types of artistic sentences,making it a valuable resource for
developing visual-semantic models capable of jointly discriminating between visual
and contextual sentences of the same painting. Some of the dataset’s visual sentences
include abstract concept terms, making it a valuable resource for researchers interested
in abstract concepts in the cultural heritage field.

The Tate Gallery houses the United Kingdom’s national collection of British art, as
well as internationalmodern and contemporary art. Their collectionmetadata of 70,000
artworks, available as a Github repository,12 includes complete records of most artists
and artworks in the collection, along with image and thumbnail URLs. The Tate’s
subject taxonomy for labelling their artworks is a unique feature of the dataset, as it
includes both concrete and social concepts as subject tags. The taxonomy was expert-
led, developed alongside the digitization of the Tate’s collection, and organized in a
hierarchical structure.

TheAdsDataset (ADVISE) Hussain et al. (2017);Ye andKovashka (2018) includes over
64,000 image ads covering a diverse range of subjects. Each image ad is taggedwith its
topic, the sentiment it attempts to inspire in the viewer, and the strategy it uses to convey
its message. The dataset also includes “symbols” that the ads use, a common technique
used in advertising to convey meaning and emotions to the viewer, such as the concept
of “peace” symbolically represented by a dove. The dataset includes 13,938 ad images
with 221 abstract concept symbols, eachwith corresponding bounding boxes, and then
clustered into 53 symbol clusters. The most common symbolic abstract concepts are
“danger,” “fun,” “nature,” “beauty,” “death,” “sex,” “health,” and “adventure.”

3.2 Abstract concept selection and definition

The ARTstract dataset uses evoked clusters as a way to label the abstract concepts
present in each image. Evoked clusters are groups of abstract concepts that often co-
occur together in a given context. The idea of clustering abstract concepts or symbols

12 https://github.com/tategallery/collection
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for their visual evocation was introduced alongside the Ads Dataset (Hussain et al.,
2017), and has been used in the little existing research onAC image classification in the
context of computer vision, such asYe andKovashka (2018) andKalanat andKovashka
(2022). While the cluster categories are not perfect nor objective, the only available
performances for the task of AC image classification use these clusters, which is why
we have decided to reuse them to create this dataset. The original clusters were created
by analyzing the co-occurrence of abstract concepts in advertisement images. Certain
choices that weremade by the creators of these clusters are decidedlyWestern-oriented
and may not be shared in all contexts. We advocate for future work to investigate more
culturally-sensitive and/or diverse abstract concept datasets.

In selecting AC clusters for our study, we drew upon the insights from cognitive sci-
ence research. Specifically, we cross-referenced the clusters fromHussain et al. (2017)
with a list of abstract concepts from recent foundational work in abstract concepts in
cognitive science (Harpaintner et al., 2018). By leveraging cognitive science research,
we aimed to identify a diverse set of ACs that would facilitate our investigation into
the relationship between abstract concepts and visual imagery. We then excluded the
ACs that have been previously explored in CV literature, including emotions (such as
happiness, and love) and violence (Ramzan et al., 2019). After a thorough selection
process, we identified eight clusters of ACs, with cluster words defined by Hussain et
al. (2017) that we deemed appropriate for our research, namely:

• comfort: comfort, cozy, soft, softness
• danger: danger, peril, risk
• death: death, lethal, suicide, funeral
• excitement: excitement, flavors
• fitness: exercise, fitness, running
• freedom: america, freedom, liberty
• power: force, power, powerful
• safety: safety, security

3.3 Imagemining and processing

We then searched through various art and cultural image datasets to match the clus-
ters with relevant images. To do so, we followed different steps for each of the four
original data sources. Succintly, in the Tate and ADVISE datasets, individal images
have individual word labels assigned to them, including terms that refer to abstract
concepts. As such, for each AC cluster, we identified the images that had been tagged
with at least one of the cluster words, and also kept track of how many times one of
that clusters’ words had been used (i.e., the evocation strength). For ARTEMIS and
ArtPedia, we mined the “utterances” and “visual sentences”, respectively, to identify
if they contained any of the cluster evokers. If they did, we considered that an evoca-
tion, and, as for the other datasets, we kept track of the number of evocations to then
calculate the evocation strength. The complete and documented steps can be found in
the Github repository.
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3.4 Dataset integration

Each image in the ARTstract dataset is assigned one or more evoked clusters based
on the abstract concepts present in the image. For each assignment, words associated
with the image, evocation strength, and evocation evidence are tracked alongside the
identified cluster.

The dataset contains 16,166 images, each with one out of eight abstract concept
clusters as tags. The images are in JPG format and have a resolution of 512x512
pixels. Each image is labelled with the evoked AC cluster. Additionally, the dataset is
accompanied by a knowledge base where each image has is connected to evocation
information such as the context or evidence of evocation as well as the evocation
strength.

The dataset suffers from a class imbalance that could hinder models’ ability to
generalise accurately (as seen in Fig. 5). To address this, we extract a balanced subset of
the dataset, which we call the balanced ARTstract. This involves randomly selecting a
maximumof 1,000 images from classeswithmore than 1,000 instanceswhile retaining
all images for classes with fewer than 1,000 instances.

4 Performance experiments

In this section, we present our performance methodologies, experimental setup, and
results. Recognizing the challenges ingrained in the task of AC image classification,
and hypothesizing low performances given the inherent problem of high intra-class
variance for abstract concepts, we still decided to train a dedicated model for this
task. This choice stems from the desire to investigate the effectiveness of CNNs in AC
classification, the need to explore potentially relevant low-level perceptual features
and investigate the models’ ability to capture prototype images for these concepts. We
further discuss our approach’s rationale and implications in Section 6.

Fig. 5 ARTstract dataset distribution: the unbalanced version (green) contains a total of 16166 images,
while the balanced one (grey) contains 6688
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4.1 Methodology

Wewant to assess whether convolutional neural networks (CNNs) are suitable models
to achieve adequate performance in the task of classifying images according to the
abstract concepts they evoke. We refer to this task as abstract concept-based image
classification (AC image classification).

We experiment on the ARTstract dataset (introduced in Section 3) by re-using
models trained on ILSVRC (ImageNet), since pre-training a CNN on large-scale data
has been shown to result in more accurate results (Kornblith et al., 2019). Indeed, the
inductive bias injected into the convolutional layers establishes a set of filters that are
effective at detecting prominent features from images. Even though the classification
task of models trained on ImageNet is different to the one of ARTstract, the images
can be considered perceptually similar. We argue that the extraction of such prominent
features (e.g. detecting edges) and high-level features (e.g. identifying objects) is
shared between both datasets. For this reason, we only fine-tune the classification
layer of the model while keeping the rest of the layers frozen. This minimises the
impact of the limited amount of data available, as it has been shown that training CNN
from scratch on low-volume data results in degraded performances (Sharma&Mehra,
2018).

For the fine-tuning procedure, we follow ILSVRC multi-class formulation (Rus-
sakovsky et al., 2015). Formally, we estimate the probability p(c | x̂,�) where c is
among the classes (C) presented in Section 3, x̂ the input image and� is the neural net-
work used to parametrise the probability distribution, in our case a CNN. Differently
than ILSVRC, where the top-k predicted classes are evaluated, we compute accuracy
(A), precision (P), recall (R) and F1 defined as

A = 1

| C |
∑

c∈C

T Pc + T Nc

T Pc + T Nc + FPc + FNc
P = 1

| C |
∑

c∈C

T Pc
T Pc + FPc

R = 1

| C |
∑

c∈C

T Pc
T Pc + FNc

F1 = 1

| C |
∑

c∈C

Pc · Rc

Pc + Rc

where T Pc, T Nc are, respectively, the correct prediction of an image in and not in a
class and FPc, FNc are, respectively, the wrong prediction of an image in and not in a
class. We rely on different measures since there is a consistent difference between the
number of classes on ImageNet (1000) and the classes on ARTstract (8). Evaluating
the top-k results (e.g. top-5 accuracy) would result in over-optimistic results.

We experiment with two CNNs that serve as baseline models, respectively VGG-16
(Simonyan & Zisserman, 2015) and ResNet-50 (He et al., 2016). The main difference
between the two architectures is the number of their convolutional layers: 16 for VGG-
16 and 50 for ResNet-50.Wewant to assess the performance of thesemodels in the AC
image classification task as well as to investigate whether bigger models (i.e., models
that employ a larger number of convolutions) obtain better performances, as already
observed in different image classification tasks (Chen et al., 2021).
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Table 1 Hyperparameters used
to train the classification
baselines

Finetuned Model Epochs Batch Size Learning Rate

ResNet-50 100 32 0.001

VGG-16 100 32 0.001

VGG-16 1000 32 0.001

4.2 Experimental setup

We train each model using an RTX3090 on an Intel i9 CPU with 8 cores and equipped
with 128 GB of RAM. We manually adjust and experiment with different hyper-
parameters, summarised in Table 1, and train using the Adam optimizer (Kingma
& Ba, 2015), on the whole dataset split into train, validation, and test sets using an
80:10:10 ratio.

To further reduce overfitting e employ standard data augmentation (Shorten &
Khoshgoftaar, 2019) such as random horizontal flips, random color jitter, random
rotation, and random crop. For each image in the training set, we resize it to 224x224
pixels, apply a random horizontal flip with a probability of 0.5, a random color jitter
with a probability of 0.3, a random rotationwith a probability of 0.3, and a random crop
of size 20 with a probability of 0.3 and subtract ImageNet mean color. For the images
in the validation and testing dataset, we only resize to 224x224 pixels and subtract
ImageNet mean color. Given the described methodology, we are able to train on the
whole ARTstract dataset, minimising the overfitting due to the skewed distribution of
the dataset (c.f. Fig. 5).

4.3 Results

We finetune the chosen baseline models as described above. In Table 2 we report the
performance metrics of the tested models. VGG-16 finetuned on 100 epochs outper-
forms ResNet-50 in all the described measures. To further investigate the potential of
VGG-16 we finetune the model for 1000 epochs. The resulting model outperforms
all the other baseline models. Figure 6 depicts the confusion matrices for the mod-
els of Table 2. Interestingly, all models are prone to misclassification errors on the
power class. While this aspect requires an in-depth analysis, to investigate whether it

Table 2 Comparison of model performances between a pretrained ResNet-50 finetuned for 100 epochs, a
pretrained VGG-16 finetuned for 100 epochs, and a pretrained VGG-16 finetuned for 1000 epochs on the
test set

Finetuned Model Loss Accuracy Precision Recall F1

ResNet-50 - 100 epochs 1.732 0.392 0.451 0.392 0.419

VGG-16 - 100 epochs 1.626 0.402 0.465 0.402 0.431

VGG-16 - 1000 epochs 1.605 0.426 0.465 0.426 0.445

Best performance for each metric is highlighted in bold
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Fig. 6 Confusion matrices for the baseline models pre-trained on ImageNet and finetuned on balanced
ARTstract

is due to mislabeled images in the dataset, we argue that it be partially reconducted
to our implicit definition of power, which might have little correlation with the bias
introduced by ImageNet. The most problematic class is not consistent between the
different models. ResNet-50 (Fig. 6a), VGG-16 finetuned for 100 epochs (Fig. 6b)
and VGG-16 finetuned for 1000 epochs (Fig. 6c) overfit respectively on the classes
danger, excitement and death. In all cases, this accounts for most of the misclassifi-
cation errors. More extensive augmentation techniques, longer training sessions, and
more sophisticated models might help in overcoming this issue, which we will explore
in future works.

5 Explainability experiments

Inspired by Offert (2019); Offert and Bell (2021), we experiment with three differ-
ent techniques to obtain explainable results from the baseline models presented in
Section 4: CAM, AM, and SD-AM.

5.1 Methodology

For each explanation experiment, we investigate the classification process of the best
model from Table 2 of Section 4, VGG-16 finetuned for 1000 epochs. We experiment
with GradCAM++ (Chattopadhyay et al., 2018) for the CAM method and Stable
Diffusion (Rombach et al., 2022) for SD-AM. Results are evaluated manually.

Class activation mapping

We are interested in investigating which parts of an image are mostly influencing the
classification of our fine-tuned models. We use the Class Activation Mapping (CAM)
method which, given f lc (x) the output of the l-th layer of a CNN that classifies the
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image x with the class c, computes a visual explanation map as

CAM( f lc (x)) = ReLU (

Nl∑

i=0

αk · f lc (x)k)

where Nl is the number of channels of the l-th layer, f lc (x)k) is the output of the
k-th channel of the l-th layer and αk is an hyper-parameter of the model. The last
convolutional layer is usually taken as l, since it has been shown to display a higher
spatial resolution when compared to other layers (Zhou et al., 2016). GradCAM++
(Chattopadhyay et al., 2018) uses the layer’s gradient to compute coefficients. Since a
precise localisation is not the primary focus of our research, but we are instead inter-
ested in highlighting the approximate regions of interest for the model for a specific
classification, we manually experiment with different methods and decide to rely on
GradCAM++ as implemented in pytorch-grad-cam13 (Gildenblat, 2023). We
are interested in investigating which parts of an image are mostly influencing the
classification of our fine-tuned models. Since a precise localisation is not the primary
focus of our research, but we are instead interested in highlighting the approximate
regions of interest for the model for a specific classification, we manually experi-
ment with different methods and decide to rely on GradCAM++ as implemented in
pytorch-grad-cam14 (Gildenblat, 2023). We generate saliency maps for images
of interest using our best model, VGG-16 finetuned for 1000 epochs and manually
inspected the results (for example, Fig. 8 to obtain valuable insights into the classifi-
cation criteria of the model.

Activation maximization

To investigate the perceptual topology of the model, we decided to generate Activation
Maximization (AM) images for the neuron responsible for a specific class. AM can
be formulated as an optimisation problem, with the objective function is defined as

x̂ = argmax
x

ac(x) (1)

where x̂ is an image that maximises the neuron ac responsible for classifying as a
class c. To generate the AM images, we rely on OmniXAI’s15 (Yang et al., 2022)
feature visualization implementation; we experiment with combinations of different
parameters, as described in Table 3.

Stable diffusion-activation maximization

Finally, inspired by the work of DGN-AM (Nguyen et al., 2016), where the authors
obtain realistic-looking images using a GAN generator, and given the recent success

13 https://github.com/jacobgil/pytorch-grad-cam
14 https://github.com/jacobgil/pytorch-grad-cam
15 https://github.com/salesforce/OmniXAI
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Table 3 Activation Maximization parameters supported by OmniXAI (Yang et al., 2022) library

Parameter Values

Iterations 300, 400, 500

Learning rate 0.1, 0.01, 0.01

Regularizer L1, L2, TV

Regularizer weight 0, −0.05,−0.5, -2.5

Fourier preconditioning yes, no

Map uncorrelated colors to normal colors yes, no

The best parameters after manual inspections are represented in bold

of diffusion models in the automatic image generation task (Dhariwal &Nichol, 2021;
Rombach et al., 2022; Ramesh et al., 2022), we experiment on the same task by using
Stable Diffusion (SD)16 (Rombach et al., 2022), a diffusion-based image generator
model, to synthesize realistic images from the ones obtained using the AM method
(this method is hereto referred to as SD-AM). Informally, diffusion-based models
progressively remove noise from an image using a neural network (Ho et al., 2020).
The denoising procedure is generally guided by a textual prompt.We exploit this aspect
by treating the image produced by the AM method as a noisy image and gradually
removing noise from it using StableDiffusion.We experiment in two different settings:

• Denoise the AM image without providing any textual prompt;
• Denoise the AM image by using a textual prompt as well, composed of the class
label of the image (i.e. comfort, danger, etc.).

5.2 Results

Class activation mapping

We rely onGradCAM++ to experiment in identifyingwhich parts of certain images are
valuable from the point of view of the fine-tuned classification models. The saliency
maps for images of interest previously unseen by the model are done by activating
specific classes in our best model, VGG-16 finetuned for 1000 epochs. We present
some results on images previously unseen by the model in Figs. 7 and 8). The latter
figure presents the resulting heatmaps for freedom on Delacroix’s iconic painting as
well as on two derivative works inspired by it, which re-interpret Delacroix’s within
the context of Hong Kong protests.17

16 https://github.com/CompVis/stable-diffusion
17 “Liberty Leading the People of Hong Kong” by Frederic Bussiere, group exhibition “The Art of Resis-
tance”, Kong Art Space, Hong Kong, 2019, Digital collage, printed on canvas. 90 x 90 cm https://www.
behance.net/gallery/90838377/Liberty-Leading-the-People-of-Hong-Kong-collage and “OurVantage” by
Harcourt Romanticist https://www.instagram.com/p/B2EQ1FPnDh1/
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Fig. 7 GradCAM++ for three different classes computed using VGG-16 finetuned for 1000 epochs on
Triumph of the Virtues over the Vices painting by Paolo Fiammingo, circa 1592. Oil on canvas, dimensions
16.5× 221 cm (6.4× 87 in). Image sourced fromWikimedia Commons, originally from Sotheby’s auction
in London on 6 July 2011

Activation maximization

In this section, we present the results of applying the same logic of Offert (2019) to
create (activation maximization) feature visualizations for each class of the models
trained on ARTstract. We present the class feature visualizations for optimizing the
activation for each of the 8 target classes for two models: the VGG model fine-tuned
for 100 epochs (Fig. 9a), and the VGG model fine-tuned for 1000 epochs (Fig. 9b).

Stable diffusion-activation maximization

With the stable diffusion-based image generator model, we synthesized realistic
images from the ones obtained using the AM method. Example results from both
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Fig. 8 Top: Liberty Leading the People, oil painting by Eugène Delacroix, 1830, dimensions 260 cm ×
325 cm, Louvre, Paris; image sourced from Wikimedia Commons. Bottom: GradCAM++ computed for
freedom on (1) the original painting, and two (2-3) derivative paintings. The three heatmaps show similar
activation areas for the class of freedom

experimental settings are hereby presented: for death and freedom in Fig. 10, and for
fitness and comfort in Fig. 11.)

6 Discussion

Abstract concepts stand as high-level semantic units within the realm of computer
vision, spotlighting the limitations of binary thinking. Laden with ambiguity, sub-
jectivity, and context-dependency, abstract concepts defy facile classification. The
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Fig. 9 Feature visualizations for each of the eight target classes using VGG-16 finetuned for (a) 100 and
(b) 1000 epochs

diverse meanings these concepts embody within varying cultural and historical con-
texts further compound the intricacies of labelling. In stark contrast to problemsmarked
by well-defined categories, such as tame problems, high-level computer vision tasks
encapsulate the very essence of wicked problems, demanding collective thought and
an integrative approach to navigate their intricate landscape. This conceptualization of
wicked versus tame problems draws inspiration from the realm of social planning and
political science, where wicked problems, characterized by multidimensionality, mul-
ticulturalism, and strong cultural dimensions, necessitate nuanced and collaborative
solutions (Rittel, 1967).
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Fig. 10 Denoising of feature visualizations (FV) of death (first row: 100 epochs model, second row: 1000
epochs model) and freedom (third row: 100 epochs model, fourth row: 1000 epochs model). The FVs have
been denoised with different levels of regularization and using Stable Diffusion (SD) and prompt-guided
SDmethods. The leftmost FV is minimally regularized, followed by a regularized FV, and then SD denoised
FV. The rightmost FV shows a regularized FV denoised with prompt-guided SD

6.1 ARTstract coverage

The ARTstract dataset is a new resource for cultural heritage and computer vision
research, particularly in digital humanities projects. However, some key limitations
of the dataset are related to the inherent nature of attempting to create a clear defini-
tion of an abstract concept. Furthermore, as we chose to reuse and combine existing
datasets, ARTstract is bound by choices made by the creators of these datasets. We
acknowledge that abstract concepts are inherently culturally motivated, this is perhaps
most visible in the ADVISE dataset as the advertising domain is highly culturally
contextualised. However, also in Artpedia and the Tate Gallery Western (European)
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Fig. 11 Denoising of feature visualizations of fitness (first row: 100 epochsmodel, second row: 1000 epochs
model) and comfort (third row: 100 epochs model, fourth row: 1000 epochs model). The FVs have been
denoised with different levels of regularization and using Stable Diffusion (SD) and prompt-guided SD
methods. The leftmost FV is minimally regularized, followed by a regularized FV, and then SD denoised
FV. The rightmost FV shows a regularized FV denoised with prompt-guided SD

art makes up a larger proportion which has a direct impact on ARTstract’s coverage
and representation. Within these artworks, certain themes and symbols form a shared
conceptual grounding to their intended audiences (Panofsky &Drechsel, 1955), there-
fore these datasets are suited to use for our purpose, with the caveat that they represent
a particular context. The coverage limitation within ARTstract stems partly from the
intrinsic challenge of cultural bias when assigning labels and meanings to images,
particularly concerning abstract concepts. Moving forward, it is imperative to expand
coverage and enhance the explicit contextualization of labels, dispelling the notion of
their objectivity.

Despite its limitations, ARTstract fills a significant gap by providing much-needed
data for tasks related to AC image classification. Critically, we believe that the richness
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and diversity of the ARTstract dataset provide a unique opportunity for exploring and
experimenting with explainable CV methods. The dataset offers a testing ground for
existing and novel explainable CVmethods, demonstrating the potential of combining
technical methods with hermeneutic work to develop interpretable systems.Moreover,
the significance of theARTstract dataset goes beyond its value as a resource for cultural
heritage and CV research. The evocation of abstract concepts is complex, subjective,
and culturally variant, and as such, we hope that the development of this dataset can
be a source of inspiration to expand it with more complex, situated, and multicultural
perspectives.

6.2 Abstract concept image classification performance

The results of this study bring to the fore the wicked nature of the problem of automat-
ically detecting abstract concepts within computer vision. The proposed AC image
classification baselines show relatively low performances when compared to other
CV tasks on art images, such as style, genre, or artist classification (Tan et al., 2016;
Cetinic et al., 2018). The results of Table 2, however, are similar to the results obtained
by models that use a similar amount of images on a radically different set of labels
compared to ImageNet (Ng et al., 2015). The complexity of detecting abstract con-
cepts might hence stem from the relatively open definition of each abstract concept,
which does not explicitly account for their polysemy and association to vastly varied
visual data (as seen in the example of danger in Fig. 4). The shallow representation
obtained using a CNN-based method is not able to generalise enough to capture the
ambiguities of such definitions. The confusionmatrices in Fig. 6, indeed, reveal poten-
tial co-occurrences of abstract concepts that prompt further investigations, such as in
the case of the power class.

The decision to train models for abstract concept image classification, even when
expecting low performances, presents a critical consideration in our study. The results
obtained in Table 2 of Section 4 highlight how current existing models are not well
suited to classify AC yet. Even though more complex training procedures can be
employed (Kandel & Castelli, 2020) (e.g. training only a subset of the total number
of convolutional layers) or more powerful models can be used, such as ViT (Zhai
et al., 2022), we argue that the intra-class variance displayed by ARTstract hardly
allows any significant improvement from a quantitative point of view (Benz et al.,
2020; Shirali & Hardt, 2023). The use of pre-trained models, such as those from
ImageNet, offers a promising foundation by leveraging their learned visual features.
Training a model for AC classification allows us to investigate to which extent low-
level perceptual features can be used on this task. This allows us to better understand
which insights, if any, from thesemethods can be used tomore effectively deal with the
task. The low performances can be seen as a reminder of the intrinsic complexity of this
wicked challenge, underscoring the need for interdisciplinary, collaborative thinking
and an adaptive, iterative approach to foster a deeper understanding of complex visual
concepts.
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6.3 Insights from the explainability experiments

This recognition of the wicked nature of automatically detecting abstract concepts
underscores the pressing need for interpretability, collaborative inquiry, and nuanced
approaches to tackle the challenges posed by these elusive and intricate visual phenom-
ena.When confronted with wicked problems, traditional black-box solutions fall short
in providing meaningful insights. The inherent complexity, contextual dependencies,
and subjective nature of abstract concepts demand a level of transparency and explain-
ability in computer vision methods. Interpretability becomes paramount not only for
improvingmodel performance but also for gaining insights into the underlying reasons
for model decisions. By uncovering the visual cues and features that contribute to clas-
sification outcomes, interpretability facilitates informed refinement and adaptation of
algorithms. This intertwining of wicked problems with the demand for explainability
forms the cornerstone of our study’s motivation, driving us to explore the boundaries
of computer vision in addressing intricate and inherently human challenges.

6.3.1 Insights from traditional explainability: CAM

We experimented with a CAM-based method as it is the most well-known explain-
ability technique to uncover the decision-making mechanisms of CNN-based models.
These insights were pivotal in shedding light on the complex processes underlying
our models’ decisions. To explore the reasons behind our models’ classification of
unseen images, we employed GradCAM++ to pinpoint valuable image regions. Using
the VGG-16 model finetuned over 1000 epochs, we activated specific classes for pre-
viously unencountered images. This approach provided valuable perspectives into the
model’s decision boundaries. For example, using the concept of freedom presents a dis-
tinct situation where intriguing connections are revealed. Figure 8 displays the results
for the class of freedom in Eugène Delacroix’s painting “Liberty Leading the People”
and two derivative works inspired by it. In this example, both the original work and
the two derivative works localise the freedom class in the same area (i.e. where the
flags and raised hands are located). We can hence discern how the model identifies
specific visual cues that evoke the abstract concept. For instance, the emphasis on
flags within the tested images suggests a connection between the concept of freedom
and symbols of nationhood or political expression. This nuanced exploration of the
model’s decision-making process underscores the role of explainability techniques
in unravelling the intricate relationships between abstract concepts and their visual
manifestations.

Another aspect that emphasises the usefulness of such a technique is its consistent
application on the same image, but to localize important regions for different classes.
Figure 7 presents the results on three different classes in the painting “Triumph of the
Virtues over the Vices”. These experiments identify parts of the image in which the
model focuses for the image’s classification as a selected class. For instance, comfort
is localized near the figure sitting in a relaxed position on a comfortable couch. In
contrast, freedom is concentrated around the area of the painting with angels, clouds,
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and a raised sword. These findings suggest biases in the ARTstract dataset, poten-
tially stemming from freedom-tagged images being biased towards images depicting
elements like raised swords or flying agents such as birds or angels.

Overall, these results showcase the effectiveness of CAM-based methods in iden-
tifying valuable regions in images for classification models, thereby highlighting
potential biases in the dataset and providing insights into how the model perceives
and processes images. However, the results also underscore that while CNNs are
aware of statistical correlations, these correlations may not always align with human
perspectives. Despite providing valuable insights into classification processes and
the identification of abstract concepts in images, the shallow representation achieved
by the model can yield false evidence. Furthermore, the lack of robustness, partic-
ularly against adversarial attacks, poses a significant concern for the interpretability
of classifiers (Akhtar et al., 2021). In conclusion, these findings stress the need for
further research to enhance the accuracy and robustness of classification models when
addressing abstract concepts in the realm of art.

6.3.2 AM: distributed reality, perceptual bias, and feature visualization

We see the regularized feature visualizations for each of our eight abstract concept
targets (shown in Fig. 9) as examples of how distributed reality (in terms of manifes-
tations and perspectives) can get collapsed into one 2D image. When they are learned
and represented by a CNN, concepts are “dissolved”, or “entangled”, losing their spa-
tial coherence, and thus “it is no surprise that feature visualization images will reflect
different manifestations of, and perspectives on, an object, akin to Cubist paintings”
(Offert & Bell, 2021, pg. 1301 ). We see abstract concepts as a prime example of how
visual concepts get dissolved in ways that are practically unintelligible to humans.
Additionally, the fact that the images in the referenced figure are regularized means
that we already introduced a syntactic bias so as to guide the manifestations into a
textural landscape closer to what we visually comprehend. With this syntactic opti-
mization, most of the FVs in Fig. 9 are still relatively humanly incomprehensible (no
noticeable objects or otherwise legible items are very visible). An exception may be

Fig. 12 The feature visualization (FV) of the fitness class using VGG-16 finetuned for 1000 epochs (left)
resembles a human figure playing with a sort of ball (right)
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the case of the FV of fitness for the model finetuned for 1000 epochs, in which certain
edges seem to resemble a human figure playing with some sort of ball (see Fig. 12).

6.3.3 SD-AM: Denoising and the Big Trade-Off

Because to move from the entangled state to a state of higher semantic interpretabil-
ity for humans requires introducing more constraints, in this work we decided to
combine the feature visualizations produced with the AM method with Stable Diffu-
sion (SD-AM) (see Fig. 13). Despite some work on the generation of counter-factual
explanations (Jeanneret et al., 2022; Zemni et al., 2023), the investigation of diffusion
models trained on large-scale data, such as Stable Diffusion, as tools that allow a better
understanding of classification models is a novel approach. While past attempts, such
as combining AM with GAN models (Nguyen et al., 2016) have shown promising
results, we argue that the intrinsic dependency of GANs on a classification model (the
discriminator) can potentially bias the generation process toward results that are harder
to automatically classify for syntactic reasons (i.e. the color distribution) rather than
for semantic reasons. This is especially true for abstract concepts, where the difference
between classes, for instance danger and power, depends on the semantic content of
the image alongside the interpretation of the abstract concept that the network induc-
tively learns. The use of diffusion models overcomes this limitation by design. An
image is not generated in order to fool a discriminator, but rather with the aim of
removing the noise that makes an input image hard to interpret for humans. While the
experiments on FV (Fig. 9) provide little insight into the perception of an AC by the
model, the denoised version of such images, especially those that are textual prompt

Fig. 13 Starting with the regularized FV for the power class (derived from VGG-16 trained for 100
epochs), the progression from left to right illustrates a gradual escalation in denoising strength, result-
ing in images with enhanced human interpretability. This procedure was performed twice, yielding distinct
SD-AM “hypericons” for the power category (distinguished by blue borders), both originating from the
same initial regularized FV. It is noteworthy that the denoising process was executed independently of any
textual prompt, thereby ensuring that the process remained entirely oblivious to the correlation between
the FV earmarked for denoising and its status as representing “power”
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guided, (Figs. 10 and 11) let prototypical versions of an AC emerge. For instance,
both the models, finetuned for 100 and 1000 epochs, represent freedom by means of
an icon resembling the Statue of Liberty. Similarly, for the fitness class, hypericon
images resembling a gym are obtained from the noisy FV.

However, it is important to note that the images produced are confined to the latent
space of the specific diffusion model employed, similar to the one argued regarding
GANs (Offert & Bell, 2021). These images do not reflect the perceptual topology
of the analysed CNN, but they rather replace the elements that are hard to interpret
with what the model perceives as human-like, essentially filling the gap between AM
images and interpretable hypericons. As such, SD-AM is to be taken as an explorative
approach towards easier interpretation of AM images. Further research is required
to investigate whether this approach can be directly incorporated in the extraction of
saliency maps, to obtain human interpretable results while minimising the influence
of SD.

Perhaps the most critical contribution of the studies that inspired our work (Offert,
2019; Offert & Bell, 2021) is their discussion of the problem of perceptual bias in
machine vision systems, which can only be overcome by shifting toward different
biases. As they discuss, any constraint added to the optimization process for feature
visualizations moves the images further away from showing the actual perceptual
topology of a CNN, unveiling the trade-off between representational capacity and leg-
ibility of feature visualization images. Their work highlights that feature visualization
is one way to achieve forced legibility but also presents a dilemma that the repre-
sentational capacity of feature visualization images is inversely proportional to their
legibility. Feature visualizations that show “something” are further removed from the
actual perceptual topology of the machine vision system than feature visualizations
that show “nothing.”

While keeping in mind this trade-off, they also note that we can treat resulting
hypericons as valuable tools for visual interpretability. Hypericons, such as the ones
presented in Fig. 10 and discussed in the previous section can be used in combination
with the original datasets (in this case, ARTstract) to enable the identification of
interesting patterns, especially when treating them as (Mitchell, 1995, p. 49 ) suggests:

“Themetapicture is a piece ofmoveable cultural apparatus, one whichmay serve
a marginal role as illustrative device or central role as a kind of summary image,
what I have called a ‘hypericon’ that encapsulates an entire episteme, a theory
of knowledge.”

As such, in addition to aiding the understanding of the perceptual topologies of
CVmodels, feature visualization images can be studied as concrete representations of
cultural knowledgedefinedby the lenses and tags fed into theCVsystems.Wehope that
our analyses in this case study can function as evidence that exactly this “subjective”
nature of feature visualization images is what can make “visual explainability useful
in computer vision for art” Offert (2019).
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A crucial point is that the SD-AM can lead to relevant and semantically meaningful
hypericons even without any textual prompt, i.e., without being guided or biased by
the class corresponding to the input AM image. For example, in Fig. 13, we present
results of applying promptless SD-AM to obtain hypericons related to the power class.
We denoised the extracted and regularized AM by gradually increasing the intensity
(weight). By increasing the intensity of the denoising process, we are able to control
the number of transformations applied by SD to obtain an image that is perceived
(by the model) as closer to its original training data. Critically, as seen in Fig. 14,
this process effectively converges towards more human-intelligible hypericons, which
resemble real instances of artworks from the corresponding class present in the original
ARTstract dataset both visually and semantically.

6.4 Hyperpop hypericons

The proliferation of images in modern mass media has reached unprecedented levels,
with social media platforms alone hosting billions of images every day, resulting in
a visually abundant contemporary culture where individuals are bombarded with het-
erogeneous visual data. This phenomenon characterizes the post-modern era, where
users are overwhelmed by an abundance of information that is not curated (Jansson
& Hracs, 2018), making it increasingly important to become “lookers” in addition to
being readers (Smits, 2022). The rise of hyperpop and meme culture, favored by the
newest generation of technology users searching for sense amidst the chaos, is symp-
tomatic of the current historical moment. As Vassar (2020) suggests, hyperpop serves
as an attempt, “suited to the psyche of the six-hours-of-screen-time-a-day individual”,
to strive to find some semblance of meaning amidst the disarray, by compiling a vast
field of disparate meanings until they reach some semblance of accord.

Fig. 14 Comparison of the synthetic SD-AM “hypericons” for the power class (with blue borders) with
manually selected with real instances from ARTstract (with purple borders). These real images from ART-
stract are tagged with power, they were selected because of their visual and semantic similarity to the
hypericons
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Intriguingly, an uncanny resemblance between the SD-AM hypericons and hyper-
pop artworks surfaces, as illustrated in Fig. 15. Within this visual dialogue, a profound
parallel emerges as both categories exude dissolved yet intricately collapsed visuals.
These striking visuals offer a blend of object fragments and hues, all while boundaries
remain indistinct. This parallel beckons us to explore the intersections of aesthetics
and cognition. Intriguing questions arise—does the act of meaning collapse within
the hypericons mirror the cognitive underpinnings of the hyperpop aesthetic? Could
it signify a convergence of overstimulated sensibilities, reminiscent of the torrent of
data processed by our models? In an analogous manner, just as our hypericons weave
significance from intricate data, the hyperpop aesthetic might mirror the cognitive fab-

Fig. 15 Visual convergence of (15a) hyperpop aesthetics and (15b) SD-AM hypericons, a juxtaposition that
invites contemplation on the parallels between between the rapid pace of modern media consumption and
the massive data flow into deep learning models

123

480 D. Sol et al.



ric of contemporary generations, offering a fresh lens for interpreting the avalanche
of visual content.

6.5 Explainability lessons for DH

We can assume that detecting and correcting bias of computer vision systems in the
context of Cultural Heritage (CH) will mostly happen in a post-hoc manner, i.e., after
a system has been deployed in real-world situations. This is due to the fact that many
models based on similar patterns have already been used in real-world applications,
especially in the digital humanities. We believe that the integration of interpretability
into CV-based systems in the cultural heritage (CH) field has not received enough
attention. This study stands as proof that digital humanities (DH) initiatives can act
as valuable arenas for both probing the limits of established CV explanation tech-
niques and pioneering novel methodologies. DH projects, with their interdisciplinary
focus and emphasis on interpretation, offer a unique opportunity to combine technical
methods with hermeneutic work to develop systems that are interpretable-by-design.
We envision our work as one of many DH projects that can contribute to the broader
development of more transparent and understandable computer vision systems. With
their diagnostic capability, the tools developed in XAI are exciting both to the techni-
cal disciplines for improving the systems they develop, and to fields such as Digital
Humanities with alternative paths for thinking about the kind of work they do (e.g. by
interrogating through explainable methods the way that a system has classified certain
cultural objects) (Berry, 2021).

7 Future directions

There are multiple further directions that can be taken with this work. First, recog-
nizing and rectifying the cultural bias embedded in assigning meaning to visual data
through labels is a crucial step that should be formally acknowledged and tackled in a
machine-readable manner (Pandiani & Presutti, 2022). Future research should focus
on addressing and explicitly tracking diverse cultural contexts and their associated
abstract concepts, offering alternative perspectives and insights on these concepts.
Another of the main current limitations of the ARTstract dataset is its size compared
to other art datasets, such asWikiArt (Mohammad&Kiritchenko, 2018),Web Gallery
of Art (Cetinic et al., 2018) or the TICC Printmaking Dataset (van Noord & Postma,
2017). This prevents the effective use ofmodels that requires large sets of input images,
such as current state-of-the-art methods in the image classification tasks (Chen et al.,
2021). A possible way to overcome this issue is to extend ARTstract to include more
and other types of artistic creations. An interesting approach is that of extending it
by means of automatic tagging for example by using techniques from the natural
language processing domain (Lin, 2022), such as the extraction of AC from descrip-
tive sentences using topic modelling (Kherwa & Bansal, 2020) or linguistic frames
(Presutti et al., 2012). Similarly, we plan on improving the definition of the abstract
concept classes, by expanding clusters and triggers and providing richer descriptions.
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This involves the alignment with resources likeWordNet (Miller, 1998) and BabelNet
(Navigli & Ponzetto, 2012) to provide a more comprehensive definition of clusters
as well as relevant ontologies (Baldoni et al., 2012; Bertola & Patti, 2016) to provide
semantically richer descriptions that allow the integration with other relevant artwork
information.

A different approach to improve AC image classification performance is to further
pre-trainmodels, initially trained on ImageNet, on the other available art datasets. Spe-
cialisation in AC detection can then be achieved by fine-tuning the final convolutional
layers on ARTstract (Kandel & Castelli, 2020). Additionally, other vision architec-
tures can be explored, such as ViT (Zhai et al., 2022), as well as hybrid methods using
Knowledge Graphs (KG) as background knowledge (Marino et al., 2017; Zhang et
al., 2019). Further directions include running attention in an unsupervised way to
test whether it can locate the areas of images that are most important for evoking an
AC, which can be used to later designate bounding boxes (Ibrahim & Shafiq, 2023).
The experiments performed with GradCAM++, such as those of Fig. 8, suggest that
it might be possible to detect specific regions on which an AC can be more promi-
nently identified. We will further investigate this aspect by systematically evaluating
the regions identified using other CAM-based methods (Nguyen et al., 2019) as well
as methods that achieve state-of-the-art results in the semantic segmentation task (Mo
et al., 2022).

ImprovingAC classification explainability could include a plethora of further direc-
tions: conducting color palette analysis, identifying co-occurring objects, actions, and
colors through object detection, and exploring pose detection. Other visual cues such
as texture, shape, and style can be investigated. Additionally, we could expand exper-
iments on adversarial training, style detection, and the synthetic image using guided
diffusion can be explored, which may involve exploring the use of other generative
models such as GANs. Another potential avenue for further research is to investigate
the use of KG and empirical semantics to enhance explainability. This may involve
developing newmethods for incorporating KG and semantic information into CV sys-
tems, as well as exploring the potential of explainability techniques such as attention,
saliency maps, and semantic segmentation in the context of KG-based CV. Overall,
we can further our work by exploring other datasets, techniques, and methodologies
from related fields such as art history and cultural studies.

8 Conclusion

In our pursuit to address the intricate challenge of automatically classifying images
based on evoked abstract concepts (ACs), we have introduced the novel ARTstract
dataset as a lens through which we delve into the realm of explainability. This work
unravels the role of Convolutional Neural Networks (CNNs) in such complex high-
level visual tasks, but also establishes benchmark model performances for AC image
classification within the ARTstract context. Additionally, we combine traditional and
novel explainability techniques to better understand model behavior and predictions.
With SD-AM, by harmonizing activation maps (AM) with diffusion models, we cre-
ate synthetic “hypericons” that compellingly visualize the profound transformation of
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ACmeanings as captured by deep networks into singular images. Our study resonates
with the burgeoning demand for interpretability in computer vision systems, espe-
cially within the cultural heritage domain and the realm of socio-cultural-cognitive
visual understanding.We accentuate the significance of recognizing biases and forging
connections between the technical and humanistic dimensions, advocating for uncon-
ventional pathways to extend hermeneutics. In conclusion, our article calls for the
explicit integration of explainability into the fabric of CV-based systems that attempt
to address high-level visual challenges. This integration is vital to ensure the depend-
ability and credibility of these systems in the evolving landscape of art, culture, and
technology. It beckons us to challenge the binary boundaries that prevail in CV, advo-
cating for a more holistic, humanistic, and ethical perspective.
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