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Optimal motion planning for localization of avalanche victims by
multiple UAVs

Camilla Tabasso, Nicola Mimmo, Venanzio Cichella and Lorenzo Marconi

Abstract— This paper proposes a method for localization
of avalanche victims by multiple UAVs. The method con-
sists of three main parts. First, assuming that the UAVs
and the victim are equipped with ARTVA receivers and
a transmitter, respectively, we introduce a mathematical
model of the receiver, which is used to estimate the position
of the victim. Second, we derive a closed-form expression
indicating the performance of this estimator. In particular,
we show that the victim’s observability index is captured
by the persistency of excitation of a function of the UAVs
trajectories. Third, we design and implement a motion plan-
ning algorithm that uses the estimation and the estimator’s
performance function for the (near) real-time generation of
trajectories that guarantee feasible, safe, and time-efficient
localization of avalanche victims.

Index Terms— Optimal motion planning; Bernstein poly-
nomials; ARTVA sensors; Observability-based planning

I. INTRODUCTION

SEARCH and Rescue (S&R) robots have become increas-
ingly attractive for their ability to support humans in

different disaster areas [1]–[4]. Several studies have focused
on high mountain scenarios where Unmanned Aerial Vehicles
(UAVs) are asked to localize avalanche victims [5], [6]. To
achieve this goal, the UAVs are equipped with a device called
ARTVA1 receiver, which senses and processes the electro-
magnetic field emitted by the ARTVA transmitter (carried by
the avalanche victim). The main idea, which was originally
presented in [5], [6], is to develop ARTVA-driven control
and estimation laws for the identification of the transmitter’s
location. The work in [7], [8] shows that a single UAV tracking
a sufficiently excited reference trajectory (composed by sums
of sin functions in the 3D space) is able to estimate the
location of the victim. It was demonstrated that the estimation
performance depends on the trajectory excitation level, which
is proportional to the amplitude and frequency of the sin
functions. In practice, to track this aggressive reference, the
UAV must perform acrobatic maneuvers that rapidly reduce
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the battery life and thus the support that the UAV can provide
to the S&R mission.

In this paper we explore the use of multiple UAVs, by means
of a cooperative trajectory generation algorithm, to design less
demanding but still excited trajectories. The objective of the
algorithm is to generate trajectories for multiple vehicles that
maximize the reliability of the target position’s estimation,
while minimizing the vehicles’ control effort, and satisfying
a set of constraints. These constraints include feasibility and
inter-vehicle safety constraints to guarantee safe unfolding of
the mission. Thus, the trajectory generation algorithm must be
able to handle possibly complex optimal control problems.

The problem of planning and control for target estimation
has received a great deal of attention in the research com-
munity, see [9]–[12] and citations therein. For example, an
optimal control theoretical framework is employed in [9], [12],
where the trajectory generation problem is formulated as an
optimal control problem aimed at maximizing an estimation
performance index. The problem is then solved by means of
closed-loop controllers based on online gradient descent [9] or
MPC [12]. However, when dealing with cooperative S&R mis-
sions involving multiple UAVs in a real-world environment,
optimal control problems that arise from this application are
very complex. The cost function and constraints involved can
be highly nonlinear, non-smooth, and non-convex, and closed-
loop solutions cannot be formulated. Therefore, solutions to
these problems must be sought through numerical methods
[13]. Numerical methods such as direct methods are based on
approximating optimal control problems into nonlinear pro-
gramming problems (NLPs) using some discretization scheme
[13]–[16]. Then, these NLPs can be solved using off-the-
shelf optimization solvers (e.g., MATLAB, SNOPT, etc.). A
wide range of direct methods that use different discretization
schemes have been developed, including Euler [17], Runge-
Kutta [18], [19], Pseudospectral [20], as well as methods based
on Bernstein approximants [21], [22].

In the context of the existing literature on autonomous
systems planning and control for target estimation, this work
differs from other approaches in a fundamental way. Rather
than dealing with simplified problems and designing closed-
loop controllers, we formulate the multi-vehicle target es-
timation problem as a general nonlinear optimal planning
problem and find an approximate solution using a direct
method. We employ the direct method based on Bernstein
approximants that was initially proposed in [23]. Bernstein
approximants possess nice geometric and numerical properties,
and provide algorithms that are particularly useful for the
computation and enforcement of feasibility and inter-vehicle



safety distance constraints. Furthermore, using the properties
highlighted in [21], it is possible to generate trajectories for
multi-vehicle missions in a (near) real-time fashion. Here we
exploit these properties and algorithms to address the problem
of target position’s estimation. For more in depth discussion
on the benefits of Bernstein polynomial-based approaches as
compared to other direct methods for trajectory generation,
the reader is referred to [23]–[26]. This approach allows us
to consider multi-objective scenarios where the vehicles must
efficiently estimate the position of a target while minimizing
mission execution time, actuation effort, and guarantee inter-
vehicle safety for the whole duration of the mission. To ensure
robustness to estimator faults and guarantee convergence to
the victim, we propose an event-triggered approach to re-plan
trajectories for the whole mission duration (rather than for a
shorter receding horizon) using up-to-date estimates.

This paper is organized as follows. This section ends with
the description of the notation. Section II represents a brief
recap of the ARTVA model and introduces the estimation
algorithm. Section III and IV state the optimization problem
and presents its solution with numerical results described in
Section V. Finally, in Section VI we discuss the results and
draw the conclusions.

A. Notations
Given n matrices xi ∈ Rni×m with i = 1, . . . , n, and

n, ni, m ∈ N+, we define the column operator col(·) :

Rn1×m × · · · × Rnn×m → R(
∑n

i=1 ni)×m as

col(x1, . . . , xn) =

 x1

...
xn

 .
Finally, we define a non decreasing function s : R → N that
associates to the current time t, the number of ARTVA samples
from 0 to t, i.e., s(t). The i-th sample time is denoted by τi
with τ0 ≥ 0 and τs(t) ≤ t.

II. THE ARTVA TRANSMITTER LOCALIZATION

We consider a single ARTVA transmitter and n ∈ N
receivers, each of them rigidly attached to an UAV. Let
pk(τi) ∈ R3 denote the inertial position of the k-th UAV at
the sample time τi, with k, i ∈ N and k = 1, . . . , n. Moreover,
let the position of the transmitter be denoted by pt ∈ R3. As
described in [7], the intensity of the ARTVA signal can be
approximated by an output modelled as y : R3 × R→ R,

y(pk, τi) = Φ>(pk)x(pt) + δ(pk − pt) + vt(pk − pt, τi), (1)

where pk = col(xk, yk, zk),

Φ(pk) = col(x2
k, 2xkyk, 2xkzk, y

2
k,

2ykzk, z
2
k, −2xk, −2yk, −2zk, 1)

(2)

is a known signal, and

x(pt) = col(m11,m12,m13,m22,m23,m33, pt, %) (3)

is the vector of the unknown constants. The terms mij ∈ R,
with i, j = 1, 2, 3, represent the entries of M := [mij ], with

M = M
> ∈ R3×3, pt := Mpt, and % := p>t Mpt. Moreover,

δ(·) : R3 → R represents the model mismatch introduced by
the approximation and v(·, ·) : R3×R→ R is the contribution
to y of the measurement noise.

Remark 1: Both δ(pk − pt) and v(pk − pt, t) are class-
K∞ functions of ‖pk − pt‖ meaning that they go to zero for
‖pk − pt‖ → 0. Moreover, a detailed analysis of v(pk − pt, t)
reveals that it is proportional to ‖pk − pt‖5 thus implying
that v(pk − pt, t) = o(Φ>(pk)x(pt)) for ‖pk − pt‖ → 0. In
simple words, this means that the output is more informative
if the UAV becomes closer to the transmitter. Finally, it can
be shown that the term δ(pk − pt) satisfies |δ(pk − pt) −
Φ>(pk)x(pt)|/|Φ>(pk)x(pt)| < 0.06 for each pk ∈ R3.

A. Estimation of the Transmitter Location
In the context of the S&R missions under consideration,

the number of vehicles available is usually small (from 1 to
10 typically [5]) and the search space is typically smaller
than a few thousands square meters. Thus, it is reasonable to
assume the presence of a communication network with static
topology on which we can implement a centralized estimation
algorithm. A similar architecture has been successfully tested
in [27].

To estimate the constant vector pt, we consider the position
of the k-th vehicle, pk(τi), to be known, and collect all the
available data in the network in the following centralized
model

Y (τi) =H>(τi)x(pt) + ∆(τi) + V (τi), (4)

with

Y (τi) = col(y(p1(τi), τi), . . . , y(pn(τi), τi)),

H>(τi) = col(Φ>(p1(τi)), . . . , Φ>(pn(τi))),

∆(τi) = col(δ(p1(τi)− pt), . . . , δ(pnτi)− pt)),
V (τi) = col(v(p1(τi)− pt, τi), . . . , v(pn(τi)− pt, τi)).

The model in (4) can be used to estimate the constant vector x,
exploiting the knowledge of the affine term H(τi), by means
of the following Recursive Least Squares (RLS) [28]

x̂(τi+1) = x̂(τi)+

S−1(τi)H(τi)
(
Y (τi)−H>(τi)x̂(τi)

)
,

(5a)

S(τi+1) =βS(τi) +H(τi)H
>(τi), (5b)

in which β ∈ (0, 1) and S(τ0) = S0 = S>0 � 0 with S0 ∈
R3×3. Then, we estimate the position of the transmitter as

p̂t(τi) = x−1(x̂(τi)), (5c)

in which x−1(·) : R10 → R3 is well posed, as demonstrated
in [7].

Remark 2: We employ RLS methods based on the assump-
tion that an accurate positioning system is available (ideal
GPS). On the other hand, Total Least Square (TLS) methods
can be adopted to consider noisy data affected by disturbance
and errors

Any linear regression algorithm such as the RLS [28], the
Kalman filter [29] or, in case of noisy H(τi), the Total Least
Squares and the Errors in Variables methods [30], work on



the same common assumption, i.e., that S(τi) � 0 for any i ∈
N. This assumption is translated into the positive definiteness
of the determinability Gramian (see [9]) which is fulfilled if
H(τi) is sufficiently exciting. More in detail, since

S(τi) = βiS0 +

i−1∑
j=0

βi−1−jH(τj)H
>(τj)

� βi−1
i−1∑
j=0

H(τj)H
>(τj),

(6)

H(·) is said to be Persistently Exciting (PE) if, given m ∈ N+,
there exists a positive real α0 > 0 such that, ∀s(t) ≥ m,
O(s(t),m) � α0I with

O(s(t),m) :=
1

m

s(t)∑
i=s(t)−m+1

H(τi)H
>(τi). (7)

This paper defines as observability performance index the
minimum singular value of (7), denoted as σ(s(t),m).

Remark 3: For the case of n = 1 (single receiver), it has
been shown in [7], [8] that the excitation level is linked to the
complexity of the reference trajectories τi 7→ p1(τi). Since
such complex trajectories are demanding from the point of
view of the energy consumption and the difficulty of the
trajectory tracking task, in this paper we want to exploit the
presence of multiple vehicles to keep the persistent excitation
level while reducing the trajectory complexity. As an intuitive
support to our approach, Figure 1 shows that the observability
performance index σ(s(t),m) increases whether the trajecto-
ries become more complex or the number of UAVs increases.
On one hand, the rank of H(τi)H

>(τi) increases with the
number of UAVs. On the other hand, more exciting trajectories
for the UAVs lead to higher values of σ(s(t),m). For instance,
given a constant number of 5 UAVs, σ(s(t),m) changes
depending on whether the UAV is hovering, or tracking a
circular or a ∞-shaped trajectory. On the other hand, for a
given trajectory, the number of UAVs increases the value of
σ(s(t),m).

III. PROBLEM FORMULATION

In this paper, we focus on the generation of desired trajec-
tories of n ARTVA receivers for estimation of the location
of a single ARTVA transmitter. We consider vehicles whose
dynamics are stabilized by on-board controllers able to provide
trajectory tracking capabilities. This allows us to focus on
the design of desired trajectories, namely pd,k(t) with k =
1, . . . , n, with bounded first and second derivatives, trackable
by the vehicles. We refer to [31]–[34], where it is shown that
given such trajectories, one can design a nonlinear controller
that enables the UAV to converge to it. For the sake of
simplicity, we assume that the vehicles are able to perfectly
track their desired trajectories, i.e., pd,k(t) = pk(t), for all
t ≥ 0. With this in mind, the aim is to find desired trajectories
p∗d,k(t), and minimal final mission time t∗f that minimize
actuation effort and maximize the observability performance
index. The trajectory generation problem can be formulated as
follows:

Fig. 1: Effect of the shape of the trajectory (left) and the
number of vehicles (right) on σ(s(t),m).

Problem 1: For given initial time t0 and estimated trans-
mitter position computed at time t0, p̂t(τs(t0)) (see Equation
(5)),

min
pd,k(t), tf

w1(tf − t0)+w2

n∑
k=1

∫ tf

t0

||p̈d,k(τ)||2 dτ

− w3σ(s(tf ), s(tf )− s(t0)),

(8)

with w1, w2, w3 > 0, subject to

pd,k(t0) = pk,t0 , ṗd,k(t0) = ṗk,t0 , (9a)
||pd,k(tf )− p̂t(τs(t0))|| ≤ δt, (9b)

||pd,k(t)− pd,j(t)|| ≥ dsafe, t ∈ [t0, tf ], (9c)

||ṗd,k(t)|| ≤ vk,max, t ∈ [t0, tf ], (9d)

for all k, j = 1, . . . , n, k 6= j and with δt, dsafe, vk,max > 0.
Remark 4: The boundary conditions in Equation (9a) en-

sure continuity of the reference and its first derivative at
time t0. The end point constraint in Equation (9b) guarantees
arrival of the receiver at a δt-neighborhood of the estimated
position of the transmitter. The design parameter δt must be
selected large enough in order to allow satisfaction of the inter-
vehicle safety constraint, represented by (9c), at the end point.
Inequality (9d) ensures that the reference trajectories can be
tracked by the receivers. The parameters dsafe and vk,max are
given positive constants denoting the minimum safe distance
between two vehicles and the maximum allowed speed, and
depend on the vehicle and the mission at hand.

Remark 5: One of the main challenges when dealing with
multi-vehicle missions is the need to guarantee safety amongst
agents. Despite the fact that inter-vehicle safety can be guar-
anteed by having the UAVs fly on different search planes,
aerodynamics interference could arise from two vehicles flying
directly above or below each other. Thus, we include (9c).



IV. TRAJECTORY GENERATION USING BERNSTEIN
APPROXIMANTS

Due to its complexity, the problem defined in the pre-
vious section cannot be solved analytically. In contrast to
approaches in the literature that simplify the problem at hand
and compute solutions in closed-loop fashion, e.g., [9], [12],
here we employ numerical methods to approximate open-loop
optimal solutions to Problem 1. In particular, we employ the
direct method that uses Bernstein polynomial approximation
to transcribe optimal control problems as finite-dimensional
optimization problems [21]. The motivation is that Bernstein
polynomials offer favorable geometric properties that are par-
ticularly useful when dealing with trajectory generation for
multi-vehicle missions [23], [24]. Let the desired trajectory
to be tracked by the k-th UAV, i.e., pd,k : [t0, tf ] → R3, be
approximated by a N -th order Bernstein polynomial

pd,k(t) ≈ pN,k(t) =

N∑
j=0

p̄
[k]
j,Nbj,N (t), t ∈ [t0, tf ], (10)

where p̄[k]
0,N , . . . , p̄

[k]
N,N ∈ R3 are Bernstein polynomial coeffi-

cients, and

bj,N (t) =

(
N

j

)
(t− t0)j(tf − t)N−j

(tf − t0)N
, t ∈ [t0, tf ],

for j = 0, . . . , N , is the N -th order Bernstein basis, and
(
N
j

)
=

N !
j!(N−j)! is the binomial coefficient. The following properties
of Bernstein polynomials are used in this paper.

Property 1 (Differentiation and integration): The
derivatives of the Bernstein polynomial pN,k(t) can be
easily computed as

ṗN,k(t) =

N∑
i=0

N∑
j=0

p̄
[k]
j,NDj,ibi,N (t),

p̈N,k(t) =

N∑
i=0

N∑
j=0

p̄
[k]
j,ND

2
j,ibi,N (t),

(11)

where Dj,k is the (j, k)-th entry of a square differentiation
matrix [21]. The integral of pN,k(t) is computed as∫ tf

t0

pN,k(t)dt = w

N∑
j=0

p̄
[k]
j,N , w =

tf − t0
N + 1

. (12)

Property 2 (Arithmetic operations): The sum (difference)
of two N -th order Bernstein polynomials is an N -th order
Bernstein polynomial. The product between two Bernstein
polynomials of orders N and M is a Bernstein polynomial
of order N +M [26, Chapter 5].

Using Properties 1 and 2, the following functions can be
expressed as Bernstein polynomials:

||ṗN,k(t)||2 =

2N∑
j=0

v̄
[k]
j,Nbj,N (t),

||pN,k(t)− pN,i(t)||2 =

2N∑
j=0

d̄
[ki]
j,Nbj,N (t).

(13)

In the equation above, v̄[k]
j,N , ∀j ∈ {0, . . . , 2N}, can be

obtained from algebraic manipulation of the Bernstein coef-
ficients of pN,k(t). Similarly, d̄[ki]

j,N can be obtained from the
Bernstein coefficients of pN,k(t) and pN,i(t).

Property 3 (End point values): The initial and final values
of a Bernstein polynomial are equal to its first and last
Bernstein coefficients, e.g., pN,k(t0) = p̄

[k]
0,N and pN,k(tf ) =

p̄
[k]
N,N .
Property 4 (Evaluating Bounds and Extrema [25], [35]):

There exist computationally efficient algorithms to evaluate
upper and lower bounds (or actual extrema) of a Bernstein
polynomial by straightforward operations on its Bernstein
coefficients. These algorithms are presented in [25], [35] and
the open-source implementation is available at [36].

With this setup, let the Bernstein coefficients describing the
n UAVs trajectories be p̄j,N = col

(
p̄

[0]
j,N , . . . , p̄

[n]
j,N

)
∈ R3n,

for all j = 0, . . . , N . Then, Problem 1 can be re-stated as
follows.

Problem 2: For given time t0 and estimated transmitter
position computed at time t0, i.e., p̂t(τs(t0)),

min
p̄0,N ,...,p̄N,N , tf

w1(tf − t0) + w2

n∑
k=1

∫ tf

t0

||p̈N,k(τ)||2 dτ

− w3σ(s(tf ), s(tf )− s(t0)),

(14)

subject to

pN,k(t0) = pk,t0 , ṗN,k(t0) = ṗk,t0 , (15a)
||pN,k(tf )− p̂t(τs(t0))|| ≤ δt, (15b)

||pN,k(t)− pN,j(t)||2 ≥ d2
safe, t ∈ [t0, tf ], (15c)

||ṗN,k(t)||2 ≤ v2
k,max, t ∈ [t0, tf ], (15d)

for all k, j = 1, . . . , n, k 6= j, and with w1, w2, w3 > 0.
By virtue of Properties 1-4, the above problem results into

a nonlinear programming problem, which can be solved using
off-the-shelf nonlinear optimization solvers. In particular, the
integral in the cost function can be computed by combining
Equations (12) and (13). Constraints (15a) and (15b) can be
enforced by using Property 3. Finally, inequalities (15c) and
(15d) can be imposed using Property 4.

Remark 6: Theoretical results concerning the existence of
a feasible solution to Problem 2 can be derived using similar
steps as the ones outlined in [24]. Moreover, it can be shown
that by increasing the order of approximation N in Equation
(10), the solution to Problem 2 converges uniformly to that of
Problem 1.

A. Event-triggered Re-planning
As described in Remark 1, the estimation error is smaller if

the ARTVA data are sampled closer to the transmitter location.
Thus, since the location of the transmitter is unknown, we steer
the UAVs toward the estimated transmitter location, provided
by (5). The data collected while steering the formation toward
the last estimated location are exploited to refine the estima-
tion. For this reason, we re-plan the fleet trajectory to exploit
the most up-to-date estimation. The re-planning framework is
described in the remainder of this section.



At time intervals t̄, a new estimate of the transmitter’s
location is calculated taking into account the new data gathered
by the UAVs. Then, the following re-planning conditions are
evaluated given t̄, ε, ρ > 0.

1) ‖p̂t(t)− p̂t(t− t̄)‖ ≤ ρ
2) σ(s(t),m) > ε

The conditions above ensure that the new estimate is in the
neighbourhood of the previous one (condition 1), and the
last estimation is reliable (condition 2). If both of them are
satisfied, the vehicles continue on their current trajectories,
otherwise new trajectories are calculated where t0 = t and
the final mission time tf is re-evaluated. This re-planning
strategy constitutes a loop between the estimation and the
motion planning. Future work will address the stability of this
loop, following steps similar to the ones introduced in [7].

Remark 7: The use of Bernstein polynomials and their
properties at the motion planning level makes the implemen-
tation of this framework (near) real-time possible.

V. NUMERICAL RESULTS

In this section, we propose the results of a S&R mission
simulated on MATLAB. In this scenario, 5 UAVs equipped
with ARTVA receivers, are tasked to estimate the position of
the transmitter, and to generate feasible trajectories to reach
its location. The trajectories are approximated using 5th order
Bernstein polynomials, and are computed using MATLAB
fmincon to solve the optimization problem presented in
Section IV.

For this scenario, the feasibility constraints are set to
vk,max = 5 m/s, dsafe = 3 m, and δt = 5 m. The evaluation
of the re-planning conditions takes place at intervals t̄ = 10 s
and new trajectories are generated if ‖p̂t(t) − p̂t(t − t̄)‖ ≤
ρ = 2 m and σ(s(t), s(t)) > ε = 0.7. These parameters are
arbitrarily chosen and can be tuned based on the type of UAVs
available. Figure 2 shows the evolution of the mission at four
time instances. At t = 0 s, the vehicles’ trajectories are planned
to reach a ”pentagon formation” to cover the search area. It
can be seen that as time progresses, a better estimate of the
transmitter location is calculated. At t = 40 s, σ(s(t), s(t)) =
0.822. However, since ‖p̂t(t) − p̂t(t − t̄)‖ = 3.997 m, a tra-
jectory re-planning is triggered. Conversely, at t = 50 s, both
criteria for re-planning are satisfied, and therefore the vehicles
keep following their trajectories instead of re-planning. Finally,
at tf = 53.23 s, the mission is successfully terminated. For this
simulation the computational time for each trajectory re-plan is
0.5 s on average (ran on Lenovo ThinkPad with Intel Core i7-
8550U, 1.80GHz CPU), which demonstrates the feasibility of
near real-time implementation of the proposed algorithm. The
computational time can be further reduced by using different
software, optimization solvers, and higher computing power.

We note that if in this scenario the re-planning strategy
was not adopted, the UAVs would move towards their first
estimation of the victim’s location, which is likely incorrect.
This can be seen in the top-left panel of Figure 2 where
||pt−p̂t(t)|| ≈ 27 m. On the other hand, as the mission unfolds
and several re-planning events occur, more accurate estimates
are passed to the planner, which ultimately steers the formation

Fig. 2: Execution of the mission at four time instances. The
dots show the current position of the vehicles, while the
solid lines represent the trajectory already traveled, and the
dashed lines represent the portion of the trajectory yet to cover.
Finally, the position of the target is shown by the red star, while
the estimate of its position is shown by the black diamond.

toward the transmitter. This can be seen in the bottom-right
panel of Figure 2.

As it was previously mentioned, maximum velocity and
minimum inter-vehicle safety distance constraints are imposed.
The right side of Figure 3 shows the speed profile of the
vehicles. It can be seen that when the trajectory re-planning
takes place, the speeds of the vehicles match the current speed
at which they were previously moving, therefore satisfying the
initial velocity constraint. Furthermore, the velocity obtained
satisfies the feasibility constraint, i.e., ||ṗN,k(t)|| ≤ vk,max =
5 m/s. Finally, the right side of Figure 3 shows that the
safety distance among the vehicles is kept for all times, i.e.,
||pN,k(t)−pN,j(t)|| ≥ dsafe = 3 m, ∀ t ≥ 0. It is worth noting
that the problem formulation can be seamlessly extended by
including additional constraints. For example, an additional
boundary condition can be imposed on the acceleration, i.e.,
p̈d,k(t0) = p̈k,t0 , to ensure that the overall acceleration profile
is continuous.

Lastly, we note that using multiple vehicles as opposed
to a single agent, it is possible to obtain relatively simple
trajectories which are sufficiently excited to guarantee an
accurate estimation of the transmitter location.

VI. CONCLUSIONS

In this work, we presented an optimal motion planning
algorithm for search and rescue missions. The method gener-
ates trajectories for multiple agents that satisfy feasibility and
safety constraints, while minimizing the actuation effort and



Fig. 3: (left) Velocity profiles, (right) inter-vehicle distances.

maximizing a function describing the victims’ observability.
The computational efficiency of the algorithm enables real-
time implementation and fast re-planning. These properties
are exploited to achieve robustness and efficient execution
of the victim localization mission. Future work includes
the formulation of event-triggered re-planning strategies with
provable stability of the estimation/motion planning closed-
loop architecture.
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[36] “Bernstein/Bézier trajectory toolkit.” https://github.com/
caslabuiowa/OptimalBezierTrajectoryGeneration.
Accessed: 2019-07-31.

https://github.com/caslabuiowa/OptimalBezierTrajectoryGeneration
https://github.com/caslabuiowa/OptimalBezierTrajectoryGeneration

	Introduction
	Notations

	The ARTVA Transmitter localization
	Estimation of the Transmitter Location

	Problem Formulation
	Trajectory Generation using Bernstein Approximants
	Event-triggered Re-planning

	Numerical Results
	Conclusions
	References

