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Covariate balance is one of the fundamental issues in designing experiments for
treatment comparisons, especially in randomized clinical trials. In this article,
we introduce a new class of covariate-adaptive procedures based on the Simu-
lated Annealing algorithm aimed at balancing the allocations of two competing
treatments across a set of pre-specified covariates. Due to the nature of the sim-
ulated annealing, these designs are intrinsically randomized, thus completely
unpredictable, and very flexible: they can manage both quantitative and qual-
itative factors and be implemented in a static version as well as sequentially.
The properties of the suggested proposal are described, showing a significant
improvement in terms of covariate balance and inferential accuracy with respect
to all the other procedures proposed in the literature. An illustrative example
based on real data is also discussed.
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1 INTRODUCTION

In comparative experiments, balancing the covariates across experimental groups is a crucial requirement to ensure the
credibility of the trial results and to guarantee optimal inference about the treatment effects.1-3 In this regard, several
procedures have been suggested, with the aim of creating comparable treatment groups with respect to the selected prog-
nostic factors. One of the oldest approach is the so-called minimization method for qualitative factors, tracing back to
the work of Taves4 and Pocock and Simon5 and later generalized by Hu and Hu,6 intended to minimize a weighted sum
of the marginal imbalances of allocations for all covariates. Another well-known approach instead exploits stratification
by making use of a separate randomization procedure within each stratum in order to improve balance.7 Both meth-
ods are suitable only for categorical variables, while continuous covariates are either ignored or discretized: the former
solution leads to potentially serious power loss,8 while the latter one, despite being widespread in clinical research, may
strongly damage the inferential precision since the nature of the variables changes due to the subjective choices of the
thresholds.9-11 Moreover, as the number of covariates increases, the stratification approach may rapidly become imprac-
tical especially for small sample sizes, while minimization method may cause practical problems in real life applications
due to the increasing required complexity.3,9

Adopting an optimal design perspective, Atkinson12 and Smith13,14 suggested covariate adaptive procedures directed
at minimizing the variance of the estimated treatment effect, under the classical linear homoschedastic model setup.
Albeit these rules are compatible with both categorical and continuous covariates, in general their performances are
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2 BALDI ANTOGNINI et al.

strongly related to both the correctness of the model specification15 and, as also our results show, its complexity. Finally, an
alternative approach introduced by Ma and Hu16 is aimed at minimizing a weighted average of the estimated distributional
imbalances obtained by means of kernel density estimations. For a complete overview see Rosenberger and Sverdlov,1
Rosenberger and Lachin17 and Baldi Antognini and Giovagnoli.18

In the causal inference framework when all patients’ covariates are available before the experiment starts, Morgan and
Rubin2 introduced the so-called rerandomization (RR) approach for balancing quantitative covariates across two experi-
mental groups. Under this procedure, adopting complete randomization units are repeatedly allocated to the treatments
until a prefixed covariate balance criterion is satisfied. In particular, the authors considered as the imbalance measure
the Mahalanobis distance between the sample means across the two groups and proposed to stop the process and accept
the treatment allocation when the distance falls below some prefixed constant, which specifies the maximum amount of
tolerated imbalance. In order to deal with sequential enrollment designs, RR was later generalized in a group sequential
way.19 As the number of the considered covariates increases, the computational burden required to obtain an accept-
able configuration increases too: this may lead to a compromise between computational feasibility and covariate balance.
Moreover, this procedure should be applied only when all or at least some of the variables are quantitative.19

In the last decade, thanks to the recent advances in the biomarkers-based personalized medicine, it has become
increasingly common to include several covariates and their interactions in the analysis.20-25 However, with the exception
of Atkinson’s procedure that induces a lower order balance,7 an efficient Covariate-Adaptive (CA) procedure able to deal
with mixed covariates profile with potentially complex interaction structure is still missing.

In this paper, we propose a new class of designs based on the Simulated Annealing (SA) algorithm, which is aimed at
balancing the allocations among a set of pre-specified covariates. Originally suggested in the context of statistical mechan-
ics,26 SA is a stochastic local search algorithm which has been vastly used to approximate global optimization solutions for
large search spaces.27-29 It comes from the physical process of the annealing of metals by gradual cooling: at high temper-
atures, the particles are rather free to move, leaving the structure subject to substantial changes, while as the temperature
gradually decreases, the probability that a particle will move decreases too, until the system reaches a steady state. In a
nutshell, the algorithm starts from some initial point and then it iteratively explores its neighborhood; better solutions will
be always accepted, while worsening ones are retained probabilistically, depending on both the amount of deterioration
and a parameter called temperature, that governs the evolution of the procedure. Large temperatures allow the algorithm
to search for new potential optimal solutions in a wider area, so the probability of identifying the global minimum tends
to grow, while low values, by inducing a smaller search area, may increase the risk of being trapped in local minima. Due
to the stochastic nature of the SA algorithms, upward moves (namely worse solutions) can be occasionally accepted: this
is done in the hope that such choices will allow the algorithm to escape from local minima, in order to find the global
optimum. Markov chains are the underlined probabilistic models that govern the behavior of the SA algorithm, which
converges in probability to the global optimum as the number of iterations grows (under widely satisfied conditions).29-31

In this article, the SA algorithm is exploited to control covariate imbalance. In particular, we introduce a new class of
CA procedures called the simulated annealing designs (SADe) which:

• can deal with continuous and/or categorical variables,
• allow the adoption of any specific measure of covariate imbalance,
• can be applied to both fixed (ie, nonsequential) experiments, where all the covariate information is available before

the trial begins, and sequential ones in which statistical units enter the trial progressively, also allowing for a group
sequential version,

• turn out to be remarkably effective in the case of small sample sizes and a large number of covariates, a critical set-up
in which enforcing covariate balance is particularly important.

Moreover, due to the stochastic nature of the SA algorithm, SADe are intrinsically randomized and completely unpre-
dictable, thus avoiding any possible selection bias. An extensive simulation study is performed to show the excellent
performances of our proposal: the finite sample properties of the SADe are compared with those of other well-known
CA procedures, by taking into account (i) stratified randomization methods, minimization procedures (and their gener-
alization6) for qualitative covariates, and (ii) RR (in its fixed and group sequential versions), Atkinson’s optimal design12

and kernel density-based procedure16 when some covariates are quantitative, also considering the completely random-
ized design as a benchmark. Starting from some preliminaries in Section 2, Section 3 introduces the SADe and Section 4
deals with the finite sample comparisons between CA rules, taking also into account a real case study; Section 5 shows
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BALDI ANTOGNINI et al. 3

the impact of the covariate imbalance on the inferential accuracy and the final section discusses some guidelines for the
practical application of the suggested proposal.

2 NOTATION, IMBALANCE MEASURES AND INFERENTIAL PRECISION

We will consider experiments where two treatments, say A and B, are compared. Suppose that n assignments have been
made to statistical units with independent and identically distributed (i.i.d.) covariates x1, … , xn belonging to a given
covariate distribution (x). Each xi is a q-dimensional random variable representing the set of covariates (qualitative
and/or quantitative), for which balance between treatment groups is desired, and are assumed to be measurable before the
assignment. We denote by Yi the experimental outcome of the ith subject, xi = (xi1, … , xiq)t is his/her covariate profile,
while 𝛿i represents the corresponding allocation, with 𝛿i = 1 if the ith subject is assigned to A and 0 otherwise. From now
on we set Yn = (Y1, … ,Yn)t and 𝜹n = (𝛿1, … , 𝛿n)t, while we denote by 1n and In the n-dimensional vector of ones and the
identity matrix, respectively. Let Xn be the (n × p)−dimensional matrix where the chosen covariates are measured on the
experimental units (usually p = q, but Xn may also includes power transformations and interactions so, in general, p ≥ q)
and let xAn = Xt

n𝜹n∕1t
n𝜹n and xBn = Xt

n(1n − 𝜹n)∕(n − 1t
n𝜹n) be the vectors collecting the sample means of the two groups.

In the framework of causal inference for quantitative (normal) covariates, Morgan and Rubin2 proposed the RR
method by assuming as a measure of covariate imbalance the Mahalanobis distance between xAn and xBn, namely

Mn = (xAn − xBn)tvar(xAn − xBn)−1(xAn − xBn) = n𝜋n(1 − 𝜋n)(xAn − xBn)tvar(x)−1(xAn − xBn),

where var(x) represents the sample covariance matrix of the covariates and 𝜋n = n−1
𝜹

t
n1n is the percentage of allocations

to A.
In the context of model-based inference, inspired by the linear homoscedastic model

E(Yn) = 𝜹n𝜃A + (1n − 𝜹n) 𝜃B + Xn𝜷, var(Yn) = 𝜎2In, (1)

where 𝜷 is a p-dimensional vector of covariate effects (considered as nuisance parameters) and 𝜎2 is the common variance
of the two arms, an alternative and widely used measure of covariate imbalance is the so-called loss of information,12

𝓁n = n−1bt
n(n−1

F
t
nFn)−1bn, (2)

where Fn = [1n;Xn], bt
n = (Dn; (2𝜹n − 1n)tXn) is the so-called imbalance vector and Dn = 2𝜹t

n1n − n is the difference
between the allocations in the two groups. Basically, 𝓁n represents the loss of estimation precision induced by the covari-
ate imbalance after n assignments, while the corresponding loss of estimation efficiency is 𝓁n∕n. Under this framework
the inferential goal typically consists in estimating the treatment effects, (𝜃A; 𝜃B), or the treatment difference, 𝜃A − 𝜃B,
as precisely as possible and, by taking into account the well-known A-, D- and DA-optimality, those criteria depend on
the design only through the loss.7,18 Indeed, after n assignments, let ̂𝜽n =

(
̂
𝜃An; ̂𝜃Bn

)t be the least square estimator of the
treatment effects 𝜽, then

tr
[

var
(
̂𝜽n
)]
= 𝜎

2

n

(
1 − 𝓁n

n

)−1

, det
[
var

(
̂𝜽n
)]
=

4𝜎4
(

1 − 𝓁n
n

)−1

n2
[
1 − n−1f

t
nXt

nXnfn

] and var( ̂𝜃An − ̂
𝜃Bn) =

4𝜎2

n

(
1 − 𝓁n

n

)−1

,

where fn = n−1Xt
n1n denotes the vector of the sample means for all the observations. Clearly, for every sample size n the

estimation efficiency is maximized when𝓁n = 0; the same conclusion holds when the inferential interest lies in testing the
null hypothesis H0 ∶ 𝜃A = 𝜃B versus H1 ∶ 𝜃A ≠ 𝜃B through the classical Wald statistic Wn = ( ̂𝜃An − ̂

𝜃Bn)2∕var( ̂𝜃An − ̂
𝜃Bn).

3 THE SIMULATED ANNEALING DESIGN

In this Section we describe the new covariate balanced procedure based on the SA algorithm, the Simulated Annealing
Design (SADe). For the sake of clarity, we start with its fixed (ie, nonsequential) version by assuming that all the patients’
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4 BALDI ANTOGNINI et al.

covariates are available before the trial starts; then, we illustrate the SADe in its sequential version, namely by assuming
that the experimental units are enrolled sequentially in groups.

3.1 The fixed (nonsequential) scenario

For an experiment with n statistical units, let 𝜓n = 𝜓(𝜹n|x1, … , xn) ∶ {0; 1}n → R+⋃{0} be the chosen imbalance mea-
sure to be minimized (eg, the loss 𝓁n, the Mahalanobis distance Mn or other user-selected measures), so that the problem
consists in finding the assignment vector 𝜹∗n = (𝛿∗1 , … , 𝛿

∗
n)t ∈ {0; 1}n minimizing𝜓 , namely such that𝜓(𝜹∗n|x1, … , xn) ≤

𝜓(𝜹n|x1, … , xn) for every 𝜹n.
Starting from an initial allocation 𝜹I , which is randomly chosen in the lattice of order 2n, the algorithm individuates

the neighbor allocations on the basis of the chosen topology (eg, allowing only one or more components to vary). Then,
the SA procedure randomly chooses one of them, say 𝜹N , and the algorithm evolves by comparing the new candidate
𝜹N with 𝜹I in terms of 𝜓 , namely by evaluating the change Δ = 𝜓(𝜹N |x1, … , xn) − 𝜓(𝜹I|x1, … , xn). Thus, if Δ ≤ 0 then
𝜹N is automatically accepted as the new current solution. If Δ > 0 instead, the candidate 𝜹N is accepted with probability
exp {−Δ∕T0}; otherwise the algorithm stays in 𝜹I and a new neighbor should be selected. In such a way the SA algorithm
evolves until the prefixed number of iterations is reached. Here, T0 > 0 is the initial temperature and it is customary
to assume a decreasing sequence of temperatures as the iterations progress (ie, a cooling scheme T0 > T1 > T2 > … ),
also allowing multiple iterations at each temperature level.31 Generally, in practical applications no prior information
about the optimal annealing scheme for the considered problem is available, so that many authors suggest to rely on the
standard geometrical scheme, Tn+1 = rTn where r ∈ (0.8; 0.99) is called the temperature decay, since it has the advan-
tage of being robust and ensures convergence toward an approximate solution.29,32,33 Another important aspect regards
the choice of the neighborhoods, namely the topology enforced by the way in which the algorithm searches for pos-
sible candidates in the neighbors of the current solution. Inspired by the work of Mladenović and Hansen,34 Bouffard
and Ferland35 and Palubeckis,36 where the advantages of adopting a variable neighborhood search strategy are shown,
in this paper we adopt a neighborhood search scheme that resembles the cooling one. More specifically, let the ith
neighborhood of the current solution 𝜹C be the set of all the neighbor allocations generated by varying i components
of 𝜹C; then as the iterations progress and temperature decreases, the algorithm makes use of a set of neighborhoods
in which the number of varying entries gradually reduces. This enables for a wide search at the beginning and nar-
rows the set of possible candidates at the end of the computation when the current solution should be close to the
optimal one.

Remark 1. One of the point of strength of SADe is its flexibility, indeed there are no restrictions in the choice of the imbal-
ance measure𝜓n, the loss or the Mahalanobis distance being just two well-known examples; this allows the experimenter
to suitable choose a specific measure in accordance with the trial objectives.

3.2 SADe for sequentially minimizing the covariate imbalance

Let us now consider the general case in which n experimental units are enrolled sequentially and, after recording their
covariate patterns, they have to be assigned to A or B. In particular, assume that subjects enter the trial in groups of m ≥ 1
statistical units; so, by denoting with k = n∕m the prefixed total number of groups, the ith one includes subjects from
(m(i − 1) + 1)th to (mi)th, for i = 1, … , k (note that, the groups can also have different sizes).

The sequential SADe is a procedure for minimizing the covariate imbalance that works at each step in three directions:
(i) given the information accrued so far, the covariate distribution (x) is estimated by ̂(x), (ii) ̂(x) is then employed to
randomly sample the covariate pattern of the remaining (future) patients for deriving the ‘predicted’ imbalance measure
�̃� and (iii) SA is applied to identify the treatment allocation sequence minimizing �̃� , from which the assignments are
extracted.

The rationale behind this procedure is that, by estimating (x) and randomly generating the profiles of the remaining
patients to derive the corresponding ‘predicted’ imbalance measure �̃� , SADe avoids the characteristic behavior of CA
rules. Indeed, the latter tend to make the assignment as a ‘local’ optimal choice conditionally to the available information
accrued up to that step, which could be very far from the global optimum due to the absence of information about the
covariates of the future units.
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BALDI ANTOGNINI et al. 5

Formally, SADe can be sketched as follows:

(1) for i = 1: as the first group enters the trial, use x1, … , xm to derive ̂1(x), namely the estimated covariate distribution
for the first m patients, and randomly generate the remaining n −m profiles x̃m+1, … , x̃n accordingly; then, apply
the SA algorithm to the predicted imbalance measure �̃�(𝛿1, … , 𝛿n | x1, … , xm, x̃m+1, … , x̃n) to derive the optimal
assignments 𝛿∗1 , … , 𝛿

∗
n and allocate the first group according to 𝛿∗1 , … , 𝛿

∗
m;

(2) for i = 2, … , k − 1: when the ith group is available, evaluate ̂i(x) by using x1, … , xmi and generate the remaining
n −mi profiles x̃mi+1, … , x̃n according to it, to derive

�̃�(𝛿m(i−1)+1, … , 𝛿n | 𝜹m(i−1), x1, … , xmi, x̃mi+1, … , x̃n) (3)

(namely �̃� corresponds to the chosen covariate imbalance measure where 𝜹m(i−1) are the assignments actually made,
x1, … , xmi are the observed covariate patterns, while 𝛿m(i−1)+1, … , 𝛿n are the future allocations to be determined);
then, apply the SA to (3) to derive 𝛿∗m(i−1)+1, … , 𝛿

∗
n and allocate the ith group of subjects according to 𝛿∗m(i−1)+1, … , 𝛿

∗
mi;

(3) for i = k: apply the SA algorithm to 𝜓(𝛿n−m+1, … , 𝛿n | 𝜹n−m, x1, … , xn) to derive 𝛿∗n−m+1, … , 𝛿

∗
n and allocate the last

group accordingly.

Clearly, the fully sequential version of the SADe can be easily derived by letting m = 1: in this case, a (small)
starting sample—assigned via restricted randomization—is needed to obtain nontrivial estimates of the covari-
ate distribution . Analogously, the fixed scenario previously discussed corresponds to the special case m = n
(namely, k = 1). It should be noted that, unlike the fixed case, in the sequential scenario the procedure does
not need the full set of covariate profiles of the patients in advance, rather this information will be progres-
sively available as the trial unfolds. From now on, SADe(1) and SADe(m) denote the fully sequential and the
group sequential versions of the Simulated Annealing Design, respectively, while SADe* simply denotes its fixed
version.

Remark 2. The performances of the Simulated Annealing Design in the sequential version (ie, for k > 1) clearly depend
on the quality of the estimation of the covariate distribution . In general no specific assumption about the dependence
structure of the covariates is needed. Indeed, if all the chosen covariates are categorical, we can linearize the Cartesian
product of their supports into a vector of strata in a multinomial framework. For example, suppose that the jth covariate
has lj levels (j = 1, … , p), so that S =

∏p
j=1lj is the total number of strata; let ps be the probability to observe the sth stratum

(s = 1, … , S), then it will be estimated at each step i by the current proportion p̂si of units observed in this stratum.
For quantitative covariates, a non-parametric multivariate kernel estimation could be employed, especially if no a-priori
information about the joint distribution  is available. The mixed scenario, namely with both qualitative and quantitative
covariates, can be derived by combining the two previous estimation approaches. As is well known, when the number
of the considered quantitative covariates grows the ability to properly estimate the covariate distribution decreases. A
possible solution consists in increasing the starting sample - assigned via restricted randomization - in order to provide
sufficient and reliable information to the algorithm. If instead some a-priori information about the joint distribution of the
covariates is available, another possible solution is to rely on standard parametric inference by estimating the parameters
of the covariates distribution.

4 NUMERICAL COMPARISONS

4.1 The simulated annealing design in the sequential framework

In this section, the operating characteristics of the newly introduced sequential SADe will be compared with several CA
rules proposed in the literature. As stated in Remark 2, the dependent structure of the covariates is not relevant for the
application of our methodology, so in what follows we will assume independent covariates. More specifically, when all of
them are categorical, we will consider:

• stratified randomization performed via the Big Stick Design37 (BSD), where the maximum tolerated imbalance is set
equal to 3, and the Covariate-Adaptive Biased Coin Design7 (CA-BCD) with allocation function F(x) = (x2 + 1)−1

, x ≥ 1;
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6 BALDI ANTOGNINI et al.

• Pocock and Simon’s minimization method (PS) and its generalization by Hu and Hu6 (HH), with biasing probability
set equal to 0.75 and 0.85, respectively;

• Atkinson’s DA-optimum Biased Coin Design (DA-BCD).

Finally, as a benchmark the completely randomized design (CR), which ignores the information provided by the
covariate profile, is also considered. In order to make homogeneous comparisons, we take into account the simulated
annealing design in its fully sequential version SADe(1), where we set T0 = 50 and r = 0.9, with a total number of 100
temperatures and 200 iterations for each temperature (for a more detailed discussion on how to properly choose param-
eters values see Section 6). We perform a simulation study where each experiment is simulated 5000 times under four
different model specifications:

M1: four binary covariates with only the main effects (without interactions)
M2: four binary covariates with main effects and interactions of all orders (ie, the full model)
M3: ten binary covariates with only the main effects (without interactions)
M4: ten binary covariates with main effects with pairwise interactions

Tables 1 and 2 display the expectations and standard errors of 𝓁n and Mn for all the considered procedures under
models M1-M4 as n varies.

In the first scenario (M1), both the minimization procedures and the CA-BCD show good performances, while the
BSD and the Atkison’s procedure display the highest values. The CR design has the worst performances with imbal-
ance measures that remain stable as the sample size increases: this holds for all the considered scenarios. Even in this
simple set-up, with only four covariates, the SADe(1) provides a remarkable gain in terms of the ability to balance the
experimental groups. As an example for n = 50, the loss of efficiency induced by the SADe(1) is about 0.41∕50 = 0.8%,
that of the CA-BCD about 6.9%, while for the CR design is about 10%. As the complexity of the model specification
grows, the improvement of the newly proposed procedure increases: this is particularly evident for M2 and M3. For
the M2 and n = 50 indeed, the SADe(1) exhibits a loss of efficiency of 9% while for the CA-BCD and CR design about
15% and 31%, respectively. In the last scenario, all the considered procedures struggle to balance the groups, even for
n = 400, displaying also a high variability of the estimates (note that the case n = 50 has been displayed to maintain the
same setting throughout the tables; however it is purely demonstrative due to the high number of parameters involved
and the quality of multidimensional kernel estimation of ). The SA-based procedure is able to provide quite good per-
formances, especially as the sample size increases; although the DA-BCD shows slightly better values for intermediate
sample sizes, its imbalance measures tend to stabilize as n grows, while for SADe(1) the corresponding measures tend
to vanish. In general, SADe(1) guarantees both the lowest loss of information and Mahalanobis distance along with
the smallest variability of the estimates, in particular for small/moderate sample sizes. The HH procedure shows good
performances in several scenarios but with greater variability with respect to the SA-based procedure and it generally
necessitates a higher number of patients to provide well-balanced experimental groups. The PS procedure instead per-
forms quite well as long as the model does not contain interactions (see for example scenario M2), while the BSD and the
stratification-based procedures show poor performances when there is a high number of strata wrt the sample size, as in
model M3. This is due to the fact that the presence of few statistical units in each stratum prevents these procedures to
properly evolve.

For the mixed case of both categorical and continuous covariates, the SADe will be compared to the Atkinson’s design
and the kernel density-based procedure (KER) proposed by Ma and Hu,16 where following the authors suggestion the bias-
ing probability is set to 0.80, the same importance is provided to each factor and at each step the covariates are re-scaled.
Moreover, we also considered the group sequential rerandomization RR(m) proposed by Zhou et al:19 as reported in their
Supplementary Material, the total expected number of rerandomizations is set to 2000 and each group consists of m = 50
experimental units. To properly compare the performances of the new procedure with that of the group sequential reran-
domization, we present the results of both the fully sequential SADe(1) and its group sequential version SADe(m) where
each group is composed of m = 50 experimental units. The results for the completely randomized design are also reported.
In this setup, each design is simulated 5000 times and we adopt the following model specifications:

M5: two binary and three normally distributed variables without interactions
M6: two binary and three normally distributed variables with pairwise interactions
M7: four binary and six normally distributed variables without interactions
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BALDI ANTOGNINI et al. 7

T A B L E 1 Expectations (with standard errors in parentheses) of 𝓁n and Mn for models M1 and M2 as n varies.

n = 50 n = 100 n = 200 n = 400

Rules 𝓵n Mn 𝓵n Mn 𝓵n Mn 𝓵n Mn

M1 SADe(1) 0.41 0.43 0.25 0.26 0.13 0.14 0.06 0.07

(0.27) (0.30) (0.18) (0.20) (0.09) (0.10) (0.05) (0.05)

PS 2.19 2.03 0.65 0.61 0.29 0.27 0.14 0.13

(1.83) (1.72) (0.58) (0.55) (0.24) (0.24) (0.12) (0.12)

DA-BCD 1.51 1.20 1.08 0.86 1.02 0.81 1.02 0.80

(1.00) (0.89) (0.67) (0.60) (0.64) (0.57) (0.64) (0.57)

CA-BCD 3.43 2.76 1.80 1.44 0.91 0.73 0.45 0.36

(2.07) (1.87) (1.10) (1.00) (0.55) (0.50) (0.27) (0.24)

BSD 4.19 3.35 2.61 2.09 1.36 1.09 0.67 0.54

(2.54) (2.29) (1.59) (1.43) (0.86) (0.77) (0.45) (0.39)

HH 1.51 1.39 0.43 0.39 0.20 0.18 0.10 0.09

(1.25) (1.18) (0.33) (0.32) (0.15) (0.15) (0.07) (0.07)

CR 4.96 3.95 4.99 4.00 4.97 3.97 4.97 3.97

(2.99) (2.67) (3.00) (2.71) (3.16) (2.84) (3.11) (2.76)

M2 SADe(1) 4.64 4.61 3.07 3.06 1.68 1.68 0.88 0.88

(1.51) (1.53) (1.21) (1.22) (0.71) (0.72) (0.39) (0.40)

PS 13.20 12.85 12.13 11.98 11.49 11.41 11.33 11.29

(4.01) (3.92) (4.50) (4.45) (4.57) (4.55) (4.72) (4.70)

DA-BCD 7.28 6.79 3.81 3.55 3.35 3.13 3.27 3.06

(2.37) (2.28) (1.28) (1.24) (1.15) (1.10) (1.13) (1.09)

CA-BCD 11.64 10.92 6.59 6.21 3.07 2.88 1.46 1.39

(3.22) (3.14) (2.09) (2.04) (0.99) (0.96) (0.45) (0.44)

BSD 13.60 12.73 9.24 8.69 4.64 4.35 2.25 2.11

(3.64) (3.55) (2.67) (2.59) (1.54) (1.48) (0.98) (0.93)

HH 9.77 9.51 4.40 4.32 1.85 1.83 0.88 0.88

(3.37) (3.29) (2.03) (2.01) (0.89) (0.88) (0.42) (0.41)

CR 15.38 14.38 15.92 14.93 16.07 15.07 15.99 14.99

(4.39) (4.26) (5.01) (4.86) (5.42) (5.26) (5.57) (5.39)

Table 3 displays the expectations and standard errors of 𝓁n and Mn for models M5-M7 as n varies. The SADe(1) con-
firms the ability to provide well-balanced treatment groups outperforming all other fully sequential procedures, even
better for small samples. The Kernel procedure generally shows high imbalance measures, necessitating at least 200
patients to compete with Atkinson’s rule. This is particularly evident for M6 and M7, namely either in the presence of
interactions among covariates or when the number of the considered variables increases. The CR design confirms its poor
ability to provide covariate balance. As expected, by exploiting more information, the group sequential version SADe(m)
provides the best balance outdoing all the considered fully sequential procedures; indeed, SADe(50) shows the lowest
values of 𝓁n and Mn with the smallest variability of the estimates in all the considered set-ups. The improvement in the
performances of the SADe(m) with respect to the RR(m) procedure is particularly relevant for M6 and M7, namely for
more complex scenarios: the imbalance measures provided by the SA-based method are at least one third of those obtained
adopting the rerandomization approach.
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8 BALDI ANTOGNINI et al.

T A B L E 2 Expectations (with standard errors in parentheses) of 𝓁n and Mn for models M3 and M4 as n varies.

n = 50 n = 100 n = 200 n = 400

Rules 𝓵n Mn 𝓵n Mn 𝓵n Mn 𝓵n Mn

M3 SADe(1) 1.83 1.82 1.22 1.23 0.67 0.67 0.32 0.32

(0.76) (0.78) (0.57) (0.58) (0.30) (0.30) (0.15) (0.16)

PS 7.61 7.38 3.64 3.57 1.69 1.67 0.84 0.83

(3.49) (3.40) (1.92) (1.89) (0.92) (0.92) (0.47) (0.46)

DA-BCD 4.27 3.85 2.46 2.23 2.27 2.06 2.22 2.01

(1.91) (1.79) (1.03) (0.98) (0.96) (0.91) (0.93) (0.89)

CA-BCD 11.01 10.02 11.01 9.99 10.87 9.88 10.72 9.72

(4.09) (3.96) (4.47) (4.30) (4.58) (4.40) (4.51) (4.32)

BSD 11.03 10.02 10.99 9.98 10.96 9.95 10.95 9.93

(4.10) (3.94) (4.37) (4.19) (4.50) (4.31) (4.65) (4.43)

HH 6.11 5.95 2.08 2.04 0.97 0.95 0.52 0.51

(3.00) (2.93) (1.12) (1.10) (0.48) (0.48) (0.25) (0.25)

CR 11.06 10.06 11.02 10.02 10.95 9.91 10.98 9.95

(4.07) (3.93) (4.42) (4.21) (4.56) (4.32) (4.69) (4.44)

M4 SADe(1) 47.80 46.75 39.59 38.96 20.53 20.44 9.64 9.65

(2.03) (2.09) (6.18) (6.10) (4.19) (4.14) (2.06) (2.05)

PS 48.76 47.78 52.54 52.00 49.08 48.82 46.96 46.83

(1.53) (1.50) (7.02) (6.95) (8.71) (8.67) (8.98) (8.96)

DA-BCD 48.12 47.13 36.14 35.40 17.18 16.83 12.53 12.29

(1.88) (1.87) (5.44) (5.39) (3.18) (3.14) (2.25) (2.22)

CA-BCD 48.83 47.83 56.12 55.11 55.93 54.93 55.08 54.11

(1.50) (1.50) (6.87) (6.83) (8.92) (8.85) (9.60) (9.55)

BSD 48.86 47.86 56.16 55.16 56.12 55.11 55.97 54.99

(1.50) (1.50) (6.99) (6.96) (8.91) (8.84) (9.83) (9.75)

HH 48.46 47.49 50.31 49.79 45.05 44.81 40.12 40.01

(1.71) (1.68) (7.06) (6.99) (8.18) (8.14) (7.99) (7.97)

CR 48.87 47.87 56.01 55.01 55.91 54.88 55.81 54.78

(1.47) (1.47) (6.84) (6.81) (8.84) (8.79) (9.88) (9.80)

4.1.1 The simulated annealing design under the fixed scenario

As an illustrative example of the case in which all the patients’ profile are available before the trial starts, we provide the
comparison of SADe* with the (fixed) rerandomization procedure, denoted by RR*. Several scenarios are considered: four
different sample sizes, n ∈ {50, 100, 200, 400}, each with four different number of covariates, namely q ∈ {5, 10, 20, 40}.
Since the rerandomization has been originally proposed for quantitative variables,2,19 to properly compare the two pro-
cedures, the covariates are assumed to be i.i.d. standard normals. As regards the RR*, the acceptance probability pa is
set equal to 0.001 to enforce a strong covariate balance,38 while for the SADe* we set T0 = 300 and r = 0.9, with a total
number of 200 temperatures and 200 iterations for each temperature. Each scenario is simulated 5000 times, both the
Mahalanobis distance and the loss of information induced by the two different approaches are considered: Table 4 sum-
marizes the expectation and standard error (in brackets) of 𝓁n and Mn for SADe* and RR* as q and n vary. The imbalance
measures provided by RR* grow as q grows and remain stable over the sample sizes: this is due to the fact that the
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BALDI ANTOGNINI et al. 9

T A B L E 3 Expectations (with standard errors in parentheses) of 𝓁n and Mn for models M5-M7 as n varies.

n = 50 n = 100 n = 200 n = 400

Rules 𝓵n Mn 𝓵n Mn 𝓵n Mn 𝓵n Mn

M5 SADe(1) 0.57 0.53 0.35 0.33 0.17 0.16 0.08 0.07

(0.34) (0.32) (0.23) (0.22) (0.11) (0.11) (0.05) (0.05)

SADe(50) 0.08 0.06 0.04 0.03 0.02 0.01 0.01 0.01

(0.04) (0.04) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

DA-BCD 1.96 1.63 1.29 1.06 1.23 1.03 1.22 1.01

(1.18) (1.07) (0.74) (0.67) (0.71) (0.65) (0.69) (0.63)

KER 3.35 3.20 1.82 1.77 1.18 1.16 0.78 0.76

(2.23) (2.17) (1.33) (1.31) (0.88) (0.87) (0.59) (0.59)

RR(50) 0.13 0.13 0.08 0.08 0.04 0.04 0.02 0.02

(0.04) (0.04) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

CR 6.10 5.12 6.04 5.04 6.07 5.06 6.07 5.03

(3.26) (3.05) (3.36) (3.10) (3.43) (3.14) (3.44) (3.15)

M6 SADe(1) 3.20 3.40 2.47 2.63 1.71 1.81 1.23 1.29

(1.19) (1.30) (1.17) (1.25) (0.95) (0.99) (0.73) (0.76)

SADe(50) 0.89 0.83 0.41 0.38 0.19 0.18 0.09 0.09

(0.26) (0.25) (0.12) (0.12) (0.06) (0.06) (0.03) (0.03)

DA-BCD 8.34 7.80 4.27 3.99 3.53 3.31 3.36 3.14

(2.47) (2.64) (1.47) (1.42) (1.19) (1.16) (1.17) (1.13)

KER 13.94 13.60 12.22 12.07 11.45 11.37 10.95 10.91

(4.14) (4.06) (4.31) (4.27) (4.46) (4.43) (4.55) (4.54)

RR(50) 2.65 2.60 1.82 1.80 0.81 0.80 0.40 0.40

(0.45) (0.44) (0.45) (0.44) (0.19) (0.19) (0.09) (0.09)

CR 16.03 15.05 15.99 14.98 16.01 15.00 16.00 14.96

(4.39) (4.28) (5.00) (4.84) (5.30) (5.14) (5.44) (5.26)

M7 SADe(1) 1.81 1.77 1.25 1.23 0.65 0.64 0.32 0.31

(0.75) (0.75) (0.58) (0.56) (0.32) (0.32) (0.15) (0.14)

SADe(50) 0.39 0.35 0.19 0.17 0.09 0.08 0.05 0.04

(0.10) (0.10) (0.05) (0.05) (0.02) (0.03) (0.01) (0.01)

DA-BCD 4.34 3.90 2.47 2.23 2.30 2.08 2.22 2.02

(1.91) (1.80) (1.02) (0.98) (0.97) (0.93) (0.96) (0.91)

KER 7.92 7.70 4.97 4.89 3.40 3.36 2.38 2.36

(3.43) (3.35) (2.42) (2.39) (1.73) (1.72) (1.23) (1.23)

RR(50) 1.06 1.04 0.82 0.81 0.34 0.34 0.18 0.18

(0.19) (0.19) (0.17) (0.16) (0.06) (0.06) (0.03) (0.03)

CR 11.06 10.05 11.05 10.02 11.06 10.02 11.06 10.02

(4.12) (3.97) (4.48) (4.28) (4.64) (4.40) (4.61) (4.38)
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10 BALDI ANTOGNINI et al.

T A B L E 4 Expectations (with standard errors in parentheses) of 𝓁n and Mn for SADe* and RR* as q and n vary.

n = 50 n = 100 n = 200 n = 400

q Rules 𝓵n Mn 𝓵n Mn 𝓵n Mn 𝓵n Mn

5 SADe* 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01

(0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

RR* 1.14 0.15 1.14 0.15 1.18 0.15 1.16 0.15

(1.40) (0.05) (1.38) (0.05) (1.48) (0.05) (1.43) (0.05)

10 SADe* 0.33 0.29 0.16 0.14 0.08 0.07 0.04 0.04

(0.09) (0.09) (0.04) (0.04) (0.02) (0.02) (0.01) (0.01)

RR* 2.22 1.22 2.17 1.21 2.22 1.21 2.21 1.21

(1.37) (0.22) (1.38) (0.22) (1.39) (0.22) (1.44) (0.22)

20 SADe* 1.59 1.49 0.72 0.68 0.38 0.36 0.20 0.19

(0.31) (0.31) (0.15) (0.15) (0.08) (0.08) (0.04) (0.04)

RR* 6.29 5.29 6.25 5.26 6.22 5.25 6.24 5.24

(1.37) (0.55) (1.41) (0.57) (1.47) (0.59) (1.54) (0.59)

40 SADe* 8.51 8.18 3.30 3.19 1.80 1.74 1.01 0.98

(1.16) (1.14) (0.49) (0.49) (0.29) (0.29) (0.18) (0.18)

RR* 17.99 16.99 17.76 16.77 17.67 16.69 17.61 16.65

(1.28) (0.89) (1.57) (1.06) (1.69) (1.10) (1.72) (1.14)

acceptance probability is directly related to the number of covariates and not to the sample size. The SADe* instead guar-
antees monotonically decreasing and less variable imbalance measures as the number of considered subjects increases;
on average, the values for n = 400 are about one eighth of that for n = 50. In general, the SADe* provides a consistent
improvement wrt RR in every scenario, as an example for q = 5 and n = 400 the loss induced by the adoption of the newly
proposed method is more than 100 times smaller than that of RR*, while the Mahalanobis distance is about one fifteenth
that obtained via rerandomization. While for the SADe* the values of 𝓁n and Mn tend to be close, for RR* this seems to
hold only when q > 10.

4.2 Case study

In this section, we apply our proposed methodology to redesign a real trial, by using the clinical data of The Cancer
Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) project,39,40 freely available at NCI Genomic Data
Commons—https://gdc.cancer.gov/. From the original dataset, consisting of clinical and demographic information of
n = 548 UCEC cases, we select eleven covariates, two continuous and nine categorical, that have few missing values
and are most likely associated with the severity of tumor symptoms. Categorical/ordinal covariates are subdivided into
dummy variables according to their different levels: this translates into a total of 40 variables considered. The missing
values are imputed by sampling from the observed values. Six different procedures are compared: the SADe (both group
and fully sequential), the group sequential rerandomization, the Atkinson’s optimum design, the Kernel procedures and
the completely randomized design; each design is simulated 5000 times. For both RR(m) and SADe(m), the enrollment
structure consists in k = 10 groups: the first 6 of them are composed of 54 patients and the remaining 4 of 56 units (as
reported in design (v) pag. 11 of the Supplementary Material of Zhou et al19).

The results in Table 5 confirm the findings of the previous section where the CR design showed the worst perfor-
mances. The Kernel procedure, the second worst, exhibits imbalance measures that are about 2.5 times those the DA-BCD;
this is probably due to the high number of covariates considered (see for example M6 in Table 3 of the previous section).
The fully sequential SADe exhibits values of the imbalance measures that are smaller than those of the DA-BCD but
slightly more variable; as long as the group sequential designs are considered, our proposal outperforms all the other
procedures both in terms of balance and variability of the estimates. In particular, if compared with the RR(m), the
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BALDI ANTOGNINI et al. 11

T A B L E 5 Expectations (with standard errors in parentheses) of 𝓁n and Mn for TCGA-UCEC data.

Rules 𝓵n Mn

SADe(1) 8.27 (2.22) 8.27 (2.21)

SADe(m) 4.57 (0.63) 4.57 (0.63)

DA-BCD 8.98 (1.68) 8.75 (1.65)

KER 20.18 (4.42) 20.14 (4.41)

RR(m) 7.27 (1.44) 7.25 (1.44)

CR 28.96 (6.30) 27.94 (6.15)

SA-based procedure exhibits a reduction of more than 35% in both the induced loss of information and the Mahalanobis
distance.

5 THE IMPACT OF BALANCING COVARIATES ON THE INFERENTIAL
PRECISION

The aim of this section is to stress the practical importance of balancing covariates over the experimental groups in guar-
anteeing a solid statistical inference about the treatment effects. In what follows, all the considered procedures will be
compared in terms of the estimation accuracy of the treatment difference 𝜃A − 𝜃B and the statistical power. More specifi-
cally, based on model (1), the patients’ responses are assumed to be normally distributed with different treatment effects,
𝜃A and 𝜃B, and common variance 𝜎2 = 1; each design is simulated 5000 times and the covariate effects are set to be
𝛽j = 1, j = 1, … p. Under the same simulation setting of Section 4.1, Table 6 shows the average power and the estimated
treatment difference for models M1-M3, for 𝜃A − 𝜃B = 0.3 as n varies.

Several conclusions can be drawn from these results. In general, the behavior of the considered designs in terms of
both statistical power and estimation accuracy resembles that found for imbalance measures in the previous sections.
While in almost all the cases and for most of the considered procedures the estimated treatment difference is close to the
true value of 0.3, its variability greatly varies across the designs. The CR design always displays the highest standard errors
and the lowest power, while the SADe design exhibits the highest power along with the lowest variability of the estimates,
especially for small and moderate sample sizes and for more complex model specifications. Indeed, considering M3 with
n = 50 for example, the gain in power with respect to the competitors is at least of 3%with a reduction in the variability of
the estimates of about 7%. Similar conclusions can be drawn for n = 100, clearly as n increases the impact of the covariate
imbalance on the inferential precision tends to be mitigated. The HH procedure confirms good performances, with values
close to the proposed procedure but with a higher variability in the estimates. The results about CA-BCD and the BSD
confirm their weaknesses in the presence of a high number of variables, while PS procedure shows low power when
the model contains interaction terms. For what concerns the mixed case of both qualitative and quantitative variables,
Table 7 summarizes the average power and estimated treatment difference for models M5-M7, for 𝜃A − 𝜃B = 0.3 as n
varies. The results strongly emphasize the importance of adopting an adaptive procedure that forces covariate balance:
this is particularly evident looking at the poor performances of the CR design. The good behavior of SADe(1) in terms of
inferential precision is confirmed: it displays the highest power and the lowest variability among all the fully sequential
procedures, with values close to those of RR(50). In general, the DA-BCD performs better than KER especially for more
complex models and for grater sample sizes. Finally, the group sequential version, SADe(50), guarantees the overall best
estimation precision and statistical power.

6 DISCUSSION

In this article, we propose a new procedure based on the Simulated Annealing algorithm aimed at balancing the covari-
ates of the experimental groups. The SADe turns out to be very flexible with several points of strength: (i) it can deal with
any kind of covariate (either qualitative or quantitative), any model specification and any imbalance measure; (ii) it can
be easily adapted for fixed, group or fully sequential experiments; (iii) it can also be easily accommodated for multi-arm
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12 BALDI ANTOGNINI et al.

T A B L E 6 Power and estimation accuracy comparison for models M1-M3 and 𝜃A − 𝜃B = 0.3 as n varies (with standard errors
in parentheses).

M1 M2 M3

n Rules Power �̂�An − �̂�Bn Power �̂�An − �̂�Bn Power �̂�An − �̂�Bn

50 SADe(1) 0.21 0.30 (0.28) 0.19 0.30 (0.30) 0.20 0.30 (0.28)

PS 0.19 0.31 (0.30) 0.16 0.29 (0.33) 0.16 0.29 (0.31)

DA-BCD 0.19 0.30 (0.30) 0.17 0.30 (0.31) 0.17 0.30 (0.32)

CA-BCD 0.18 0.31 (0.30) 0.16 0.32 (0.33) 0.15 0.30 (0.33)

BSD 0.18 0.31 (0.30) 0.16 0.30 (0.33) 0.15 0.30 (0.33)

HH 0.19 0.30 (0.30) 0.17 0.31 (0.32) 0.16 0.30 (0.30)

CR 0.14 0.30 (0.31) 0.13 0.29 (0.34) 0.14 0.31 (0.33)

100 SADe(1) 0.34 0.30 (0.19) 0.32 0.30 (0.20) 0.33 0.30 (0.19)

PS 0.32 0.30 (0.21) 0.28 0.30 (0.22) 0.31 0.30 (0.21)

DA-BCD 0.32 0.30 (0.21) 0.31 0.29 (0.21) 0.32 0.30 (0.20)

CA-BCD 0.31 0.31 (0.21) 0.30 0.31 (0.21) 0.29 0.30 (0.21)

BSD 0.31 0.29 (0.21) 0.30 0.30 (0.21) 0.29 0.29 (0.21)

HH 0.33 0.30 (0.20) 0.31 0.30 (0.21) 0.32 0.30 (0.20)

CR 0.24 0.30 (0.22) 0.23 0.29 (0.22) 0.24 0.31 (0.22)

200 SADe(1) 0.58 0.30 (0.13) 0.57 0.30 (0.14) 0.56 0.30 (0.13)

PS 0.57 0.30 (0.14) 0.53 0.30 (0.15) 0.55 0.30 (0.14)

DA-BCD 0.56 0.31 (0.15) 0.55 0.30 (0.14) 0.55 0.30 (0.15)

CA-BCD 0.56 0.30 (0.14) 0.56 0.30 (0.14) 0.53 0.30 (0.15)

BSD 0.56 0.30 (0.15) 0.55 0.30 (0.14) 0.53 0.30 (0.15)

HH 0.58 0.30 (0.14) 0.57 0.30 (0.14) 0.56 0.30 (0.14)

CR 0.44 0.31 (0.15) 0.43 0.30 (0.15) 0.44 0.30 (0.15)

400 SADe(1) 0.87 0.30 (0.10) 0.86 0.30 (0.10) 0.86 0.30 (0.10)

PS 0.86 0.30 (0.10) 0.84 0.30 (0.10) 0.85 0.30 (0.10)

DA-BCD 0.85 0.30 (0.10) 0.85 0.30 (0.10) 0.84 0.30 (0.10)

CA-BCD 0.86 0.31 (0.10) 0.85 0.30 (0.10) 0.83 0.30 (0.10)

BSD 0.86 0.30 (0.10) 0.84 0.30 (0.10) 0.83 0.30 (0.10)

HH 0.87 0.30 (0.10) 0.86 0.30 (0.10) 0.86 0.30 (0.10)

CR 0.76 0.30 (0.11) 0.76 0.30 (0.10) 0.76 0.30 (0.10)

experiments by choosing a suitable imbalance measure. Moreover, thanks to the stochastic nature of the SA algorithm,
which under widely satisfied conditions converges to the global optimum, the SADe procedure is completely unpre-
dictable. An extensive simulation study has shown the good performances of the new design which can outperform all
the procedures already presented in the literature, in particular for small/moderate sample sizes and in the presence of
several covariates.

When implementing SA-based procedures, two important aspects are the cooling scheme and the neighbors specifi-
cation. For what concerns the first one, although there might be an optimal scheme for each specific problem, a general
valid solution is the standard geometric scheme: this has the advantage of being robust and guarantees convergence,29,32,33

but it may require more time to converge (than it would do with an optimal cooling scheme). In any case, our results (not
shown here for sake of brevity) indicate that the performances as well as the computational time are not greatly affected
by the chosen cooling scheme. Moreover, the SADe designs turns out to be particularly robust in terms of the choice of
both the decay parameter r and the initial temperature T0. Indeed, our evidence shows that the value of r does not greatly

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9672 by C
ochraneItalia, W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BALDI ANTOGNINI et al. 13

T A B L E 7 Power and estimation accuracy comparison for models M5-M7 and 𝜃A − 𝜃B = 0.3 as n varies (with standard errors
in parentheses).

M5 M6 M7

n Rules Power �̂�An − �̂�Bn Power �̂�An − �̂�Bn Power �̂�An − �̂�Bn

50 SADe(1) 0.21 0.30 (0.28) 0.21 0.30 (0.29) 0.21 0.30 (0.29)

SADe(50) 0.22 0.30 (0.28) 0.22 0.30 (0.28) 0.22 0.30 (0.28)

DA-BCD 0.19 0.30 (0.29) 0.17 0.30 (0.31) 0.18 0.31 (0.31)

KER 0.17 0.29 (0.30) 0.16 0.31 (0.34) 0.16 0.28 (0.31)

RR(50) 0.22 0.31 (0.28) 0.21 0.30 (0.30) 0.21 0.30 (0.29)

CR 0.14 0.30 (0.31) 0.13 0.30 (0.34) 0.13 0.29 (0.32)

100 SADe(1) 0.33 0.30 (0.19) 0.32 0.30 (0.20) 0.33 0.30 (0.20)

SADe(50) 0.34 0.30 (0.19) 0.34 0.30 (0.19) 0.34 0.30 (0.19)

DA-BCD 0.31 0.30 (0.20) 0.31 0.31 (0.21) 0.32 0.30 (0.20)

KER 0.31 0.30 (0.20) 0.28 0.30 (0.22) 0.29 0.29 (0.20)

RR(50) 0.34 0.31 (0.19) 0.33 0.30 (0.19) 0.33 0.30 (0.20)

CR 0.23 0.30 (0.21) 0.22 0.30 (0.22) 0.23 0.30 (0.22)

200 SADe(1) 0.58 0.30 (0.13) 0.57 0.30 (0.13) 0.57 0.30 (0.13)

SADe(50) 0.58 0.30 (0.12) 0.58 0.30 (0.13) 0.58 0.30 (0.12)

DA-BCD 0.56 0.30 (0.14) 0.55 0.30 (0.14) 0.55 0.30 (0.14)

KER 0.56 0.30 (0.15) 0.53 0.30 (0.15) 0.53 0.30 (0.14)

RR(50) 0.58 0.30 (0.14) 0.57 0.30 (0.14) 0.57 0.30 (0.13)

CR 0.45 0.30 (0.15) 0.43 0.30 (0.15) 0.44 0.30 (0.15)

400 SADe(1) 0.87 0.30 (0.10) 0.86 0.30 (0.10) 0.86 0.30 (0.10)

SADe(50) 0.87 0.30 (0.09) 0.87 0.30 (0.09) 0.87 0.30 (0.09)

DA-BCD 0.85 0.30 (0.10) 0.85 0.30 (0.10) 0.85 0.30 (0.10)

KER 0.85 0.30 (0.11) 0.83 0.30 (0.11) 0.85 0.30 (0.11)

RR(50) 0.87 0.30 (0.10) 0.86 0.30 (0.10) 0.86 0.30 (0.10)

CR 0.75 0.30 (0.11) 0.75 0.30 (0.11) 0.75 0.30 (0.11)

affect the performance of SADe: we suggest a value of r = 0.9 and 200 iterations per temperature as they represent a good
compromise between computational time and ability to well balance the experimental group for all the considered sce-
narios. As an example, by taking into account the model specification M2 with n = 100 and setting r = 0.80 we obtain
𝓁n = 3.07 and Mn = 3.08, while by choosing r = 0.99 the results are 𝓁n = 3.10 and Mn = 3.12, which are really close to the
values obtained with r = 0.9, namely 𝓁n = 3.07 and Mn = 3.06 (see Table 1). As another example, let us consider M7 with
n = 100, by setting r = 0.8 we get 𝓁n = 1.24 and Mn = 1.23, whereas with r = 0.99 the figures are 𝓁n = 1.29 and Mn = 1.28
that should be compared with those reported in Table 3, namely 𝓁n = 1.25 and Mn = 1.23. For what concerns the ini-
tial temperature T0, as shown in Section 4, a value of 300 for the fixed case and of 50 for the sequential one can be valid
starting points, since they provide good results for a wide variety of scenarios; clearly, as for the decay parameter, these
values can be further tuned for any case-specific setting through a grid search. Nevertheless, it is worth stressing that the
proposed procedure is also robust in terms of the chosen initial temperature: as an example, consider again the model
specification M2 with n = 100, a value of T0 = 10 leads to 𝓁n = 3.08 and Mn = 3.06, while by setting T0 = 250 we obtain
𝓁n = 3.06 and Mn = 3.08, values that are practically indistinguishable from those achieved with T0 = 50 (see Table 1). By
considering M7 with n = 100 instead, by choosing T0 = 10 the results are 𝓁n = 1.23 and Mn = 1.22, while with T0 = 250
the imbalance measures are 𝓁n = 1.27 and Mn = 1.25, again values very close to those obtained with T0 = 50 (see Table 3).

The second aspect concerns the neighbors specification. Here we adopt a variable neighborhood search34-36 in which
the search space gradually narrows as the iterations progress. For this particular kind of problem, such strategy seems
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14 BALDI ANTOGNINI et al.

to be preferable, outdoing the fixed neighbors search case. In order to facilitate the implementation of our proposed
strategy, also with different values of the tuning parameters and/or a different imbalance measure, an example code and
instructions for running it are available in the online Supplementary Material.

As a possible extension of the present work, an interesting new line of research could focus on the definition of a
suitable imbalance metric that enables to incorporate the ‘ethical’ goal of assigning more patients to the best perform-
ing treatment. This would allow to allocate patients by considering both their covariate profiles and the responses to the
treatment, as is the case for covariate-adjusted response-adaptive (CARA) designs:1 in this setting indeed, the optimal
allocation may greatly differ from the balanced one depending on the effectiveness of the considered treatments. Another
possible extension regards the generalization of the proposed procedure to L ≥ 2 multiple group design problems. This can
be done by properly modifying the imbalance measures of interest: for what concerns the loss of information an example
can be found in Atkinson,12 while the Mahalanobis distance can be modified as Mn =

∑L
l=1𝜋l(xl − x)tvar(x)−1(xl − x)

where 𝜋l represents the percentage of allocation to the l-group, xl and x are the sample means for the l-group and for all
the observations, respectively.
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