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GLOBAL HEAT KERNELS FOR

PARABOLIC HOMOGENEOUS HÖRMANDER OPERATORS

STEFANO BIAGI AND ANDREA BONFIGLIOLI

Abstract. The aim of this paper is to prove the existence and several selected properties of a

global fundamental Heat kernel Γ for the parabolic operators H =
∑m
j=1X

2
j−∂t, whereX1, . . . , Xm

are smooth vector fields on Rn satisfying Hörmander’s rank condition, and enjoying a suitable

homogeneity assumption with respect to a family of non-isotropic dilations. The proof of the

existence of Γ is based on a (algebraic) global lifting technique, together with a representation of Γ
in terms of the integral (performed over the lifting variables) of the Heat kernel for the Heat operator

associated with a suitable sub-Laplacian on a homogeneous Carnot group. Among the features

of Γ we prove: homogeneity and symmetry properties; summability properties; its vanishing at
infinity; the uniqueness of the bounded solutions of the related Cauchy problem; reproduction and

density properties; an integral representation for the higher-order derivatives.

Keywords Parabolic operators; Fundamental solution; Heat kernel; Lifting technique; Cauchy
problem; Integral representation of solutions; Degenerate-elliptic operators.

Mathematics Subject Classification (2010) 35K65; 35K08; 35A08; 35C15; 35J70.

1. Introduction

Given a certain class of Hörmander PDOs (Partial Differential Operators, here and throughout),
the availability of some ‘explicit’ integral representation formulas for an associated global fundamental
solution Γ and for its derivatives in terms of well-behaved kernels defined on richer higher dimensional
structures (such as homogeneous Carnot groups) can lead to global pointwise estimates of Γ and of
its derivatives. This can be achieved only through profound results on the underlying geometry of
Hörmander operators; see e.g., the recent investigation [9]. A considerable amount of work needs to
be accomplished in order to obtain both the existence of a global Γ and of well-behaved representation
formulas, as shown in [7].

The aim of the present study is to accomplish this work for a class of Heat-type evolution
PDOs not contained in the stationary case faced in [7]. As the approach in the latter paper proved
fruitful, we shall try to adapt some ideas therein contained to the evolutive case; with respect to the
stationary case, this programme is complicated by the preliminary need for a Gaussian behavior of
the lifted Heat kernels (see e.g., [25, 34, 35, 40]). The parabolic setting features interesting problems,
such as the study of the initial Cauchy problem, and the richer properties of the associated potentials.

The results established in the present work provide a starting point to obtain Gaussian pointwise
estimates of the Heat kernel herein constructed and of its X-derivatives (of arbitrary order); see the
very recent paper [10].

The aim of this paper is to prove, via a construction as explicit as possible, the existence of a
well-behaved global fundamental solution Γ (also referred to as a Heat kernel) for the (degenerate)
evolution Heat-type PDOs H of the form

(1.1) H =

m∑
j=1

X2
j −

∂

∂t
on R1+n = Rt ×Rnx ,

where X1, . . . , Xm are smooth vector fields on Rnx satisfying Hörmander’s rank condition in space
Rnx , and enjoying a suitable homogeneity assumption w.r.t. a family of non-isotropic dilations, which
we shall describe subsequently. Our approach is two-fold: it relies on a (algebraic) global ‘lifting ’
procedure, and on an integral ‘saturation’ technique. Roughly put, we construct a lifting operator
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2 STEFANO BIAGI AND ANDREA BONFIGLIOLI

H̃ for H of the form

(1.2) H̃ =

m∑
j=1

(
Xj(x) +Rj(x, ξ)

)2

− ∂

∂t
on R1+n+p = Rt ×Rnx ×R

p
ξ ,

where R1(x, ξ), . . . , Rm(x, ξ) are vector fields operating only in the variables ξ = (ξ1, . . . , ξp) (with
coefficients possibly depending on (x, ξ) ∈ Rn×Rp), in such a way that the existence of a global (i.e.,

defined throughout R1+n+p) fundamental solution Γ̃ for H̃ be ensured. Then, we want to redeem

a fundamental solution Γ for H by integrating Γ̃ over the lifting variables ξ ∈ Rp; to this end, it is

necessary to know that Γ̃ be globally integrable w.r.t. ξ ∈ Rp, which is one of the crucial points of
our approach. We refer to this integration procedure as a ‘saturation’ argument.

In the analysis of fundamental solutions for linear PDOs, the idea of passing through a lifting
procedure and a saturation of the lifting variables is certainly not new, and it traces back to
Rothschild and Stein’s pivotal paper [37] (see also Nagel, Stein, Wainger [36]); however, Rothschild
and Stein’s lifting is a local tool, whereas, as we stressed, we need a global technique since we aim
to obtain fundamental solutions defined on the whole space (and vanishing at infinity). Global
integrability (at infinity) over the saturation variables is a non-trivial fact. We shall describe in a
moment how we face these problems. Incidentally, we observe that in [37] only suitable parametrices
of a fundamental solution are studied, which again reflects the local/approximation nature of the
lifting in [37].

The basic idea of obtaining fundamental solutions for Heat-type operators via saturation ar-
guments is very well described in the Euclidean setting. Indeed, it is well known that a global
fundamental solution (with pole at the origin of R1+n) for the classical Heat operator Hn := ∆n −
∂/∂t on R1+n is given by (we use the notation χA for the indicator function of a set A):

Γn(t, x) = χ(0,∞)(t)
1

(4π t)n/2
exp

(
−
∑n
j=1 x

2
j

4 t

)
, (t, x) ∈ R×Rn.

Then, if we consider the Heat operator Hn+p on R1+n+p and if we integrate its fundamental solution
Γn+p (with pole at the origin of R1+n+p) with respect to the last p variables, we obtain (upon the

trivial fact
∫
R

exp(− ξ
2

4t ) dξ =
√

4πt )∫
Rp

Γn+p(t, x, ξ) dξ

= χ(0,∞)(t)
1

(4π t)(n+p)/2
exp

(
−
∑n
j=1 x

2
j

4 t

)∫
Rp

exp

(
−
∑p
j=1 ξ

2
j

4 t

)
dξ

= χ(0,∞)(t)
1

(4π t)n/2
exp

(
−
∑n
j=1 x

2
j

4 t

)
= Γn(t, x).

In other words, the Heat kernel Γn of Hn can be recovered by the Heat kernel Γn+p of Hn+p by a
saturation technique:

Γn(t, x) =

∫
Rp

Γn+p(t, x, ξ) dξ, (t, x) ∈ R×Rn.

A global lifting/saturation process may likely occur in other interesting cases (for non-elliptic opera-
tors): see e.g., Bauer, Furutani, Iwasaki [2]; Calin, Chang, Furutani, Iwasaki [19, Sect. 10.3]; Beals,
Gaveau, Greiner, Kannai [5]. Explicit formulas for some Heat kernels on nilpotent Lie groups can be
found in: Agrachev, Boscain, Gauthier, Rossi [1]; Beals, Gaveau, Greiner [3, 4]; Boscain, Gauthier,
Rossi [17]; Cygan [20]; Furutani [23]; Gaveau [24].

The same process was exploited in the paper [7], which provides some general structural
assumptions showing when lifting/saturation can be successfully applied (see Theorem 2.3). We
fix once and for all the definition of a lifting of a PDO P , while postponing the precise notion of a
global fundamental solution Γ to Theorem 1.4; for the time being, by Γ we mean a function of two
variables (z; ζ) ∈ R1+n × R1+n (the first of which is called the ‘pole’) such that, for any fixed pole
z, we have P (Γ(z; ·)) = −Dirz in the weak sense of distributions (Dirz is the Dirac mass at z).
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In order to distinguish it from the local Rothschild and Stein’s lifting technique, we define a
simpler notion of the lifting of P as follows: if P is a smooth linear PDO on R1+n

z , we say that the

PDO P̃ defined on R1+n
z ×Rpξ is a lifting of P (or simply that P̃ lifts P ) if:

• P̃ has smooth coefficients, possibly depending on (z, ξ) ∈ R1+n ×Rp;
• for every fixed f ∈ C∞(R1+n

z ), one has

(1.3) P̃ (f ◦ π)(z, ξ) = (Pf)(z), for every (z, ξ) ∈ R1+n ×Rp,

where π(z, ξ) = z is the canonical projection of R1+n ×Rp onto R1+n.

For example, with this definition, H̃ in (1.2) is a lifting of H in (1.1).

In general, the idea of obtaining a fundamental solution Γ for P via a fundamental solution Γ̃

for P̃ by integration over the lifting Rpξ-variables is natural but subtle, as we now describe. Let us
start by writing down the definition of the distributional identity

(1.4) P̃
{

(ζ, η) 7→ Γ̃
(

(z, ξ); (ζ, η)
)}

= −Dir(z,ξ),

by first conveniently freezing the variable ξ at 0 ∈ Rp: this boils down to the identity (valid for every
ψ ∈ C∞0 (R1+n+p) and every (z, 0) ∈ R1+n+p)

(1.5)

∫
R1+n

dζ

∫
Rp

dη Γ̃
(

(z, 0); (ζ, η)
)
P̃ ∗
(
ψ(ζ, η)

)
= −ψ(z, 0).

Then, we aim to recover a fundamental solution Γ for P starting from identity (1.5) in the most
direct way, if possible. To this end, it seems appropriate to define Γ by the inner η-integral in (1.5),
that is

(1.6) Γ(z; ζ) :=

∫
Rp

Γ̃
(

(z, 0); (ζ, η)
)

dη (for z 6= ζ in R1+n).

If in (1.5) we were allowed to take as a test function ψ any function of the form ϕ(z) in C∞0 (R1+n),

then (1.5) would easily prove that Γ is a fundamental solution of P , in view of the fact that P̃ (ϕ◦π) =
Pϕ. Unfortunately, a test function ϕ(z) on R1+n does not become a test function ψ on R1+n+p by
simply considering ψ = ϕ ◦ π (where π is the projection in (1.3)).

A more promising procedure (still based on (1.5)) is the “product-like” choice

ψ(z, ξ) = ϕ(z) θj(ξ),

where θj ∈ C∞0 (Rpξ) is such that θj → 1 as j → ∞: indeed, one may formally let j → ∞ in the

following identity (resulting from (1.5) with this choice of ψ)

(1.7)

∫
R1+n

dζ

∫
Rp

dη Γ̃
(

(z, 0); (ζ, η)
)
P̃ ∗
(
ϕ(ζ) θj(η)

)
= −ϕ(z) θj(0),

with the hope that, when j →∞ (by again exploiting the fact that P̃ lifts P ), this may lead to∫
R1+n

(∫
Rp

Γ̃
(

(z, 0); (ζ, η)
)

dη

)
P ∗ϕ(ζ) dζ = −ϕ(z).

In the end, the latter identity would produce the fact that the function Γ in (1.6) is indeed a global
fundamental solution for P .

In order to make this argument more than heuristic, it appears that some a priori assumptions
must be conveniently made, namely:

• we need to know that Γ in (1.6) is well posed as a convergent integral; we also need to know
some summability properties of Γ (implicit in the definition of a fundamental solution, see
Section 2);
• some structural and growth assumptions on the formal adjoint of the “remainder” operator

R := P̃ − P (which operates on the lifting variables ξ only) should be conveniently made to
rigorously pass to the limit in (1.7).
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This discussion fully motivates the technical assumptions that we shall make in the saturation
Theorem 2.3, postponed to the next section.

It is now time to describe in details the assumptions on the vector fields Xj in (1.1). Let
X = {X1, . . . , Xm} be a set of smooth and linearly independent1 vector fields on Rn satisfying the
following assumptions:

(H.1) there exists a family of (non-isotropic) dilations {δλ}λ>0 of the form

δλ : Rn −→ Rn, δλ(x) = (λσ1x1, . . . , λ
σnxn),

where 1 = σ1 ≤ . . . ≤ σn are integer numbers, such that X1, . . . , Xm are δλ-homogeneous of
degree 1, i.e.,

Xj(f ◦ δλ) = λ (Xjf) ◦ δλ, ∀ λ > 0, f ∈ C∞(Rn), j = 1, . . . ,m;

(H.2) the set X satisfies Hörmander’s rank condition at 0, i.e.,

dim
{
Y (0) : Y ∈ Lie{X}

}
= n.

By Lie{X} we mean the smallest Lie sub-algebra of the smooth vector fields X(Rn) on Rn containing
X. Here X(Rn) is equipped with its obvious structures of vector space and of Lie algebra.

In the literature, the use of a dilation-invariance property as in assumption (H.1) has been
already proved to be fruitful in order to establish ‘global’ properties for L =

∑m
j=1X

2
j and for its

parabolic counterpart H =
∑m
j=1X

2
j −∂t; we refer, e.g., to the series of papers [28, 29, 30, 32, 31, 33]

and to the references therein. We also point out that, in the absence of a homogeneity property of the
Xi’s, another assumption leading to a ‘global’ analysis of L and H is the invariance of X1, . . . , Xm

with respect to a (Lie) group of translations (see, e.g., [12, 26, 27]); however, in our context we do
not assume any left-invariance property on the vector fields in X (see Theorem 1.2 below).

Remark 1.1. It is not difficult to show that, since X1, . . . , Xm are δλ-homogeneous of degree 1, the
validity of Hörmander’s rank condition at 0 implies the validity of the latter at any x ∈ Rn, and that
n ≤ dim(Lie{X}) <∞.

Thus, the Hörmander parabolic operator H in (1.1) is C∞-hypoelliptic on every open subset of
R1+n. Moreover, H satisfies the Weak Maximum Principle on every bounded open subset of R1+n:
this follows from (H.1)-(H.2), as is proved in [8, Sect. 8.4].

The following result is relevant for our purposes, and it can be proved starting from [6, Thm. 1.4]
and [7, Thm 3.1]. We refer to [15, §1.4] for the notions of sub-Laplacian and of homogeneous2 Carnot
group on RN .

Theorem 1.2. Assume that X = {X1, . . . , Xm} satisfies the above assumptions (H.1) and (H.2).
Moreover, let N = dim(Lie{X}). Then the following facts hold:

1. If N = n, there exists a homogeneous Carnot group G (with underlying manifold Rn and
the same dilations δλ as in (H.1)) such that X is a system of Lie-generators of Lie(G); hence
L :=

∑m
j=1X

2
j is a sub-Laplacian on G.

2. If N > n, there exist a homogeneous Carnot group G (with underlying manifold RN ) and a
system {Z1, . . . , Zm} of Lie-generators of Lie(G) such that Zi is a lifting of Xi for every i = 1, . . . ,m
(in the previously defined sense); hence the sub-Laplacian

∑m
j=1 Z

2
j is a lifting of L.

The demonstration of Theorem 1.2 is quite delicate: for example, the proof of (2) makes use of
the global lifting method for homogeneous vector fields proved by Folland [22], a notable refinement
of the local lifting technique introduced by Rothschild and Stein in [37] for Hörmander PDOs: a
proof of (2) can be found in [7]. As for assertion (1) in Theorem 1.2, one argues as follows:

1The linear independence of X1, . . . , Xm is meant in the vector space X(Rn) of the smooth vector fields on Rn,
and it must not be confused with the linear independence of the (tangent) vectors X1(x), . . . , Xm(x); for example,

the Grushin vector fields in R2 defined by X1 = ∂x1 and X2 = x1∂x2 are linearly independent in X(R2), despite the

vectors of R2 given by X1(x) ≡ (1, 0) and X2(x) ≡ (0, x1) are dependent when x1 = 0.
2Essentially, this is a triple (RN , ?,Dλ) of a Lie group (RN , ?) and a family of dilations Dλ which are group

automorphisms.
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Remark 1.3. Consider the following facts:

• Lie{X} is an n-dimensional Lie algebra of analytic vector fields in Rn (analyticity follows
from the fact that the Xj ’s have polynomial component functions, due to (H.1));
• X is a Hörmander system, due to (H.1)-(H.2) (see Remark 1.1);
• any vector field Y ∈ Lie{X} is complete, i.e., the integral curves of Y are defined on the

whole of R (this can be proved as a consequence of (H.1)).

Under these three conditions, Theorem 1.4 in [6] proves that Lie{X} coincides with the Lie algebra
of a Lie group G on Rn. As a matter of fact, under assumption (H.1), this Lie group G turns out to
be a homogeneous Carnot group with dilations δλ (see e.g., [8, Chapter 16]). Thus (1) follows.

All this being said, our aim in this paper is to prove that a saturation/lifting approach can
be performed for the Heat type operators H =

∑m
j=1X

2
j − ∂t, where X1, . . . , Xm satisfy (H.1) and

(H.2). To this end, it is enough to assume that N > n, since (by Theorem 1.2-(1)) the case N = n is
already known (see Folland, [21]). When N > n we will obtain the existence of a global fundamental
solution (also called Heat kernel) Γ for H obtained via the saturation formula (1.6), taking in this
case the following special form

Γ(t, x; s, y) :=

∫
Rp

ΓG(t, x, 0; s, y, η) dη,

where ΓG is a fundamental solution for the Heat-type operator

HG :=

m∑
j=1

Z2
j −

∂

∂t

on the Lie group R × G (here the Carnot group G and Z1, . . . , Zm are the same as in Theorem
1.2). The existence of ΓG was proved in [21] (see also [13]), where it was also shown that it takes a
group-convolution form; this will lead to the even more profitable expression

(1.8) Γ(t, x; s, y) =

∫
Rp

γG

(
s− t, (x, 0)−1 ? (y, η)

)
dη,

where γG is the fundamental solution of HG with pole at the origin, and ? is the group law of the
Carnot group in Theorem 1.2-(2). In showing that H satisfies the assumptions for the saturation
procedure heuristically described above, one must also use the global Gaussian estimates of γG (see
e.g., Jerison, Sánchez-Calle [25]; Kusuoka, Stroock [34, 35]; Varopoulos, Saloff-Coste, Coulhon [40]).

Strictly speaking, formula (1.8) does not equip Γ with a translation-invariance property, as is
shown by the Grushin-type example (see e.g., [19])

G =
( ∂

∂x1

)2

+
(
x1

∂

∂x2

)2

− ∂

∂t
.

Nonetheless, (1.8) is a nicely “hybrid” expression of the fundamental solution of H as an integral
of a translation-invariant kernel; this expression is indeed worthwhile since we shall derive from it
plenty of properties of Γ, as is shown in the following theorem, our main result:

Theorem 1.4 (Existence and properties of the global Heat-kernels for homogeneous
Hörmander PDOs). Let X be a set of smooth vector fields on Rn satisfying assumptions (H.1)
and (H.2), and let us assume that

N = dim(Lie{X}) > n.

Let H be the Heat-type operator on R1+n defined in (1.1), and let us denote by

z = (t, x) the points of R1+n = Rt ×Rnx .
Then H admits a global fundamental solution Γ(z; ζ); this means that Γ(z; ζ) is defined for any couple
of points z, ζ ∈ R1+n and it satisfies the following property: for any z ∈ R1+n (the pole), Γ(z; ·) is
in L1

loc(R1+n) and∫
R1+n

Γ(z; ζ)H∗ϕ(ζ) dζ = −ϕ(z), for every ϕ ∈ C∞0 (R1+n),

where H∗ =
∑
j X

2
j + ∂/∂t is the formal adjoint of H =

∑
j X

2
j − ∂/∂t.
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More precisely, we take as Γ the integral function

(1.9) Γ(z; ζ) = Γ(t, x; s, y) =

∫
Rp

γG

(
s− t, (x, 0)−1 ? (y, η)

)
dη,

where γG is the unique fundamental solution, with pole at 0 and vanishing at infinity, of the Heat-type
operator HG :=

∑m
j=1 Z

2
j − ∂/∂t on R×G (which is a lifting of H); the Carnot group G = (RN , ?)

and the vector fields Z1, . . . , Zm are as in Theorem 1.2-(2). The existence of γG is granted by [21].

Moreover, Γ in (1.9) also enjoys the following list of properties:

(i) Γ ≥ 0 and we have

Γ(t, x; s, y) = 0 if and only if s ≤ t.
(ii) We have Γ(t, x; s, y) = Γ(−s, x;−t, y), and Γ depends on t and s only through s− t:

Γ(t, x; s, y) = Γ(0, x; s− t, y) = Γ(t− s, x; 0, y).

Furthermore Γ is symmetric in the space variables x and y, i.e.,

Γ(t, x; s, y) = Γ(t, y; s, x).

(iii) For every λ > 0 we have

Γ
(
λ2t, δλ(x);λ2s, δλ(y)

)
= λ−q Γ(t, x; s, y), where q =

∑m
j=1 σj.

(iv) Γ is smooth out of the diagonal of R1+n ×R1+n.
(v) For every compact set K ⊆ R1+n, we have

lim
‖ζ‖→∞

(
sup
z∈K

Γ(z; ζ)

)
= lim
‖ζ‖→∞

(
sup
z∈K

Γ(ζ; z)

)
= 0.

(vi) Γ ∈ L1
loc(R1+n ×R1+n) and, for every fixed z ∈ R1+n, we have

Γ(z; ·), Γ(·; z) ∈ L1
loc(R1+n).

(vii) For every fixed (t, x) ∈ R1+n we have∫
Rn

Γ(t, x; s, y) dy = 1, for every s > t.

(viii) For every fixed ϕ ∈ C∞0 (R1+n), the map defined by the potential function

R1+n 3 ζ 7→ Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz

is smooth, it vanishes at infinity and H(Λϕ) = −ϕ on R1+n.
(ix) If ϕ ∈ C(Rn) is bounded, then the potential-type function

u(t, x) :=

∫
Rn

Γ(0, y; t, x)ϕ(y) dy

defined for (t, x) ∈ Ω = (0,∞)×Rn is the unique bounded classical solution of the homoge-
neous Cauchy problem {

Hu = 0 in Ω

u(0, x) = ϕ(x) for x ∈ Rn.

(x) For every x, y ∈ Rn and every s, t > 0, we have the reproduction formula

Γ(0, y; t+ s, x) =

∫
Rn

Γ(0, w; t, x) Γ(0, y; s, w) dw.

Finally, if we consider the function Γ∗ defined by

Γ∗(t, x; s, y) := Γ(s, y; t, x), for every (t, x), (s, y) ∈ R1+n,

then Γ∗ is a global fundamental solution for H∗ =
∑m
j=1X

2
j + ∂/∂t, satisfying dual statements of

(i)-through-(x).
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We observe that there exists at most one fundamental solution Γ of H such that, for any fixed
z ∈ R1+n, it holds that Γ(z; ·) is continuous out of z, and lim‖ζ‖→∞ Γ(z; ζ) = 0 (see Remark 2.2-(c)).
As a consequence (see properties (iv,v) above) the function Γ satisfying the properties of Theorem
1.4 is unique.

Remark 1.5. Many of the properties (i)-to-(x), albeit not unexpected, are based on quite technical
arguments made possible by the very formula (1.9), which therefore proves to be fruitful. From a
recent investigation with Marco Bramanti [9], it appears that, in the case of the stationary operator
L =

∑m
j=1X

2
j , one can pass from the integral representation analogous to (1.9) to pointwise estimates

of the fundamental solution (and of its derivatives) in terms of the Carnot-Carathéodory distance
associated with X1, . . . , Xm: this requires some work, also based on results by Nagel, Stein, Wainger
[36], by Sánchez-Calle [38], and by Bramanti, Brandolini, Manfredini, Pedroni [18].

In the very recent paper [10], we have exploited in a crucial way formula (1.9) (together with
the aforementioned results on the geometry of Hörmander operators) to derive pointwise Gauss-
ian estimates of the Heat kernel Γ. We also point out that the techniques of this paper are the
starting point to prove uniform and global estimates for the fundamental solutions of the operators∑
i,j ai,jXiXj − ∂/∂t, as the matrix (ai,j) ranges over the m ×m symmetric and positive-definite

matrices satisfying a suitable (uniform) ellipticity condition, see [11]. In its turn, these uniform
estimates are used in [11] to study the parametrices for non-constant ai,j ’s (see also [14]).

Our integral representation is also sufficiently helpful that it produces analogous representations
for any higher order derivative, as this theorem shows:

Theorem 1.6 (Representation of the derivatives of Γ). Let the assumptions of Theorem 1.4
hold (from which we inherit the notation), and let Γ be the fundamental solution of H in (1.9).

Then, for any α, β ∈ N ∪ {0}, any h, k ≥ 1 and any choice of indexes i1, . . . , ih, j1, . . . , jk in
{1, . . . ,m}, we have the following representation formulas (holding true for (t, x) 6= (s, y) in R1+n),
respectively concerning X-derivatives in the y-variable, in the x-variable, and in the mixed (x, y)-case:( ∂

∂s

)α( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)(1.10)

= (−1)β
∫
Rp

(( ∂
∂τ

)α+β

Zi1 · · ·ZihγG
)(

s− t, (x, 0)−1 ? (y, η)
)

dη;

( ∂
∂s

)α( ∂
∂t

)β
Xx
j1 · · ·X

x
jk

Γ(t, x; s, y)(1.11)

= (−1)β
∫
Rp

(( ∂
∂τ

)α+β

Zj1 · · ·ZjkγG
)(

s− t, (y, 0)−1 ? (x, η)
)

dη;

( ∂
∂s

)α ( ∂
∂t

)β
Xx
j1 · · ·X

x
jk
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)(1.12)

= (−1)β
∫
Rp

(( ∂
∂τ

)α+β

Zj1 · · ·Zjk
((
Zi1 · · ·ZihγG

)
◦ ι̃
))

(
s− t, (y, 0)−1 ? (x, η)

)
dη .

Here ι̃ : R1+N → R1+N is the map defined by

ι̃(t, (x, ξ)) = (t, (x, ξ)−1) (with t ∈ R, x ∈ Rn, ξ ∈ Rp),

and (x, ξ)−1 is the inverse of (x, ξ) in the Lie group G = (RN , ?); moreover, Z1, . . . , Zm are the
lifting vector fields of X1, . . . , Xm as in Theorem 1.2.

Similarly to what described in Remark 1.5, formulas (1.10)-to-(1.12) lead to global upper Gauss-
ian estimates for the X-derivatives of arbitrary order of Γ, see [10].

The plan of the paper is now in order:
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- in Section 2 we use Theorem 1.2 to prove the existence of Γ as in Theorem 1.4;
- in Section 3 we prove Theorem 1.6, furnishing the integral representation of the higher order

derivatives of Γ;
- in Section 4 we briefly study the existence and the uniqueness of the solutions of the Cauchy

problem for H;
- in Section 5 we prove all the distinguished features of Γ in Theorem 1.4.

2. Existence of a global fundamental solution for H

In the sequel, we tacitly inherit all the notations and assumptions in Theorem 1.4. In this
section we shall prove the existence of a global fundamental solution for H. To begin with, for the
sake of clarity, we remind the definition of a (global) fundamental solution for a generic smooth linear
PDO P .

Definition 2.1. On Euclidean space RN , we consider a linear PDO

P =
∑
|α|≤d

aα(x)Dα
x ,

with smooth real-valued coefficients aα(x) on RN . We say that a function

Γ : {(x, y) ∈ RN ×RN : x 6= y} −→ R,

is a (global) fundamental solution for P if it satisfies the following property: for every x ∈ Rn, the
function Γ(x; ·) is locally integrable on RN and

(2.1)

∫
RN

Γ(x; y)P ∗ϕ(y) dy = −ϕ(x) for every ϕ ∈ C∞0 (RN ,R),

where P ∗ denotes the formal adjoint of P .

Remark 2.2. (a) The existence of a global fundamental solution for P is far from being obvious
and it is, in general, a very delicate issue. In the particular case of C∞-hypoelliptic linear PDOs P
having a C∞-hypoelliptic formal adjoint P ∗, it is possible to prove the local existence of a fundamental
solution on a suitable neighborhood of each point of RN (see, e.g., [39]; see also [16]).

(b) Fundamental solutions are, in general, not unique since the addition of a P -harmonic
function (that is, a smooth function h such that Ph = 0 in RN ) to a fundamental solution produces
another fundamental solution.

(c) Nonetheless, if P is C∞-hypoelliptic and fulfills the Weak Maximum Principle on every
bounded open set of RN , then there exists at most one fundamental solution Γ for P such that

lim
‖y‖→∞

Γ(x; y) = 0, for every x ∈ RN .

Indeed, if Γ1,Γ2 are two such functions, then (for every fixed x ∈ RN ) the map ux := Γ1(x, ·)−Γ2(x, ·)
belongs to L1

loc(RN ) and it is a solution of Pux = 0 in the weak sense of distributions on RN ; the
hypoellipticity of P ensures that ux is (a.e. equal to) a smooth function on RN which vanishes at
infinity by the assumptions on Γ1,Γ2; from the Weak Maximum Principle for P it is standard to
obtain that Γ1 ≡ Γ2 (a.e.).

Next, as explained in Section 1, we need the following theorem. Despite its seemingly technical
assumptions, this theorem is applicable in many interesting situations, as we shall discuss in Example
2.4.

Theorem 2.3 (See [7, Theorem 2.5]). Let P be a smooth linear PDO on RNz , and let P̃ be a lifting
of P on RNz ×R

p
ξ which satisfies the following structural assumptions:

(S.1): the formal adjoint R∗ of R := P̃ −P annihilates any u ∈ C2(RNz ×R
p
ξ) independent of ξ, i.e.,

(2.2) R∗ =
∑
β 6=0

r∗α,β(z, ξ)

(
∂

∂z

)α(
∂

∂ξ

)β
,

for (finitely many, possibly identically vanishing) smooth functions r∗α,β(z, ξ);
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(S.2): there exists a sequence {θj(ξ)}j in C∞0 (Rp, [0, 1]) such that3

{θj = 1} ↑ Rp as j ↑ ∞,
with the following property: for every compact set K ⊂ Rn and for any coefficient function r∗α,β of

R∗ as in (2.2) one can find constants Cα,β(K) s.t.∣∣∣r∗α,β(z, ξ)
( ∂
∂ξ

)β
θj(ξ)

∣∣∣ ≤ Cα,β(K),

uniformly for every z ∈ K, ξ ∈ Rp and j ∈ N.

Assume that P̃ admits a global fundamental solution Γ̃ = Γ̃
(
(z, ξ); (ζ, η)

)
(with pole (z, ξ))

satisfying the following integrability assumptions:

(i) for every fixed z, ζ ∈ RN with z 6= ζ, it holds that

η 7→ Γ̃
(
(z, 0); (ζ, η)

)
belongs to L1(Rp),

(ii) for every fixed z ∈ RN and every compact set K ⊆ RN , it holds that

(ζ, η) 7→ Γ̃
(
(z, 0); (ζ, η)

)
belongs to L1(K ×Rp).

Then the function Γ defined by (1.6) is a global fundamental solution for P on RN with pole z.

Example 2.4. Theorem 2.3 can be applied in the following examples:

1) The choices of lifting pairs (P, P̃ ) given by

(∆n,∆n+p) and (Hn,Hn+p)

trivially satisfy assumptions (S.1)-(S.2) and (i)-(ii) of Theorem 2.3.

2) A less trivial example is given (as a very particular case of the PDOs in the present paper)
by the “parabolic Grushin operator” on R3

z ≡ Rt ×R2
x (where z = (t, x)) i.e.,

G =
∂2

∂x2
1

+ x2
1

∂2

∂x2
2

− ∂

∂t
,

with a lifting given by

G̃ =
∂2

∂x2
1

+

(
∂

∂ξ
+ x1

∂

∂x2

)2

− ∂

∂t
on Rt ×R2

x ×Rξ.

As we shall see, for this last example not only (S.1)-(S.2) are satisfied, but there also exists a

fundamental solution Γ̃ for G̃ satisfying hypotheses (i)-(ii) of Theorem 2.3. Therefore, we can infer
that G admits a global fundamental solution given by the saturation function (1.6).

3) More generally, in the paper [7] a meaningful case is described where Theorem 2.3 can always
be applied: namely, any Hörmander sum of squares P =

∑m
j=1X

2
j , where X1, . . . , Xm satisfy axioms

(H.1)-(H.2), fulfils the assumptions of Theorem 2.3, thus admitting a global fundamental solution.

Now, we proceed as follows: first we use Theorem 1.2 to prove the existence of a lifting H̃ for H
satisfying assumptions (S.1) and (S.2) of Theorem 2.3; then we show the existence of a fundamental

solution Γ̃ for H̃ fulfilling conditions (i) and (ii) of Theorem 2.3: the latter will then ensure the
existence of a fundamental solution Γ for H.

According to Theorem 1.2, given a family X of vector fields in Rn satisfying axioms (H.1)-(H.2),
and setting N = dim(Lie{X}), it is possible to find a homogeneous Carnot group G = (RN , ?,Dλ)
on RN = Rnx ×R

p
ξ (with m generators and nilpotent of step r = σn) and a system {Z1, . . . , Zm} of

Lie-generators of Lie(G) such that, for every i = 1, . . . ,m, Zi is a lifting of Xi. It can also be shown
that the dilations {Dλ}λ>0 on G take the form

(2.3) Dλ(x, ξ) =
(
δλ(x), δ∗λ(ξ)

)
, for every (x, ξ) ∈ RN = Rnx ×R

p
ξ ,

3By this we mean that, denoting by Ωj the set {ξ ∈ Rp : θj(ξ) = 1}, one has⋃
j∈N

Ωj = Rp and Ωj ⊂ Ωj+1 for any j ∈ N.
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where δ∗λ is another family of non-isotropic dilations on Rp which we write as

(2.4) δ∗λ(ξ) = (λσ
∗
1 ξ1, . . . , λ

σ∗
pξp), ξ ∈ Rp.

Note that, at this stage, three homogeneous dimensions naturally arise:

(2.5) q :=
∑n
j=1 σj , q∗ :=

∑p
j=1 σ

∗
j , Q = q + q∗,

which are, respectively, the homogeneous dimensions of (Rn, δλ), (Rp, δ∗λ), (RN , Dλ). Accordingly,
we fix the canonical homogeneous norms S,N, h on the spaces Rn,Rp,RN respectively, defined by

(2.6) S(x) :=

n∑
j=1

|xj |1/σj , N(ξ) :=

p∑
j=1

|ξj |1/σ
∗
j , h(x, ξ) := S(x) +N(ξ).

We note that, if d is any homogeneous norm on G, then by [15, Proposition 5.1.4] we have

(2.7) ϑ−1h(x, ξ) ≤ d(x, ξ) ≤ ϑh(x, ξ) ∀ (x, ξ) ∈ G,
where ϑ = ϑ(G) ≥ 1 is a suitable constant.

Remark 2.5. For strictly technical reasons, following [7], we need to look at the following “convo-
lution-like” map

F : Rn ×Rn ×Rp −→ RN , F (x, y, η) := (x, 0)−1 ? (y, η).

As in [15, Chapter 1.3]), one can prove that

F1(x, y, η) = y1 − x1,

Fi(x, y, η) = yi − xi + pi(x, y, η) (i = 2, . . . , n),

Fn+k(x, y, η) = ηk + qk(x, y, η), (k = 1, . . . , p),

(2.8)

where, pi and qk are polynomials with the following features:

- pi only depends on those variables xh, yh and ηj such that σh, σ
∗
j < σi;

- qk only depends on those variables xh, yh and ηj such that σh, σ
∗
j < σ∗k;

- pi(0, y, η) = qk(0, y, η) = 0, for every (y, η) ∈ RN .

Let now x, y ∈ Rn be fixed. Since q1 does not depend on η1, . . . , ηp and since, for every k ∈ {2, . . . , p},
qk only depends on η1, . . . , ηk−1, we see that the map

(2.9) Ψx,y : Rp −→ Rp, Ψx,y(η) :=
(
Fn+1(x, y, η), . . . , Fn+p(x, y, η)

)
defines a C∞-diffeomorphism of Rp, with polynomial components. Hence, in particular, Ψx,y is a
proper map, which is equivalent to saying that

lim
‖η‖→∞

‖Ψx,y(η)‖ =∞.

Furthermore, by (2.8), one has

det(JΨx,y
(η)) = 1, for every η ∈ Rp.

The map Ψx,y will be repeatedly used as a change of variable in integral estimates; indeed, one has

(x, 0)−1 ?
(
y,Ψ−1

x,y(η′)
)

=

(
F1

(
x, y,Ψ−1

x,y(η′)
)
, . . . , Fn

(
x, y,Ψ−1

x,y(η′)
)
, η′
)

;

consequently, with the notation in (2.6), Ψx,y enjoys the nice (technical) feature

(2.10) h
(

(x, 0)−1 ?
(
y,Ψ−1

x,y(η′)
))
≥ N(η′).

Up to some constant, here h can be replaced by any homogeneous norm d on G, see (2.7).

If LG =
∑m
j=1 Z

2
j , it is straightforward to recognize that the Heat operator HG = LG − ∂t is a

lifting of H = L− ∂t on R1+N = Rt ×Rnx ×R
p
ξ , that is,

HG(u ◦ π)(t, x, ξ) = (Hu)(t, x), ∀ t ∈ R, (x, ξ) ∈ RN , u ∈ C2(R1+n),

where π : R1+N → R1+n is the canonical projection of R1+N onto R1+n. Our aim is now to prove
that the operator HG, as a lifting of H, satisfies the assumptions (S.1) and (S.2) in Theorem 2.3.
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Lemma 2.6. The operator HG, as a lifting of H, satisfies assumptions (S.1)-(S.2) in Theorem 2.3.

Proof. (S.1): First of all we observe that, by definition, we have

R := HG −H = LG − L on R1+N ;

thus, since both LG and L are self-adjoint (as they are sums of squares of homogeneous vector fields)
we get R∗ = R; moreover, as LG is a lifting of L, we infer that R annihilates any C2 function
independent of ξ.

(S.2): If N is as in (2.6), we choose a function θ ∈ C∞0 (Rp, [0, 1]) such that

supp(θ) ⊆ {ξ ∈ Rp : N(ξ) ≤ 2}; θ ≡ 1 on {ξ ∈ Rp : N(ξ) < 1}.

We define a sequence {θj}j in C∞0 (Rp) by setting, for every j ∈ N,

θj(ξ) := θ(δ∗2−j (ξ)), for ξ ∈ Rp.

By arguing exactly as in [7, Theorem 4.4], after several technical computations (based on the
homogeneity of the Zj and on the structure of δ∗λ) one can recognize that {θj}j satisfies the properties
in assumption (S.2). �

With Lemma 2.6 at hand, the path towards the existence of a global fundamental solution for
H is traced in Theorem 2.3, and it consists of two parts:

(1) firstly, we prove that HG admits a fundamental solution ΓG;
(2) secondly, we show that such a ΓG satisfies the integrability assumptions (i)-(ii) in Theorem

2.3.

As for (1), it follows from the first statement in the next result; in the sequel, in order to avoid the
cumbersome notation (t, (x, ξ)) for the points in the product space R × RN = Rt × (Rnx × R

p
ξ) we

often write (t, x, ξ).

Theorem 2.7 ([13, Theorems 2.1, 2.5]). There exists a map

γG : R1+N ≡ R1+n+p → R,

smooth away from the origin, such that

(2.11) ΓG(t, x, ξ; s, y, η) := γG

(
s− t, (x, ξ)−1 ? (y, η)

)
is a global fundamental solution of the operator HG = LG − ∂t. In its turn, there exists a unique
symmetric homogeneous norm on G (in the sense of [15]) d ∈ C∞(RN \ {0}) such that

d2−Q((x, ξ)−1 ? (y, η)
)
, (x, ξ) 6= (y, η)

is the global fundamental solution of LG (where Q is as in (2.5)). The following Gaussian estimates
for γG hold: there exists a constant c > 0 such that, for every (x, ξ) ∈ RN and every t > 0, one has

(2.12) c−1 t−Q/2 exp

(
− c d2(x, ξ)

t

)
≤ γG(t, x, ξ) ≤ c t−Q/2 exp

(
− d2(x, ξ)

c t

)
.

Via (2.11), global Gaussian estimates analogous to (2.12) hold true for ΓG.

Moreover, γG satisfies the following additional properties:

(i) γG ≥ 0 and γG(t, x, ξ) = 0 if and only if t ≤ 0;
(ii) γG(t, x, ξ) = γG(t, (x, ξ)−1) for every (t, x, ξ);

(iii) for every λ > 0 and every (t, x, ξ), we have

γG
(
λ2t, δλx, δ

∗
λξ
)

= λ−Q γG(t, x, ξ),

where Q = q + q∗ is the homogeneous dimension of the group G;
(iv) γG vanishes at infinity, that is, γG(t, x, ξ)→ 0 as ‖(t, x, ξ)‖ → ∞;
(v) for every t > 0, we have ∫

Rn×Rp

γG(t, x, ξ) dxdξ = 1.
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Finally, if we consider the function Γ∗G defined by

Γ∗G(t, x, ξ; s, y, η) := ΓG(s, y, η; t, x, ξ),

then Γ∗G is a global fundamental solution for the adjoint operator H∗G = LG + ∂t.

As for (2), the needed integrability properties of ΓG rely on the Gaussian estimates of γG in
(2.12), as we prove in the next result.

Theorem 2.8. Let the notation of Theorem 2.7 apply. Then the global fundamental solution ΓG of
HG satisfies the integrability assumptions (i) and (ii) in Theorem 2.3.

Proof. We first prove that ΓG satisfies assumption (i). According to Theorem 2.3, we have to show
that, for fixed (t, x) 6= (s, y) ∈ R1+n, one has

(2.13) η 7→ ΓG(t, x, 0; s, y, η) ∈ L1(Rp).

If s ≤ t, the above (2.13) is an immediate consequence of Theorem 2.7, since

ΓG(t, x, 0; s, y, η)
(2.11)

= γG

(
s− t, (x, 0)−1 ? (y, η)

)
= 0, for every η ∈ Rp.

We can then assume that s > t. In this case, by (2.12) and by performing the change of variables
η = Ψ−1

x,y(u) (see (2.9) in Remark 2.5), we obtain the estimate∫
Rp

ΓG(t, x, 0; s, y, η) dη

≤ c

(s− t)Q/2

∫
Rp

exp

(
−
d2
(
(x, 0)−1 ? (y,Ψ−1

x,y(u)
)

c (s− t)

)
du.

On the other hand, since d is a homogeneous norm on G, by (2.7) we know that there exists a
constant ϑ = ϑ(G) ≥ 1 such that, for every u ∈ Rp and every x, y ∈ Rn,

d2
(
(x, 0)−1 ? (y,Ψ−1

x,y(u)
)
≥ ϑ−2 h2

(
(x, 0)−1 ? (y,Ψ−1

x,y(u))
) (2.10)

≥ ϑ−2N2(u),

where h,N are as in (2.6). Hence, (2.13) will follow if we show that

(2.14) u 7→ ϕ(u) := exp

(
− N2(u)

cϑ2 (s− t)

)
∈ L1(Rp).

Now, since ϕ ∈ C(Rp), we obviously have ϕ ∈ L1
loc(Rp); moreover, since exp(−|r|) ≤ βQ (1+ |r|)−Q/2

(for some constant βQ > 0), we get

ϕ(u) ≤
βQ
(
cϑ2 (s− t)

)Q/2(
cϑ2 (s− t) +N2(u)

)Q/2 ≤ β (s− t)Q/2N−Q(u), ∀ u ∈ Rp \ {0}.

We are then left to prove that N−Q is integrable away from 0, namely on the set {N ≥ 1}. This
follows from Q > q∗ and by a standard diadic/homogeneous argument using the annuli

Cj := {u ∈ Rp : 2j−1 ≤ N(u) < 2j}.
To complete the proof, we are left to show that ΓG also satisfies (ii) in Theorem 2.3: for any fixed
(t, x) ∈ R1+n and any compact set K ⊆ R1+n, we prove

((s, y), η) 7→ ΓG(t, x, 0; s, y, η) ∈ L1(K ×Rp).
Let a, b be such that K ⊆ [a, b]×Rn. We have (see (i)-(v) in Theorem 2.7)∫

K×Rp

ΓG(t, x, 0; s, y, η) dsdy dη ≤
∫ b

a

(∫
Rn×Rp

ΓG(t, x, 0; s, y, η) dy dη

)
ds

=

∫ b

a

(∫
RN

γG

(
s− t, (x, 0)−1 ? (y, η)

)
dy dη

)
ds(

by the change of variables (y, η) = (x, 0) ? (u, v)
)

=

∫ b

a

(∫
RN

γG(s− t, u, v) dudv

)
ds ≤

∫ b

a

1 ds = b− a,
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and the proof is complete. �

Remark 2.9. It is contained in the proof of Theorem 2.8 the following fact: there exists a constant
β > 0 such that, for every (t, x), (s, y) ∈ R1+n with s > t and for every u ∈ Rp \ {0}, one has

(2.15) ΓG

(
t, x, 0; s, y,Ψ−1

x,y(u)
)

= γG

(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u))
)
≤ β N(u)−Q.

On the other hand, since γG identically vanishes on {t ≤ 0}, the above estimate holds for every
(t, x) ∈ R1+n and every (s, y, u) ∈ R1+n+p.

By gathering together Lemma 2.6, Theorem 2.8 and Theorem 2.3, we are in a position to prove
the existence of a global fundamental solution for H.

Theorem 2.10 (Existence of a fundamental solution for H). Let γG, ΓG and d be as in
Theorem 2.7. Then the following function

(2.16) Γ(t, x; s, y) :=

∫
Rp

ΓG(t, x, 0; s, y, η) dη =

∫
Rp

γG

(
s− t, (x, 0)−1 ? (y, η)

)
dη

is a fundamental solution for H. Moreover, one has the estimates

c−1 (s− t)−Q/2
∫
Rp

exp

(
−

c d2
(
(x, 0)−1 ? (y, η)

)
s− t

)
dη ≤ Γ(t, x; s, y)

≤ c (s− t)−Q/2
∫
Rp

exp

(
−
d2
(
(x, 0)−1 ? (y, η)

)
c (s− t)

)
dη,

holding true for every (t, x), (s, y) ∈ R1+n with s > t. Here, c > 0 is a constant only depending on the
homogeneous Carnot group G and on the operator H. Finally, d can be replaced by any homogeneous
norm on the homogeneous Carnot group G = (RN , ?).

3. Representation formulas for the derivatives

In this section, in order to prove Theorem 1.6, we use a quite versatile technique, only based
on homogeneity arguments. Some of our previous arguments (of dominated-convergence type) may
be attacked with this technique also; however, in the previous sections, we preferred to contain the
use of homogeneity, in view of future investigations where the latter is not available.

The key ingredients for the proof of Theorem 1.6 are the following technical Lemmas 3.1 and
3.2 (where we use the notations in (2.3) and (2.5)):

Lemma 3.1. Let Ω := {(z, ζ, η) ∈ R1+n × R1+n × Rp : (z, 0) 6= (ζ, η)}. Suppose g ∈ C∞(Ω) is
homogeneous of degree α < −q∗ with respect to the family of dilations (with our usual notation)

Eλ(z, ζ, η) = Eλ

(
(t, x), (s, y), η

)
=
(
λ2t, δλ(x), λ2s, δλ(y), δ∗λ(η)

)
.

Let Z be any smooth vector field in the (z, ζ)-variables, homogeneous of positive degree with respect
to the family of dilations

(z, ζ) =
(
(t, x), (s, y)

)
7→
(
λ2t, δλ(x), λ2s, δλ(y)

)
.

Then, the following facts hold:

(1) for any fixed (z, ζ) ∈ R1+n ×R1+n with z 6= ζ, the map η 7→ g(z, ζ, η) belongs to L1(Rp);
(2) Z can pass under the integral sign as follows

(3.1) Z

{
(z, ζ) 7→

∫
Rp

g(z, ζ, η) dη

}
=

∫
Rp

Z
{

(z, ζ) 7→ g(z, ζ, η)
}

dη,

for every z, ζ ∈ R1+n with z 6= ζ.

Proof. (1) Let us fix z0, ζ0 ∈ R1+n such that z0 6= ζ0, and let S, N be the homogeneous norms on
the spaces Rn and Rp, respectively, introduced in (2.6). Moreover, we define

Ŝ(z) = Ŝ(t, x) := |t|1/2 + S(x) = |t|1/2 +
∑n
i=1 |xi|1/σi .
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Since, obviously, η 7→ g(z0, ζ0, η) belongs to L1
loc(Rp), we need to prove that∫

{N>1}
g(z0, ζ0, η) dη <∞.

To this end, we first choose ρ > 0 in such a way that z0, ζ0 ∈ {Ŝ(z) ≤ ρ} and we observe that, since

the set K := {Ŝ ≤ ρ}2 × {N = 1} is compact and contained in Ω, there exists c > 0 such that

(3.2) |g(z, ζ, η)| ≤ c for every z, ζ ∈ {Ŝ ≤ ρ} and η ∈ {N = 1}.
On the other hand, if η ∈ Rp is such that N(η) > 1 and if we set λ := 1/N(η) ∈ (0, 1), it is readily
seen that (z′0, ζ

′
0, η
′) = Eλ(z0, ζ0, η) ∈ K; thus, by (3.2) and the Eλ-homogeneity of g, we get

|g(z0, ζ0, η)| ≤ cN(η)α for every η ∈ Rp with N(η) > 1.

Since α < −q∗, the map η 7→ g(z0, ζ0, η) is integrable on {N > 1}, as desired.

(2) We first prove that, if Z is a smooth vector field as in the statement of the lemma, fixing
z, ζ ∈ R1+n with z 6= ζ, the function

Φ(η) := Z{(z, ζ) 7→ g(z, ζ, η)}
is η-integrable on the whole of Rp.

To this end we observe that, if we think of Z as a vector field defined on R1+n
z × R1+n

ζ × Rpη
but acting only in the (z, ζ) variables (and not on η), then Z is Eλ-homogeneous of degree m; as a
consequence, Φ is Eλ-homogeneous of degree α−m. Since, by assumption, m ≥ 0 and α < −q∗, we
derive from statement (1) that Φ(η) belongs to L1(Rp) for every z, ζ ∈ R1+n with z 6= ζ. We now
turn to prove identity (3.1). To this aim, we first write∫

Rp

Φ(η) dη =

∫
{N(η)≤1}

Φ(η) dη +

∫
{N(η)>1}

Φ(η) dη.

We then fix z0, ζ0 ∈ R1+n such that z0 6= ζ0 and we show that the function Φ can be dominated,
both on A = {N ≤ 1} and on B = {N > 1}, by an integrable function which does not depend of
(z, ζ) (at least for every (z, ζ) in a small neighborhood of (z0, ζ0)). As for the first set, we choose
two bounded neighborhoods V1, V2 ⊆ R1+n of z0 and ζ0, respectively, such that

(3.3) V 1 ∩ V 2 = ∅;

then, we set K := V 1 × V 2 × {N ≤ 1}. On account of (3.3), we see that K is a compact subset of
Ω; thus, there exists a constant c > 0 such that

|Φ(η)| =
∣∣∣Z{(z, ζ) 7→ g(z, ζ, η)}

∣∣∣ ≤ c,
for every z, ζ ∈ V 1 × V 2 and every η ∈ {N ≤ 1}.

As for the set B, we argue as in the previous statement (1): if ρ > 0 is such that z0, ζ0 ∈ {Ŝ ≤ ρ},
from the Eλ-homogeneity of Φ we infer the existence of another constant c′ > 0 such that

|Φ(η)| =
∣∣∣Z{(z, ζ) 7→ g(z, ζ, η)}

∣∣∣ ≤ c′N(η)α−m,

for every z, ζ ∈ {Ŝ ≤ 1} and every η ∈ {N > 1}; since α −m ≤ α < −q∗, the function Nα−m is
integrable on B. This ends the proof. �

Lemma 3.2. Let ρ ∈ C∞(R1+N \ {0}) be homogeneous of degree d < −q∗ with respect to the family
of dilations (see (2.3))

Fλ(t, x, ξ) :=
(
λ2t,Dλ(x, ξ)

)
=
(
λ2t, δλ(x), δ∗λ(ξ)

)
.

Then, for every j = 1, . . . ,m we have∫
Rp

Xy
j

{
y 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

=

∫
Rp

(Zjρ)
(
s− t, (x, 0)−1 ? (y, η)

)
dη,

(3.4)

where Zj is the lifting vector field of Xj as in Theorem 1.2.
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Proof. First of all, by Lemma 3.1-(1), the two integrand functions appearing in (3.4) are η-integrable
on Rp; moreover, since Zj is a lifting of Xj , one has

Z
(y,η)
j = Xy

j +Rj , where Rj =

p∑
k=1

rj,k(y, η)
∂

∂ηk
,

where rj,k is smooth and Dλ-homogeneous of degree σ∗k − 1 (see (2.4)). In particular, rj,k does not
depend on ηk. Now, since Zj is left-invariant on the group G = (RN , ?), it is not difficult to recognize
that4

Z
(y,η)
j

{
(y, η) 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
= (Zjρ)

(
s− t, (x, 0)−1 ? (y, η)

)
.

As a consequence, we have the following chain of identities∫
Rp

Xy
j

{
y 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

=

∫
Rp

(Z
(y,η)
j −Rj)

{
(y, η) 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

=

∫
Rp

(Zjρ)
(
s− t, (x, 0)−1 ? (y, η)

)
dη

−
∫
Rp

Rj

{
η 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη.

In view of this computation, the desired Equality (3.4) follows if we show that

(3.5)

∫
Rp

Rj

{
η 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη = 0.

In its turn, identity (3.5) can be proved as follows: first of all, since rj,k is independent of ηk, by
Fubini’s theorem we can write∫

Rp

Rj

{
η 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

=

p∑
k=1

∫
Rp

rj,k(y, η)
∂

∂ηk

{
η 7→ ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

=

p∑
k=1

∫
Rp

∂

∂ηk

{
rj,k(y, η) ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

=

p∑
k=1

∫
Rp−1

(∫ ∞
−∞

∂

∂ηk

{
rj,k(y, η) ρ

(
s− t, (x, 0)−1 ? (y, η)

)}
dηk

)
dη̂k,

where η̂k denotes the (p− 1)-tuple of variables obtained by removing ηk from η. On the other hand,
since ρ vanishes at infinity (as it is Fλ-homogeneous of negative degree) and since ‖(x, 0)−1?(y, η)‖ →
∞ as ηk → ±∞, one has

lim
ηk→±∞

rj,k(y, η) ρ
(
s− t, (x, 0)−1 ? (y, η)

)
= rj,k(y, η) · lim

ηk→±∞
ρ
(
s− t, (x, 0)−1 ? (y, η)

)
= 0.

This ends the proof. �

Thanks to Lemmas 3.1 and 3.2, we can now provide the

Proof (of Theorem 1.6). For the sake of readability, we split the proof of formulas (1.10)-to-(1.12)
into three different steps.

4In fact, Zj is left-invariant on the product group (R1+N , •), where

(t, x, ξ) • (s, y, η) := (t+ s, (x, ξ) ? (y, η)).
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Step I: We first prove formula (1.10). To this end we observe that, by repeatedly applying
Lemma 3.1, we have the representation( ∂

∂s

)α( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)(3.6)

=

∫
Rp

( ∂
∂s

)α( ∂
∂t

)β
Xy
i1
· · ·Xy

ih

{
(t, s, y) 7→ γG

(
s− t, (x, 0)−1 ? (y, η)

)}
dη

= (−1)β
∫
Rp

Xy
i1
· · ·Xy

ih

{
y 7→

(
(∂τ )α+βγG

)(
s− t, (x, 0)−1 ? (y, η)

)}
dη.

Formula (1.10) can now be obtained from (3.6) by repeatedly applying Lemma 3.2: in fact, on
account of Theorem 2.7-(iii) we know that the functions

ρ1 = (∂τ )α+βγG, ρ2 = Zih(∂τ )α+βγG, . . . ,

ρh+1 = Zi2 · · ·Zih(∂τ )α+βγG

are smooth on R1+N \ {0} and Fλ-homogeneous of degrees

d1 = −Q− 2α− 2β, d2 = −Q− 2α− 2β − 1, . . . ,

dh+1 = −Q− 2α− 2β − h+ 1,

respectively. Since Q = q + q∗, we clearly have d1, . . . , dh+1 < −q∗.

Step II: We prove formula (1.11). To this end, in order to apply Lemma 3.2, we first introduce
the following map:

φx,y : Rp → Rp, φx,y(u) := πp

(
(x, 0) ? (x, u)−1 ? (y, 0)

)
,

where πp is the projection of RN = Rn × Rp onto Rp. By exploiting the Dλ-homogeneity of the
component functions of ?, it is not difficult to check that φx,y is a smooth diffeomorphism of Rp,
further satisfying

det
∣∣Jφx,y

(u)
∣∣ = 1, for every u ∈ Rp.

Moreover, by using the explicit construction of the group G in Theorem 2.3 (see [7] for all the details),
one can prove that

(x, 0)−1 ? (y, φx,y(u)) = (x, u)−1 ? (y, 0), ∀ x, y ∈ Rn, u ∈ Rp.

Gathering together the above facts, and performing the change of variable η = φx,y(u), we then
obtain the following alternative representation of Γ (also remind of the symmetry of γG, see Theorem
2.7-(ii)):

Γ(t, x; s, y) =

∫
Rp

γG
(
s− t, (x, u)−1 ? (y, 0)

)
du

=

∫
Rp

γG
(
s− t, (y, 0)−1 ? (x, u)

)
du.

(3.7)

Now, starting from (3.7) and repeatedly using Lemma 3.1, we get( ∂
∂s

)α( ∂
∂t

)β
Xx
j1 · · ·X

x
jk

Γ(t, x; s, y)

=

∫
Rp

( ∂
∂s

)α( ∂
∂t

)β
Xx
j1 · · ·X

x
jk

{
(t, s, x) 7→ γG

(
s− t, (y, 0)−1 ? (x, u)

)}
du

= (−1)β
∫
Rp

Xx
j1 · · ·X

x
jk

{
x 7→

(
(∂τ )α+βγG

)(
s− t, (y, 0)−1 ? (x, u)

)}
du.

From this, by repeatedly applying Lemma 3.2 (with x in place of y) and by arguing exactly as in
the previous step, we obtain the desired (1.11).
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Step III: We finally prove formula (1.12). To begin with, we use (1.10) and the change of
variable η = φx,y(u) introduced in Step II to write( ∂

∂s

)α ( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)

= (−1)β
∫
Rp

(
Zi1 · · ·Zih(∂τ )α+βγG

)(
s− t, (x, u)−1 ? (y, 0)

)
du(

setting ρ :=
(
Zi1 · · ·Zih(∂τ )α+βγG

)
◦ ι̃
)

= (−1)β
∫
Rp

ρ
(
s− t, (y, 0)−1 ? (x, u)

)
du.

From this, by repeatedly applying Lemma 3.2 and by arguing exactly in Step II (notice that
ρ, Zjkρ, . . . , Zj2 · · ·Zjkρ are all Fλ-homogeneous of degree less than −q∗), we obtain the desired
(1.12). This ends the proof. �

4. An application to the Cauchy problem for H

In this section we turn our attention to the Cauchy problem for H. In doing this, we shall use
many of the properties of Γ in Theorem 1.4, whose proof is postponed to Section 5.

To begin with, let ϕ ∈ C(Rn) and Ω = (0,∞) × Rn. We say that a function u : Ω → R is a
(classical) solution of the Cauchy problem

(4.1)

{
Hu = 0 in Ω

u(0, x) = ϕ(x) for x ∈ Rn,

if the following conditions are satisfied: u ∈ C2(Ω) and Hu = 0 on Ω; u is continuous up to Ω
and u(0, ·) = ϕ pointwise on Rn. By the C∞-hypoellipticity of H, any classical solution of (4.1) is
smooth on Ω. The following theorem is the main result of this section.

Theorem 4.1. In the above notations, if ϕ is continuous and bounded, then

(4.2) u : Ω −→ R u(t, x) :=

∫
Rn

Γ(0, y; t, x)ϕ(y) dy

is the unique bounded classical solution of (4.1); furthermore, it satisfies

(4.3) sup
Ω
|u| ≤ sup

Rn

|ϕ|.

Proof. Since the uniqueness problem is of independent interest (and since we prove it with a totally
different technique), this is postponed to Proposition 4.2. Then we focus on the rest of the assertion.

First of all, by (ii), (vii) in Theorem 1.4, u is well posed and it satisfies (4.3): indeed, for t > 0,

|u(t, x)| ≤ ‖ϕ‖∞
∫
Rn

Γ(0, y; t, x) dy = ‖ϕ‖∞
∫
Rn

Γ(0, x; t, y) dy = ‖ϕ‖∞.

The rest of the proof is split in three steps.

Step I: In this step we prove that u ∈ C(Ω). To this end, let z0 = (t0, x0) be a fixed point in
Ω and let r > 0 be such that

K := [t0 − r, t0 + r]×B(x0, r) ⊆ Ω.

Moreover, let zn → z0; we can assume that zn ∈ K. By arguing as in the proof of Lemma 5.3-(b),
one can easily recognize that

(y, η) 7→ ΓG(0, y, 0; t, x, η) is in L1(RN ), for every (t, x) ∈ R1+n.

Therefore, by Fubini’s theorem, for every n ≥ 0 we can write

u(zn) = u(tn, xn)
(2.11)

=

∫
Rn×Rp

γG
(
tn, (y, 0)−1 ? (xn, η)

)
ϕ(y) dy dη

=

∫
Rn×Rp

γG(tn, u, v)ϕ
(
C−1
xn

(u, v)
)

dudv,
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where we have used the smooth diffeomorphism Cx(y, η) := (y, 0)−1 ? (x, η) (whose Jacobian deter-
minant is 1). A dominated convergence argument is now in order; we skip the details, apart from
the non-trivial estimate (based on the Gaussian bound in (2.12))∣∣γG(tn, u, v)ϕ

(
C−1
xn

(u, v)
)∣∣

≤ c (t0 − r)−Q/2 ‖ϕ‖∞ exp

(
− d2(u, v)

c (t0 − r)

)
=: f(u, v).

In turn, the integrability of f is ensured by the estimate

exp

(
− d2(u, v)

c (t0 − r)

)
≤ exp

(
− S2(u)

cϑ2 (t0 − r)

)
exp

(
− N2(v)

cϑ2 (t0 − r)

)
,

where S,N are as in (2.6), and ϑ = ϑ(G) ≥ 1 is as in (2.7) (by arguing as in the few lines after
(2.14), one gets the integrability of the above right-hand side).

Step II: Since u is continuous by Step I, if we show that Hu = 0 in D′(Ω), the hypoellipticity
of H will imply that u ∈ C∞(Ω) and Hu = 0 on Ω. To this end, let ψ ∈ C∞0 (Ω). We have∫

R1+n

u(t, x)H∗ψ(t, x) dtdx

=

∫
Rn

(∫
R1+n

Γ(0, y; t, x)H∗ψ(t, x) dtdx

)
ϕ(y) dy

(2.1)
= −

∫
Rn

ψ(0, y)ϕ(y) dy = 0

Here we applied Fubini’s Theorem, whose legitimacy is due to the estimate (see also (vii) in Theorem
1.4) ∫

supp(ψ)

(∫
Rn

Γ(0, x; t, y) dy

)
dtdx ≤ meas(supp(ψ)) <∞.

Step III: To end the proof, we must show that u satisfies the needed initial condition. To this
end, let x ∈ Rn be fixed and let tn ∈ (0, 1) be vanishing, as n→∞. Arguing as in Step I (and with
the aid of (ii) and (vii) of Theorem 1.4), one gets

|u(tn, x)− ϕ(x)| ≤
∫
Rn×Rp

γG(tn, u, v)
∣∣ϕ(C−1

x (u, v)
)
− ϕ(x)

∣∣dudv

(2.12)

≤ c (tn)−Q/2
∫
Rn×Rp

exp

(
−d

2(u, v)

c tn

) ∣∣ϕ(C−1
x (u, v)

)
− ϕ(x)

∣∣dudv

= c

∫
Rn×Rp

exp

(
−d

2(u′, v′)

c

) ∣∣ϕ((C−1
x ◦D√tn)(u′, v′)

)
− ϕ(x)

∣∣du′ dv′.
In the last equality we used the change of variable (u, v) = D√tn(u′, v′), and Dλ-homogeneity of d.
Since one clearly has (due to the continuity of ϕ)

lim
n→∞

ϕ
(
(C−1

x ◦D√tn)(w, z)
)

= ϕ
(
C−1
x (0, 0)

)
= ϕ(x),

we deduce that u(tn, x)→ ϕ(x), thanks to a dominated-convergence argument (see Step I) based on

exp

(
−d

2(u′, v′)

c

) ∣∣ϕ((C−1
x ◦D√tn)(u′, v′)

)
− ϕ(x)

∣∣
≤ 2 ‖ϕ‖∞ exp

(
−d

2(u′, v′)

c

)
.

This ends the proof. �

We now turn to the uniqueness of the solution of the Cauchy problem for H:

Proposition 4.2. The only bounded classical solution of (4.1) when ϕ ≡ 0 is the null function. As
a consequence, (4.2) is the unique bounded solution of (4.1).
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Proof. Let u be a bounded classical solution of the homogeneous Cauchy problem for H, and let
v(t, x, ξ) := u(t, x) defined on R×Rn ×Rp.

Clearly, v(0, x, ξ) = u(0, x) = 0 for every (x, ξ) ∈ Rn × Rp; moreover, since HG is a lifting of
H on R × Rn × Rp, we get HGv = Hu = 0 point-wise on (0,∞) × Rn × Rp. Summing up, v is a
bounded solution of the homogeneous Cauchy problem for HG. Since we have transferred our setting
to that of Carnot groups G, we are consequently entitled to apply [13, Theorem 2.1], which ensures
that v ≡ 0, and this ends the proof. �

5. Further properties of Γ

This appendix is completely devoted to establishing the properties (i)-to-(x) of Γ in Theorem
1.4. Throughout the section, Γ is as in (1.9) and all the notations used so far are tacitly understood.

Some of the properties we aim to prove are consequences of Theorem 2.7:

• (i) is a trivial consequence of the integral form of Γ in (1.8) jointly with Theorem 2.7-(i).
• The first part of (ii) comes from (1.8); the symmetry in x, y will be proved later on.
• (iii) follows from (iii) of Theorem 2.7 together with the change of variable η = δ∗λ(η′) (see

also (2.3) and (2.5)).
• (vii) follows from (v) of Theorem 2.7 by making use of the change of variable (y, η) =

(x, 0) ? (y′, η′);
• (ix) has been proved in Section 4.

Despite the simplicity of its statement, the proof of the following proposition is technical and is a
prototype for many of the next proofs.

Proposition 5.1. The following facts hold true:

(a) Γ is continuous out of the diagonal of R1+n ×R1+n.
(b) For every fixed compact set K ⊆ R1+n, we have

sup
z∈K

Γ(z; ζ)→ 0 as ‖ζ‖ → ∞.

(c) For every fixed ζ ∈ R1+n, we have Γ(z; ζ)→ 0 as ‖z‖ → ∞.

Proof. (a) It is a dominated-convergence argument applied to the limit

lim
n→∞

Γ(zn; ζn) = lim
n→∞

∫
Rp

γG(sn − tn, (xn, 0)−1 ? (yn, η)) dη,

where zn = (tn, xn)→ z0, ζn = (sn, yn)→ ζ0 and z0 6= ζ0; this argument is based on the ingredients:

- a proper use of the change of variable η = Ψ−1
xn,yn(η′) in Remark 2.5;

- the continuity of γG out of the origin of R1+N ;
- the bound (2.15) in Rem. 2.15 (together with the integrability of N−Q(η′) on the set {N(η′) >

1}).
(b) It is dominated-convergence, applied to the right-hand limit

lim
n→∞

sup
z∈K

Γ(z; ζn) ≤ lim
n→∞

∫
Rp

sup
(t,x)∈K

γG(sn − t, (x, 0)−1 ? (yn, η)) dη,

where z = (t, x), ζn = (sn, yn)→∞ and K is compact in R1+n; we also used:

- another use of the change of variable η = Ψ−1
x,yn(η′);

- the vanishing of γG at infinity (see (iv) in Theorem 2.7), together with the change of variable
η = Φx,yn(η′) and the fact that

(5.1) lim
n→∞

‖(sn − t, (x, 0)−1 ? (yn,Ψx,yn(η′)))‖ =∞,

uniformly for z ∈ K and η′ ∈ Rp;
- the bound (2.15) in Rem. 2.15.

(c) This is similar to (b); (5.1) is replaced by the (weaker) information

lim
n→∞

‖(s− tn, (xn, 0)−1 ? (y,Ψxn,y(η′)))‖ =∞ uniformly for η′ ∈ Rp,

for any fixed ζ = (s, y). This ends the proof. �



20 STEFANO BIAGI AND ANDREA BONFIGLIOLI

Corollary 5.2. For every fixed z ∈ R1+n, the map ζ 7→ Γ(z; ζ) is smooth and H-harmonic on
R1+n \ {z} (i.e., H(Γ(z; ·)) = 0 on R1+n \ {z}).

Proof. By the C∞-hypoellipticity of H, we infer that Γ(z; ·) coincides almost everywhere with a
smooth H-harmonic function on R1+n \ {z}; the ‘almost-everywhere’ can be dropped in view of (a)
in Proposition 5.1. �

The following results (a) and (c) establish property (vi) of Theorem 1.4, whereas (b) is technical
for the study of the Cauchy problem for H.

Lemma 5.3. The following facts hold true:

(a) Γ ∈ L1
loc(R1+n ×R1+n).

(b) For every fixed (s, y) ∈ R1+n, we have

(5.2) (t, x, η) 7→ ΓG(t, x, 0; s, y, η) ∈ L1
loc(R1+n+p).

(c) For every fixed ζ ∈ R1+n, we have Γ(·; ζ) ∈ L1
loc(R1+n).

Proof. (a) Let K1,K2 ⊆ R1+n be compact sets and let T > 0 be so large that K2 ⊆ [−T, T ] ×Rn.
By Tonelli’s Theorem and (vii) in Theorem 1.4, we have∫

K1×K2

Γ(z; ζ) dz dζ ≤ 2T meas(K1).

(b) Let ζ = (s, y) ∈ R1+n, and let K ⊆ R1+N be compact. It can be proved (see Remark 2.5)
that the map

Hy : R1+n+p −→ R1+n+p Hy(t, x, η) :=
(
s− t, (x, 0)−1 ? (y, η)

)
is a smooth diffeomorphism with identically 1 Jacobian determinant. Therefore∫

K

ΓG(t, x, 0; s, y, η) dtdxdη =

∫
K

γG
(
s− t, (x, 0)−1 ? (y, η)

)
dtdxdη

=

∫
H−1

y (K)

γG(τ, z) dτ dz <∞,

since γG is locally integrable and H−1
y (K) is compact.

(c) Let K ⊆ R1+n be a compact set. The map T (t, x, u) :=
(
t, x,Ψ−1

x,y(u)
)

is a diffeomorphism

of R1+n+p with Jacobian determinant equal to 1. Thus∫
K

Γ(z; ζ) dz =

∫
K×Rp

γG
(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u))
)

dtdxdu

=

∫
K×{N≤1}

{· · · }dtdxdu+

∫
K×{N>1}

{· · · }dtdxdu =: I + II,

where N is as in (2.6). (5.2) implies I <∞, and (2.15) gives II <∞. �

Thanks to Lemma 5.3, we can prove property (viii) of Theorem 1.4:

Proposition 5.4. For every fixed ϕ ∈ C∞0 (R1+n), the function

Λϕ : R1+n −→ R, Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz

is well defined and it satisfies the following properties:

(a) Λϕ ∈ C∞(R1+n) and H(Λϕ) = −ϕ on R1+n;
(b) Λϕ(ζ) −→ 0 as ‖ζ‖ → ∞;
(c) for every ζ ∈ R1+n, we have

ΛHϕ(ζ) =

∫
R1+n

Γ(z; ζ)Hϕ(z) dz = −ϕ(ζ).
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Proof. By Lemma 5.3-(c), Λϕ is well-defined. Property (b) is a consequence of Proposition 5.1-(b).
By the C∞-hypoellipticity of H, (a) will follow if we show that Λϕ is continuous and H(Λϕ) = −ϕ
in the sense of distributions. To begin with, let ζn = (sn, yn)→ ζ0 = (s0, y0). Let T > 0 be so large
that supp(ϕ) ⊆ [−T, T ]×Rn. We then have

Λϕ(ζn) =

∫ sn+T

sn−T

∫
RN

γG(τ, u, v)ϕ
(
sn − τ, C−1

yn (u, v)
)

dτ dudv

=

∫
[−T0,T0]×RN

γG(τ, u, v)ϕ
(
sn − τ, C−1

yn (u, v)
)

dτ dudv,

where Cy is as in the proof of Theorem 4.1, and T0 � 1 satisfies

[sn − T, sn + T ] ⊆ [−T0, T0] for any n.

We can now get Λϕ(ζn) → Λϕ(ζ0) by a standard dominated convergence argument, based on the
integrability of γG on the strip [−T0, T0] × RN (see Theorem 2.7-(v)). Finally, H(Λϕ) = −ϕ in
D′(R1+n) is a consequence of the definition of fundamental solution (and of Lemma 5.3-(a)).

We prove (c). We consider u := ΛHϕ + ϕ. From property (a), we see that u is smooth and
H-harmonic on R1+n; moreover, from (b) we get that u vanishes at infinity. Since H satisfies the
Weak Maximum Principle on every bounded open set (and therefore on the whole space R1+n as
well; see [15, Corollary 5.13.7]), we conclude that u ≡ 0 throughout R1+n, as desired. �

Theorem 5.5 (Fundamental Solution for H∗). The function

Γ∗(z; ζ) := Γ(ζ; z)

is a global fundamental solution for the adjoint operator H∗ = L + ∂t.

Proof. This follows immediately from (c) of Proposition 5.4. �

We can now prove property (iv) of Theorem 1.4.

Theorem 5.6. Γ is smooth out of the diagonal of R1+n ×R1+n.

Proof. We consider the PDO on R1+n ×R1+n defined by

Q :=

m∑
j=1

X2
j (x) + ∂t +

m∑
j=1

X2
j (y)− ∂s,

where x, y ∈ Rn and t, s ∈ R. Obviously, Q is a Hörmander operator on R1+n ×R1+n since this is
true of

∑m
j=1X

2
j on Rn. By Theorem 5.6 we deduce that, for any (t, x) 6= (s, y), one has

Q
(
Γ(t, x; s, y)

)
= H∗

(
(t, x) 7→ Γ(t, x; s, y)

)
+ H

(
(s, y) 7→ Γ(t, x; s, y)

)
= H∗

(
(t, x) 7→ Γ∗(s, y; t, x)

)
+ H

(
(s, y) 7→ Γ(t, x; s, y)

)
= 0.

The C∞-hypoellipticity of Q and the continuity of Γ out of the diagonal prove the thesis. �

The next result establishes the second part of property (ii) of Theorem 1.4.

Theorem 5.7. For every (t, x), (s, y) ∈ R1+n we have

Γ(t, x; s, y) = Γ(t, y; s, x).

Proof. To ease the reading, we split the proof into two steps.

Step I: We first prove that the function G defined by

G(t, x; s, y) := Γ(t, y; s, x)

is a global fundamental solution for H, i.e., for every fixed z = (t, x) ∈ R1+n,

(a) G(z; ·) ∈ L1
loc(R1+n);

(b) HG(z; ·) = −Dirz in D′(R1+n).
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As for assertion (a), let K ⊆ R1+n be a compact set and let T > 0 be such that K ⊆ [−T, T ] ×
B(0, T ) =: C(T ). Since Γ ≥ 0 and Γ(·; ζ) ∈ L1

loc(R1+n) for every ζ ∈ R1+n, one then has∫
K

G(t, x; s, y) dsdy ≤
∫
C(T )

Γ(t− s, y; 0, x) dsdy

=

∫ t+T

t−T

∫
B(0,T )

Γ(τ, y; 0, x) dτ dy <∞.

We now turn to prove assertion (b). To this end, let ϕ ∈ C∞0 (R1+n) and let ψ(s, y) := ϕ(−s, y).
Since Γ∗(w; ζ) = Γ(ζ;w) is a global fundamental solution for H∗ (see Theorem 5.5), we have

−ϕ(t, x) = −ψ(−t, x) =

∫
R1+n

Γ(s, y;−t, x)Hψ(s, y) dsdy

=

∫
R1+n

Γ(0, y;−t− s, x)Hψ(s, y) dsdy

=

∫
R1+n

Γ(0, y;−t+ τ, x)Hψ(−τ, y) dτ dy(
since (Hψ)(−τ, y) = H∗ϕ(τ, y)

)
=

∫
R1+n

Γ(t, y; τ, x)H∗ϕ(τ, y) dτ dy

=

∫
R1+n

G(t, x; τ, y)H∗ϕ(τ, y) dτ dy,

and this proves that HG(z; ·) = −Dirz in D′(R1+n), as desired.

Step II: In this step we show that, for very z = (t, x) ∈ R1+n, one has

G(z; ·) ∈ C(R1+n \ {z}) and G(z; ζ)→ 0 as ‖ζ‖ → ∞.

On the one hand, the continuity of G(z; ·) out of z is a direct consequence of the continuity of Γ out
of the diagonal; on the other hand, since Γ(·; ζ) vanishes at infinity, we have

G(t, x; s, y) = Γ(t, y; s, x) = Γ(t− s, y; 0, x) −→ 0, as ‖(s, y)‖ → ∞.

Due to the uniqueness of Γ, this ends the proof. �

The next fact proves what remains to be proved of (v) in Theorem 1.4.

Remark 5.8. (1) In view of Γ(t, x; s, y) = Γ(−s, x;−t, y) and the symmetry of Γ in x ↔ y, we
recognize that, for every compact set K ⊆ R1+n,

lim
‖ζ‖→∞

(
sup
z∈K

Γ(ζ; z)
)

= lim
‖ζ‖→∞

(
sup
z∈K

Γ(z; ζ)
)

= 0.

Here we used (b) of Proposition 5.1.

(2) By Theorem 5.7, it is not difficult to prove the following identity

Γ∗(t, x; s, y) =

∫
Rp

Γ∗G(t, x, 0; s, y, η) dη

(where Γ∗G is the fundamental solution of H∗G = LG + ∂t on G) which shows that Γ∗G lifts Γ∗.

Furthermore, by the same tricks as above, Γ∗ satisfies the dual statement of Proposition 5.4,
that is, for every ϕ ∈ C∞0 (R1+n), the function Λ∗ϕ defined by

Λ∗ϕ(ζ) :=

∫
R1+n

Γ∗(z, ζ)ϕ(z) dz, ζ ∈ R1+n,

is well-defined and it satisfies the following properties: Λ∗ϕ ∈ C∞(R1+n) and H∗(Λ∗ϕ) = −ϕ point-

wise on R1+n; Λ∗ϕ(ζ)→ 0 as ‖ζ‖ → ∞.

Finally, the next proposition proves (x) in Theorem 1.4.
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Proposition 5.9. For every x, y ∈ Rn and every s, t > 0, we have the following so-called Repro-
duction Identity:

(5.3) Γ(0, y; t+ s, x) =

∫
Rn

Γ(0, w; t, x) Γ(0, y; s, w) dw.

Proof. We fix a point (s, y) ∈ (0,∞) × Rn and we define ϕs,y(w) := Γ(0, y; s, w). Since Γ(0, y; ·) is
smooth out of (0, y) and since s > 0, it is immediate to check that ϕs,y ∈ C∞(RN ,R); moreover,
since Γ(0, y; ·) vanishes at infinity, we see that ϕs,y is also bounded on RN . Thus, Theorem 4.1
implies that

u(t, x) :=

∫
Rn

Γ(0, w; t, x)ϕs,y(w) dw =

∫
Rn

Γ(0, w; t, x) Γ(0, y; s, w) dw

is the unique bounded solution of the Cauchy problem

Hu = 0 in Ω = (0,∞)×Rn, u(0, x) = Γ(0, y; s, x) for x ∈ Rn.

We now claim that the function Ω 3 (t, x) 7→ v(t, x) := Γ(0, y; t + s, x) is also a bounded solution
of the same Cauchy problem. Indeed, since s > 0 is fixed, Corollary 5.2 shows that v ∈ C∞(Ω,R)
and that Hv = 0 on Ω; moreover, since Γ(0, y; ·) vanishes at infinity, we deduce that v is bounded
on Ω. Since, obviously, v(0, x) = Γ(0, y; s, x), we then conclude that v ≡ u on the whole of Ω, and
the Reproduction Identity (5.3) follows. �
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