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Abstract

We propose a multiple scattering formulation to investigate the performance of meta-trenches. The meta-

trench is a novel device, composed of an array of resonant units buried in the ground in a proper arrangement,

aimed at reducing the railway and/or subway induced ground motion by exploiting its scattering and resonant

properties. Compared to classical open trenches the contribution of resonators is to improve the wave mitigation

performance of the trench in the low-frequency regime.

The proposed formulation allows to consider the wave source anywhere in the half-space and a generic

distribution of resonators in terms of number and position. The incident wave field generated by the source,

train or subway, along with the scattered wave fields produced by the resonant units that make up the meta-

trench, are modeled via Green’s functions. The multiple scattering formulation enables the solution of coupled

wave problems by determining the amplitudes of scattered wave fields at various frequencies. By comparing

with finite element simulations, we demonstrate that in both buried source (i.e., subway) and surface-located

source (i.e., ground railway) scenarios, our analytical formulation is able to properly model the dynamics of

the coupled problems with a noticeable computational cost saving. Opening to fast and reliable parametric

simulations, our formulation allows for a deeper knowledge of the wave interaction processes, resulting thus in

a reliable tool for predicting the coupled wave field under both bulk and Rayleigh waves.

Keywords: elastic metamaterials, meta-trench, buried-source problem, railway/subway induced vibrations,

elastic waves

1. Introduction

Ground railway or subway induced vibrations are one of the major source of annoyance for the built envi-

ronment and a matter of growing concern, especially in dense urbanized area. These vibrations in the form of

mechanical waves propagate through the soil into adjacent buildings interfering with the daily life of residents,

causing damages and preventing the usage of sensitive equipment [1, 2]. Therefore, reducing railway and/or5

subway induced vibrations to protect adjacent structures is an urgent matter.

To this goal, a common approach in practical engineering is to impede the waves to propagate from the

source to the protected structures by placing barriers, like open or in-filled trenches [3–6] or rows of piles [7–10].

These barriers, by exploiting geometric scattering, effectively attenuate the wave energy induced by railways and
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subways at the target. However, they barely contribute to the low-frequency regime where the wavelengths are10

quite long unless they are characterized by unrealistic geometrical dimensions. As low-frequency waves are more

harmful to buildings and they travel much farther due to their smaller attenuation compared to high-frequency

waves, more attention to them is needed.

Recently, the advent of resonant elastic metamaterials has provided unprecedented ways to face such dilemma

[11, 12]. In particular, metasurfaces, artificial planar metamaterials composed of sub-wavelength resonators,15

have shown outstanding performance in manipulating wave propagation. The applications range from wave

localization [13–15] energy harvesting [16, 17] to vibration mitigation [18–20]. By the use of resonators, waves

in specific frequency bands can be guided away from the target object to protect it [21–23]. For instance,

many works have shown how surface elastic waves propagating in a half-space can be converted into bulk waves

with the aid of sub-wavelength resonators placed atop the soil, namely metasurfaces [24–26]. While appealing,20

metasurfaces with resonators distributed at the soil surface need a large area limiting thus their engineering

feasibility especially in densely urbanized areas [27–29].

This limitation has motivated the study of a novel solution for the mitigation of railway/subway induced

vibrations, the so-called meta-trench (see in Fig. 1), where the resonant elements are distributed into a classic

trench avoiding thus the need of spreading them over a large surface area. The idea is that by tuning resonance25

frequencies of resonators, the metatrench should interact with low-frequency waves and eventually mitigate

their effect.

While the dynamics of a metasurface can be predicted by its dispersion relation [30–34], which carries

information on bandgaps, waves attenuation, cut-on and cut-off frequencies, the dynamics of the meta-trench

can be unveiled only by the full wave-field which is generally computed by numerical schemes like finite elements30

(FE). Still, FE simulations suffer the computational cost related to large-scale models needed to predict the far

field, which in turn limits the possibility of extensive simulations for a parametric design of the meta-trench.

STRUCTURE

Fig. 1. Schematic of finite elastic metamaterials in mitigating railway-induced vibration.

In light of this, we propose here an efficient analytical multiple scattering formulation to model the interaction

of incident waves with the meta-trench. The proposed formulation extends a recent scheme [35–37] where

both the wave source and the resonators were constrained atop the elastic half-space. Here, we removed such35

constraints allowing the formulation to model also subways induced vibrations and meta-trenches. In particular,
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we first formulate the Green’s functions for a buried-source problem to model both the incident wave field

generated by an inner source and the scattered wave fields of the buried resonators. While the amplitude of the

inner source is given in input to the problem, the amplitudes of the scattered fields are unknown and coupled to

each other. The proposed multiple scattering formulation, where the total wave field is formed by the incident40

and scattered wave fields, allows us to find such unknowns and thus to obtain the true coupled wave field.

The formulation offers a computationally effective tool for analyzing the coupled interaction of waves and

resonant metamaterials generically distributed in a bi-dimensional setting. Particularly, it allows to study

and design finite-size meta-trenches, enriching thus the engineering application scenarios devoted to waves

mitigation.45

This paper is organized as follows. In Section 2, we briefly describe the problem statement. In Section 3,

we develop a multiple scattering formulation to model the coupled interaction between an array of resonators

distributed in a bi-dimensional half-space. Then we apply the formulation to model a meta-trench aimed at

mitigating railway and subway induced vibrations and validate the results with numerical FE simulations in

Section 4. Finally, we summarize the main conclusions of our work in Section 5.50

2. Statement of the problem

We consider an array of N mechanical resonators embedded in a two-dimensional (2D) isotropic, linear

elastic half-space in plane-strain x− z condition (see Fig. 2). Given the significance of the vertical component

in train-induced ground vibrations [2, 38], for the sake of simplicity we limit our focus solely on the single-

degree-of-freedom (SDOF) resonator in this study (see the two degrees of freedom model in Appendix D).

Each resonator, placed at position (xrn, zrn), with n = 1, 2, ..., N , is modeled as a vertical mass-spring-dashpot

system with mass mn, stiffness kn, and viscous damping coefficient cn, placed on a foundation of width b. A

harmonic source Qzeiωt, applied to an arbitrary location (x0, z0) and acting over a footprint area of width a

(see Fig. 2), excites the so-called incident wavefield with displacement components u0(x, z) and w0(x, z) along

the x and z directions, respectively. The nth resonator, oscillating due to an imposed vertical base motion at

frequency ω, generates an additional scattered wavefield with displacements components un(x, z) and wn(x, z)

proportional to the force exchanged with the soil. Such force has a magnitude Qn = Znw(xrn, zrn) where Zn

is the resonator impedance known for a given ω, while w(xrn, zrn) is the overall vertical displacement at the

resonator base due to the given incident and the N unknown coupled scattered wave fields. The w(xrn, zrn)

value for each resonator is indeed the output of the multiple scatting formulation. As such, by expressing the

total wavefield at a generic location (x, z) as:

u(x, z) = u0(x, z) +

N∑
n=1

un(x, z) (1a)

w(x, z) = w0(x, z) +

N∑
n=1

wn(x, z) (1b)

where the subscript 0 denotes the incident wave field and the subscript n denotes the scattered wave field of

the nth resonator, the proposed formulation aims at findings the un and wn values.

In previous works [35–37], where both the force and the resonators were restricted atop the soil surface,

namely h0 = 0 and hn = 0 for n = 1, 2, ..., N , see Fig. 2, the Green’s functions of the Lamb’s problem were55
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adopted to set the multiple scattering formulation. Following the same procedure, we first derive the Green’s

functions for the buried-source problem, and then develop an analytical formulation for a half-space excited by

a harmonic buried source coupled with an array of arbitrarily distributed resonators.

In particular, as we focus our interest on the interaction between half-space and resonators at low frequencies,

the geometric scattering due to the trench is neglected as the wavelengths are much larger than the dimension60

of resonators.

kn cn

b

mn

z=h1

…

(xr1, zr1)

(xr2, zr2)

(xrN, zrN)

z=h2

z=hN

x, u

z, w

Qzeiωt

(x0, z0; h0)
z=h0 a

b

Fig. 2. Schematic of finite arbitrarily distributed resonators in an elastic half-space.

3. Formulation

3.1. The Green’s function of the buried-source problem

Let us consider a buried excitation force with amplitude Qz. In the following derivation we restrict our

discussions to a time-harmonic regime so that the term eiωt is omitted to ease the notation. The source is65

applied at (x0, z0) in a 2D half space at a depth equal to h (non-positive value) from the free surface, as shown

in Fig. 3.

a (x0=0, z0; h)

Region 1 (z>h)

Region 2 (z≤ h)

z=h

Qz

x, u

z, w

h+
h-

 fig3

Fig. 3. Schematic of the buried-source problem.

The 2D wave equation in displacement potentials reads:

∇2Φ + k2pΦ = 0, ∇2Ψy + k2sΨy = 0, −∞ < x < ∞, z ≤ 0. (2)

where Φ(x, z) and Ψy(x, z) denote the wave dilatational potential and distorsional potential, respectively; kp =

ω/cp and ks = ω/cs are the compressional and shear wave numbers in the half-space, respectively, in which

cp =
√

(λ′ + 2µ′)/ρ and cs =
√
µ′/ρ are the compressional and shear wave velocities; whereas λ′ = λ(1 + 2ξi)70

and µ′ = µ(1 + 2ξi) are the Lamé constants being ξ and ρ the hysteretic damping ratio and mass density of the

half-space.
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Fourier transforming along x direction Eqs. (2) lead to two ordinary differential equations:

d2Φ̄

dz2
− (k2 − k2p)Φ̄ = 0,

d2Ψ̄y

dz2
− (k2 − k2s)Ψ̄y = 0, (3)

in which k denotes the wave number. The general solutions of Eqs. (3) have the form:

Φ̄ = A1epz + A2e−pz, Ψ̄y = B1eqz + B2e−qz, (4)

with:

p2 = k2 − k2p, q2 = k2 − k2s , (5)

and where A1, A2, B1, B2 are unknown coefficients to be determined from boundary conditions. A convenient75

mathematical treatment for this type of problem [39] is to divide the half-space into two regions one with

0 ≥ z > h (Region 1 in Fig. 3) and the other one with z ≤ h (Region 2 in Fig. 3). We reorganize the solutions

of the wave equations as:

Φ̄ =

 AL1epz + AL2e−pz, 0 ≥ z > h

AH1epz + AH2e−pz, z ≤ h
(6a)

Ψ̄y =

 BL1eqz + BL2e−qz, 0 ≥ z > h

BH1eqz + BH2e−qz, z ≤ h
(6b)

in which the subscripts L and H denote coefficients for Region 1 and Region 2, respectively.

Imposing traction-free boundary conditions at the free surface (z = 0), and enforcing the continuity of

stresses and displacements at regions interface (z = h), yields in the Fourier domain to the following three sets

of equations:

σ̄z(k, 0) = 0, τ̄zx(k, 0) = 0 (7a)

σ̄z(k, h−) − σ̄z(x, h+) =


2Qz

ka sin ka
2 , |x| < a

0, elsewhere
, τ̄zx(k, h−) − τ̄zx(k, h+) = 0 (7b)

ū(k, h−) = ū(k, h+), w̄(k, h−) = w̄(k, h+) (7c)

in which h+ and h− denote the top and bottom edges of the interface z = h (see Fig. 3).80

According to the Helmholtz decomposition, the Fourier transformed displacement components take the form:

ū(k, z) =

 ik(AL1epz + AL2e−pz) − q(BL1eqz −BL2e−qz), 0 ≥ z > h

ik(AH1epz + AH2e−pz) − q(BH1eqz −BH2e−qz), z ≤ h
(8a)

w̄(k, z) =

 p(AL1epz −AL2e−pz) + ik(BL1eqz + BL2e−qz), 0 ≥ z > h

p(AH1epz −AH2e−pz) + ik(BH1eqz + BH2e−qz), z ≤ h
(8b)

where AH2 and BH2 must be null to avoid an unbounded solution at z = −∞. With the aid of Hooke’s law the

stress components can be expressed as:

σ̄z(k, z) =

 −µ(ks
2 − 2k2)(AL1epz + AL2e−pz) + 2µikq(BL1eqz + BL2e−qz), 0 ≥ z > h

−µ(ks
2 − 2k2)(AH1epz + AH2e−pz) + 2µikq(BH1eqz + BH2e−qz), z ≤ h

(9a)
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τ̄zx(k, z) =

 2µikp(AL1epz −AL2e−pz) + µ(ks
2 − 2k2)(BL1eqz + BL2e−qz), 0 ≥ z > h

2µikp(AH1epz −AH2e−pz) + µ(ks
2 − 2k2)(BH1eqz + BH2e−qz), z ≤ h

(9b)

where µ is the shear modulus of the half-space. Combing Eqs. (7-9) yields for the coefficients:

AL1 =
Qz

µaγ1ks
2 · (ehpγ2 + 4ehqk2β)

k
· sin

ka

2
(10a)

AL2 =
Qz

µaγ1ks
2 · ehpγ1

k
· sin

ka

2
(10b)

BL1 =
Qz

µaγ1ks
2 · −(4ehppqβ + ehpγ2)i

q
· sin

ka

2
(10c)

BL2 =
Qz

µaγ1ks
2 · −ehqγ1i

q
· sin

ka

2
(10d)

AH1 =
Qz

µaγ1ks
2 · (ehpγ2 − e−hpγ1 + 4ehqk2β)

k
· sin

ka

2
(10e)

BH1 =
Qz

µaγ1ks
2 · −(4ehppqβ + ehqγ2 + e−hqγ1)i

q
· sin

ka

2
(10f)

with β = ks
2 − 2k2, γ1 = 4k2pq − β2 and γ2 = 4k2pq + β2.

By substituting Eqs. (10) into Eqs. (8) and performing the inverse Fourier transform, we obtain the sought

Green’s functions:

G(x, z;h) =
1

2πµa

∫ ∞

−∞

1

ks
2γ1

∆Y sin
ka

2
eikx dk, (11)

where G(x, z;h) = [Guz, Gwz]T , Y = [epz, e−pz, eqz, e−qz]T , and ∆ is equal to:

∆ =

 i(ehpγ2 + 4ehqk2β) iehpγ1 i(ehqγ2 + 4ehppqβ) −iehqγ1
p
k (ehpγ2 + 4ehqk2β) − p

k ehpγ1
k
q (ehqγ2 + 4ehppqβ) k

q ehqγ1

 , (12)

if z > h and equals to:

∆ =

 i(ehpγ2 − e−hpγ1 + 4ehqk2β) 0 i(ehqγ2 + e−hqγ1 + 4ehppqβ) 0

p
k (ehpγ2 − e−hpγ1 + 4ehqk2β) 0 k

q (ehqγ2 + e−hqγ1 + 4ehppqβ) 0

 , (13)

if z ≤ h.

To ensure the numerical stability in the computation of the Green’s function, a small hysteretic damping

ratio of ξ = 1% is introduced in the substrate.85

3.2. Multiple scattering formulation

Considering the Green’s functions related to a buried source or to source placed atop the half-space [35], we

can obtain the total wave field. Let us first consider the incident wave field:

u0(x, z) = QzG0uz(x− x0, z0;h0), (14a)

w0(x, z) = QzG0wz(x− x0, z0;h0), (14b)

where for a buried source scenario the Green’s functions take form of Eqs. (11), whereas if the source is located

6



at the soil surface h0 = 0 the Green’s functions degenerate to the form:

G0uz =
1

πµa

∫ ∞

−∞
[
i(ks

2 − 2k2)epz + 2ipqeqz

4k2pq − (ks
2 − 2k2)2

· sin
ka

2
]eik(x−x0) dk, (15a)

G0wz =
1

πµa

∫ ∞

−∞
[
(ks

2 − 2k2)pepz + 2k2peqz

4k2pq − (ks
2 − 2k2)2

· 1

k
· sin

ka

2
]eik(x−x0) dk, (15b)

Now, let us move to the scattered wave field. The force amplitude Qn = Znw(xrn, zrn) of the nth resonator

is obtained from the dynamic equilibrium equation for a harmonic base motion w(xn, zn) as:

Qn = Znw(xrn, zrn) =
mnω

2(iωcn + mnωrn
2)

−mnω2 + iωcn + mnωrn
2
w(xrn, zrn) n = 1, ..., N, (16)

where ωrn = 2πfrn =
√

kn/mn.

We can rewrite the total wavefield in Eqs. (1) as:

u(x, z) = u0(x, z) +

N∑
n=1

QnGuz(x− xrn, z;hrn) (17a)

w(x, z) = w0(x, z) +

N∑
n=1

QnGwz(x− xrn, z;hrn) (17b)

Once the force Qn is obtained, the total wavefield can be computed via Eqs. (17a) and (17b). As Qn is

related to w, as it can be seen from Eq. (16), it can be computed substituting Eq. (17b) only into Eq. (16).

We specify this at all resonator locations (xrj , zrj) which leads to:

Z−1
j Qj = w0(xrj , zrj) +

N∑
n=1

QnGwz(xrj − xrn, zrj ;hrn), (18)

After some algebra, Eq. (18) can be rearranged in a matrix form as:

Q = A−1W0 (19)

where Q = [Q1, Q2, · · · , QN ]T is the vector collecting the sought resonator force amplitudes, whereas:

A =


Z−1
1 −Gwz(0, zr1;h1) −Gwz(xr1 − xr2, zr1;h2) · · · −Gwz(xr1 − xrN , zr1;hN )

−Gwz(xr2 − xr1, zr2;h1) Z−1
2 −Gwz(0, zr2;h2) · · · −Gwz(xr2 − xrN , zr2;hN )

...
...

. . .
...

−Gwz(xrN − xr1, zrN ;h1) −Gwz(xrN − xr2, zrN ;h2) · · · Z−1
N −Gwz(0, zrN ;hN )

 , (20)

W0 =
[
w0(xr1, zr1) w0(xr2, zr2) · · · w0(xrN , zrN )

]T
. (21)

Once the resonator force amplitudes for a given incident wave field are calculated by using Eq. (D.4), the90

total wave field can be obtained via Eqs. (17).
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4. Applications in railway-induced vibration mitigation

In this section, we exploit and validate the proposed formulation on two examples for which we also discuss

the wave mitigation capabilities of the meta-trench. In particular, we first consider the surface railway scenario,

by placing the wave source atop the half-space, and as a second case the subway scenario where the wave95

source is down in the soil. The formulation is used to compute the amplitude ratio, which measures the

mitigation performance of the meta-trench over frequency, and the full wavefield. In parallel, we use full-scale

FE simulations to discuss the results and validate the formulation. The mechanical and geometric parameters

of the considered cases are collected in Table 1. The magnitude of the source Qz0 and its footprint width a

are taken from common urban rail transit systems, while the meta-trench is designed with regular engineering100

materials (see Appendix A for details).

Table 1: Mechanical and geometric parameters for the wave source, resonators and the elastic half-space.

Symbol Definition Value

Qz0 source amplitude in z-direction 130 kN
a footprint length of the source 2.5 m
b footprint length of the resonator 1.5 m
hr height of resonator holder 1.5 m
fr resonant frequency 10 Hz
mr mass of resonator 2675 kg
ξr damping ratio of resonator 0.05
ρ mass density of half-space 1650 kg/m3

cp compressional wave velocity 427 m/s
cs shear wave velocity 246 m/s
ξ hysteretic damping ratio 0.01

4.1. Surface railway scenario

For the surface railway case a harmonic load with amplitude Qz0 and footprint length a is applied at the sur-

face (x0 = z0 = 0 m) of the half-space. We consider a meta-trench formed by four identical resonant units, each

having width b and height hr. The four resonators are placed at xr = x0+8 m and zr = {−1.5,−3.0,−4.5,−6.0}

m, respectively. We evaluate the wave reduction capability of the meta-trench in the typical frequency range

of railway-induced vibrations, i.e. 0-60 Hz. In particular, we compute the amplitude ratio AR:

AR =

∣∣∣∣ ww0

∣∣∣∣ . (22)

as the ratio between the vertical displacement with and without the meta-trench, w and w0, respectively, in a

point located at the free surface at a distance d = 10 m behind the meta-trench, i.e. at position x = 18 m and

z = 0 m. The analytical solution computed by Eq. (17b) is shown in Fig. 4a as a solid blue line.105

As expected, we do observe a drop near the barrier’s resonance fr = 10 Hz, which suggests that a good

vibration mitigation effect (AR < 1) is achieved. To verify our formulation, we provide in red dashed line in

Fig. 4a the solution of FE simulations obtained by using two-dimensional plane strain model (see Appendix B

for details). It can be seen that the analytical solution is in very good agreement with the FE solution in the

low-frequency region, as highlighted in the inset of Fig. 4b where the amplitude ratio is shown in the frequency110

range [0, 15] Hz. Above this frequency regime a significant difference between the analytically and numerically

(FE) computed AR is observed. This discrepancy is due to the geometric scattering of the meta-trench captured

8



by the FE-simulated resonant units, which play a role at high frequencies, and that cannot be captured by our

analytical formulation. To further prove this point, we compute through FE simulations the AR for the classical

open trench, by removing the resonators, and show the result in Fig. 4a with black dots. As can be seen the red115

dashed line and the black dotted line well match above 15 Hz where the attenuation is due to scattering only.

The black dotted line also proves that the geometrical scattering mechanism, which requires a spatial scale of

the trench comparable to the wave wavelength, the vibration mitigation in the low-frequency regime is small as

AR ⋍ 1. Comparing the three lines in Fig. 4a, we conclude that the meta-trench, thanks to the resonators, has

a superior vibration mitigation performance at low frequencies and that the proposed formulation can properly120

capture meta-trench behavior in the low-frequency range where the resonators scattered wavefields dominate

the response.

In addition, we compare the total wavefield, in the region highlighted by the green dashed box (x ∈ [xr −

0.25λr, xr + λr], y ∈ [0,−λr]) in Fig. 4b, computed by our formulation and by the FE model at f = fr, a

frequency value for which the geometric scattering of the meta-trench plays a minor role. In the plots λr is the125

Rayleigh wavelength of the half-space at fr. It can be seen that the analytical and FE wavefields at f = fr,

shown in Fig. 4c-d respectively, are in excellent agreement.

max

min
-0.25 0 0.25 0.5 1 1.25 1.5

-0.5

0

0.75
-1

x / λr

z /
 λ

r

(d)
-0.25 0 0.25 0.5 1 1.25 1.5

-0.5

0

0.75
-1

x / λr

z /
 λ

r

(c)

Low 
frequency 
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(a)
0 10 20 30 40 50 60

Frequency (Hz)

0.4

0.6

0.8

1

1.2

A
R

Analytical with resonators
FE with resonators
FE without resonators

0 5 10 15
Frequency (Hz)

0.6

0.7

0.8

0.9

1

1.1

A
R

Low frequency region：

(b)

ReceiverQz0

x0 x

b

dxr z=0

fr

4hr

(xr-0.25λr, 0)

(xr+1.5λr, -λr) 

Fig. 4. Surface railway scenario. (a) Amplitude ratio: analytical solution (solid blue line) vs FE solution (red dashed line). (b)
Inset of the amplitude ratio in the low-frequency region. (c) Analytical and (d) FE wavefields computed at fr, corresponding to
the points marked with a star and a triangle in Fig. 4b, respectively. In (a) we also provide the FE solution for the trench without
resonators (dotted black line).

We further explore the performance of the meta-trench configured with four resonators having different

resonant frequencies, namely fr1 = 7 Hz, fr2 = 8 Hz, fr3 = 9 Hz, and fr4 = 10 Hz. In this case we can

expect to obtain an amplitude ratio with four valleys, around these resonant frequencies, thus broadening the130

attenuation zone. The amplitude ratio computed by our formulation and by the FE model is shown in Fig. 5a.

As anticipated, they are in very good agreement in the low-frequency region (shaded area), and the four valleys

indeed appear near the intrinsic resonant frequencies of the resonators, as better shown in the inset of Fig. 5b.
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Fig. 5. Amplitude ratio for the meta-trench with four different resonators in ground railway scenario. (a)Analytical solution (solid
line) vs. FE solution (dashed line); (b)Zoomed-in graph in the low-frequency region.

Comparing Fig. 5b and Fig. 4b, we can see that the effective frequency band where AR < 1 is broadened in

the latter scenario, which is appealing for future engineering applications.135

We conclude here that the proposed formulation can be used to properly model the harmonic response of

meta-trenches in the low-frequency region. Although their behavior can be simulated via commercially available

FE software, the analytical formulation (i) is characterized by lower computational cost as large-scale models and

numerous discrete elements are required in FE environment, and (ii) allows us to gain a deeper understanding

of wave interaction problems.140

4.2. Subway scenario

Let us now turn our attention to the buried-source problem and show the capability of our formulation in

modeling meta-trenches for subway-induced vibrations mitigation. The subway load is simulated by a buried

harmonic force applied at x0 = 0 m and z0 = −12 m. The force has the same amplitude and width as the first

scenario. In this case, the buried exciting source generates both bulk wave and Rayleigh wave. A meta-trench145

having the same geometrical and mechanical parameters as the one used in Section 4.1 is located at xr = x0+10

m.

Proceeding in a similar way, we first consider a meta-trench with four identical resonators having resonant

frequency fr = 10 Hz. The analytical (blue solid line) and FE (red dashed line) computed AR are shown in

Fig. 6a in the range of [0, 60] Hz. It can be seen that good agreement is found in the low-frequency range. It150

is worth mentioning here that a tunnel with outer radius R = 3 m and inner radius r = 2.7 m is considered in

FE solution (see the detailed model in Appendix B). In the FE solution we notice that the amplitude ratio is

amplified in the range of [23, 38] Hz (with AR > 1) and significantly reduced in the range of [46, 60] Hz, which

can be explained by geometric scattering of the meta-trench. In these frequencies, in fact, the wavelength in

half space is no longer much larger than the size of trench and the geometric scattering takes place. Here, we155

compute the AR for the classical open trench and plot the result with black dots in Fig. 6a. As expected, the

red dashed line and the black dotted line well match above 15 Hz, which confirms that the amplification of AR

around the [23, 38] Hz range is due to geometric scattering.

In the low-frequency region, see the inset in Fig. 6b, the analytical solution matches well with the FE

solution below 8 Hz, while the two solutions exhibit the same trend but different values above such frequency.160

When the frequency exceeds 8 Hz, in fact, the wavelength λ is less than 30 m and the geometric scattering of

the tunnel cannot be ignored. However, the found discrepancy in the AR does not weaken the potential of the
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Fig. 6. Amplitude ratio for the meta-trench with four identical resonators in subway scenario (a)Analytical solution (solid line)
vs. FE solution (dashed line) (b)Zoomed-in graph in the low-frequency region; (c)Analytical solution and(d) FE solution of the
total wavefield at fr, corresponding to the points marked with star and triangle in Fig. 6b respectively.

proposed formulation to unveil the dynamic of the meta-trench. This is also proven in Appendix C, where a

perfect match between analytical vs FE results is found for a meta-trench having resonators with fr = 8 Hz.

The total wavefield, computed by Eqs. 17 at f = fr, is shown in Fig. 6c in the domain x ∈ [xr−0.25λr, xr +165

1.5λr], z ∈ [−λr, 0], i.e., the green dashed region highlighted in Fig. 6b. From a global perspective, the

analytical wavefield is in good agreement with the one displayed in Fig. 6d, which is obtained from the FE

solution. Furthermore, no discrepancies caused by geometric scattering are observed in the area adjacent to

the meta-trench (the black dashed region in Fig. 6c-d), confirming the validity of the proposed formulation to

model the meta-trench for subway-induced vibrations.170
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Fig. 7. Amplitude ratio for the meta-trench with four different resonators in the subway scenario. (a) Analytical solution (solid
line) vs. FE solution (dashed line); (b) Inset in the low-frequency region.

Next, we consider the meta-trench with resonators having resonant frequencies of {7, 8, 9, 10} Hz, and com-

pute the amplitude ratio AR. The results are shown in Fig. 7a and 7b. We observe similarities with the case
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shown in Fig. 5: a perfect match between the analytical and the FE solutions in the low-frequency region,

multiple drops near the resonant frequencies of the resonators, and a broaden frequency range with AR < 1

compared to the case with identical resonators. Finally, we remark that the computation of the amplitude ratio175

in the above figures using our analytical approach takes only a few seconds. In contrast, the finite element (FE)

approach necessitates the use of two separate FE models (i.e., one for the free field computation and another

for the total field calculation) and a computational time of tens of minutes.

5. Conclusion

We have developed a multiple scattering formulation to compute the wave-coupled response of a cluster180

of resonators (known as a meta-trench) distributed into an isotropic half-space. The formulation allows one

to consider an incident wave field generated both atop and inside the half-space. The incident and scattered

wave fields, the latter generated by the motion of the resonators, are described via ad-hoc formulated Green’s

functions where the amplitudes of the scattered wave fields are obtained from the multiple scattering formulation

imposing proper boundary conditions.185

The proposed formulation has been used to model different meta-trenches and assess their wave mitigation

capabilities for both ground railway and subway induced vibrations. A validation case carried out via finite

element simulations has proved that the formulation properly captures the dynamic of meta-trenches in the low-

frequency regime where the geometric scattering of the resonant units can be neglected. In this low-frequency

range, the meta-trenches, thanks to their resonant scattering mechanism, exceed classic in-filled trench barriers190

in mitigating vibrations.

It must be remarked here that aside meta-trenches the proposed formulation permits to model the coupled

response of an array of resonators with no limitation on their number nor on their position. As such the for-

mulation can serve different metamaterials-related research. We envision that our formulation can be extended

to design novel devices for seismic wave manipulation, wave localization and energy harvesting.195
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Appendix A. Structural and material parameters of the meta-trench210

In this appendix, we provide the design strategy and parameters of the proposed meta-trench. In practice,

the meta-trench is embedded in a three-dimensional (3D) half-space as shown in Fig. A.1a. We design a 3D

unit of meta-trench with dimensions b1 × b1 × h1 as per Fig. A.1b, and the sectional view is shown in Fig.

A.1c. The unit has three components: a concrete box (1#) as the holder with thickness t = 0.2 m, a stiff inner

core (2#) and its flexible supports (3#). Typically, the inner core is made of engineered steel with high density,215

which acts as a mass element. By contrast, the flexible supports acting as springs are required to be elastic and

lightweight, whose favorable material can be rubber. In this paper, the flexible supports are made of the widely

used nitrile butadiene rubber (NBR) [40, 41]. The material and geometrical parameters used in our meta-trench

are listed in Table A.1.

The vibration mitigation performance of meta-trench originates from the mechanism of local resonance,220

where the inner steel core plays the mass m = ρ2 ·b22 ·h2 = 2675 kg, and the rubber blocks act as springs with a

total stiffness k = 2E3 · b32/h3 = 10500 kN/m. These designed parameters yield the desired resonant frequency

f = 1
2π

√
k/m = 10 Hz in Table 1. We keep the stiffness constant and adjust the mass, essentially the size b2,

to obtain different resonant frequencies. Assuming the out-of-plane (along y) invariance of the configuration,

we investigate the problem via the two-dimensional plane model (Fig. A.1d). Such a 2D model is used for the225

FE simulation in Appendix B.

We remark here that as discussed in some recent works the resonator mass could be reduced, reducing thus

the meta-trench costs, by leveraging inertial amplification mechanisms [42, 43].

…
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k

m

b1

(d)

x, u

z, w

y, v

(a)

Fig. A.1. Unit cell of the meta-trench (a) Arrangement scheme in a 3D half-space. (b) 3D structure. (c) Sectional view of the
unit cell. (d) Equivalent 2D model.
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Table A.1: Material and geometrical parameters of meta-trench.

Symbol Material Young’s modulus Ei Density ρi Poisson’s ratio νi Width bi Height hi

1# Concrete (C30) 30 GPa 2500 kg/m3 0.3 1.5 m 1.5 m
2# Steel 210 GPa 7800 kg/m3 0.3 0.7 m 0.7 m
3# Rubber (NBR) 4.2 MPa 1200 kg/m3 0.49 0.5 m 0.2 m

Appendix B. Detailed FE models

Here we provide the FE models used to validate our formulation in Section 4. The two-dimensional half-230

space is modeled in COMSOL Multiphysics by a finite-size area with absorbing boundary conditions (Perfectly

Matched Layers) as in Fig. B.1. As mentioned in Section 4, the meta-trench embedded in the half-space

is composed of four resonant units, each of them encasing one resonator. To simulate the uniform vertical

dynamic force over the footprint area b, each resonator is modeled by means of ten truss massless elements with

concentrated masses m̄ = m/10 atop; the Young modulus of the truss is Et = (m̄ω2
r + iωc)lt/At, where lt and235

At are the length and the cross-section area of the truss. The distances source-trench and source-receiver are

identical to those considered in Section 4. In our analysis, we ensure consistency between the finite element

(FE) models and the analytical formulation by employing the same damping ratio ξ. This is accomplished by

specifying the complex moduli of the soil material within the FE models as λ(1 + 2ξi) and µ(1 + 2ξi).
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Fig. B.1. Schematic of the FE models used for the surface railway scenario with resonators and without resonators in (a) and (b),
respectively. (c) FE model used for subway scenario

.

The FE models used for the various cases discussed in Section 4 are shown in Fig. B.1a, Fig. B.1b and Fig.240

B.1c. For the cases in Fig. B.1a-c the source Qz0eiωt is located at the free surface over a footprint width a.

The case in Fig. B.1b has been used to model the classical trench with no resonators to study the geometric
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scattering effect only. Fig. B.1c shows the FE model used for the subway scenario where the source is located

inside the tunnel at a depth of H = 10 m.

Appendix C. Subway scenario: fr = 8 Hz245

All the geometrical and mechanical parameters considered here are identical to those used in Section 4.2,

except for the resonators resonant frequency fr = 8 Hz. In this case, the wavelength at the resonant frequency

is λr = 30 m, i.e., five times the tunnel size. As such the geometric scattering due to the presence of the tunnel

can be omitted.
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Fig. C.2. (a) analytical (solid line) vs. FE (red dashed line) amplitude ratio for the meta-trench with identical resonators (fr = 8
Hz) for the subway scenario. (b) Inset in the low-frequency region. (c) analytical and (d) FE total wavefield at fr = 8 Hz (computed
at the points marked with star and triangle in Fig. C.2b respectively). Amplitude ratio (e) analytical (blue solid line) vs FE (red
dashed line) solution for the meta-trench with different resonators. (f) Inset in the low-frequency region.

Proceeding as in Section 4.2, we calculate the AR by using the proposed formulation and the FE models.250

The amplitude ratio and the total wavefields at fr = 8 Hz are shown in Fig. C.2. It can be clearly seen that

the analytical amplitude ratio AR perfectly matches in low-frequency region, and in this case also the resonant
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frequency of resonators are in very good agreement (Fig. C.2a-b and Fig. C.2e-f). Also the analytical wavefield

in Fig. C.2c is in excellent agreement with the one in Fig. C.2d obtained from the FE model.

Despite the fact that the tunnel exists in a practical subway scenario, our formulation still accurately captures255

the amplitude ratio in low-frequency range. Thus, the engineering applicability of our formulation is confirmed

by this Appendix.

Appendix D. Extended formulation for a resonator with two degrees of freedom

In order to account for both the vertical and horizontal degrees of freedom, the resonator is modeled using a

mass and two springs, as illustrated in Fig. D.1. By following the same derivation procedure outlined in Section

3, we obtain the vertical and horizontal force amplitudes, denoted as Qnx and Qnz, respectively, for the nth

resonator. These force amplitudes are obtained from the dynamic equilibrium equations:

Qnx = Znxu(xrn, zrn) =
mnω

2(iωcnx + mnωrnx
2)

−mnω2 + iωcnx + mnωrnx
2
u(xrn, zrn) n = 1, ..., N, (D.1a)

Qnz = Znzw(xrn, zrn) =
mnω

2(iωcnz + mnωrnz
2)

−mnω2 + iωcnz + mnωrnz
2
w(xrn, zrn) n = 1, ..., N, (D.1b)

with ωrnx = 2πfrnx =
√
knx/mn, ωrnz = 2πfrnz =

√
knz/mn, in which mn is the mass of the nth resonator,

knx and knz are the stiffnesses of the horizontal and vertical springs respectively, cnx and cnz are the damping260

coefficients of the horizontal vertical springs, respectively.

mn

cnzknz

knx

cnx

u

w

Xmn, Zmn

Fig. D.1. Resonator with two degrees of freedom.

Then, the total wavefield in Eqs. (17) are replaced by:

u(x, z) = u0(x, z) +

N∑
n=1

QnxGux(x− xrn, z;hrn) +

N∑
n=1

QnzGuz(x− xrn, z;hrn) (D.2a)

w(x, z) = w0(x, z) +

N∑
n=1

QnxGwx(x− xrn, z;hrn) +

N∑
n=1

QnzGwz(x− xrn, z;hrn) (D.2b)

Accordingly, the displacements at the base of the jth resonator in Eq. (18) is rewritten as:

Z−1
jx Qjx = u0(xrj , zrj) +

N∑
n=1

QnxGux(xrj − xrn, zrj ;hrn) +

N∑
n=1

QnzGuz(xrj − xrn, zrj ;hrn) (D.3a)

Z−1
jz Qjz = w0(xrj , zrj) +

N∑
n=1

QnxGwx(xrj − xrn, zrj ;hrn) +

N∑
n=1

QnzGwz(xrj − xrn, zrj ;hrn) (D.3b)
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The matrix form of Eqs. (D.3) is similar to Eq. (D.4):

Q = A−1D0 (D.4)

where Q = [Qx,Qz]T is the vector of the sought resonator force amplitudes, with horizontal force Qx =

[Q1x, Q2x, · · · , QNx]T and vertical force Qz = [Q1z, Q2z, · · · , QNz]T . It should be noted that the size of A and265

D0 here turn to 2N × 2N and 2N × 1, respectively:

A =

 A11 A12

A21 A22

 , D0 = [U0,W0]T (D.5)

with

A11 =


Z−1
1x −Gux(0, zr1;h1) −Gux(xr1 − xr2, zr1;h2) · · · −Gux(xr1 − xrN , zr1;hN )

−Gux(xr2 − xr1, zr2;h1) Z−1
2x −Gux(0, zr2;h2) · · · −Gux(xr2 − xrN , zr2;hN )

...
...

. . .
...

−Gux(xrN − xr1, zrN ;h1) −Gux(xrN − xr2, zrN ;h2) · · · Z−1
Nx −Gux(0, zrN ;hN )

 , (D.6a)

A12 =


−Guz(0, zr1;h1) −Guz(xr1 − xr2, zr1;h2) · · · −Guz(xr1 − xrN , zr1;hN )

−Guz(xr2 − xr1, zr2;h1) −Guz(0, zr2;h2) · · · −Guz(xr2 − xrN , zr2;hN )
...

...
. . .

...

−Guz(xrN − xr1, zrN ;h1) −Guz(xrN − xr2, zrN ;h2) · · · −Guz(0, zrN ;hN )

 , (D.6b)

A21 =


−Gwx(0, zr1;h1) −Gwx(xr1 − xr2, zr1;h2) · · · −Gwx(xr1 − xrN , zr1;hN )

−Gwx(xr2 − xr1, zr2;h1) −Gwx(0, zr2;h2) · · · −Gwx(xr2 − xrN , zr2;hN )
...

...
. . .

...

−Gwx(xrN − xr1, zrN ;h1) −Gwx(xrN − xr2, zrN ;h2) · · · −Gwx(0, zrN ;hN )

 , (D.6c)

A22 =


Z−1
1z −Gwz(0, zr1;h1) −Gwz(xr1 − xr2, zr1;h2) · · · −Gwz(xr1 − xrN , zr1;hN )

−Gwz(xr2 − xr1, zr2;h1) Z−1
2z −Gwz(0, zr2;h2) · · · −Gwz(xr2 − xrN , zr2;hN )

...
...

. . .
...

−Gwz(xrN − xr1, zrN ;h1) −Gwz(xrN − xr2, zrN ;h2) · · · Z−1
Nz −Gwz(0, zrN ;hN )

 , (D.6d)

U0 =
[
u0(xr1, zr1) u0(xr2, zr2) · · · u0(xrN , zrN )

]
. (D.7a)

W0 =
[
w0(xr1, zr1) w0(xr2, zr2) · · · w0(xrN , zrN )

]
. (D.7b)

The Green’s functions Guz and Gwz are already given by Eqs. (11), and we would supplement here the270

functions of Gux and Gwx:

G′(x, z;h) =
1

2πµa

∫ ∞

−∞

1

ks
2γ1

∆′Y sin
ka

2
eikx dk, (D.8)
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where G′(x, z;h) = [Gux, Gwx]T , Y = [epz, e−pz, eqz, e−qz]T , and ∆′ is equal to:

∆′ =

 k
p (ehpγ2 + 4ehqpqβ) k

p ehpγ1
q
k (4ehpk2β + ehqγ2) − q

k ehqγ1

−i(ehpγ2 + 4ehqpqβ) iehpγ1 −i(4ehpk2β + ehqγ2) −iehqγ1

 (D.9)

if z > h and equals to the following item if z ≤ h:

∆′ =

 k
p (ehpγ2 + e−hpγ1 + 4ehqpqβ) 0 q

k (4ehpk2β + ehqγ2 − e−hqγ1) 0

−i(ehpγ2 + e−hpγ1 + 4ehqpqβ) 0 −i(4ehpk2β + ehqγ2 − e−hqγ1) 0

 (D.10)
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