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A B S T R A C T

Space–time modulation of material parameters offers new possibilities for manipulating elastic
wave propagation by exploiting time-reversal symmetry breaking. Here, we propose and
validate a general framework based on the multiple scattering theory to model space–time
modulated elastic metamaterials, namely elastic waveguides equipped with modulated res-
onators. The formulation allows to consider an arbitrary distribution of resonators with a generic
space–time modulation profile and compute the wavefield within and outside the resonators’
region. Under appropriate assumptions, the same framework can be exploited to predict the
waveguide dispersion relation. We demonstrate the capabilities of our formulation by revisiting
the dynamics of two representative space–time modulated systems, e.g., the non-reciprocal
propagation of (i) flexural waves along a metabeam and (ii) surface acoustic waves along a
metasurface. Given its flexibility, the proposed method can facilitate the design of novel devices
able to realize unidirectional transport of elastic energy for vibration isolation, signal processing
and energy harvesting purposes.

. Introduction

In the last decade, the research on active (or activated) materials has fueled the discovery of novel dynamic functionalities
o design devices for vibrations and waves control [1,2]. Active materials are often characterized by constitutive properties that
re modulated in space and time according to an external energy source. The study of such space–time modulated materials was
riginally pioneered in optics [3] and, shortly afterward, extended to acoustics [4,5] and elasticity [1,6]. Elastic waves propagating
n these space–time varying media are of particular interest since the modulation can create a directional bias that breaks the
ime-reversal symmetry. Breaking reciprocity allows to realize rich and unconventional phenomena, including, but not limited to,
nidirectional wave propagation, adiabatic energy pumping [7,8], frequency conversion [9]. These effects can be leveraged to
esign novel devices such as acoustic rectifiers [10], circulators [11], and topological insulators [12], which can find applications
n acoustic communication, signal processing, energy harvesting and vibration isolation [13–15].

In the context of elastodynamics, space–time modulation can be achieved by following two strategies. The first one relies on
bias directly introduced in the waveguide, as a modulation of the elastic and/or mass properties, so to obtain a modulated

hononic crystal [16–18]. The second approach utilizes space–time modulated mechanical oscillators attached to a non-modulated
aveguide [19–21] to obtain a modulated elastic metamaterial. Both strategies proved to be technically feasible by a series of
xperimental works where programmable electric components were used to modulate the media/oscillators [9,22–25]. Nonetheless,
odulated metamaterials, compared to their phononic counterpart, are easier to realize, since only the resonant elements need to

e modulated, and support non-reciprocal effects at sub-wavelength scales.
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Besides the numerous examples of modulated waveguides [26,27], most of the conducted studies rely on the use of numerical
imulations, typically developed via finite element (FE) or finite difference (FD) algorithms, to describe the expected non-reciprocal
ffects. Nonetheless, numerical simulations are always bounded by their computational cost which inherently limits the development
f design and optimization studies. Computationally inexpensive analytical tools for modulated media are thus desirable, not
nly to reduce the computational burden but also to gain a deeper understanding of non-reciprocal effects. Currently, analytical
ormulations for time-modulated systems are mainly used to predict the dispersion relations of both discrete [28–30] and continuous
edia [17,19–24].

Although knowledge of the dispersion relations provides physical insights into the existence of directional band gaps, evidence
f non-reciprocal phenomena can be found only by computing transient or steady-state responses across finite modulated systems.
o the best of our knowledge, analytical methods for the computation of wavefields and transmission/reflection coefficients are
urrently limited to one-dimensional (1D) problems [18,22,31,32]. Additionally, there is no unified framework that enables the
omputation of both the dispersion relation and the wavefield of a generic modulated system.

To fill this gap, we propose a generalized multiple scattering formulation able to model the dynamic response of space–time
odulated resonators coupled to a generic elastic waveguide. As observed in experiments, space–time modulated resonators can

enerate scattered fields at lower and higher harmonics with respect to the excitation frequency [22]. To capture this response,
e first describe the coupling between the vibrating resonators and the waveguide motion with an ad-hoc impedance operator
ble to account for the expected additional harmonics. Then, we compute the scattered fields in the waveguide by means of Green’s
unctions. Finally, we set our multiple scattering scheme to couple the incident and scattered fields and compute the related unknown
mplitudes by imposing proper boundary conditions at each resonator base. The proposed formulation allows us to investigate the
ynamic of an arbitrary number 𝑁 of resonators with an arbitrary spatial–temporal modulation profile, since all the space–time
arying oscillators can be described individually. Additionally, by introducing appropriate assumptions, the same formulation can
e used to derive the related dispersion equations.

The details of the methodology and its modeling capabilities are discussed in what follows. In particular, in Section 2 we describe
he proposed general multiple scattering formulation for the computation of the wavefield and the dispersion relation of waveguides
oupled with space–time-modulated resonators. In Section 3, we apply the formulation to model flexural waves in a beam and
ayleigh waves on a substrate, both coupled with an array of modulated surface resonators. For both scenarios, we show the
apability of the formulation to predict non-reciprocal guided waves. Finally, we derive conclusions and outlook of the work in
ection 4.

. Theoretical formulation

.1. Statement of the problem

We propose a general analytical framework to model a cluster of space–time-modulated oscillators attached to a given elastic
aveguide (Fig. 1). The formulation includes the following three steps: (i) the definition of the elastic force exerted on the waveguide
y a time-modulated resonator when excited by a base motion; (ii) the use of Green’s functions to describe the scattered wavefields
enerated by the resonators in the waveguide; (iii) the construction of a multiple scattering formulation to couple the waveguide
ith an arbitrary number of time-modulated resonators. The approach allows computing the lower- and higher-order scattered
armonics, generated by the collective response of the time-modulated resonators, and responsible for the non-reciprocal wave
otion in the waveguide.

First, we present the framework in its most general form, i.e. considering a finite array of time-modulated oscillators with
echanical properties obeying the same modulation period 𝑇𝑚 and arbitrarily arranged over the waveguide surface. Then, we show
ow to derive the waveguide dispersion relation by introducing appropriate assumptions, e.g., considering an infinite array of
dentical resonators regularly arranged along the elastic support.

.2. Elastic force of a time-modulated resonator

Let us recall the dynamics of the generic 𝑛th resonator attached to the waveguide surface at the location 𝐫𝑛 (see Fig. 1). The
resonator has a mass 𝑚𝑛, damping coefficient 𝑐𝑛, and time-modulated spring stiffness 𝑘𝑛(𝑡):

𝑘𝑛(𝑡) = 𝑘𝑛(𝑡 + 𝑇𝑚), (1)

here 𝑇𝑚 is the modulation time period. The governing equation of the 𝑛th resonator motion reads:

𝑚𝑛
𝜕2𝑊𝑛(𝑡)

𝜕𝑡2
+ 𝑐𝑛

[

𝜕𝑊𝑛(𝑡)
𝜕𝑡

−
𝜕𝑤𝑛(𝑡)
𝜕𝑡

]

+ 𝑘𝑛(𝑡)[𝑊𝑛(𝑡) −𝑤𝑛(𝑡)] = 0, (2)

in which 𝑊𝑛(𝑡) = 𝑊 (𝐫𝑛, 𝑡) denotes the mass vertical displacement while 𝑤𝑛(𝑡) = 𝑤(𝐫𝑛, 𝑡) is the vertical motion at the resonator base.
Accordingly, the point force 𝐹𝑛(𝑡) = 𝐹 (𝐫𝑛, 𝑡) exerted by the resonator onto the waveguide surface reads:

𝐹 (𝑡) = −𝑚
𝜕2𝑊𝑛(𝑡) . (3)
2

𝑛 𝑛 𝜕𝑡2
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Fig. 1. Schematics of space–time modulated resonators laying over an elastic waveguide.

Since the modulated stiffness 𝑘𝑛(𝑡) in Eq. (1) is time-periodic, we express it in Fourier series form as:

𝑘𝑛(𝑡) =
∞
∑

𝑗=−∞
�̂�(𝑗)𝑛 ei𝑗𝜔𝑚𝑡, 𝑗 ∈ Z, (4)

in which i =
√

−1 is the imaginary unit, 𝜔𝑚 = 2𝜋∕𝑇𝑚 is the modulation frequency, and where the Fourier coefficients are defined
as:

�̂�(𝑗)𝑛 =
𝜔𝑚
2𝜋 ∫

𝜋
𝜔𝑚

−𝜋
𝜔𝑚

𝑘𝑛(𝑡)e−i𝑗𝜔𝑚𝑡 d𝑡. (5)

As we will see in the next section, the motion along the waveguide excited by a harmonic (ei𝜔𝑡) incident field, contains several
lower- and higher-order harmonics generated by the scattering of the time-modulated mechanical resonators. As a result, the vertical
motion at the resonator base, namely the motion at the waveguide surface, can be written as [31]:

𝑤𝑛(𝑡) =
∞
∑

ℎ=−∞
�̂�(ℎ)

𝑛 ei(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z, (6)

so that the solution of Eq. (2) is sought in the form [18,22,23]:

𝑊𝑛(𝑡) =
∞
∑

ℎ=−∞
�̂� (ℎ)

𝑛 ei(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z. (7)

Substituting Eqs. (4), (6) and (7) into Eq. (2), yields:
∞
∑

ℎ=−∞
[−𝑚𝑛(𝜔 + ℎ𝜔𝑚)2 + i𝑐𝑛(𝜔 + ℎ𝜔𝑚)]�̂� (ℎ)

𝑛 eiℎ𝜔𝑚𝑡 +
∞
∑

ℎ=−∞

∞
∑

𝑗=−∞
�̂�(𝑗)𝑛 �̂� (ℎ)

𝑛 ei(𝑗+ℎ)𝜔𝑚𝑡

=
∞
∑

ℎ=−∞
i𝑐𝑛(𝜔 + ℎ𝜔𝑚)�̂�(ℎ)

𝑛 eiℎ𝜔𝑚𝑡 +
∞
∑

ℎ=−∞

∞
∑

𝑗=−∞
�̂�(𝑗)𝑛 �̂�(ℎ)

𝑛 ei(𝑗+ℎ)𝜔𝑚𝑡.

(8)

Exploiting the orthogonality of harmonic functions, we simplify Eq. (8) by multiplying it for 𝜔𝑚e−i𝑝𝜔𝑚𝑡∕(2𝜋), and integrating it
from −𝜋∕𝜔𝑚 to 𝜋∕𝜔𝑚, to obtain:

[−𝑚𝑛(𝜔 + 𝑝𝜔𝑚)2 + i𝑐𝑛(𝜔 + 𝑝𝜔𝑚)]�̂� (𝑝)
𝑛 +

∞
∑

�̂�(𝑗)𝑛 �̂� (𝑝−𝑗)
𝑛 = i𝑐𝑛(𝜔 + 𝑝𝜔𝑚)�̂�(𝑝)

𝑛 +
∞
∑

�̂�(𝑗)𝑛 �̂�(𝑝−𝑗)
𝑛 , 𝑝 ∈ Z. (9)
3

𝑗=−∞ 𝑗=−∞
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By truncating the orders from −𝑃 to 𝑃 , Eq. (9) can be reorganized in matrix form as:

𝐌𝑛�̂�𝑛 = 𝐐𝑛�̂�𝑛, (10)

with:

𝐌𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̂�(−𝑃 )
𝑛 �̂�(−1)𝑛 �̂�(−2)𝑛 ⋯ �̂�(−2𝑃 )𝑛
�̂�(1)𝑛 �̂�(−𝑃+1)

𝑛 �̂�(−1)𝑛 ⋯ �̂�(−2𝑃+1)𝑛
�̂�(2)𝑛 �̂�(1)𝑛 �̂�(−𝑃+2)

𝑛 ⋯ �̂�(−2𝑃+2)𝑛
⋮ ⋮ ⋮ ⋱ ⋮

�̂�(2𝑃 )𝑛 �̂�(2𝑃−1)𝑛 �̂�(2𝑃−2)𝑛 ⋯ �̂�(𝑃 )
𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,𝐐𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑞(−𝑃 )𝑛 �̂�(−1)𝑛 �̂�(−2)𝑛 ⋯ �̂�(−2𝑃 )𝑛
�̂�(1)𝑛 𝑞(−𝑃+1)𝑛 �̂�(−1)𝑛 ⋯ �̂�(−2𝑃+1)𝑛
�̂�(2)𝑛 �̂�(1)𝑛 𝑞(−𝑃+2)𝑛 ⋯ �̂�(−2𝑃+2)𝑛
⋮ ⋮ ⋮ ⋱ ⋮

�̂�(2𝑃 )𝑛 �̂�(2𝑃−1)𝑛 �̂�(2𝑃−2)𝑛 ⋯ 𝑞(𝑃 )𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

�̂�𝑛 = [�̂� (−𝑃 )
𝑛 , �̂� (−𝑃+1)

𝑛 ,… , �̂� (𝑃−1)
𝑛 , �̂� (𝑃 )

𝑛 ]𝑇 , �̂�𝑛 = [�̂�(−𝑃 )
𝑛 , �̂�(−𝑃+1)

𝑛 ,… , �̂�(𝑃−1)
𝑛 , �̂�(𝑃 )

𝑛 ]𝑇 ,

(11)

n which �̂�(𝑗)
𝑛 = �̂�(0)𝑛 − 𝑚𝑛(𝜔 + 𝑗𝜔𝑚)2 + i𝑐𝑛(𝜔 + 𝑗𝜔𝑚), and 𝑞(𝑗)𝑛 = �̂�(0)𝑛 + i𝑐𝑛(𝜔 + 𝑗𝜔𝑚).

The vertical force at the base of the resonator can thus be obtained by substituting Eq. (7) into Eq. (3):

𝐹𝑛(𝑡) = −𝑚𝑛
𝜕2

𝜕𝑡2

∞
∑

ℎ=−∞
�̂� (ℎ)

𝑛 ei(𝜔+ℎ𝜔𝑚)𝑡 = 𝑚𝑛

∞
∑

ℎ=−∞
(𝜔 + ℎ𝜔𝑚)2�̂� (ℎ)

𝑛 ei(𝜔+ℎ𝜔𝑚)𝑡 =
∞
∑

ℎ=−∞
𝐹 (ℎ)
𝑛 ei(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z, (12)

where the 𝐹 (ℎ)
𝑛 coefficients from ℎ = −𝑃 to ℎ = 𝑃 , collected in the vector �̂�𝑛, read:

�̂�𝑛 = 𝐃𝑛�̂�𝑛 = 𝐃𝑛𝐌−1
𝑛 𝐐𝑛�̂�𝑛 =∶ 𝐙𝑛�̂�𝑛, (13)

with:

�̂�𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐹 (−𝑃 )
𝑛

𝐹 (−𝑃+1)
𝑛
⋮

𝐹 (𝑃 )
𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐃𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚𝑛(𝜔 − 𝑃𝜔𝑚)2 0 ⋯ 0
0 𝑚𝑛[𝜔 + (−𝑃 + 1)𝜔𝑚]2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑚𝑛(𝜔 + 𝑃𝜔𝑚)2

⎤

⎥

⎥

⎥

⎥

⎦

. (14)

In Eq. (13), the matrix 𝐙𝑛 is the impedance operator which relates the resonator base motion to the resonator base force. It can
e observed that the force exerted by each modulated resonator on the elastic substrate comprises multiple harmonics (𝜔 + ℎ𝜔𝑚).
n the next section, we discuss how these forces generate the related multiple scattered wavefields.

.3. Elastic wave field of a finite cluster of modulated resonators

We now consider an arbitrary distribution of 𝑁 space–time modulated resonators arranged on top of a given elastic waveguide.
e assume that the resonators have an identical stiffness modulation frequency 𝜔𝑚. When an incident wave field 𝐮0 = [𝑢0, 𝑣0, 𝑤0]

impinges the bases of such resonators, it triggers their vibrations which, in turn, generate scattered waves in the waveguide.
Following a standard multiple scattering description [33–39], the total wave field 𝐮 = (𝑢, 𝑣,𝑤) at the generic position 𝐫 along
the waveguide can be expressed as the summation of the incident and scattered wave fields of the 𝑁 resonators:

𝑢(𝐫, 𝑡) = 𝑢0(𝐫, 𝑡) +
𝑁
∑

𝑛=1
𝐹𝑛(𝑡)𝐺𝑢(𝐫 − 𝐫𝑛), (15a)

𝑣(𝐫, 𝑡) = 𝑣0(𝐫, 𝑡) +
𝑁
∑

𝑛=1
𝐹𝑛(𝑡)𝐺𝑣(𝐫 − 𝐫𝑛), (15b)

𝑤(𝐫, 𝑡) = 𝑤0(𝐫, 𝑡) +
𝑁
∑

𝑛=1
𝐹𝑛(𝑡)𝐺𝑤(𝐫 − 𝐫𝑛), (15c)

where 𝐺𝑢, 𝐺𝑣, 𝐺𝑤 are the related Green’s functions in terms of displacements along 𝑥, 𝑦, 𝑧. As in the previous section, we express the
displacements of Eqs. (15a), (15b), (15c) accounting for the multiple harmonics:

∞
∑

ℎ=−∞
�̂�(ℎ)(𝐫)ei(𝜔+ℎ𝜔𝑚)𝑡 =

∞
∑

ℎ=−∞
�̂�(ℎ)0 (𝐫)ei(𝜔+ℎ𝜔𝑚)𝑡 +

𝑁
∑

𝑛=1

∞
∑

ℎ=−∞
𝐹 (ℎ)
𝑛 �̂�(ℎ)

𝑢 (𝐫 − 𝐫𝑛, 𝜔 + ℎ𝜔𝑚)ei(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z. (16a)

∞
∑

ℎ=−∞
�̂�(ℎ)(𝐫)ei(𝜔+ℎ𝜔𝑚)𝑡 =

∞
∑

ℎ=−∞
�̂�(ℎ)0 (𝐫)ei(𝜔+ℎ𝜔𝑚)𝑡 +

𝑁
∑

𝑛=1

∞
∑

ℎ=−∞
𝐹 (ℎ)
𝑛 �̂�(ℎ)

𝑣 (𝐫 − 𝐫𝑛, 𝜔 + ℎ𝜔𝑚)ei(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z. (16b)

∞
∑

ℎ=−∞
�̂�(ℎ)(𝐫)ei(𝜔+ℎ𝜔𝑚)𝑡 =

∞
∑

ℎ=−∞
�̂�(ℎ)

0 (𝐫)ei(𝜔+ℎ𝜔𝑚)𝑡 +
𝑁
∑

𝑛=1

∞
∑

ℎ=−∞
𝐹 (ℎ)
𝑛 �̂�(ℎ)

𝑤 (𝐫 − 𝐫𝑛, 𝜔 + ℎ𝜔𝑚)ei(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z. (16c)

Truncating the harmonic terms from ℎ = −𝑃 to ℎ = 𝑃 , Eqs. (16a), (16b), (16c) can be rewritten as:

�̂�(𝐫) = �̂�0(𝐫) +
𝑁
∑

�̂�𝑢(𝐫 − 𝐫𝑛)�̂�𝑛, (17a)
4

𝑛=1
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�̂�(𝐫) = �̂�0(𝐫) +
𝑁
∑

𝑛=1
�̂�𝑣(𝐫 − 𝐫𝑛)�̂�𝑛, (17b)

�̂�(𝐫) = �̂�0(𝐫) +
𝑁
∑

𝑛=1
�̂�𝑤(𝐫 − 𝐫𝑛)�̂�𝑛, (17c)

ith:

�̂�(𝐫) =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(−𝑃 )(𝐫)
�̂�(−𝑃+1)(𝐫)

⋮
�̂�(𝑃 )(𝐫)

⎤

⎥

⎥

⎥

⎥

⎦

, �̂�0(𝐫) =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(−𝑃 )
0 (𝐫)

�̂�(−𝑃+1)
0 (𝐫)

⋮
�̂�(𝑃 )
0 (𝐫)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝜑 = 𝑢, 𝑣,𝑤.

�̂�𝜑(𝐫 − 𝐫𝑛) =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(−𝑃 )
𝜑 (𝐫 − 𝐫𝑛, 𝜔 − 𝑃𝜔𝑚) 0 ⋯ 0

0 �̂�(−𝑃+1)
𝜑 (𝐫 − 𝐫𝑛, 𝜔 − 𝑃𝜔𝑚 + 𝜔𝑚) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ �̂�(𝑃 )

𝜑 (𝐫 − 𝐫𝑛, 𝜔 + 𝑃𝜔𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

,

and where �̂�0 has non-zero components only for the incident field 𝜑0 = 𝑢0, 𝑣0, 𝑤0:

�̂�(𝑗)
0 =

{

𝜑0 𝑗 = 0
0 𝑗 ≠ 0

, 𝑗 ∈ [−𝑃 ,−𝑃 + 1,… , 𝑃 ] (18)

Note that in Eqs. (17a), (17b), (17c) the total displacement components �̂�, �̂�, �̂� and the elastic force coefficients �̂�𝑛 are unknown.
Nonetheless, following a classical multiple scattering approach, we can obtain the coefficients �̂�𝑛 by setting boundary conditions at
esonator bases. In particular, we substitute Eq. (13) into Eq. (17c) and specify it at the resonator location 𝐫𝑚:

𝐙−1
𝑚 �̂�𝑚 = �̂�0(𝐫𝑚) +

𝑁
∑

𝑛=1
�̂�𝑤(𝐫𝑚 − 𝐫𝑛)�̂�𝑛, 𝑛, 𝑚 = 1,… , 𝑁. (19)

Eq. (19) leads to a system of 𝑚 = 𝑁 equations that we can recast in matrix form as:

𝐀𝐗 = 𝐁, (20)

ith:

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐙−1
1 − �̂�𝑤(𝟎) −�̂�𝑤(𝐫1 − 𝐫2) ⋯ −�̂�𝑤(𝐫1 − 𝐫𝑁 )

−�̂�𝑤(𝐫2 − 𝐫1) 𝐙−1
2 − �̂�𝑤(𝟎) ⋯ −�̂�𝑤(𝐫2 − 𝐫𝑁 )

⋮ ⋮ ⋱ ⋮
−�̂�𝑤(𝐫𝑁 − 𝐫1) −�̂�𝑤(𝐫𝑁 − 𝐫2) ⋯ 𝐙−1

𝑁 − �̂�𝑤(𝟎)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐗 =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�1
�̂�2
⋮
�̂�𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�0(𝐫1)
�̂�0(𝐫2)

⋮
�̂�0(𝐫𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

. (21)

It follows that for a given incident wave field �̂�0, the vector 𝐗 of the force amplitudes �̂�𝑛 can be computed as 𝐗 = 𝐀−1𝐁, and
he total wave field in the waveguide evaluated by using Eqs. (15a), (15b), (15c).

In addition, we will show in the following subsection that Eq. (20), under appropriate assumptions, allows to derive the dispersion
elation of time-modulated waveguides.

.4. Dispersion relation

We here consider an infinite array of equally spaced resonators, arranged atop an elastic waveguide (see Fig. 2) at lattice distance
. We restrict our interest to oscillators with identical mass and with spring constant modulated in time and space with a wave-like
odulation of period 𝑇𝑚 = 2𝜋∕𝜔𝑚 and wavelength 𝜆𝑚 = 2𝜋∕𝜅𝑚, whose general form reads:

𝑘(𝑥, 𝑡) = 𝑘(𝑥 + 𝜆𝑚, 𝑡 + 𝑇𝑚). (22)

As before, we express 𝑘(𝑥, 𝑡) in a Fourier series form:

𝑘(𝑥, 𝑡) =
∞
∑

𝑗=−∞
�̂�(𝑗)ei𝑗(𝜔𝑚𝑡−𝜅𝑚𝑥), 𝑗 ∈ Z, (23)

where the Fourier coefficients are computed as:

�̂�(𝑗) =
𝜅𝑚
2𝜋

𝜔𝑚
2𝜋 ∫

𝜋
𝜅𝑚

−𝜋
𝜅𝑚

∫

𝜋
𝜔𝑚

−𝜋
𝜔𝑚

𝑘(𝑥, 𝑡)e−i𝑗(𝜔𝑚𝑡−𝜅𝑚𝑥) d𝑥d𝑡. (24)

As discussed in [21,31], a stable response of the modulated system requires each modulation amplitude �̂�(𝑗)(𝑗 ≠ 0) to be
sufficiently small with respect to the static stiffness �̂�(0). Under this assumption, for the assumed infinite (𝑁 → ∞) periodic array of
identical resonators, the scattering Eqs. (19) are the same at any location 𝑥𝑚 and satisfy:

𝐙−1�̂� =
𝑁
∑

�̂�𝑤(𝑥𝑛)�̂�(𝑥𝑛) =
∞
∑

�̂�𝑤(𝑥𝑛)�̂�(𝑥𝑛) (25)
5
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Fig. 2. Schematic of wave propagation in space–time modulated (a) metabeam and (b) metasurface.

where 𝑥𝑚 has been conveniently set equal to 0.
Following the effective medium approach [40–42], namely considering the lattice spacing 𝑎 much smaller than the characteristic

wavelength, we approximate the discrete point force as an average line load. As a result, the total vertical displacement at the generic
resonator base can be computed as:

𝐙−1�̂� = 1
𝑎

∞
∑

𝑛=−∞∫

𝑥𝑛+𝑎∕2

𝑥𝑛−𝑎∕2
�̂�𝑤(𝑥)�̂�(𝑥) d𝑥 = 1

𝑎 ∫

∞

−∞
�̂�𝑤(𝑥)�̂�(𝑥) d𝑥. (26)

Due to the space–time modulation of the resonator properties, we can express the force in Eq. (12) in the form:

𝐹 (𝑥, 𝑡) =
∞
∑

ℎ=−∞
𝐹 (ℎ)e−i(𝜅+ℎ𝜅𝑚)𝑥+i(𝜔+ℎ𝜔𝑚)𝑡, ℎ ∈ Z. (27)

Substituting Eq. (27) into Eq. (26) and truncating the orders from ℎ = −𝑃 to ℎ = 𝑃 we obtain:

𝑎𝐙−1

⎡

⎢

⎢

⎢

⎢

⎣

𝐹 (−𝑃 )

𝐹 (−𝑃+1)

⋮
𝐹 (𝑃 )

⎤

⎥

⎥

⎥

⎥

⎦

=

∫

∞

−∞

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(−𝑃 )
𝑤 (𝑥, 𝜔 − 𝑃𝜔𝑚) 0 ⋯ 0

0 �̂�(−𝑃+1)
𝑤 (𝑥, 𝜔 − 𝑃𝜔𝑚 + 𝜔𝑚) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ �̂�(𝑃 )

𝑤 (𝑥, 𝜔 + 𝑃𝜔𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐹 (−𝑃 )e−i(𝜅−𝑃𝜅𝑚)𝑥

𝐹 (−𝑃+1)e−i(𝜅−𝑃𝜅𝑚+𝜅𝑚)𝑥

⋮
𝐹 (𝑃 )e−i(𝜅+𝑃𝜅𝑚)𝑥

⎤

⎥

⎥

⎥

⎥

⎦

d𝑥. (28)

Some minor algebra yields the following system of homogeneous equations:

⎛

⎜

⎜

⎜

⎜

⎝

𝑎𝐙−1 −

⎡

⎢

⎢

⎢

⎢

⎣

�̃�(𝜅 − 𝑃𝜅𝑚, 𝜔 − 𝑃𝜔𝑚) 0 ⋯ 0
0 �̃�(𝜅 − 𝑃𝜅𝑚 + 𝜅𝑚, 𝜔 − 𝑃𝜔𝑚 + 𝜔𝑚) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ �̃�(𝜅 + 𝑃𝜅𝑚, 𝜔 + 𝑃𝜔𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎢

⎣

𝐹 (−𝑃 )

𝐹 (−𝑃+1)

⋮
𝐹 (𝑃 )

⎤

⎥

⎥

⎥

⎥

⎦

= 𝟎, (29)

in which �̃�(𝜅 + 𝑃𝜅𝑚, 𝜔 + 𝑃𝜔𝑚) is 𝑃 th order Green’s function in space-domain which is obtained as:
∞
�̂�(𝑃 )
𝑤 (𝑥, 𝜔 + 𝑃𝜔𝑚)e−i(𝜅+𝑃𝜅𝑚)𝑥 d𝑥 = �̃�(𝜅 + 𝑃𝜅𝑚, 𝜔 + 𝑃𝜔𝑚). (30)
6
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Non-trivial solutions of Eq. (29) provide the dispersion relation:

̃(𝜅, 𝜔) ∶=

|

|

|

|

|

|

|

|

|

|

𝑎𝐙−1 −

⎡

⎢

⎢

⎢

⎢

⎣

�̃�(𝜅 − 𝑃𝜅𝑚, 𝜔 − 𝑃𝜔𝑚) 0 ⋯ 0
0 �̃�(𝜅 − 𝑃𝜅𝑚 + 𝜅𝑚, 𝜔 − 𝑃𝜔𝑚 + 𝜔𝑚) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ �̃�(𝜅 + 𝑃𝜅𝑚, 𝜔 + 𝑃𝜔𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

|

|

|

|

|

|

|

= 0. (31)

3. Examples and applications

To show the capabilities of our formulation, we consider two space–time-modulated waveguides that have been thoroughly
discussed in previous works [19–22]. We begin our investigation by considering an Euler beam coupled with an array of modulated
resonators. For this example, we validate our approach against the results of the Transfer Matrix Method (TMM). For the sake of
completeness we report in Appendix A the full derivation of the adopted TMM [22]. As a second example, we consider a 2D elastic
half-space coupled to modulated resonators. For this configuration, given the absence of closed-form formulations, we compare our
findings vs. those obtained via finite element simulations, as in Ref. [21].

3.1. Modeling non-reciprocal flexural waves in a space–time modulated beam

We consider an Euler–Bernoulli beam equipped with an array of undamped resonators, see Fig. 2a, modulated in a wave-like
fashion according to the relationship [19,22,28,29]:

𝑘(𝑡, 𝑥) = 𝑘0 + 𝑘𝑎 cos(𝜔𝑚𝑡 − 𝜅𝑚𝑥), (32)

where 𝑘0 denotes the static stiffness, 𝑘𝑎 the amplitude of the modulation, 𝜔𝑚 the modulation angular frequency, 𝜅𝑚 the modulation
wavenumber. At any location 𝑥𝑛, the modulated stiffness is time-periodic and its non-zero Fourier coefficients read:

�̂�(0)𝑛 = 𝑘0, �̂�(−1)𝑛 = 1
2
𝑘𝑎ei𝜅𝑚𝑥𝑛 , �̂�(1)𝑛 = 1

2
𝑘𝑎e−i𝜅𝑚𝑥𝑛 , (33)

s �̂�(𝑗)𝑛 = 0 for |𝑗| > 1. For the numerical example, we consider the mechanical parameters originally adopted in Ref. [19], i.e., a
esonator mass 𝑚0 = 𝜌𝑎, where 𝜌 is the mass density of the beam and  is the cross-section area of the beam. Similarly, the

modulation frequency is set as 𝜔𝑚 = 0.25𝜔0 and modulation amplitude as 𝑘𝑎 = 0.2𝑘0, in which 𝜔0 is the resonance frequency of
resonators and 𝑘0 = 𝑚0𝜔2

0 is the unmodulated stiffness; the modulation wavenumber is 𝜅𝑚 = 1.25𝜅0, where 𝜅0 = 4
√

𝑘0∕(𝑎),  the
bending stiffness of the beam.

3.1.1. Dispersion relation
According to the Euler–Bernoulli beam theory, the 𝑃 th order governing equation under the action of a harmonic point force can

be written as:

 𝜕4𝑤
𝜕𝑥4

+ 𝜌 𝜕2𝑤
𝜕𝑡2

= 𝛿 (𝑥) ei𝜔𝑃 𝑡, 𝑃 ∈ Z. (34)

We Fourier transform Eq. (34) along the 𝑥 direction, and obtain the transformed 𝑃 th order Green’s function in space-domain as:

�̃�(𝜅𝑃 , 𝜔𝑃 ) =
1

𝜅4
𝑃 − 𝜌𝜔2

𝑃

, (35)

where the shifted frequency and wavenumber are defined as:

𝜔𝑃 = 𝜔 + 𝑃𝜔𝑚, 𝜅𝑃 = 𝜅 + 𝑃𝜅𝑚, 𝑃 ∈ Z. (36)

First, by setting 𝑃 = 0 we get the non-modulated impedance parameter 𝑍 from Eq. (13) as:

𝑍 =
𝑚0𝜔2

0𝜔
2

𝜔2
0 − 𝜔2

. (37)

Substituting Eqs. (35) and (37) into Eq. (31) we obtain immediately the dispersion relation of a non-modulated metabeam:

(𝜅, 𝜔) ∶= 𝜅4 −

(

𝜌 +
𝑚0
𝑎

1
1 − 𝜔2∕𝜔2

0

)

𝜔2 = 0. (38)

This dispersion equation is identical to the one obtained in Refs. [19,22] and matches the dispersion curve provided by FE
imulations, see Appendix B for details.

In the presence of modulation, scattered waves are expected when the phase matching condition is satisfied, i.e., (𝜅, 𝜔) =
(𝜅𝑃 , 𝜔𝑃 ) [29]. As an example, in Fig. 3a we show the original () and the two shifted dispersion curves (±1) for 𝑃 = ±1,
espectively. The phase matching condition is met at the intersections between the original curve and the shifted ones, namely at
he six magenta points marking the pairs (𝐴), (𝐵) and (𝐶). The asymmetric distribution of these intersections suggests the breaking
f time-reversal symmetry which, in turn, leads to direction-dependent phenomena within the metabeam [22].
7
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Fig. 3. (a) Dispersion curve of a non-modulated metabeam (black dashed lines) and its shifted analogs for 𝑃 = −1 and 𝑃 = 1, respectively. (b) Dispersion curves
(circular red markers) of a modulated metabeam in the proximity of the phase-matching pairs. Normalized transmission and reflection coefficients for flexural
waves propagating at 𝜔 = 1.66𝜔0 inside the directional band gap (pair 𝐴) for (c) a left and (d) a right traveling incident wave (star marker), respectively. For
comparison, results obtained by the transfer matrix method (TMM) are also provided (blue solid lines). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We now predict the dispersion properties of the modulated metabeam. To this purpose, we substitute Eq. (35) into Eq. (31) by
truncating waves to the first order (𝑃 = 1), which yields:

̃(𝜅, 𝜔) ∶=
|

|

|

|

|

|

|

𝑎𝐙−1 −
⎡

⎢

⎢

⎣

1∕[(𝜅 − 𝜅𝑚)4 − 𝜌(𝜔 − 𝜔𝑚)2] 0 0
0 1∕[𝜅4 − 𝜌𝜔2] 0
0 0 1∕[(𝜅 + 𝜅𝑚)4 − 𝜌(𝜔 + 𝜔𝑚)2]

⎤

⎥

⎥

⎦

|

|

|

|

|

|

|

= 0, (39)

with the impedance operator:

𝐙 = 𝑚0

⎡

⎢

⎢

⎣

(𝜔 − 𝜔𝑚)2 0 0
0 𝜔2 0
0 0 (𝜔 + 𝜔𝑚)2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑘0 − 𝑚0(𝜔 − 𝜔𝑚)2 0.5𝑘𝑎 0
0.5𝑘𝑎 𝑘0 − 𝑚0𝜔2 0.5𝑘𝑎

0 0.5𝑘𝑎 𝑘0 − 𝑚0(𝜔 + 𝜔𝑚)2

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

𝑘0 0.5𝑘𝑎 0
0.5𝑘𝑎 𝑘0 0.5𝑘𝑎

0 0.5𝑘𝑎 𝑘0

⎤

⎥

⎥

⎦

.

(40)

We remark that the coupled dispersion relation in Eq. (39) holds only near the above-mentioned intersections in Fig. 3a [30].
Thus, we compute and plot the coupled dispersion in the range of ±0.1𝜅 and ±0.1𝜔 around each crossing point, as shown in
Fig. 3b (red circular markers). For comparison, we also provide the unmodulated dispersion curve (solution of Eq. (38)) and its
shifted analogs on the same figure. As discussed in Ref. [19], in the vicinity of pair 𝐵 no directional band gap is generated, since
both modes have positive group velocities. Conversely, for contra-directional branches such as pairs 𝐴 and 𝐶, the repulsion effect
8
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between the branches can lead to narrow band directional gaps, for instance, around 𝐴. Within these gaps, waves are hindered
only when propagating along the specific direction (dictated by the sign of the related wavenumber); conversely, they are fully
transmitted when propagating along the opposite direction [29]. This directional wave-filtering is usually accompanied by the
generation of lower/higher-order waves at the phase-matched frequencies, thus resulting in a reflection combined with a frequency
conversion [19]. Evidence of these effects is provided in the next section where the steady-state solution of waves propagating along
a finite modulated metabeam is computed.

3.1.2. Steady-state solutions
To evidence the non-reciprocal behavior predicted by the dispersion analysis, we utilize Eq. (17c) to compute the steady-

state response of a finite metabeam. In particular, we are interested in verifying the non-reciprocal reflection/transmission in the
directional band gap at pair 𝐴 in Fig. 3. As an example, an array of 50 resonators is considered for these investigations. The response
s recorded at locations 𝑥𝑟 and 𝑥𝑡, and later used to compute the reflection and transmission values, respectively. In both scenarios,
he harmonic point source ei𝜔𝑡 and the receiver are located at distances of 𝑑𝑠 = 600𝑎 and 𝑑𝑟 = 300𝑎 from the closest oscillator.

According to the formulation discussed in Section 2, the impedance operators 𝐙1 to 𝐙𝑁 are obtained from Eq. (13) while the
th order Green’s function in Eq. (20) is obtained by applying the inverse Fourier transform to Eq. (35) as:

�̂�(𝑃 )
𝑤 (𝑥, 𝜔 + 𝑃𝜔𝑚) =

−1
4𝛽3𝑃

(e−𝛽𝑃 |𝑥| + i e−i𝛽𝑃 |𝑥|), (41)

where the 𝑃 th order wavenumber for flexural waves reads:

𝛽𝑃 =
4

√

𝜌(𝜔 + 𝑃𝜔𝑚)2


. (42)

Substituting Eq. (41) into Eq. (20) we obtain the elastic force coefficients �̂�𝑛, which are inserted into Eq. (17c) for the calculation
f the displacement components �̂�(𝑥) in the beam.

We begin our investigation by considering a left-propagating (𝜅 < 0) flexural wave at frequency 𝜔 = 1.66𝜔0, i.e., the intersection
at pair 𝐴 in Fig. 3a. The transmission coefficient, normalized with respect to the incident wave, |𝑤𝑡∕𝑤0| is displayed in Fig. 3c,
onsidering the scattered waves truncated at 𝑃 = ±5 order. As expected, left-propagating incident waves can travel through the
esonators almost undisturbed. Conversely, right-propagating (𝜅 > 0) waves at 𝜔 = 1.66𝜔0 undergo a strong reflection with different
requency contents, as shown by the reflection coefficient |𝑤𝑟∕𝑤0| in Fig. 3d. The largest response occurs at the first-order harmonic
1.66𝜔0−𝜔𝑚), with additional non-negligible components at the second (1.66𝜔0−2𝜔𝑚) and third-order harmonic (1.66𝜔0−3𝜔𝑚); the

amplitude of other higher-order harmonics is, instead, negligible. To verify the predictions provided by our approach, we compute
the same transmission and reflection coefficients using the transfer matrix method. The results, which are marked by solid lines in
Figs. 3c,d, are in excellent agreement with our analytical solutions (see more details on the transfer matrix method in Appendix A).

Additionally, we investigate the influence of scatterers number 𝑁 on the relative strength of the non-reciprocity. To this end,
we compute and display the reflection coefficient |𝑤𝑟∕𝑤0| for right-propagating incident waves at 𝜔 = 1.66𝜔0 by considering arrays
with an increasing number of oscillators from 𝑁 = 1 to 100, with all other parameters remaining constant. The amplitude of the
normalized reflection coefficient for the fundamental (𝜔 = 1.66𝜔0) and first higher-order harmonic (1.66𝜔0 − 𝜔𝑚) is provided in
Fig. 4. The latter markedly increases with the number of scatterers until reaching saturation at approximately 𝑁 = 30, namely a
length approximately equal to double the modulation wavelength.

3.2. Modeling non-reciprocal Rayleigh wave propagation in a space–time modulated metasurface

We now consider the propagation of Rayleigh waves across a cluster of modulated resonators. Such a problem has been
recently investigated with the aid of FE numerical simulations [20,21]. Our purpose is to show the capability of the proposed
analytical formulation to reproduce both the non-reciprocal dispersion and the reflection/transmission coefficients in this complex
configuration.

For our example, we consider the parameters recently used in Ref. [21]: a half-space with 𝑐𝐿∕𝑐𝑇 = 2, a resonator with mass ratio
𝑚0𝜔0∕(𝜌𝑎𝑐𝑇 ) = 0.15, the modulation frequency 𝜔𝑚∕𝜔0 = 0.25, and the modulation wavenumber 𝜅𝑚∕𝜅𝑟 = 2.5, in which 𝜅𝑟 = 𝜔0∕𝑐𝑇 .

3.2.1. Dispersion relation
Let us briefly recall the Green’s function for a 2D isotropic elastic half-space actuated by a harmonic vertical load acting at the

surface. For this configuration, the equilibrium equation can be formulated as a boundary value problem:

𝑐2𝐿∇(∇ ⋅ 𝐮) − 𝑐2𝑇∇ × (∇ × 𝐮) = 𝜕2𝐮
𝜕𝑡2

, for 𝑧 < 0, (43a)

𝜏𝑧𝑥(𝑥, 0) = 0, 𝜎𝑧(𝑥, 0) = 𝛿(𝑥)ei𝜔𝑃 𝑡, (43b)

in which 𝑐𝐿 and 𝑐𝑇 denote the longitudinal (L) and transverse (T) wave velocities, and 𝜏𝑧𝑥, 𝜎𝑧 represent the shear and normal
9

stresses, respectively; 𝐮 is the displacement field with components 𝑢 and 𝑤; 𝛿(𝑥) is the Dirac delta function.
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Fig. 4. The influence of scatterers number 𝑁 on the reflection coefficient |𝑤𝑟∕𝑤0|.

In analogy with the metabeam problem, we Fourier transform the equilibrium Eqs. (43a) and (43b) along the 𝑥 direction, and
obtain the transformed 𝑃 th order Green’s function at 𝑧 = 0 as:

�̃�(𝜅𝑃 , 𝜔𝑃 ) =
1

𝜌𝑐4𝑇

𝜔2
𝑃

√

𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝐿

4𝜅2
𝑃

√

(

𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝑇

)(

𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝐿

)

−
(

2𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝑇

)2
, (44)

here 𝜌 is the density of the substrate, and the shifted frequency 𝜔𝑃 and wavenumber 𝜅𝑃 are defined in Eq. (36). Substituting
qs. (37) and (44) into Eq. (31) and setting 𝑃 = 0, we obtain immediately the dispersion relation for Rayleigh waves existing in a
on-modulated metasurface:

(𝜅, 𝜔) ∶=

(

2𝜅2 − 𝜔2

𝑐2𝑇

)2

− 4𝜅2

√

√

√

√

(

𝜅2 − 𝜔2

𝑐2𝑇

)(

𝜅2 − 𝜔2

𝑐2𝐿

)

−
𝑚0𝜔4

√

𝜅2 − 𝜔2

𝑐2𝐿

𝜌𝑎𝑐4𝑇 (𝜔
2∕𝜔2

0 − 1)
= 0. (45)

This dispersion equation is identical to the one obtained in Refs. [41,42], and matches the numerical dispersion curve computed
ia FEM, see Appendix B.

As for the metabeam scenario, we first plot the unmodulated (𝜅, 𝜔) and the shifted (𝜅𝑃 , 𝜔𝑃 ) dispersion curves for 𝑃 = ±1,
ig. 5a. Again, phase matching points (e.g., pairs 𝐴 to 𝐸) are found when (𝜅, 𝜔) = (𝜅𝑃 , 𝜔𝑃 ) is met. We predict the dispersion
roperties of the modulated metasurface around these points using Eq. (31). To this purpose, we substitute Eq. (44) into Eq. (31)
nd truncate the expansion to the first order, using the impedance operator 𝐙 computed according to Eq. (38).

We display the modulated dispersion relation in the range of ±0.1𝜅 and ±0.1𝜔 around each intersection in Fig. 5b (red circular
arkers). As an example, the intersection between contra-directional branches gives rise to the locking pair 𝐶 which results in a
irectional band gap. Harmonic waves propagating with wavenumber–frequency falling within the directional gap (1.21𝜅𝑟, 1.185𝜔0)
re reflected by the metasurface as a propagating mode at the phase-matched frequency–wavenumber pair (1.21𝜅𝑟−𝜅𝑚, 1.185𝜔0−𝜔𝑚).
onversely, such reflection by conversion does not occur for waves propagating along the opposite direction at the same frequency
.185𝜔0, confirming the non-reciprocity due to the broken time-reversal symmetry [21]. Again, clear evidence of these effects
redicted by the dispersion curve is provided in the next section by computing the steady-state solutions of Rayleigh waves
ropagating along a finite modulated metasurface.

.2.2. Steady-state solutions
To show the non-reciprocal Rayleigh wave propagation discussed above, we use Eq. (17c) to compute the steady-state response

f a finite metasurface. The impedance operators 𝐙1 to 𝐙𝑁 are computed from Eq. (13), while the Green’s function in Eq. (20) is
btained by applying the inverse Fourier transform to Eq. (44), yielding the 𝑃 th order wave field (Green’s function) at 𝑧 = 0:

�̂�(𝑃 )
𝑤 (𝑥, 0, 𝜔𝑃 ) =

1
2𝜋𝜌𝑐4𝑇 ∫

∞

−∞

𝜔2
𝑃

√

𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝐿

4𝜅2
𝑃

√

(

𝜅2
𝑃 −

𝜔2
𝑃

𝑐2

)(

𝜅2
𝑃 −

𝜔2
𝑃

𝑐2

)

−
(

2𝜅2
𝑃 −

𝜔2
𝑃

𝑐2

)2
ei𝜅𝑃 𝑥 d𝜅𝑃 . (46)
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Fig. 5. Analytical modeling of a metasurface. (a) Dispersion relation of a non-modulated metasurface (black solid lines) and its shifted analogs for 𝑃 = −1
and 𝑃 = 1, respectively. (b) Dispersion relation (circular markers) of a modulated metasurface in the vicinity of phase matching pairs. Steady-state solutions of
Rayleigh wave propagation at 𝜔 = 1.185𝜔0 inside the narrow directional band gap (pair 𝐶) for (c) a right and (d) a left traveling incident wave (star marker),
respectively.

We note that unlike the Green’s function of an Euler beam, Eq. (41), the one for a 2D elastic substrate is divergent at the origin,
Eq. (46). To avoid any convergence issue, we introduce a small footprint of length 𝓁𝑠 for each resonator so that the associated
Green’s functions are [39]:

�̂�(𝑃 )
𝑤 (𝑥, 𝑧, 𝜔𝑃 ) =

1
𝜋𝜌𝑐2𝑇

∫

∞

−∞

sin(𝜅𝑃 𝓁𝑠∕2)
𝜅𝑃

2𝜅2
𝑃 𝛽𝐿e

𝛽𝑇 𝑧 − 𝛽𝐿(2𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝑇
)e𝛽𝐿𝑧

4𝜅2
𝑃 𝛽𝐿𝛽𝑇 −

(

2𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝑇

)2
ei𝜅𝑃 𝑥 d𝜅𝑃 , (47a)

for the vertical displacement components and

�̂�(𝑃 )
𝑢 (𝑥, 𝑧, 𝜔𝑃 ) =

i
𝜋𝜌𝑐2𝑇

∫

∞

−∞
sin(𝜅𝑃 𝓁𝑠∕2)

2𝛽𝐿𝛽𝑇 e𝛽𝑇 𝑧 − (2𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝑇
)e𝛽𝐿𝑧

4𝜅2
𝑃 𝛽𝐿𝛽𝑇 −

(

2𝜅2
𝑃 −

𝜔2
𝑃

𝑐2𝑇

)2
ei𝜅𝑃 𝑥 d𝜅𝑃 , (47b)

for the horizontal ones, where:

𝛽𝐿 =

√

√

√

√𝜅2
𝑃 −

𝜔2
𝑃
2
, 𝛽𝑇 =

√

√

√

√𝜅2
𝑃 −

𝜔2
𝑃
2
. (48)
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Fig. 6. Harmonic responses of a modulated metasurface. (a) Schematic for right-propagating Rayleigh waves. (b) Steady-state solutions of Rayleigh wave
propagation at 𝜔 = 0.734𝜔0 (pair 𝐸 in Fig. 5). The total wave field, free field, fundamental scattered field (𝜔 = 0.734𝜔0), and the first-order scattered field
(𝜔 = 0.734𝜔0 + 𝜔𝑚) excited by the source at 𝜔 = 0.734𝜔0 are shown in (c), (d), (e) and (f), respectively.

Substituting Eq. (47a) into Eq. (20) we obtain the elastic force coefficients �̂�𝑛, which are used in Eqs. (17a), (17c) to compute
the wave field �̂�(𝑥, 𝑧), �̂�(𝑥, 𝑧) in the substrate.

For our example, we compute the steady-state response at locations (𝑥𝑟, 0) and (𝑥𝑡, 0) on the substrate surface considering an
array of 100 resonators with footprint width 𝓁𝑠 = 𝑎∕20, where the harmonic point source and the receiver are located at distances
of 𝑑𝑠 = 600𝑎 and 𝑑𝑟 = 300𝑎 from the closest resonator. For a right-going (𝜅 > 0) incident Rayleigh wave (dashed line) at 𝜔 = 1.185𝜔0
the reflected field, shown in Fig. 5c, confirms a back-scattering at the coupled frequency 𝜔 = 1.185𝜔0 − 𝜔𝑚. Conversely, the left-
going (𝜅 < 0) incident Rayleigh wave (dashed line) at the same frequency 𝜔 = 1.185𝜔0 propagates without reflection or frequency
conversion phenomena (see Fig. 5d).

We now resort to the FEM to verify our analytical solutions. To this purpose, we build a 2D plane-strain model in commercial FE
software (COMSOL Multiphysics). The reader can find the details of the numerical model in Appendix C. Specifically, we compute
the transient response of the system actuated by a vertical tone-burst-shaped force having central frequency 𝜔 = 1.185𝜔0, and analyze
the vertical displacement field 𝑤 (see the insets of Fig. 5). The corresponding frequency spectra (solid line) computed through the
Fourier transform (FFT) of the record time-domain data at the receiver are displayed in Figs. 5c,d. The reader can appreciate how
the numerical results match the analytical solutions.

Finally, we inspect the steady-state response at the ‘‘veering pair’’ (intersection between two co-directional branches) [21] 𝐸 in
Fig. 5, where we expect the Rayleigh wave to be transmitted and converted from one harmonic to another [20,21]. To evidence
12
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such a conversion, we utilize the same model (see Fig. 6) excited by a right-going incident Rayleigh wave at frequency 𝜔 = 0.734𝜔0.
The results obtained with both the analytical solutions and the FE model are collected in Fig. 6b. The modulated metasurface
can convert the incident wave (𝜔 = 0.734𝜔0) into a transmitted wave with a different frequency content, e.g., the phase matched
first-order harmonic at 𝜔 = 0.734𝜔0 + 𝜔𝑚.

To better appreciate this effect, we compute the total wave field
√

ℜ(𝑢)2 +ℜ(𝑤)2, using Eqs. (17a), (17c), (47a), (47b), in
he domain 𝑥 = [550, 750]𝑎, 𝑧 = [−150, 0]𝑎. The total wave field, shown in Fig. 6c, can be decomposed by Eqs. (17a), (17c) into
he incident field at 𝜔 = 0.734𝜔0, Fig. 6d, and scattered wave fields: the fundamental mode at 𝜔 = 0.734𝜔0 in Fig. 6e and the
irst-order harmonic at 𝜔 = 0.734𝜔0+𝜔𝑚 in Fig. 6f. Both scattering fields exhibit a clear asymmetry, with the right-hand side having
greater amplitude than the left-hand side, a clear feature of the forward scattering behavior at veering pairs of the modulated
etasurface.

. Conclusion

We developed a multiple scattering formulation to model the interaction of a given incident field with a cluster of space–time-
odulated resonators located at the surface of a given elastic waveguide. The effect of time-varying resonators is modeled by means

f impedance operators, able to account for lower- and higher-order harmonics generated by the modulated oscillators. The vertical
otion of resonators, actuated by the incident field, generates scattered fields in the waveguide, which are characterized via ad-hoc
reen’s functions. The unknown amplitudes of scattered fields are then obtained from a multiple scattering scheme by ensuring the
ontinuity of displacement at the footprint of resonators.

We have demonstrated the capabilities and accuracy of our framework by computing both the dispersion relation and wave field
f flexural and Rayleigh waves propagating along modulated beams and substrates, respectively.

Our approach has several advantages compared to currently available methods for studying elastic waves along space–time-
odulated metamaterials. First, it allows to investigate an arbitrary number of resonators with no restriction on their spatial

onfiguration and modulation profile, apart from their common modulation period 𝑇𝑚. Second, it enables the analytical treatment of
non-reciprocal wave propagation in higher dimensional systems (2D and 3D), thus overcoming the limitation of currently available
analytical methods (e.g., the transfer matrix method) valid only for 1D wave propagation problems [31]. Third, our method is able
to reduce the computational cost with respect to classical numerical schemes since it does not require the discretization of the entire
system. This feature is particularly appealing for modeling wave propagation in higher dimensional systems and will prove its value
for future design and optimization studies. Fourth, it advances the knowledge of multiple scattering theory which has demonstrated
its superior capabilities in modeling the interaction of oscillators with elastic flexural and surface acoustic waves [37–39,43,44].

As such, the proposed formulation can serve as a valuable tool to explore various modulation profiles on elastic waveguides
and to guide future experiments on space–time-modulated systems. Since the framework developed in this work is general, we
also expect an extension into acoustics and electromagnetism, thus supporting the development of nonreciprocal devices for both
acoustics and optics.
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Fig. A.1. Schematic of transfer matrix method: (a) the 𝑛th cell, (b) the global system.

Appendix A. Details on the transfer matrix method (TMM)

In this Appendix, we provide the details of the transfer matrix method for the modulated beam (see Fig. A.1) [22]. According
to Euler beam theory, the 𝑝th order displacement in the 𝑛th cell can be expressed as:

�̂�(𝑝)
𝑛 (𝑥) = [ei𝛽

(𝑝)(𝑥−𝑥𝑛), e−i𝛽
(𝑝)(𝑥−𝑥𝑛), e𝛽

(𝑝)(𝑥−𝑥𝑛), e−𝛽
(𝑝)(𝑥−𝑥𝑛)][𝐴(𝑝)

𝑛 , 𝐵(𝑝)
𝑛 , 𝐶 (𝑝)

𝑛 , 𝐷(𝑝)
𝑛 ]𝑇 ∶= (𝑝)

𝑛 (𝑥)𝐔(𝑝)
𝑛 , (A.1)

in which 𝛽(𝑝) = 4
√

𝜌(𝜔 + 𝑝𝜔𝑚)2∕ is the 𝑝th order wavenumber.
By truncating the orders from 𝑝 = −𝑃 to 𝑝 = 𝑃 , the displacement can be expressed in matrix form �̂�𝑛(𝑥) = 𝐋𝑛(𝑥)𝐀𝑛, with:

�̂�𝑛(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(−𝑃 )(𝑥)
�̂�(−𝑃+1)(𝑥)

⋮
�̂�(𝑃 )(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐋𝑛(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

(−𝑃 )
𝑛 (𝑥) 𝟎 ⋯ 𝟎
𝟎 (−𝑃+1)

𝑛 (𝑥) ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ (𝑃 )

𝑛 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐀𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐔(−𝑃 )
𝑛

𝐔(−𝑃+1)
𝑛
⋮

𝐔(𝑃 )
𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (A.2)

Hence, the vertical force �̂�𝑛 in Eq. (13) can be written as:

�̂�𝑛 = 𝐃𝑛𝐌−1
𝑛 𝐐𝑛�̂�𝑛(𝑥𝑛) = 𝐃𝑛𝐌−1

𝑛 𝐐𝑛𝐋𝑛(𝑥𝑛)𝐀𝑛. (A.3)

For an arbitrary 𝑝th order, the continuities of the displacement, slope, bending moment and shear force at 𝑥𝑛 yield:

�̂�(𝑝)
𝑛−1(𝑥𝑛) = �̂�(𝑝)

𝑛 (𝑥𝑛), (A.4a)

𝜕
𝜕𝑥

�̂�(𝑝)
𝑛−1(𝑥𝑛) =

𝜕
𝜕𝑥

�̂�(𝑝)
𝑛 (𝑥𝑛), (A.4b)

 𝜕2

𝜕𝑥2
�̂�(𝑝)

𝑛−1(𝑥𝑛) =  𝜕2

𝜕𝑥2
�̂�(𝑝)

𝑛 (𝑥𝑛), (A.4c)

 𝜕3

𝜕𝑥3
�̂�(𝑝)

𝑛−1(𝑥𝑛) =  𝜕3

𝜕𝑥3
�̂�(𝑝)

𝑛 (𝑥𝑛) − 𝐹 (𝑝)
𝑛 . (A.4d)

Substituting Eq. (A.1) into Eqs. (A.4a)–(A.4d) yields:

𝜶(𝑝)
𝑛−1𝐔

(𝑝)
𝑛−1 = 𝜻

(𝑝)
𝑛 𝐔(𝑝)

𝑛 + 𝜸(𝑝)𝑛 , (A.5)

ith the coefficients:

𝜶(𝑝)
𝑛−1 =

⎡

⎢

⎢

⎢

⎢

ei𝛽(𝑝)𝓁𝑛 e−i𝛽(𝑝)𝓁𝑛 e𝛽(𝑝)𝓁𝑛 e−𝛽(𝑝)𝓁𝑛
iei𝛽(𝑝)𝓁𝑛 −ie−i𝛽(𝑝)𝓁𝑛 e𝛽(𝑝)𝓁𝑛 −e−𝛽(𝑝)𝓁𝑛
−ei𝛽(𝑝)𝓁𝑛 −e−i𝛽(𝑝)𝓁𝑛 e𝛽(𝑝)𝓁𝑛 e−𝛽(𝑝)𝓁𝑛

i𝛽(𝑝)𝓁 −i𝛽(𝑝)𝓁 𝛽(𝑝)𝓁 −𝛽(𝑝)𝓁

⎤

⎥

⎥

⎥

⎥

, 𝜻 (𝑝)𝑛 =

⎡

⎢

⎢

⎢

⎢

1 1 1 1
i −i 1 −1
−1 −1 1 1
−i i 1 −1

⎤

⎥

⎥

⎥

⎥

, 𝜸(𝑝)𝑛 =

⎡

⎢

⎢

⎢

⎢

0
0
0

̂ (𝑝) (𝑝)

⎤

⎥

⎥

⎥

⎥

, (A.6)
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where 𝓁𝑛 = 𝑥𝑛−𝑥𝑛−1, and 𝜒 (𝑝) = −1∕[(𝛽(𝑝))3]. Similarly, by truncating the orders from −𝑃 to 𝑃 , the displacements can be expressed
in matrix form:

𝜶𝐀𝑛−1 = 𝜻𝐀𝑛 + 𝜸�̂�𝑛, (A.7)

with:

𝜶 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜶(−𝑃 )
𝑛−1

𝜶(−𝑃+1)
𝑛−1

⋱
𝜶(𝑃 )
𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝜻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜻 (−𝑃 )𝑛
𝜻 (−𝑃+1)𝑛

⋱
𝜻 (𝑃 )𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, 𝜸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0
𝜒 (−𝑃 ) 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0
0 𝜒 (−𝑃+1) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 𝜒 (𝑃 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.8)

Combining Eqs. (A.3) and (A.7) we obtain:

𝜶𝐀𝑛−1 = 𝜻𝐀𝑛 + 𝜸𝐃𝑛𝐌−1
𝑛 𝐐𝑛𝐋𝑛(𝑥𝑛)𝐀𝑛, (A.9)

rom which we obtain the local transfer matrix relating 𝐀𝑛−1 to 𝐀𝑛:

𝐓𝑛𝐀𝑛−1 = 𝐀𝑛, (A.10)

here:

𝐓𝑛 = [𝜻 + 𝜸𝐃𝑛𝐌−1
𝑛 𝐐𝑛𝐋𝑛(𝑥𝑛)]−1𝜶. (A.11)

Therefore, for an infinite beam coupled with 𝑁 resonators, the global equation is expressed as:

 𝐀0 = 𝐀𝑁 , (A.12)

here the global transfer matrix  reads:

 = 𝐓𝑁𝐓𝑁−1 ⋯𝐓1. (A.13)

After some algebraic operations, Eq. (A.12) can be further written as:
[

11 12
21 22

] [

𝐈𝐿
𝐑𝐿

]

=
[

𝐓𝑅
𝐈𝑅

]

, (A.14)

ith coefficients:

 =  𝑇 , (A.15a)

𝐈𝐿 = [𝐵(−𝑃 )
0 , 𝐷(−𝑃 )

0 , 𝐵(−𝑃+1)
0 , 𝐷(−𝑃+1)

0 ,… , 𝐵(𝑃 )
0 , 𝐷(𝑃 )

0 ]𝑇 , (A.15b)

𝐑𝐿 = [𝐴(−𝑃 )
0 , 𝐶 (−𝑃 )

0 , 𝐴(−𝑃+1)
0 , 𝐶 (−𝑃+1)

0 ,… , 𝐴(𝑃 )
0 , 𝐶 (𝑃 )

0 ]𝑇 , (A.15c)

𝐓𝑅 = [𝐵(−𝑃 )
𝑁 , 𝐷(−𝑃 )

𝑁 , 𝐵(−𝑃+1)
𝑁 , 𝐷(−𝑃+1)

𝑁 ,… , 𝐵(𝑃 )
𝑁 , 𝐷(𝑃 )

𝑁 ]𝑇 , (A.15d)

𝐈𝑅 = [𝐴(−𝑃 )
𝑁 , 𝐶 (−𝑃 )

𝑁 , 𝐴(−𝑃+1)
𝑁 , 𝐶 (−𝑃+1)

𝑁 ,… , 𝐴(𝑃 )
𝑁 , 𝐶 (𝑃 )

𝑁 ]𝑇 , (A.15e)

in which  is an elementary matrix which reads:

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 1 0 0 0 0 ⋯ 0 0
0 0 0 1 0 0 ⋯ 0 0
0 0 0 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 0 ⋯ 0 1
1 0 0 0 0 0 ⋯ 0 0
0 0 1 0 0 0 ⋯ 0 0
0 0 0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

. (A.16)
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Fig. B.1. Comparison of non-modulated (original) dispersion curves between the analytical solution and the FE solution. (a, b) Schematic of unit cells used for
the FE simulation. The dispersion curves for (c) flexural waves in a metabeam, and (d) Rayleigh waves in a metasurface.

Eq. (A.14) can be further transformed to:

𝝍out = 𝝍 in, (A.17)

where:

𝝍out =
(

𝐑𝐿
𝐓𝑅

)

, 𝝍 in =
(

𝐈𝐿
𝐈𝑅

)

,  =
(

−−1
2221 −1

22
11 −12−1

2221 12−1
22

)

. (A.18)

With Eq. (A.17) we can compute both the transmission and reflection coefficients directly. It is worth mentioning that, due to the
resence of exponential amplification terms in 𝜶(𝑝)

𝑛−1 in Eq. (A.5), the transfer matrix method may encounter numerical divergence
n some occasions, e.g., when considering a large number of oscillators or large values of resonators spacing. Such a limitation can
e well addressed by the multiple scattering formulation proposed in this work.

ppendix B. Validation of non-modulated dispersion equation

In this Appendix, we validate the analytical dispersion equation of non-modulated metamaterials via the finite element method
FEM). To do so, we build 2D FE models (unit cells) using 2D elasticity in COMSOL Multiphysics. In particular, the Euler beam is
odeled by a 2D plane-stress FE model with dimensions 𝑎× ℎ𝑏 (Fig. B.1a), while the half-space is modeled by a 2D plane-strain FE

model with the height 𝓁𝑧 = 4𝜋𝑐𝑇 ∕𝜔0 (Fig. B.1b). To model the linear spring, we use a truss model with the unit cross-sectional area
and unit height whose equivalent Young modulus satisfies 𝐸𝑡 = 𝑚0𝜔2

0. Additionally, the resonator mass is modeled by a point mass
model with mass 𝑚0. To simulate the dynamics of an infinite array of periodic resonators, we impose a pair of Floquet periodic
boundary conditions on the vertical substrate edges. In Fig. B.1b, a clamped boundary condition is enforced at the bottom edge to
avoid rigid motions.

For the metabeam, the parameters used in this work are set as: mass density 𝜌 = 2700 kg∕m3, Young modulus 𝐸 = 69 GPa,
Poisson ratio 𝜈 = 0.33, lattice constant 𝑎 = 0.04 m, beam thickness ℎ𝑏 = 0.002 m, beam width 𝑏𝑤 = 0.03 m, the resonance frequency
of oscillators 𝜔0 = 80𝜋 rad/s, and damping coefficient of oscillators 𝑐 = 0. For the metasurface, the parameters used are: mass
density 𝜌 = 2700 kg∕m3, Young modulus 𝐸 = 69 GPa, Poisson ratio 𝜈 = 0.33, lattice constant 𝑎 = 0.3 m, resonance frequency of
oscillators 𝜔0 = 200𝜋 rad/s, and damping coefficient of oscillators 𝑐 = 0. The numerical dispersion curves are obtained by solving
the eigenvalue problem for a given wave number varying between 𝑘 = [0, 𝜋∕𝑎]. The comparison between the analytical dispersion
urves computed by Eqs. (38), (45) and FE simulations for non-modulated metabeam and metasurface is shown in Fig. B.1c and
.1d, respectively. Excellent agreement between them is observed.

ppendix C. Details on the FE model for transient simulations

In this Appendix, we provide the details of the 2D plane-strain FE model, implemented in COMSOL Multiphysics, used to verify
ur analytical solutions in Section 3.2.2. The FE model consists of an array of resonators and a substrate with width 𝓁𝑥 = 32𝜆0 and
epth 𝓁𝑥 = 8𝜆0, where 𝜆0 = 2𝜋𝑐𝑇 ∕𝜔0 (see Figs. C.1a,b). As in Appendix B, the resonator is modeled by a point mass 𝑚0, while the
16

pring is modeled by a truss element with unit length and cross-sectional area whose Young modulus reads 𝐸𝑡 = 𝑘0+𝑘𝑎 cos(𝜔𝑚𝑡−𝜅𝑚𝑥).
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Fig. C.1. Schematic of the FE model for transient simulations.

To minimize reflections from the domain borders, we add low-reflecting boundary conditions around the substrate (denoted by the
dashed lines). The substrate is discretized using a fine mesh (𝜆0∕10) of quadratic serendipity elements, which allows us to obtain
convergent results at the frequency of interest.

We perform numerical simulations in the time domain. A narrow tone-burst signal of the form 𝐹0(𝑡) = 𝐴0[𝐻(𝑡) − 𝐻(𝑡 −
2𝜋𝑁∕𝜔)] sin(𝜔𝑡)[1− cos(𝜔𝑡∕𝑁)] is used to generate Rayleigh waves, where 𝐻(𝑡) is the Heaviside function. In the numerical example,
the amplitude is set as 𝐴0 = 1, the central frequency is 𝜔 = 1.185𝜔0, and the number of cycles is 𝑁 = 60. We display the signal and
its Fourier spectrum in Figs. C.1c,d.
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