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Abstract
A group 𝐺 is said to have restricted centralizers if for each 𝑔 ∈ 𝐺 the central-
izer 𝐶𝐺(𝑔) either is finite or has finite index in 𝐺. Shalev showed that a profinite
groupwith restricted centralizers is virtually abelian.We take interest in profinite
groups with restricted centralizers of uniform commutators, that is, elements of
the form [𝑥1, … , 𝑥𝑘], where 𝜋(𝑥1) = 𝜋(𝑥2) = ⋯ = 𝜋(𝑥𝑘). Here, 𝜋(𝑥) denotes the
set of prime divisors of the order of 𝑥 ∈ 𝐺. It is shown that such a group neces-
sarily has an open nilpotent subgroup. We use this result to deduce that 𝛾𝑘(𝐺) is
finite if and only if the cardinality of the set of uniform 𝑘-step commutators in 𝐺

is less than 2ℵ0 .
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1 INTRODUCTION

A group 𝐺 is said to have restricted centralizers if for each 𝑔 ∈ 𝐺 the centralizer 𝐶𝐺(𝑔) either is finite or has finite index
in 𝐺. This notion was introduced by Shalev in [34], where he showed that a profinite group with restricted centralizers
is virtually abelian. As usual, we say that a profinite group has a property virtually if it has an open subgroup with that
property. Recently, profinite groups with restricted centralizers of some specific elements were considered in [2, 10]. The
paper [10] handles profinite groups with restricted centralizers of 𝑤-values for a multilinear commutator word 𝑤. The
theorem proved in [10] says that if𝑤 is a multilinear commutator word and 𝐺 is a profinite group in which the centralizer
of any𝑤-value is either finite or open, then the verbal subgroup𝑤(𝐺) generated by all𝑤-values is virtually abelian. Recall
that the lower central words 𝛾𝑘 are recursively defined by

𝛾1 = 𝑥1, 𝛾𝑘 = [𝛾𝑘−1(𝑥1, … , 𝑥𝑘−1), 𝑥𝑘].

Of course 𝛾𝑘(𝐺) is the 𝑘th term of the lower central series of 𝐺. Thus, if the 𝛾𝑘-values have restricted centralizers in a
profinite group 𝐺, then 𝛾𝑘(𝐺) is virtually abelian.
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In this paper, we will show that if the 𝛾𝑘-values have restricted centralizers, then the group 𝐺 is virtually nilpotent. In
fact, we will establish a stronger result.
If 𝐺 is a profinite group, then |𝐺| denotes its order, which is a Steinitz number, and 𝜋(𝐺) denotes the set of prime

divisors of |𝐺|. Similarly, if 𝑔 is an element of 𝐺, then |𝑔| and 𝜋(𝑔) respectively denote the order of the procyclic subgroup
generated by 𝑔 and the set of prime divisors of |𝑔|.
We will say that an element 𝑔 of a profinite group 𝐺 is a uniform 𝑘-step commutator (u𝑘-commutator for short) if there

are elements 𝑥1, 𝑥2, … , 𝑥𝑘 ∈ 𝐺 such that 𝜋(𝑥1) = ⋯ = 𝜋(𝑥𝑘) and 𝑔 = [𝑥1, 𝑥2, … , 𝑥𝑘]. When 𝑘 = 2, the element 𝑔 will be
referred to simply as a uniform commutator (such elements were called anti-coprime commutators in [6, 11]).

Theorem 1.1. Let 𝐺 be a profinite group in which the centralizers of uniform 𝑘-step commutators are either finite or open.
Then, 𝐺 is virtually nilpotent and 𝛾𝑘(𝐺) is virtually abelian.

We do not know if there exists a constant, say 𝐶, depending only on 𝑘 such that any group𝐺 satisfying the hypothesis of
Theorem 1.1 has an open nilpotent subgroup of class atmost𝐶. In the case where 𝑘 = 2 the affirmative answer is furnished
by the next result. A key tool employed in the proof was established in [12] using probabilistic arguments.

Theorem 1.2. Let 𝐺 be a profinite group in which the centralizers of uniform commutators are either finite or open. Then,
𝐺 has an open subgroup which is nilpotent of class at most 3.

A somewhat unexpected by-product of the proof of Theorem 1.1 is related to the concept of strong conciseness in profi-
nite groups introduced in [5]. A group-word 𝑤 is strongly concise if the verbal subgroup 𝑤(𝐺) is finite in any profinite
group 𝐺 in which 𝑤 takes less than 2ℵ0 values. A number of recent results on strong conciseness of group-words can be
found in [3, 5, 22]. The concept of strong conciseness can be applied in a wider context: suppose 𝜑(𝐺) is a subset that
can be naturally defined in every profinite group 𝐺, then one can ask whether the subgroup generated by 𝜑(𝐺) is finite
whenever |𝜑(𝐺)| < 2ℵ0 .
It was shown in [11] that this is the case if 𝜑(𝐺) is the set of u2-commutators; that is, a profinite group 𝐺 has finite

commutator subgroup 𝐺′ if and only if the cardinality of the set of u2-commutators in 𝐺 is less than 2ℵ0 . In view of this,
it was natural to ask whether finite-by-nilpotent profinite groups admit a similar characterization. Now we are able to
answer the question in the affirmative.

Theorem 1.3. Let 𝑘 ≥ 1, and let𝐺 be a profinite group. Then, 𝛾𝑘(𝐺) is finite if and only if the cardinality of the set of uniform
𝑘-step commutators in 𝐺 is less than 2ℵ0 .

Note that inTheorem 1.3 the order of 𝛾𝑘(𝐺) is bounded in terms of the number of u𝑘-commutators (see Proposition 7.1). It
would be interesting to see if also profinite groups𝐺 inwhich the𝑘th termof the derived series is finite can be characterized
in the same spirit. For now this remains an open problem.

2 PRELIMINARIES

Results on finite groups often admit a natural interpretation for profinite groups (see, e.g., [29] or [37]). Throughout the
paper, we use certain profinite versions of facts on finite groups without explaining in detail how these can be deduced
from the corresponding finite cases. On all such occasions the deduction can be performed via the routine inverse limit
argument. Every homomorphism of profinite groups considered in this paper is continuous, and every subgroup of a
profinite group is closed, unless otherwise specified.
If 𝑥 is an element of a group 𝐺, we write 𝑥𝐺 for the conjugacy class of 𝑥 in 𝐺. On the other hand, if𝐾 is a subgroup of 𝐺,

then 𝐾𝐺 denotes the normal closure of 𝐾 in 𝐺, that is, the subgroup generated by all conjugates of 𝐾 in 𝐺, with the usual
convention that if 𝐺 is a topological group then 𝐾𝐺 is a closed subgroup.
We will denote by Δ(𝐺) the set of 𝐹𝐶-elements of 𝐺, that is,

Δ(𝐺) = {𝑥 ∈ 𝐺 ∣ |𝑥𝐺| < ∞}.
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4950 DETOMI et al.

Obviously Δ(𝐺) is a normal abstract subgroup of 𝐺. Note that if 𝐺 is a profinite group, Δ(𝐺) does not need to be
closed.
Recall that a pro-𝑝 group is an inverse limit of finite 𝑝-groups, a pro-𝜋 group is an inverse limit of finite 𝜋-groups,

a pronilpotent group is an inverse limit of finite nilpotent groups, a prosoluble group is an inverse limit of finite
soluble groups.
It is well-known that a finite-by-prosoluble group is virtually prosoluble, and a profinite group 𝐺 that is an extension of

a prosoluble group 𝑁 by a prosoluble group 𝐺∕𝑁 is prosoluble (see, e.g., [23, Lemma 2.2]).
If 𝐺 is a profinite group and 𝜋 a set of primes, 𝑂𝜋(𝐺) stands for the maximal normal pro-𝜋 subgroup of 𝐺.
Recall that 𝛾∞(𝐺) stands for the intersection of the terms of the lower central series of a group 𝐺. A profinite group 𝐺

is pronilpotent if and only if 𝛾∞(𝐺) = 1. Each profinite group 𝐺 has a maximal pronilpotent normal subgroup, its fitting
subgroup 𝐹(𝐺). Set 𝐹0(𝐺) = 1 and 𝐹𝑖+1(𝐺)∕𝐹𝑖(𝐺) = 𝐹(𝐺∕𝐹𝑖(𝐺)) for every integer 𝑖 ≥ 0. We say that the profinite group 𝐺
has (finite) fitting height ℎ = ℎ(𝐺) if 𝐺 = 𝐹ℎ(𝐺) and ℎ is the least integer with this property. Obviously, 𝐺 has finite fitting
height at most ℎ if, and only if, 𝐺 is an inverse limit of finite soluble groups of fitting height at most ℎ. A profinite group
𝐺 is metapronilpotent if and only if it has fitting height at most 2 or, equivalently, if and only if 𝛾∞(𝐺) is pronilpotent. As
usual, 𝑍(𝐺) denotes the center of the group 𝐺.
We mention the following result about nilpotent profinite groups.

Lemma 2.1. Let 𝐺 be an infinite nilpotent profinite group. Then, 𝑍(𝐺) is infinite.

Proof. Assume that 𝑍(𝐺) is finite. Then, there exists an open normal subgroup 𝐾 of 𝐺 such that 𝐾 ∩ 𝑍(𝐺) = 1. Since 𝐺 is
nilpotent, this implies that 𝐾 = 1 and so 𝐺 is finite, a contradiction. □

Profinite groups have Sylow 𝑝-subgroups and satisfy analogs of the Sylow theorems. Any prosoluble group 𝐺 has a
Sylow basis (a family of pairwise permutable Sylow 𝑝𝑖-subgroups 𝑃𝑖 of 𝐺, exactly one for each prime 𝑝𝑖 ∈ 𝜋(𝐺)), and any
two Sylow bases are conjugate (see [29, Proposition 2.3.9]). The basis normalizer (also known as the system normalizer) of
such a Sylow basis in𝐺 is 𝑇 =

⋂
𝑖
𝑁𝐺(𝑃𝑖). If𝐺 is a prosoluble group and 𝑇 is a basis normalizer in𝐺, then 𝑇 is pronilpotent

and 𝐺 = 𝛾∞(𝐺)𝑇 (see [28, Lemma 5.6]).
The set of uniform 𝑘-step commutators of 𝐺 will be denoted by𝑘(𝐺) and we write𝑘 = 𝑘(𝐺)when it is clear which

groupwe are referring to. Remark that𝑘 is symmetric, that is, it is closed under taking inverses, since [𝑥, 𝑦]−1 = [𝑥𝑦, 𝑦−1].
Moreover,𝑘(𝐺∕𝑁) = 𝑘(𝐺)𝑁∕𝑁 whenever 𝑁 is a normal subgroup of 𝐺.
If𝑥, 𝑦 are elements of a group𝐺 and 𝑘 is a positive integer, [𝑥, 𝑘𝑦] is recursively defined by [𝑥, 1𝑦] = [𝑥, 𝑦] and [𝑥, 𝑘+1𝑦] =

[[𝑥, 𝑘𝑦], 𝑦] for every 𝑘 ≥ 1.Wewill often use the fact that if𝐺 is profinite, then the element [𝑥, 𝑦, 𝑦] = [𝑦−𝑥𝑦, 𝑦] is a uniform
commutator. Note that if the profinite group 𝐺 is pronilpotent, then it is a direct product of its Sylow subgroups and so
every 𝛾𝑘-value in 𝐺 is a u𝑘-commutator.

Lemma 2.2. Let 𝐺 be a profinite group. Then, the set𝑘 generates 𝛾𝑘(𝐺).

Proof. If 𝑘 = 1, then 𝑘 = 𝐺 and we have nothing to prove. Therefore, we assume that 𝑘 ≥ 2. Let 𝑁 be the subgroup
generated by 𝑘. Obviously, 𝑁 ≤ 𝛾𝑘(𝐺) so we only need to show that 𝛾𝑘(𝐺) ≤ 𝑁. Recall that [𝑥, 𝑦, 𝑦] = [𝑦−𝑥𝑦, 𝑦] is a
uniform commutator for any 𝑥, 𝑦 ∈ 𝐺. It follows that if �̄� = 𝑁𝑥 and �̄� = 𝑁𝑦 are elements of 𝐺∕𝑁, then [�̄�,𝑘 �̄�] = 1, as
[𝑦−𝑥𝑦, 𝑘−1𝑦] ∈ 𝑘. Since finite Engel groups are nilpotent (see [30, 12.3.4]), we deduce that 𝐺∕𝑁 is pronilpotent. Wemen-
tioned earlier that in a pronilpotent group every 𝛾𝑘-value is a u𝑘-commutator. Therefore, 𝐺∕𝑁 is nilpotent of class at most
𝑘 − 1, whence 𝛾𝑘(𝐺) ≤ 𝑁. □

If 𝜙 is an automorphism of a finite group𝐻 of coprime order, that is, such that (|𝜙|, |𝐻|) = 1, thenwe say for brevity that
𝜙 is a coprime automorphism of 𝐻. This definition is extended to profinite groups as follows. We say that 𝜙 is a coprime
automorphism of a profinite group 𝐻 meaning that the procyclic group ⟨𝜙⟩ faithfully acts on 𝐻 by continuous automor-
phisms and 𝜋(⟨𝜙⟩) ∩ 𝜋(𝐻) = ∅. Since the semidirect product𝐻⟨𝜙⟩ is also a profinite group, 𝜙 is a coprime automorphism
of𝐻 if and only if for every open 𝜙-invariant normal subgroup𝑁 of𝐻 the automorphism (of finite order) induced by 𝜙 on
𝐻∕𝑁 is a coprime automorphism. We will need some profinite equivalent of well-known results about coprime actions in
finite groups (see, e.g., [23]).
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DETOMI et al. 4951

Lemma 2.3. If 𝜙 is a coprime automorphism of a profinite group 𝐺, then for every prime 𝑞 ∈ 𝜋(𝐺) there is a 𝜙-invariant
Sylow 𝑞-subgroup of 𝐺.

Lemma 2.4. [23, Lemma 4.6] Let 𝜙 be a coprime automorphism of a finite nilpotent group𝐺. Then, the set of elements of the
form [𝑔, 𝜙], where 𝑔 ∈ 𝐺, coincides with the set of elements of the form [𝑔, 𝜙, 𝜙].

A repeated application of the previous lemma yields the following result for profinite groups.

Lemma 2.5. Let 𝜙 be a coprime automorphism of a pronilpotent group 𝐺 and let 𝑘 be a positive integer. Then, the set of
elements of the form [𝑔, 𝜙], where 𝑔 ∈ 𝐺, coincides with the set of elements of the form [𝑔,𝑘 𝜙].

Proof. For every positive integer 𝑛, let 𝛼𝑛 be the continuous map defined on 𝐺 by 𝑥 ↦ [𝑥,𝑛 𝜙]. We can repeatedly apply
Lemma 2.4 to every finite image �̄� of 𝐺, which is nilpotent, to get 𝛼1(�̄�) = 𝛼2(�̄�), and so also 𝛼1(�̄�) = 𝛼𝑘(�̄�). Since this
holds for every finite image of 𝐺 and the maps are continuous, we deduce that 𝛼1(𝐺) = 𝛼𝑘(𝐺). □

3 ON GROUPS INWHICH CENTRALIZERS OFWORD VALUES ARE EITHER FINITE
OR OPEN

In this section, we handle the important particular case of Theorem 1.1, where the centralizers of all 𝛾𝑘-values in 𝐺 are
either finite or open. We will use some results from [10], which were proved for general multilinear commutator words.
Multilinear commutator words are words which are obtained by nesting commutators, but using always different

variables.More formally, theword𝑤(𝑥) = 𝑥 in one variable is amultilinear commutator; if𝑢 and 𝑣 aremultilinear commu-
tators on disjoint sets of variables, then the word𝑤 = [𝑢, 𝑣] is a multilinear commutator, and all multilinear commutators
are obtained in this way.
Clearly, the lower central words 𝛾𝑘 are particular instances of multilinear commutator words.
Throughout the paper, if 𝑤 is a word and 𝐺 is a group, 𝐺𝑤 will denote the set of all 𝑤-values in 𝐺.
We will need a combinatorial lemma proved in [10].

Lemma 3.1 ([10, Lemma 3.4]). Let 𝑤 = 𝑤(𝑥1, … , 𝑥𝑛) be a multilinear commutator word. Assume that 𝑇 is a normal sub-
group of a group 𝐺 and 𝑎1, … , 𝑎𝑛 are elements of 𝐺 such that every element in the set {𝑤(𝑎1𝑡1, … , 𝑎𝑛𝑡𝑛) ∣ 𝑡1, … , 𝑡𝑛 ∈ 𝑇} has at
most𝑚 conjugates in 𝐺. Then, every element in 𝑇𝑤 has at most𝑚2𝑛 conjugates in 𝐺.

We will first consider profinite groups, where every 𝛾𝑘-value is an 𝐹𝐶-element. The following result was recently
obtained in [35]. Here, (𝑘,𝑚)-bounded means bounded by a function of the parameters 𝑘 and𝑚.

Theorem 3.2. Let 𝑘 ≥ 1 and 𝐺 be a group in which |𝑥𝐺| ≤ 𝑚 for any 𝛾𝑘-value 𝑥 ∈ 𝐺. Then, 𝐺 has a nilpotent subgroup of
(𝑘,𝑚)-bounded index and (𝑘,𝑚)-bounded class.

To deal with the case 𝑘 = 2 we require a more complicated result from [12] (see Theorem 1.2 and the preceding
comments).

Theorem 3.3. If 𝐺 is a group in which |𝑥𝐺| ≤ 𝑚 for any commutator 𝑥 ∈ 𝐺, then 𝐺 has a subgroup𝐻 of nilpotency class at
most 4 such that [𝐺 ∶ 𝐻] and |𝛾4(𝐻)| are both finite and𝑚-bounded.
Proposition 3.4. Let 𝑘 be a positive integer and 𝐺 a profinite group in which every 𝛾𝑘-value is an 𝐹𝐶-element. Then, 𝐺 is
virtually nilpotent. If 𝑘 = 2 then 𝐺 has an open subgroup𝐻 of nilpotency class at most 3.

Proof. For each positive integer 𝑗 consider the set Δ𝑗 of elements 𝑔 ∈ 𝐺 such that |𝑔𝐺| ≤ 𝑗. Note that the sets Δ𝑗 are closed
(see, for instance, [26, Lemma 5]). Set:

𝐶𝑗 = {(𝑔1, … , 𝑔𝑘) ∣ 𝑔𝑖 ∈ 𝐺 and [𝑔1, … , 𝑔𝑘] ∈ Δ𝑗}.
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4952 DETOMI et al.

Each set𝐶𝑗 is closed in𝐺 ×⋯× 𝐺, being the inverse image of the closed setΔ𝑗 under the continuousmap (𝑔1, … , 𝑔𝑘) ↦

[𝑔1, … , 𝑔𝑘]. Moreover, the union of the sets 𝐶𝑗 is the whole group 𝐺 ×⋯ × 𝐺. By the Baire category theorem (cf. [21,
p. 200]), at least one of the sets 𝐶𝑗 has nonempty interior. Hence, there exists a positive integer𝑚, some elements 𝑧𝑖 ∈ 𝐺,
and an open normal subgroup 𝑇 of 𝐺 such that

[𝑧1𝑇, … , 𝑧𝑛𝑇] ⊆ Δ𝑚.

By Lemma 3.1, every 𝛾𝑘-value in elements of 𝑇 has at most𝑚2𝑘 conjugates in 𝐺. It follows from Theorem 3.2 that 𝑇 has
a nilpotent abstract subgroup 𝐵 of (𝑘,𝑚)-bounded index and (𝑘,𝑚)-bounded class. Then, the topological closure of 𝐵 is
an open nilpotent subgroup of 𝐺. Thus, 𝐺 is virtually nilpotent, as claimed.
If 𝑘 = 2, by Theorem 3.3 the subgroup 𝑇 contains a nilpotent abstract subgroup 𝐵 of 𝑚-bounded index and such that

𝛾4(𝐵) has𝑚-bounded order. Then, the topological closure 𝐵 of 𝐵 is an open subgroup of 𝐺 such that 𝛾4(𝐵) has finite order.
Choose an open subgroup 𝐾 ≤ 𝐺 such that 𝐾 ∩ 𝛾4(𝐵) = 1. Observe that 𝐾 ∩ 𝐵 is open in 𝐺 and nilpotent of class at most
3, as required. □

We will require the following corollary of the main result in [10].

Lemma 3.5 ([10, Corollary 1.2]). Let𝑤 be a multilinear commutator word and 𝐺 a profinite group in which the centralizers
of 𝑤-values are either finite or open. Then, 𝐺 has an open subgroup 𝑇 such that 𝑤(𝑇) is abelian.

Proposition 3.6. Let 𝑘 be a positive integer and 𝐺 a profinite group in which the centralizers of 𝛾𝑘-values are either finite or
open. Then, 𝐺 is virtually nilpotent. If 𝑘 = 2, then 𝐺 has an open subgroup which is nilpotent of class at most 3.

Proof. By Lemma 3.5,𝐺 has an open subgroup 𝑇 such that 𝛾𝑘(𝑇) is abelian. Without loss of generality, we can assume that
𝐺 = 𝑇.
If all 𝛾𝑘-values of 𝐺 are 𝐹𝐶-elements, then by Proposition 3.4 we conclude that 𝐺 is virtually nilpotent. In particular, if

𝑘 = 2, then 𝐺 has an open subgroup which is nilpotent of class at most 3.
So, assume that there exists a 𝛾𝑘-value whose centralizer in 𝐺 is finite. As 𝛾𝑘(𝐺) is abelian, we conclude that 𝛾𝑘(𝐺) is

finite. Therefore, there exists an open normal subgroup 𝑁 of 𝐺 such that 𝑁 ∩ 𝛾𝑘(𝐺) = 1. In particular, 𝛾𝑘(𝑁) = 1 and 𝑁

is an open nilpotent subgroup of 𝐺. If 𝑘 = 2, then 𝑁 is abelian and 𝐺 is virtually abelian. This concludes the proof. □

4 ON GROUPS INWHICH CENTRALIZERS OF UNIFORM COMMUTATORS ARE
FINITE

In this section, we will prove Theorem 1.1 in the special case, where the elements of 𝑘 have finite centralizers (see
Proposition 4.2). Throughout, it will be assumed that 𝑘 ≥ 2. Note that if 𝐺 is a profinite group where all 𝛾𝑘-values have
finite centralizers, then 𝐺 is either finite or nilpotent of class at most 𝑘 − 1 [10, Corollary 1.3].
We will repeatedly use the following observation:

Lemma 4.1. Let𝐺 be a profinite group in which the centralizers of u𝑘-commutators are finite. If𝐻 is a pronilpotent subgroup
of 𝐺, then either𝐻 is finite or𝐻 ∩𝑘 = 1. In the latter case,𝐻 is nilpotent of class at most 𝑘 − 1.

Proof. Since𝐻 is a direct product of its Sylow subgroups, it follows that any 𝛾𝑘-value of𝐻 lies in𝑘 and, by [10, Corollary
1.3],𝐻 is either finite or nilpotent of class at most 𝑘 − 1. Assume𝐻 ∩𝑘 ≠ 1 and let 𝑦 be a nontrivial element of𝐻 ∩𝑘.
Since 𝑍(𝐻) ≤ 𝐶𝐺(𝑦), it follows that 𝑍(𝐻) is finite. In view of Lemma 2.1, this implies that𝐻 is finite. □

Proposition 4.2. Let 𝐺 be a profinite group in which the centralizers of u𝑘-commutators are finite. Then, 𝐺 is either finite or
nilpotent of class at most 𝑘 − 1.
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DETOMI et al. 4953

Proof. If 𝐺 is pronilpotent, then the result is immediate from the previous lemma. Assume that 𝐺 is not pronilpotent. We
want to prove that 𝐺 is finite. We will use the fact that the Sylow subgroups of 𝐺 are either finite or nilpotent of class at
most 𝑘 − 1.
The profinite version of Burnside’s theorem [15, Theorem 3.3] says that if 𝑁𝐺(𝑃)∕𝐶𝐺(𝑃) is a pro-𝑝 group for every non-

trivial pro-𝑝 subgroup 𝑃 of 𝐺, then 𝐺 has a normal 𝑝-complement. Note that a group is pronilpotent whenever it has
normal 𝑝-complement for every prime 𝑝. As our group 𝐺 is not pronilpotent, there exists a prime 𝑝 and a pro-𝑝 sub-
group 𝑃 ≤ 𝐺 such that 𝑁𝐺(𝑃)∕𝐶𝐺(𝑃) contains a nontrivial 𝑝′-element. So, 𝑁𝐺(𝑃) ⧵ 𝐶𝐺(𝑃) contains a 𝑝′-element 𝑎 that
induces a nontrivial coprime automorphism on 𝑃. We deduce from Lemma 2.5 that there exists a nontrivial 𝑝-element
𝑦 = [𝑥,𝑘 𝑎] ∈ 𝑘 ∩ 𝑃. It follows from Lemma 4.1 that the Sylow 𝑝-subgroups of 𝐺 are finite.
Let 𝑁 be an open normal pro-𝑝′ subgroup of 𝐺 intersecting 𝐶𝐺(𝑦) trivially. Then, 𝐶𝑁(𝑦) = 1 and 𝑦 acts coprimely on

𝑁. Let 𝑞 be a prime in 𝜋(𝑁). By Lemma 2.3, there is a 𝑦-invariant Sylow 𝑞-subgroup 𝑄 of 𝑁.
As 𝐶𝑁(𝑦) = 1, the map 𝑥 ↦ [𝑥, 𝑦] is injective on 𝑄. Hence, by Lemma 2.5, 𝑘 ∩ 𝑄 ≠ 1. Thus, 𝑄 is a finite 𝑞-group by

Lemma 4.1, and the map 𝑥 ↦ [𝑥, 𝑦] is also surjective. Therefore, 𝑄 ⊆ 𝑘 by Lemma 2.5.
Choose an element 𝑧 ∈ 𝑄 of prime order 𝑞. Since𝐶𝐺(𝑧) is finite, there exists an open normal 𝑞′-subgroup𝐾 of𝐺 that has

trivial intersectionwith𝐶𝐺(𝑧). In particular, 𝑧 acts coprimely and fixed-point-freely on𝐾. As 𝑧 has prime order, combining
the well-known results of Thompson and Higman [18, 36] (see also [37, Theorem 2.6.2]) we conclude that 𝐾 is nilpotent.
Again, by Lemma 2.5, we deduce that 𝐾 ⊆ 𝑘, whence 𝐾 is finite by Lemma 4.1. It follows that 𝐺 is finite. □

5 ON GROUPS INWHICH UNIFORM COMMUTATORS ARE FC-ELEMENTS

In this section, we will prove the following proposition.

Proposition 5.1. Let 𝐺 be a profinite group such that𝑘 ⊆ Δ(𝐺). Then, 𝐺 is virtually nilpotent.

We will need technical results about commutators.

Lemma 5.2. Let 𝑥1, … , 𝑥𝑛 be elements of a group 𝐺 and let 𝑦 ∈ {𝑥1, … , 𝑥𝑛}. Then, [𝑥1, … , 𝑥𝑛] is a product of 2𝑛−1 conjugates
of 𝑦±1.

Proof. Using basic commutator identities it can be easily seen that if 𝑣 is a product of 𝑡 conjugates of 𝑦±1, then both
[𝑣, 𝑥] = 𝑣−1𝑣𝑥 and [𝑥, 𝑣] = 𝑣−𝑥𝑣 are products of 2𝑡 conjugates of 𝑦±1. Then, by induction on 𝑛, it follows that [𝑥1, … , 𝑥𝑛]

is a product of 2𝑛−1 conjugates of 𝑦±1. □

Suppose that a set Σ is a union of finitely many subsets Σ1, … , Σ𝑚. Then, Σ admits a partition with blocksΩ1,… ,Ω𝑠 such
that 𝑠 ≤ 2𝑚 and each Σ𝑖 is a (disjoint) union of some of the blocksΩ1,… ,Ω𝑠. Formally, we can takeΩ1,… ,Ω𝑠 to be all the
nonempty sets of the form

Γ1 ∩ Γ2 ∩⋯ ∩ Γ𝑚, where Γ𝑖 is either Σ𝑖 or Σ ⧵ Σ𝑖 for all 𝑖.

This will be used in the next lemma.

Lemma 5.3. Let𝑁 be a normal pronilpotent subgroup of a profinite group G. Let𝑋 ⊆ 𝐺 be the set of commutators [𝑔1, … , 𝑔𝑘]

where at least one of the entries 𝑔1, … , 𝑔𝑘 belongs to 𝑁. Then, every element of 𝑋 is a product of 𝑘-boundedly many elements
in𝑘 ∩ 𝑁.

Proof. Let us fix an element [𝑔1, … , 𝑔𝑘] ∈ 𝑋, with 𝑔𝑖 ∈ 𝑁. The set

𝜋(𝑔1) ∪⋯ ∪ 𝜋(𝑔𝑘)
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4954 DETOMI et al.

admits a finite partition with blocks 𝜋1, … , 𝜋𝑠 with the property that each 𝜋(𝑔𝑡) is a union of some of these blocks. Note
that 𝑠 ≤ 2𝑘. So, each element 𝑔𝑡 is a product

𝑔𝑡 =

𝑠∏
𝑗=1

𝑦𝑡𝑗, where 𝑦𝑡𝑗 ∈ ⟨𝑔𝑡⟩, 𝜋(𝑦𝑡𝑗) = 𝜋𝑗 whenever 𝑦𝑡𝑗 ≠ 1.

Repeatedly using the commutator identity [𝑎𝑏, 𝑐] = [𝑎𝑏, 𝑐𝑏] [𝑏, 𝑐] we obtain that [𝑔1, … , 𝑔𝑘] is a product of 𝑘-boundedly
many elements of the form: 𝑦 = [𝑢1, … , 𝑢𝑘], where, for each 𝑡, 𝑢𝑡 is a conjugate of some 𝑦𝑡𝑗 . In particular 𝑢𝑖 ∈ 𝑁, and for
each 𝑡, 𝑗 = 1, … , 𝑘 the sets 𝜋(𝑢𝑡) and 𝜋(𝑢𝑗) are either equal or disjoint. So, taking into account that 𝑁 is normal, we just
need to show that every such element 𝑦 = [𝑢1, … , 𝑢𝑘] is a product of 𝑘-boundedly many elements in𝑘 ∩ 𝑁.
Let �̃� = 𝜋(𝑢𝑖). As 𝑁 is pronilpotent and normal in 𝐺, the subgroup 𝑂�̃�(𝑁) is normal in 𝐺. In the following, we will

use the following fact: if 𝑎 ∈ 𝑂�̃�(𝑁) and 𝑏 induces a coprime automorphism on 𝑂�̃�(𝑁), then [𝑎, 𝑏] ∈ 𝑘. Indeed, by
Lemma 2.5, there exists 𝑑 ∈ 𝑂�̃�(𝑁) such that [𝑎, 𝑏] = [𝑑, 𝑘𝑏] = [𝑏−𝑑𝑏, 𝑘−1𝑏].
If �̃� = 𝜋(𝑢1) = ⋯ = 𝜋(𝑢𝑘) then 𝑦 ∈ 𝑘 ∩ 𝑁. Otherwise there exists 𝑗 such that

𝜋(𝑢𝑗) ≠ �̃�.

Assume that 𝑗 > 𝑖. We have that 𝑥 = [𝑢1, … , 𝑢𝑗−1] ∈ 𝑂�̃�(𝑁), and 𝑢𝑗 induces a coprime automorphism on𝑂�̃�(𝑁). There-
fore, [𝑢1, … , 𝑢𝑗] = [𝑥, 𝑢𝑗] ∈ 𝑘 ∩ 𝑁 and it follows from Lemma 5.2, that 𝑦 = [𝑢1, … , 𝑢𝑘] is a product of 𝑘-boundedly many
elements in𝑘 ∩ 𝑁, which are all conjugates of [𝑢1, … , 𝑢𝑗] or [𝑢1, … , 𝑢𝑗]

−1.
So,we can assume that 𝑗 < 𝑖. By Lemma5.2 the element𝑥 = [𝑢1, … , 𝑢𝑖−1] is the product of𝑘-boundedlymany conjugates

of 𝑢𝑗 or 𝑢−1𝑗 , so that [𝑥, 𝑢𝑖]−1 = [𝑢𝑖, 𝑥] is the product of 𝑘-boundedly elements of the form [𝑎, 𝑏], where 𝑎 ∈ 𝑂�̃�(𝑁) and 𝑏
is a conjugate of 𝑢𝑗 , so it acts coprimely on 𝑂�̃�(𝑁). All elements [𝑎, 𝑏] belong to 𝑘 ∩ 𝑁, thus [𝑥, 𝑢𝑖]−1 = [𝑢1, … , 𝑢𝑖]

−1 is
the product of 𝑘-boundedly many elements in𝑘 ∩ 𝑁. Since𝑘 is symmetric, the result follows. □

Lemma 5.4. Let 𝐺 be a metapronilpotent group.
Then, every 𝛾𝑘-value in 𝐺 is a product of 𝑘-boundedly many elements in𝑘 .

Proof. Write 𝐺 = 𝑁𝑇, where 𝑇 is a system normalizer and𝑁 = 𝛾∞(𝐺). Since 𝐺 is metapronilpotent, it follows that𝑁 and
𝑇 are pronilpotent. Let 𝑥 be a 𝛾𝑘-value of 𝐺. Then, we can write 𝑥 in the form

𝑥 = [𝑛1𝑡1, … , 𝑛𝑘𝑡𝑘],

where 𝑛𝑖 ∈ 𝑁 and 𝑡𝑖 ∈ 𝑇 for all 𝑖 = 1, … , 𝑘. Using the basic commutators identities [𝑎𝑏, 𝑐] = [𝑎, 𝑐]𝑏[𝑏, 𝑐], [𝑎, 𝑏𝑐] =
[𝑎, 𝑐][𝑎, 𝑏]𝑐, and 𝑎𝑏 = 𝑏𝑎

−1
𝑎 = 𝑏𝑎𝑏 we can write 𝑥 as

𝑥 = [𝑡1, … , 𝑡𝑘]

2𝑘−1∏
𝑖=1

[𝑥𝑖1, … , 𝑥𝑖𝑘]

where all 𝑥𝑖𝑗 are conjugates of elements in 𝑁 ∪ 𝑇 and at least one entry in each 𝛾𝑘-value [𝑥𝑖1, … , 𝑥𝑖𝑘] belongs to 𝑁. As 𝑇
is pronilpotent, [𝑡1, … , 𝑡𝑘] ∈ 𝑘. Moreover, by Lemma 5.3, all [𝑥𝑖1, … , 𝑥𝑖𝑘] are products of 𝑘-boundedly many elements in
𝑘 ∩ 𝑁. This concludes the proof. □

Any finite group𝐻 has a normal series each of whose factors either is soluble or is a direct product of nonabelian simple
groups. The nonsoluble length of𝐻, denoted by 𝜆(𝐻), is defined as the minimum number of nonsoluble factors in a series
of this kind. It is easy to see that the nonsoluble length 𝜆(𝐻) is equal to the least positive integer 𝑙 such that there is a series
of characteristic subgroups

1 = 𝐿0 ≤ 𝑅0 < 𝐿1 ≤ 𝑅1 < ⋯ ≤ 𝑅𝑙 = 𝐻

in which each quotient 𝐿𝑖∕𝑅𝑖−1 is a (nontrivial) direct product of nonabelian simple groups, and each quotient 𝑅𝑖∕𝐿𝑖 is
soluble (possibly trivial).
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DETOMI et al. 4955

It is natural to say that a profinite group 𝐺 has finite nonprosoluble length at most 𝑙 if 𝐺 has a normal series

1 = 𝐿0 ≤ 𝑅0 < 𝐿1 ≤ 𝑅1 < ⋯ ≤ 𝑅𝑙 = 𝐺

in which each quotient 𝐿𝑖∕𝑅𝑖−1 is a (nontrivial) Cartesian product of nonabelian finite simple groups, and each quotient
𝑅𝑖∕𝐿𝑖 is prosoluble (possibly trivial). In particular if, for some positive integer 𝑚, all continuous finite quotients of a
profinite group 𝐺 have nonsoluble length at most 𝑚, then 𝐺 has finite nonprosoluble length at most 𝑚 (see, e.g., [38,
Lemma 2]).
In the rest of this section, 𝐺 will be a profinite group such that 𝑘 ⊆ Δ(𝐺). Of course, in every quotient 𝐺∕𝑁 of 𝐺 the

elements of𝑘(𝐺∕𝑁) are 𝐹𝐶-elements.

Lemma 5.5. Suppose 𝐺 is a direct product of nonabelian finite simple groups. Then, 𝐺 is finite.

Proof. Let 𝐺 = Π𝑖∈𝐼𝑆𝑖 , where each 𝑆𝑖 is a nonabelian finite simple group. In every factor 𝑆𝑖 choose a nontrivial element
𝑎𝑖 ∈ 𝑘(𝑆𝑖). Note that 𝑎 =

∏
𝑖∈𝐼

𝑎𝑖 ∈ 𝑘. Further, observe that 𝐶𝐺(𝑎) =
∏

𝑖∈𝐼
𝐶𝑆𝑖

(𝑎𝑖) has finite index in 𝐺 if and only if 𝐼
is finite. This proves the result. □

Lemma 5.6. The group 𝐺 is virtually prosoluble.

Proof. Suppose that 𝐺 is not prosoluble. Let 𝑃 be a Sylow 2-subgroup of 𝐺. Since 𝑘(𝑃) = 𝑃𝛾𝑘 , it follows from Proposi-
tion 3.6 that 𝑃 is virtually nilpotent. Thus, 𝑃 is soluble, say of derived length 𝑑. By [24, Theorem 1.4] every finite image of
𝐺 has nonsoluble length at most 𝑑 and so also 𝐺 has nonprosoluble length at most 𝑑.
Let

1 = 𝐿0 ≤ 𝑅0 < 𝐿1 ≤ 𝑅1 < ⋯ ≤ 𝑅𝑠 = 𝐺

be a normal series of finite length in which each section 𝐿𝑖∕𝑅𝑖−1 is a (nontrivial) direct product of nonabelian finite simple
groups, and each section 𝑅𝑖∕𝐿𝑖 is prosoluble (possibly trivial). By Lemma 5.5, every section 𝐿𝑖∕𝑅𝑖−1 is finite. Let

𝐻 = {𝑥 ∈ 𝐺 ∣ [𝐿𝑖, 𝑥] ≤ 𝑅𝑖−1 for all 𝑖}

be the centralizer in 𝐺 of the non-prosoluble sections of the series. This is an open prosoluble subgroup of 𝐺. □

Lemma 5.7. If 𝐺 is prosoluble, then 𝐹(𝐺) ≠ 1.

Proof. Assume by contradiction that 𝐹(𝐺) = 1 and let 𝑥 be a nontrivial element in 𝑘. Then, 𝐾 = ⟨𝑥𝐺⟩ is generated by
finitely many conjugates of 𝑥 and so its centralizer has finite index in 𝐺. It follows that the center 𝑍(𝐾) of 𝐾 has finite
index in𝐾. Moreover, 𝑍(𝐾) ≤ 𝐹(𝐺) = 1. Therefore, 𝑍(𝐾) = 1 and consequently𝐾 is finite. As𝐺 is prosoluble,𝐾 is soluble
and 𝐹(𝐾) ≠ 1. As 𝐹(𝐾) ≤ 𝐹(𝐺), this contradicts the assumption that 𝐹(𝐺) = 1. □

Now, we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. By Lemma 5.6, we may assume that 𝐺 is prosoluble and so 𝐹(𝐺) ≠ 1 by Lemma 5.7. If 𝐹(𝐺) = 𝐺,
then all 𝛾𝑘-values of 𝐺 are contained in𝑘 and the result is immediate from Proposition 3.6.
Assume that 𝐺 is not pronilpotent and suppose first that 𝐺 = 𝐹2(𝐺). Then, 𝐺 = 𝑁𝑇 with 𝑁 = 𝛾∞(𝐺) and 𝑇 a system

normalizer. In this situation,𝑁 and 𝑇 are pronilpotent and in view of Lemma 5.4 every 𝛾𝑘-value in𝐺 is a product of finitely
many elements from𝑘. Thus, all 𝛾𝑘-values belong to the 𝐹𝐶-center Δ(𝐺) of 𝐺 and it follows from Proposition 3.6 that 𝐺
is virtually nilpotent.
This proves that𝐹2(𝐺) is virtually nilpotent, whence𝐹2(𝐺)∕𝐹(𝐺) is finite. Let �̄� = 𝐺∕𝐹(𝐺), and let �̄� be an open normal

subgroup of �̄� such that �̄� ∩ 𝐹(�̄�) = 1. Then,𝐹(�̄�) = 1which, because of Lemma 5.7, implies that �̄� = 1. Hence, �̄� is finite
and 𝐺 is virtually nilpotent. This concludes the proof. □
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4956 DETOMI et al.

6 PROOF OF THEOREM 1.1

We start with the case, where 𝐺 is a metapronilpotent group.

Lemma 6.1. Let 𝐺 be a metapronilpotent group in which the centralizers of u𝑘-commutators are either finite or open. Then,
𝐺 is virtually nilpotent.

Proof. Write 𝐺 = 𝑁𝑇, where 𝑇 is a system normalizer and𝑁 = 𝛾∞(𝐺). Since 𝐺 is metapronilpotent, it follows that𝑁 and
𝑇 are pronilpotent. Hence, by Proposition 3.6 both 𝑁 and 𝑇 are virtually nilpotent. Let 𝑁0 ≤ 𝑁 and 𝑇0 ≤ 𝑇 be nilpotent
open subgroups of𝑁 and 𝑇, respectively. Remark that𝑁0 can be chosen characteristic in 𝐺. Notice that 𝐿 = 𝑁0𝑇0 is open
in 𝐺 and it is sufficient to show that 𝐿 is virtually nilpotent. Obviously, 𝐿 is soluble. Arguing by induction on the derived
length of 𝐿 we can assume that 𝐿′ is virtually nilpotent. Then, 𝐿 has an open subgroup whose commutator subgroup is
nilpotent and so without loss of generality we can assume that 𝐿′ is nilpotent.
If 𝐿′ is finite, then 𝐿 is virtually abelian. Assume that 𝐿′ is infinite. Lemma 2.1 says that 𝑍(𝐿′) is infinite, too. Observe

that every element of𝑘(𝐿) centralizes𝑍(𝐿′). Hence, every element of𝑘(𝐿) is an𝐹𝐶-element, and therefore 𝐿 is virtually
nilpotent by Proposition 5.1. □

Recall that a group is locally finite if every finite subset is contained in a finite subgroup.

Lemma 6.2. Let 𝐺 be a profinite group and 𝐻 a locally finite normal abstract subgroup of 𝐺. Let �̂� be the closure of 𝐻.
Suppose that 𝐶𝐻(𝑎) = 1 for some torsion element 𝑎 ∈ 𝐺. Then, 𝐶𝐺∕�̂�(𝑎) is the image of 𝐶𝐺(𝑎) in 𝐺∕�̂�.

Proof. Let ℎ ∈ 𝐻. Then, 𝐽 = ⟨ℎ⟩⟨𝑎⟩ is a finite 𝑎-invariant subgroup of 𝐻. Consider the map 𝑓 ∶ 𝐽 ↦ 𝐽 defined by: 𝑥 ↦

[𝑥, 𝑎]. Since 𝐶𝐻(𝑎) = 1, the map is injective and hence surjective. So, ℎ = [𝑥, 𝑎] for some 𝑥 ∈ 𝐽. This holds for every
ℎ ∈ 𝐻 and therefore the natural extension of 𝑓 to �̂� is also surjective.
Clearly, 𝐶𝐺∕�̂�(𝑎) contains the image of 𝐶𝐺(𝑎) in 𝐺∕�̂�. Conversely, if 𝑥�̂� ∈ 𝐶𝐺∕�̂�(𝑎), then [𝑥, 𝑎] ∈ �̂�, whence [𝑥, 𝑎] =

[ℎ, 𝑎] for some ℎ ∈ �̂�. We deduce that 𝑥ℎ−1 ∈ 𝐶𝐺(𝑎) and 𝑥 ∈ 𝐶𝐺(𝑎)�̂�. Thus, 𝐶𝐺∕�̂�(𝑎) = 𝐶𝐺(𝑎)�̂�∕�̂�, as required. □

Now, we are ready to prove the result on virtually nilpotency.

Proposition 6.3. Let𝐺 be a profinite group in which the centralizers of uniform 𝑘-step commutators are either finite or open.
Then, 𝐺 is virtually nilpotent.

Proof. Suppose that an element 𝑥 ∈ 𝑘 has infinite order. Then, the centralizer 𝐶 = 𝐶𝐺(𝑥) is infinite and therefore open.
Every u𝑘-commutator lying in 𝐶 is centralized by 𝑥, which has infinite order. Therefore, every u𝑘-commutator in 𝐶 is an
𝐹𝐶-element. Apply Proposition 5.1 to deduce that 𝐶 is virtually nilpotent, and the same holds for 𝐺, as 𝐶 is open in 𝐺.
Hence, without loss of generality, we will assume that every element of𝑘 has finite order.
Let 𝑌 ⊆ 𝑘 be the set of elements of𝑘 that have open centralizers, and let𝐻 be the abstract subgroup generated by 𝑌.

Note that 𝐻 is contained in the 𝐹𝐶-center of 𝐺. In particular, 𝐻 is locally finite. If 𝑌 = 𝑘, the result is immediate from
Proposition 5.1 so assume that 𝑌 ≠ 𝑘.
Let 𝑎 ∈ 𝑘 ⧵ 𝑌. As the centralizer 𝐶𝐺(𝑎) is finite and 𝐻 is residually finite, there exists a normal subgroup 𝐾 of finite

index in𝐻 such that𝐶𝐾(𝑎) = 1. Let �̂� and �̂� be the topological closures of𝐻 and𝐾, respectively. It follows fromLemma6.2
that𝐶𝐺∕�̂�(𝑎) = 𝐶𝐺(𝑎)�̂�∕�̂� and therefore𝐶𝐺∕�̂�(𝑎) is finite. Since �̂�∕�̂� is finite, also𝐶𝐺∕�̂�(𝑎) is finite (see, e.g., [34, Lemma
2.1]). Thus, every nontrivial element of𝑘 has finite centralizer in 𝐺∕�̂�. In view of Proposition 4.2 we conclude that 𝐺∕�̂�
is virtually nilpotent.
Let us now examine the action of 𝑎 on 𝐻. Again, 𝐾 is a finite index 𝑎-invariant subgroup of 𝐻 such that 𝐶𝐾(𝑎) = 1.

A well-known corollary of the classification of finite simple groups is that a finite group admitting a fixed-point-free
automorphism is soluble (see, e.g., [32]). Thus, 𝐾 is locally soluble. Recall that a Carter subgroup is a self-normalizing
nilpotent subgroup and note that ⟨𝑎⟩ is a Carter subgroup in every finite subgroup 𝑇 of 𝐾⟨𝑎⟩ such that 𝑎 ∈ 𝑇. The main
result in Dade’s paper [4] implies that the fitting height ℎ(𝑇) of 𝑇 is bounded by a function depending only on the order of
𝑎. We deduce that 𝐾 has a characteristic series of finite length all of whose factors are locally nilpotent. Therefore, �̂� has
a finite characteristic series with pronilpotent factors, that is, �̂� has finite Fitting height. As �̂� is open in �̂� and 𝐺∕�̂� is
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DETOMI et al. 4957

virtually nilpotent, we conclude that also 𝐺 has an open prosoluble subgroup, whose Fitting height is finite. So, without
loss of generality we can assume that 𝐺 is prosoluble and ℎ(𝐺) is finite.
If ℎ(𝐺) ≤ 2, Lemma 6.1 implies that 𝐺 is virtually nilpotent. Assume that ℎ(𝐺) > 2 and argue by induction of ℎ(𝐺). It

follows that 𝐺∕𝐹(𝐺) is virtually nilpotent. Hence, 𝐺 has an open subgroup𝑀 such that ℎ(𝑀) ≤ 2. In view of Lemma 6.1,
𝑀 (and therefore 𝐺) is virtually nilpotent. The proof is now complete. □

Now, Theorem 1.2 follows.

Proof of Theorem 1.2. Let 𝐺 be a profinite group in which the centralizers of elements of 2 are either finite or open.
It follows from Proposition 6.3 that 𝐺 is virtually nilpotent. So, we can assume that 𝐺 is nilpotent. In that case every
commutator in 𝐺 is a uniform commutator. In view of Proposition 3.6, we conclude that 𝐺 has an open subgroup which
is nilpotent of class at most 3. □

It remains to prove the part of Theorem 1.1 which states that 𝛾𝑘(𝐺) is virtually abelian.
Let G be a group and 𝑤 = 𝑤(𝑥1, … , 𝑥𝑛) a word. The marginal subgroup 𝑤∗(𝐺) of 𝐺 corresponding to the word 𝑤 is

defined as the set of all 𝑥 ∈ 𝐺 such that

𝑤(𝑔1, … , 𝑥𝑔𝑖, … , 𝑔𝑛) = 𝑤(𝑔1, … , 𝑔𝑖𝑥, … , 𝑔𝑛) = 𝑤(𝑔1, … , 𝑔𝑖, … , 𝑔𝑛)

for all 𝑔1, … , 𝑔𝑛 ∈ 𝐺 and 1 ≤ 𝑖 ≤ 𝑛. It is well known that 𝑤∗(𝐺) is a characteristic subgroup of 𝐺 and [𝑤∗(𝐺), 𝑤(𝐺)] = 1.
Note that marginal subgroups in profinite groups are closed.
Let 𝑆 be a subset of a group 𝐺. Following [10] define the 𝑤∗-residual of 𝑆 of 𝐺 to be the intersection of all normal

subgroups 𝑁 such that 𝑆𝑁∕𝑁 is contained in the marginal subgroup 𝑤∗(𝐺∕𝑁).
For multilinear commutator words, the 𝑤∗-residual of a normal subgroup has the following properties.

Lemma 6.4 ([10, Lemma 4.1]). Let 𝑤 be a multilinear commutator word, 𝐺 a group, and𝑁 a normal subgroup of 𝐺. Then,
the𝑤∗-residual of𝑁 in 𝐺 is the subgroup generated by the elements𝑤(𝑔1, … , 𝑔𝑛), where at least one of 𝑔1, … , 𝑔𝑛 belongs to𝑁.

Lemma 6.5 ([10, Lemma 4.2]). Let 𝑤 be a multilinear commutator word, 𝐺 a profinite group, and 𝑁 an open normal
subgroup of 𝐺. Then, the 𝑤∗-residual of𝑁 is open in 𝑤(𝐺).

The following result is a particular case of [10, Proposition 4.5]:

Proposition 6.6. Let 𝐺 be a profinite group and 𝑁 a normal subgroup of 𝐺. Let 𝐻 be the topological closure of Δ(𝐺) in 𝐺.
Fix 𝑖 ∈ {1, … , 𝑘} and consider the set 𝑋𝑖 = {[𝑔1, … , 𝑔𝑘] ∣ 𝑔𝑖 ∈ 𝑁, 𝑔𝑗 ∈ 𝐺}. If

𝑋𝑖 ⊆ Δ(𝐺),

then [𝐻, ⟨𝑋𝑖⟩] is finite.
Following the lines of [10, Theorem 4.3], we have:

Theorem 6.7. Assume that 𝐺 is a profinite group in which the centralizers of u𝑘-commutators are either finite or open and
𝑁 is an infinite normal nilpotent subgroup of 𝐺. Then, the 𝛾∗

𝑘
-residual of𝑁 has finite commutator subgroup.

Proof. For 𝑖 = 1, … , 𝑛, let 𝑋𝑖 be the set of 𝛾𝑘-values [𝑔1, … , 𝑔𝑘] such that 𝑔𝑖 belongs to 𝑁. It follows from Lemma 5.3 that
every element in𝑋𝑖 is a product of 𝑘-boundedlymany elements in𝑘 ∩ 𝑁. As𝑁 is infinite, the center 𝑍(𝑁) of𝑁 is infinite
as well, thus every element in𝑘 ∩ 𝑁 is an 𝐹𝐶-element. Therefore, also the set𝑋𝑖 consists of 𝐹𝐶-elements. It follows from
Proposition 6.6 that [𝐻, ⟨𝑋𝑖⟩] is finite for every 𝑖. By Lemma 6.4, the 𝛾∗𝑘-residual of 𝑁 is the subgroup 𝑅 generated by the
set𝑋 = 𝑋1 ∪⋯ ∪ 𝑋𝑘. Thus, [𝐻, 𝑅] =

∏𝑘

𝑖=1
[𝐻, ⟨𝑋𝑖⟩] is finite. Finally, note that 𝑅 ≤ 𝐻 and so 𝑅′ ≤ [𝐻, 𝑅] is also finite. □

Now, Theorem 1.1 follows.
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4958 DETOMI et al.

Proof of Theorem 1.1. Assume that𝐺 is a profinite group inwhich the centralizers of uniform 𝑘-step commutators are either
finite or open. We proved in Proposition 6.3 that𝐺 is virtually nilpotent. Now, we will show that 𝛾𝑘(𝐺) is abelian-by-finite.
Let 𝑁 be an open nilpotent subgroup of 𝐺. Of course we can assume that 𝑁 is infinite. By Theorem 6.7, the 𝛾∗

𝑘
-residual 𝑅

of𝑁 has finite commutator subgroup, thus it is virtually abelian. Moreover, by Lemma 6.5 𝑅 is open in 𝛾𝑘(𝐺). Thus, 𝛾𝑘(𝐺)
is virtually abelian and the proof is complete. □

7 STRONG CONCISENESS OF UNIFORM COMMUTATORS

Aword𝑤 is said to be concise in a class of groups  if𝑤(𝐺) is finite whenever the set of𝑤-values in 𝐺 is finite for a group
𝐺 ∈  . In the 1960s, Hall raised the problem whether all words are concise, but in 1989 Ivanov [19] solved the problem in
the negative (see also [27, p. 439]). On the other hand, the problem for residually finite groups remains open (cf. Segal [33,
p. 15] or Jaikin-Zapirain [20]). In recent years, several positive results with respect to this problem were obtained (see [1,
7–9, 14, 17]).
A word 𝑤 is called boundedly concise in a class of groups  if whenever the set of its values is finite of size at most 𝑚

in a group 𝐺 ∈  , it always follows that the subgroup 𝑤(𝐺) is finite of order bounded by a function of𝑚 and 𝑤. In [13] it
is shown that every word which is concise in the class of all groups is actually boundedly concise. There is a conjecture
that every word which is concise in residually finite groups is boundedly concise (cf. [14]), but this probably will remain
open for some time.
On the other hand, the multilinear commutator words and words implying virtual nilpotency are known to have this

property [7]. Recall that a word𝑤 is said to imply virtual nilpotency if every finitely generated metabelian group 𝐺, where
𝑤 is a law has a nilpotent subgroup of finite index. It follows from Gruenberg’s result [16] that the Engel words imply
virtual nilpotency, so they are boundedly concise.
The main result in [13] states that if𝑤 is a multilinear commutator word and the set of𝑤-values in a group 𝐺 has size at

most 𝑚, then the verbal subgroup 𝑤(𝐺) is finite of order bounded by a function of 𝑚, independently of 𝑤. We will show
that in the class of profinite groups the set𝑘 has the same property.
Recall that the 𝑖th center 𝑍𝑖(𝐺) of a group 𝐺 is defined inductively by 𝑍0(𝐺) = 1 and 𝑍𝑖(𝐺)∕𝑍𝑖−1(𝐺) = 𝑍(𝐺∕𝑍𝑖−1(𝐺))

for 𝑖 ≥ 1. The last term of the upper central series of a finite group 𝐺 will be denoted by 𝑍∞(𝐺). A classical result, due to
Baer, states that if 𝑍𝑖(𝐺) has finite index 𝑡 in 𝐺, then 𝛾𝑖+1(𝐺) is finite, and its order is bounded by a function of 𝑖 and 𝑡 (see
the proof of [30, 14.5.1]). Similarly, if 𝐺 is a finite group such that [𝐺 ∶ 𝑍∞(𝐺)] = 𝑡, then the order of 𝛾∞(𝐺) is 𝑡-bounded
(see [25]).

Proposition 7.1. Let 𝐺 be a profinite group in which |𝑘(𝐺)| ≤ 𝑚 for some positive integer𝑚. Then, |𝛾𝑘(𝐺)| is𝑚-bounded.
Proof. As 𝛾𝑘(𝐺) is generated by the set𝑘(𝐺) on which 𝐺 acts by conjugation, it follows that [𝐺 ∶ 𝐶𝐺(𝛾𝑘(𝐺)] ≤ 𝑚! Thus,
𝑍(𝛾𝑘(𝐺)) has𝑚-bounded index in 𝛾𝑘(𝐺) and, by Schur Theorem, 𝛾𝑘(𝐺)′ has𝑚-bounded order (see [31, 4.12]).Wemay pass
to the quotient 𝐺∕𝛾𝑘(𝐺)′ and, without loss of generality, assume that 𝛾𝑘(𝐺) is abelian. Now, we will prove that |𝛾𝑘(𝐺)|
is finite and 𝑚-bounded by induction on 𝑚, the case 𝑚 = 1 being trivial. If 𝐺 is pronilpotent, then every 𝛾𝑘-value is
contained in𝑘(𝐺), so we can conclude by [13, TheoremA]. Suppose that𝐺 is not pronilpotent. Then, there exists a Sylow
𝑝-subgroup 𝑃 of 𝛾𝑘(𝐺), for some prime 𝑝, and a 𝑝′-element 𝑎 such that [𝑃, 𝑎] ≠ 1. Since 𝑃 is abelian [𝑧𝑦, 𝑎] = [𝑦, 𝑎][𝑧, 𝑎]

for each 𝑦, 𝑧 ∈ 𝑃, thus [𝑃, 𝑎] = {[𝑦, 𝑎] ∣ 𝑦 ∈ 𝑃}. It follows from Lemma 2.5 that [𝑃, 𝑎] ⊆ 𝑘(𝐺) and so it has order at most
𝑚. Choose a nontrivial element 𝑥 ∈ [𝑃, 𝑎]. Then, 𝑥 has order at most𝑚 and [𝐺 ∶ 𝐶𝐺(𝑥)] ≤ 𝑚. Hence, |⟨𝑥𝐺⟩| has order at
most𝑚𝑚. Now, we can pass to the quotient 𝐺∕⟨𝑥𝐺⟩ and conclude by induction on𝑚. □

As mentioned in Section 1, Theorem 1.1 enables us to prove that if 𝐺 is a profinite group such that the cardinality of the
set𝑘(𝐺) is less than 2ℵ0 , then 𝛾𝑘(𝐺) is finite. Our proof relies on the fact that multilinear commutator words are strongly
concise [5].
The next lemma will be useful.

Lemma 7.2. [5, Lemma 2.2] Let 𝐺 be a profinite group and let 𝑥 ∈ 𝐺. If the conjugacy class 𝑥𝐺 contains less than 2ℵ0

elements, then it is finite.
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DETOMI et al. 4959

Proof of Theorem 1.3. It is enough to prove that if 𝐺 is a profinite group such that the cardinality of the set of
u𝑘-commutators in 𝐺 is less than 2ℵ0 then 𝛾𝑘(𝐺) is finite. Under this assumption, the conjugacy class 𝑥𝐺 of every
u𝑘-commutator 𝑥 is finite, by Lemma 7.2. Thus, all u𝑘-commutators are 𝐹𝐶-elements and 𝐺 is virtually nilpotent, by
Proposition 5.1. Let 𝑁 be an open nilpotent normal subgroup of 𝐺. If 𝑔 ∈ 𝐺, Lemma 5.4 implies that the cardinality of
the set of 𝛾𝑘-values in 𝑁⟨𝑔⟩ is less than 2ℵ0 . Taking into account that multilinear commutator words are strongly concise
we conclude that 𝛾𝑘(𝑁⟨𝑔⟩) is finite. Choose a transversal 𝑔1, … , 𝑔𝑠 of 𝑁 in 𝐺. As each 𝛾𝑘(𝑁⟨𝑔𝑖⟩) is normalized by 𝑁, its
normal closure 𝑁𝑖 is finite. Thus, we can pass to the quotient over the finite normal subgroup 𝑁1⋯𝑁𝑠 and assume that
𝛾𝑘(𝑁⟨𝑔𝑖⟩) = 1 for 𝑖 = 1, … , 𝑠. Now, if 𝑥 ∈ 𝑁, the commutator [𝑥, 𝑘−1𝑔] is trivial for each 𝑔 ∈ 𝐺, that is, 𝑥 is a right Engel
element. Therefore for every finite quotient �̄� of𝐺, the image �̄� of𝑁 is contained in 𝑍∞(�̄�) (see, for instance, [30, 12.3.7]).
It follows that 𝛾∞(�̄�) has 𝑠-bounded order. As this happens for every finite quotient of 𝐺, 𝛾∞(𝐺) is finite. Without loss
of generality, we can pass to the quotient over 𝛾∞(𝐺) and assume that 𝐺 is pronilpotent. In this case, every 𝛾𝑘-value is a
u𝑘-commutator. Since multilinear commutator words are strongly concise, it follows that 𝛾𝑘(𝐺) is finite. This concludes
the proof. □
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