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A R T I C L E I N F O A B S T R A C T

Editor: R. Gregory We study different entropies for coherent states representing the geometry of spherically symmetric compact 
systems. We show that the thermodynamic entropy reproduces the Bekenstein-Hawking result in the presence of 
thermal modes at the Hawking temperature if the object is a black hole and saturates the Bekenstein bound for 
more general compact objects. We also analyse the information entropy of the quantum coherent state without 
radiation and find further support against the singular Schwarzschild geometry.
1. Introduction

Quantum aspects of gravitational collapse are among the most inves-

tigated topics in contemporary theoretical physics. A quantum theory 
of gravity is expected to eliminate the singularities predicted by general 
relativity, in particular, those associated with incomplete geodesics at 
the final stage of the collapse of regular matter into a black hole [1]. 
Several methods for removing the singularity in approaches to quan-

tum gravity have been proposed [2–7] and the appearance of a bounce 
at a minimum radius is generically obtained in semiclassical mod-

els [5,8–11]. These studies suggest that the collapsing matter will form 
a (intermediate, if not final) core of (possibly) macroscopic size, leading 
to departures from the classical Schwarzschild geometry [12–15].

Here, we will consider the quantum realisation of Schwarzschild ge-

ometry in terms of coherent states introduced in Ref. [16]. Gravity in 
this system is described by a pure quantum state (with minimum uncer-

tainty) for a very large number of microscopic degrees of freedom (the 
virtual gravitons) depending on the ADM [17] mass 𝑀 and the radius 
𝑅s of the compact source. It is important to remark that there exists no 
state such that we can reproduce the singular Schwarzschild metric for 
𝑅s → 0 at finite 𝑀 . The matter could be described as a core of dust, 
like in Refs. [18–20], but we shall not use other information beside 𝑀
and 𝑅s (see Ref. [15]).

* Corresponding author.

By supplementing the coherent state with a thermal bath of Hawking 
quanta [21], one can compute the thermodynamic entropy of the sys-

tem following the same procedure that was employed in Ref. [22] for 
corpuscular black holes [23]. At leading order, the result reproduces 
the Bekenstein-Hawking expression [24] for evaporating black holes of 
large mass and saturates the Bekenstein bound [25] for more general 
compact objects. Moreover, sub-leading logarithmic corrections suggest 
that the specific heat vanishes and evaporation stops around the Planck 
scale, albeit this would occur beyond the regime of validity of our ap-

proximations.

The coherent Schwarzschild geometry without radiation is described 
by a pure quantum state and its thermodynamic entropy would of 
course vanish. Several measures of information entropy [26] have been 
proposed that can be applied to pure states. Among those, the differ-

ential configurational entropy (DCE) [27] is designed to measure the 
number of bits necessary to construct a field configuration out of wave 
modes in the continuum limit [28] and have been employed to inves-

tigate gravitational systems and quantum field theories [29–38]. Since 
the coherent Schwarzschild geometry is built in a Fock space of free 
(scalar) gravitons, the DCE appears naturally suited for analysing its in-

formation content. We shall find that the DCE further supports the non-

existence of singular configurations with 𝑅s → 0 at finite 𝑅H = 2 𝐺N𝑀 . 
Moreover, the result we will obtain here complements the analogous 
estimate for the dust core in Ref. [39].
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2. Quantum compact objects and black holes

We start here by reviewing the description of the Schwarzschild 
geometry in terms of coherent states generated by a compact matter 
source of ADM mass 𝑀 and areal radius 𝑟 = 𝑅s. We then compute the 
thermodynamic entropy, by including a thermal spectrum of gravitons 
like in Ref. [22] (see also Refs. [40,41]), and the DCE for the back-

ground geometry alone. We are eventually interested in computing the 
entropies in the black hole limit, 𝑅s →𝑅H = 2 𝐺N𝑀 . 1

2.1. Quantum Schwarzschild background

The static Schwarzschild metric,

d𝑠2 = −
(
1 −

2𝐺N𝑀

𝑟

)
d𝑡2 +
(
1 −

2𝐺N𝑀

𝑟

)−1
d𝑟2

+ 𝑟2
(
d𝜃2 + sin2 𝜃 d𝜙2) , (2.1)

can be obtained from coherent states of a scalar field Φ = 𝑉S∕
√
𝐺N

representing virtual gravitons [16], where

𝑉S =
1
2
(
1 + 𝑔𝑡𝑡
)
= −

𝐺N𝑀

𝑟
. (2.2)

We regard the vacuum |0⟩ of Φ as the quantum state of a truly empty 
spacetime, in which no modes of matter or gravity are excited. It is 
therefore natural to quantise Φ as a massless field satisfying the free 
wave equation in Minkowski spacetime 2[
− 𝜕2

𝜕𝑡2
+ 1
𝑟2

𝜕

𝜕𝑟

(
𝑟2

𝜕

𝜕𝑟

)]
Φ(𝑡, 𝑟) = 0 , (2.3)

whose normal modes can be conveniently written as

𝑢𝑘(𝑡, 𝑟) = 𝑒−𝑖 𝑘 𝑡 𝑗0(𝑘𝑟) , (2.4)

where 𝑗0 = sin(𝑘𝑟)∕𝑘𝑟 are spherical Bessel functions satisfying

4𝜋

∞

∫
0

𝑟2 d𝑟 𝑗0(𝑘𝑟) 𝑗0(𝑝 𝑟) =
2𝜋2

𝑘2
𝛿(𝑘− 𝑝) . (2.5)

We can now introduce the usual annihilation operators �̂�𝑘 and creation 
operators �̂�†

𝑘
for these modes. The quantum Minkowski vacuum is then 

defined by �̂�𝑘 |0⟩ = 0 and the corresponding Fock space is built as usual.

Classical configurations of the scalar field that can be realised in the 
quantum theory must correspond to suitable states in this Fock space, 
and a natural choice is given by coherent states

|𝑔⟩ = 𝑒−𝑁G∕2 exp
⎧⎪⎨⎪⎩

∞

∫
0

𝑘2 d𝑘
2𝜋2 𝑔𝑘 �̂�

†
𝑘

⎫⎪⎬⎪⎭|0⟩ (2.6)

such that√
𝓁p
𝑚p
⟨𝑔| Φ̂(𝑡, 𝑟) |𝑔⟩ = 𝑉S(𝑟) =

∞

∫
0

𝑘2 d𝑘
2𝜋2 𝑉S(𝑘) 𝑗0(𝑘𝑟) . (2.7)

The latter condition determines the occupation numbers for each mode 
𝑘 as

𝑔𝑘 =
√

𝑘

2
𝑉S(𝑘)
𝓁p

= − 4𝜋𝑀√
2𝑘3𝑚p

. (2.8)

1 We shall use units with 𝑐 = 1, the Newton constant 𝐺N = 𝓁p∕𝑚p and Planck 
constant ℏ = 𝓁p𝑚p, where 𝓁p is the Planck length and 𝑚p the Planck mass.

2 This approach is similar to the teleparallel gravity equivalent of General 
Relativity. Moreover, including a time dimension remains formal in the absence 
2

of evolution.
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It is now crucial that the state (2.6) is well-defined only if it is normal-

isable, that is if the total occupation number

𝑁G =

∞

∫
0

𝑘2 d𝑘
2𝜋2 𝑔2

𝑘
(2.9)

is finite. However, the integral in Eq. (2.9) with the occupation num-

bers (2.8) diverges both in the infrared (IR) and the ultraviolet (UV). 
This implies that no quantum state exists in our Fock space which can 
reproduce 𝑉S exactly. Any quantum realisation of the Schwarzschild 
geometry must therefore contain occupation numbers 𝑔𝑘 which differ 
from those in Eq. (2.8) for 𝑘 → 0 and 𝑘 →∞, to make the quantum state 
normalisable. The explicit form of such proper occupation numbers will 
depend on the state of matter in the sourcing compact object or black 
hole. Instead of assuming a particular description of such sources, we 
will try to derive general conclusions from qualitative arguments. In 
particular, the IR divergence occurs simply due to the assumption that 
the system is completely static and the potential 𝑉S extends to infinite 
distance from the source centred at 𝑟 = 0. To cure the IR divergence 
we can introduce a cut-off 𝑘IR = 1∕2 𝑅∞ to account for the necessar-

ily finite life-time 𝜏 ∼𝑅∞ of any realistic source. The UV divergence is 
instead due to the behaviour of 𝑉S for 𝑟 → 0 and is not present if the 
source is extended. This allows us to connect the geometry with the size 
of the compact source by setting 𝑘UV = 1∕2 𝑅s, which returns the cor-

rect total (thermodynamic) energy for the background, as we shall see 
below.

The total occupation number with the above prescriptions reads

𝑁G = 4 𝑀
2

𝑚2
p

𝑘UV

∫
𝑘IR

d𝑘
𝑘

= 4 𝑀
2

𝑚2
p

ln
(
𝑅∞
𝑅s

)
, (2.10)

and we have again recovered a scaling of the mass compatible with the 
horizon area quantisation [24]. Moreover, the average radial momen-

tum is given by

⟨𝑘 ⟩ = 4 𝑀
2

𝑚2
p

𝑘UV

∫
𝑘IR

d𝑘 = 2 𝑀
2

𝑚2
p

(
1
𝑅s

− 1
𝑅∞

)
, (2.11)

and the typical wavelength 𝜆G =𝑁G∕⟨𝑘 ⟩ ∼ 𝓁p𝑀∕𝑚p also reproduces 
the scaling found in the corpuscular picture of black holes.

We can next recompute the expectation value of the scalar field in 
the proper quantum state |𝑔⟩ and find

𝑉QS ≃

𝑘UV

∫
𝑘IR

𝑘2 d𝑘
2𝜋2 𝑉S(𝑘) 𝑗0(𝑘𝑟) ≃ 𝑉S

{
1 −
[
1 − 2

𝜋
Si
(

𝑟

𝑅s

)]}
, (2.12)

where Si denotes the sine integral function. We remark that 𝑉QS dis-

plays oscillations around the expected classical behaviour 𝑉S which 
become smaller and smaller for decreasing values of 𝑅s in the region 
𝑟 >𝑅H.

2.2. Thermodinamic entropy

Like in Ref. [22], we start by considering a system of a large num-

ber 𝑁 of scalar particles, 𝑖 = 1, … , 𝑁 , whose individual dynamics is 
determined by a Hamiltonian 𝐻𝑖. We assume the single-particle Hilbert 
space contains the coherent ground state |𝑔⟩ defined previously, and a 
gapless continuous spectrum of energy eigenstates |𝜔𝑖⟩, such that

�̂�𝑖 |𝜔𝑖⟩ = 𝜔𝑖 |𝜔𝑖⟩ . (2.13)

This continuous spectrum is meant to reproduce the Hawking radia-

tion [21] that will escape the coherent state and is characterised by a 

temperature 𝑇 = 𝛽−1, to wit
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|𝜓 (𝑖)⟩ =
∞

∫
𝜔c

d𝜔𝑖

𝜔𝑖 −𝜔c{
exp
[
𝛽
(
𝜔𝑖 −𝜔c

)]
− 1
}1∕2 ||𝜔𝑖⟩

≡ ∫ d𝜇𝑖 |𝜔𝑖⟩ , (2.14)

where  = [2 𝛽−3 𝜁(3)]−1∕2 is a normalisation factor, for 𝜁(3) being the 
Apéry’s constant, and 𝜔c the minimum energy for Hawking modes to 
escape the background state. We will fix both 𝛽 and 𝜔c later. Each 
particle is then assumed to be in a state given by a superposition of |𝑔⟩
and the continuous spectrum, namely

|Ψ(𝑖)⟩ = |𝑔⟩+ �̄� |𝜓 (𝑖)⟩√
1 + �̄�2

, (2.15)

where 0 ≤ �̄� ≪ 1 is a real parameter that weights the relative probability 
amplitude for each particle to be in the thermal rather than background 
state.

The total wave-function of the system of 𝑁 such bosons will corre-

spondingly be approximated by the totally symmetrised product

|Ψ⟩ ≃ 1
𝑁!

𝑁∑
{𝜎𝑖}

[
𝑁⨂
𝑖=1
|Ψ(𝑖)⟩] , (2.16)

where 
∑𝑁

{𝜎𝑖}
denotes the sum over all of the 𝑁! permutations {𝜎𝑖} of 

the 𝑁 terms inside the square brackets. Upon expanding in powers of 
0 ≤ �̄� ≪ 1, we obtain

(
1 + �̄�2
)𝑁∕2 |Ψ⟩ ≃ 1

𝑁!

𝑁∑
{𝜎𝑖}

[
𝑁⨂
𝑖=1
|𝑔⟩]

+ �̄�

𝑁!

𝑁∑
{𝜎𝑖}

[
𝑁⨂
𝑖=2
|𝑔⟩⊗ ∫ d𝜇1 |𝜔1⟩] , (2.17)

where we omitted all the terms of order �̄�𝐽 with 𝐽 = 2, … , 𝑁 .

The spectral decomposition of this 𝑁 -particle state can be obtained 
by defining the total Hamiltonian simply as the sum of 𝑁 single-particle 
Hamiltonians,

�̂� =
𝑁⨁
𝑖=1

�̂�𝑖 . (2.18)

Since we assumed �̄� ≪ 1, we again keep only terms up to first order in 
�̄� , which leads to

⟨Ψ| �̂� |Ψ⟩ ≃ 1
1 + 𝛾2

[⟨𝑔| �̂� |𝑔⟩+ 𝛾2 ⟨𝜓| �̂� |𝜓⟩] , (2.19)

where 𝛾 ∼ �̄� [22]. The background value is obtained from Eq. (2.11)

and reads

⟨𝑔| �̂� |𝑔⟩ = ℏ ⟨𝑘 ⟩ ≃ 2
𝓁p𝑀

2

𝑅s𝑚p
, (2.20)

in which we took the limit 𝑅∞ →∞. Since the radiation is produced by 
the Hawking effect, it is natural to assume that the temperature 𝛽−1 is 
given by the surface gravity 𝜅 of the compact object of radius 𝑅s, that 
is

𝛽−1 = ℏ𝜅

2𝜋
≃

𝓁2
p 𝑀

2𝜋𝑅2
s
, (2.21)

and that the minimum energy for Hawking quanta to escape is given by 
the background energy,

𝜔c ≃ ⟨𝑔| �̂� |𝑔⟩ ≃ 𝓁3
p 𝑀

3 𝛽

𝜋 𝑚p𝑅
3
s
. (2.22)

In the black hole limit, 𝑅s →𝑅H = 2 𝐺N𝑀 , we thus recover the Hawk-
3

ing temperature
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𝛽−1 → 𝛽−1H =
𝑚2
p

8𝜋𝑀
(2.23)

and 𝜔c →𝑀 .

The contribution from the thermal radiation is given by

⟨𝜓| �̂� |𝜓⟩ ≃ 2

∞

∫
𝜔c

(𝜔−𝜔c)2

exp
{
𝛽
(
𝜔−𝜔c
)}

− 1
𝜔d𝜔

≃ 𝜔c +
𝜋4

30 𝜁(3)𝛽

≃
𝓁3
p 𝑀

3 𝛽

𝜋 𝑚p𝑅
3
s
+ 𝜋4

30 𝜁(3)𝛽
, (2.24)

where we used the expression for 𝜔c in Eq. (2.22). The total energy is 
thus approximated by

⟨Ψ| �̂� |Ψ⟩ ≃ 𝓁3
p 𝑀

3 𝛽

𝜋 𝑚p𝑅
3
s
+ 𝛾2 𝜋4

30 𝜁(3)𝛽
, (2.25)

and we notice that the Eq. (2.25) in the black hole limit 𝑅s →𝑅H yields

⟨Ψ| �̂� |Ψ⟩→ 𝑚2
p 𝛽H

8𝜋
+ 𝛾2 𝜋4

60 𝜁(3)𝛽H
=𝑀 +

𝛾2 𝜋3𝑚2
p

240 𝜁(3)𝑀
. (2.26)

We can use Eq. (2.25) to estimate the partition function of the sys-

tem according to

⟨ �̂� ⟩ = − 𝜕

𝜕𝛽
ln [𝑍(𝛽)] . (2.27)

We then find

ln [𝑍(𝛽)] ≃ −
𝓁3
p 𝑀

3 (𝛽2 − 𝛽2∗
)

2𝜋𝑚p𝑅
3
s

− 𝛾2 𝜋4

30 𝜁(3)
ln
(
𝛽

𝛽∗

)
, (2.28)

where 𝛽∗ is an integration constant. The canonical entropy is then given 
by

𝑆(𝛽) ≃ 𝛽2
𝜕𝐹

𝜕𝛽
, (2.29)

where 𝐹 (𝛽) = −(1∕𝛽) ln(𝑍) is the Helmoltz free energy. It is straight-

forward to get

𝑆(𝛽) ≃
𝓁3
p 𝑀

3 (𝛽2 + 𝛽2∗
)

2𝜋𝑚p𝑅
3
s

+ 𝛾2 𝜋4

30 𝜁(3)

[
1 − ln
(
𝛽

𝛽∗

)]
≃

2𝜋𝑅s𝑀

𝓁p𝑚p

(
1 +

𝓁4
p 𝑀

2 𝛽2∗

4𝜋2𝑅4
s

)
+ 𝛾2 𝜋4

30 𝜁(3)

[
1 − ln

(
2𝜋𝑅2

s

𝓁2
p 𝑀 𝛽∗

)]
.

(2.30)

For 𝑅s →𝑅H, the above expression yields

𝑆(𝛽)→ 4𝜋𝑀2

𝑚2
p

(
1 +

𝑚4
p 𝛽

2
∗

64𝜋2𝑀2

)
+ 𝛾2 𝜋4

30 𝜁(3)

[
1 − ln

(
8𝜋𝑀
𝑚2
p 𝛽∗

)]
.

(2.31)

On further assuming 𝛽−1∗ ∼𝑚p, we finally obtain the entropy

𝑆(𝛽H) ≃
4𝜋𝑀2

𝑚2
p

(
1 +

𝑚2
p

𝑀2

)
+ 𝛾2 𝜋4

30 𝜁(3)

[
1 − ln
(
8𝜋𝑀
𝑚p

)]

≃
𝑚2
p 𝛽

2
H

16𝜋
− 𝛾2 𝜋4

30 𝜁(3)
ln
(
𝑚p 𝛽H
)
, (2.32)

where we neglected terms of order 𝑚p∕𝑀 ≪ 1 in the last line.

The leading-order term in Eq. (2.32) exactly reproduces the Beken-

stein-Hawking expression [24]

𝑆 =  =
𝜋𝑅2

H
, (2.33)
BH 4𝓁2

p 𝓁2
p
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where  is the horizon area. Since the total occupation number 𝑁 =
𝑁G is given in Eq. (2.10), we conclude that the entropy is directly re-

lated to the normalisation of the coherent state. Moreover, for the same 
choice of 𝛽∗ and to the same leading order, the entropy (2.30) reads

𝑆(𝛽) ≃
2𝜋𝑅s𝑀

𝓁p𝑚p
, (2.34)

which is the famous Bekenstein bound [25].

The correction to the energy in Eq. (2.26) provides a positive con-

tribution to the specific heat,

𝐶BH = −𝛽2H
𝜕⟨ �̂� ⟩
𝜕𝛽H

≃ −
𝑚2
p 𝛽

2
H

8𝜋
+ 𝛾2 𝜋4

30 𝜁(3)
, (2.35)

which makes the specific heat vanishes, albeit for a mass 𝑀 ∼ 𝛾 𝑚p ≪
𝑚p outside the regime of approximation employed here. This suggests 
that the evaporation slows down when the mass approaches the Planck 
scale, like one expects from the microcanonical description of evaporat-

ing black holes [42].

2.3. Information entropy

If we omit the Hawking radiation, there is no thermal ensemble to 
speak of, and the background geometry is described by the pure quan-

tum state (2.6). For pure states, we can still evaluate some information 
entropy [26] based on the fact that the coherent states (2.6) are built 
in the Fock space of Minkowski free wave modes (2.4). In particular, 
we shall employ the DCE which precisely measures the amount of in-

formation that is needed to assemble any field configuration from such 
wave modes in momentum space, also encompassing the information 
complexity. We remark that, in general, the DCE vanishes when wave 
modes contribute equally, whereas a non-uniform distribution leads to 
increasing values [28].

In order to compute the DCE for a continuous wave spectrum like 
the one in Eq. (2.4), it is first convenient to introduce a dimensionless 
momentum variable �̃� = 𝓁 𝑘, where 𝓁 is a reference length scale. 3 The 
DCE for a spherically symmetric system is then given by

𝑆DCE = −∫
d�̃�
2𝜋2 𝑓�̃� ln

(
𝑓�̃�
)
, (2.36)

where

𝑓�̃� =
(
∫

d�̃�
2𝜋2 𝜌

2
�̃�

)−1
𝜌2
�̃�

(2.37)

is the modal fraction, which characterises the contribution of distinct 
wave modes in momentum space. The modal fraction encodes the way 
a given mode 𝑘 contributes to the power spectrum, which describes 
fluctuations of the occupation numbers and represents the 2-point cor-

relator in Fourier space.

Considering the occupation numbers (2.8) and their integral (2.10), 
we define

𝜌�̃� = �̃� 𝑔�̃� . (2.38)

The modal fraction for our coherent state then reads

𝑓�̃� =
𝜌2
�̃�

𝑁G
= 2𝜋2

�̃� ln(𝑅∞∕𝑅s)
. (2.39)

The above modal fraction measures the contribution of a range of 
modes, between the IR and UV cut-offs in Eqs. (2.10)-(2.12), to the 
shape of 𝜌�̃�, or equivalently, of the occupation numbers. We then ob-

tain

3 Note that the numerical values of the DCE will depend on the particular 
choice of 𝓁, but we are here primarily interested in the dependence of the DCE 
4

on the macroscopic parameters of the system, that is 𝑀 and 𝑅s (and 𝑅∞).
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𝑆DCE = −

𝓁∕𝑅s

∫
𝓁∕𝑅∞

d�̃�
�̃� ln
(
𝑅∞∕𝑅s
) ln[ 2𝜋2

�̃� ln
(
𝑅∞∕𝑅s
)]

= −1
2
ln
(
4𝜋4𝑅s𝑅∞

𝓁2

)
+ ln
[
ln
(
𝑅∞
𝑅s

)]
, (2.40)

representing the amount of information to describe the spatial profile 
of 𝜌�̃� in terms of Fourier modes. A surprising feature of the above ex-

pression is that it does not depend on the mass 𝑀 , unless one assumes 
that 𝓁 ∼𝑀 , as we shall see next.

2.3.1. Box normalisation

The expression (2.40) contains a reference length scale 𝓁. We can 
first assume that 𝓁 is associated with the size 𝑅∞ of the whole system 
and set 𝓁 = 4 𝜋2𝑅∞. This choice yields

𝑆DCE = 1
2
ln
(
𝑅∞
𝑅s

)
+ ln
[
ln
(
𝑅∞
𝑅s

)]
, (2.41)

which is plotted in the left panel of Fig. 1. This behaviour is consistent 
with the fact that higher values of the ratio 𝑅s∕𝑅∞ correspond to a 
narrower range of the wavenumber 𝑘 between the cut-offs 𝑘IR and 𝑘UV. 
The fewer choices are allowed for 𝑘, the lower the 𝑆DCE, corresponding 
to more stable configurations for the quantum coherent state. The 𝑆DCE
diverges negatively for 𝑅s∕𝑅∞ = 1, a value which implies 𝑘UV = 𝑘IR. 
For 𝑘UV ≫ 𝑘IR, corresponding to 𝑅s∕𝑅∞ ≪ 1, there is a larger range 
of 𝑘 available to construct the quantum Schwarzschild spacetime from 
wave modes.

In order to clarify the meaning of negative values of the DCE for 𝑅s
approaching 𝑅∞, we plot the exponential of the DCE in the right panel 
of Fig. 1. This everywhere positive function decreases monotonically 
for increasing 𝑅s, diverging for 𝑅s → 0 and vanishing at 𝑅s = 𝑅∞. If 
we assume that the exponential of an entropy measures the number of 
microscopic configurations contributing to a given macroscopic state, 
this result implies that (the gravitational field of) more compact objects 
contains more information in the form of microscopic configurations. 
We also recall that the exponential of the DCE is the upper limit of the 
inverse squared norm of the modal fraction [43]. The right panel of 
Fig. 1 therefore indicates a minimal power spectrum for 𝑅s ≪𝑅∞ and 
a maximal one for 𝑅s →𝑅∞.

The divergence for vanishing size, in particular, would be consistent 
with the fact that the coherent state (2.6) is not well defined for 𝑅s → 0
if 𝑀 is not zero. However, in the black hole limit, 𝑅s →𝑅H, Eq. (2.41)

simply reads

𝑆DCE(𝑅H) =
1
2
ln
(
𝑅∞
𝑅H

)
+ ln
[
ln
(
𝑅∞
𝑅H

)]
, (2.42)

which does not show any additional feature to distinguish (the gravita-

tional field of) regular sources from black holes. More puzzling is the 
fact that the DCE in Eq. (2.42) still diverges for 𝑅H → 0 (that is, 𝑀 → 0). 
A vanishing 𝑀 should however correspond to Minkowski spacetime, for 
which we instead expect that the DCE is zero.

2.3.2. Mass normalisation

A DCE that knows about the mass of the compact object (or black 
hole) can be defined by setting the reference scale 𝓁 = 2 𝜋2𝑅H ∼𝑀 . In 
this case, we find

𝑆DCE = −1
2
ln
(
𝑅s
𝑅H

)
− 1

2
ln
(
𝑅∞
𝑅H

)
+ ln
[
ln
(
𝑅∞
𝑅s

)]
. (2.43)

An example is plotted in Fig. 2, from which we see that the exponential 
of the above DCE decreases monotonically from 𝑅s =𝑅H and vanishes 
for 𝑅s =𝑅∞. The left panel in Fig. 2 shows that the configuration 𝑅s =
𝑅H is more unstable, in the context of the information entropy of the 
quantum coherent state, which becomes more stable as 𝑅s increases 
towards 𝑅∞ ∼ 100 𝑅H. At 𝑅s =𝑅∞, the quantum coherent state attains 

a maximal configurational stability.
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Fig. 1. Plot of the DCE in Eq. (2.41) (left panel) and its exponential (right panel). The same behaviour is found in the black hole limit 𝑅s →𝑅H.

Fig. 2. Plot of the DCE in Eq. (2.43) (left panel) and its exponential (right panel) for 𝑅 ≤𝑅 ≤𝑅 = 100𝑅 .
For 𝑅s < 𝑅H, Eq. (2.43) behaves like the DCE in Eq. (2.41) (this 
range is not included in Fig. 2). In particular, its exponential still di-

verges for 𝑅s∕𝑅H → 0, which is in more explicit agreement with the 
result that the coherent state (2.6) does not exist in this limit. We can 
now argue that such a state would in fact need an infinite amount of 
information to be created (by exciting modes from the Minkowski vac-

uum). The right panel of Fig. 2 also indicates a minimal power spectrum 
for 𝑅s ≪𝑅H and a maximal one for 𝑅s →𝑅H.

For 𝑅s =𝑅H, Eq. (2.43) simplifies to

𝑆DCE = −1
2
ln
(
𝑅∞
𝑅H

)
+ ln
[
ln
(
𝑅∞
𝑅H

)]
, (2.44)

which is plotted in the left panel of Fig. 3 where the 𝑆DCE is shown to 
diverge negatively both for 𝑅H → 0 and 𝑅H →𝑅∞. Also, for our choice 
of 𝓁, a maximum 𝑆MAX

DCE = −0.307 occurs at 𝑅H = 0.135 𝑅∞, indicating 
a point of minimum configurational stability of the quantum coherent 
system. The exponential of the DCE now vanishes both for 𝑅H → 𝑅∞
and 𝑅H → 0, the latter case now reproducing what we would indeed 
expect for the vacuum Minkowski spacetime.

3. Conclusions

The Schwarzschild geometry in the quantum regime can be repre-

sented by normalisable coherent states generated by compact matter 
sources, which are consistent for finite occupation numbers. In order 
to discuss the properties of such states in some generality, we ensure 
that the total occupation number (2.10) is finite by introducing appro-

priate IR and UV cut-offs [16] (and the expectation value of the scalar 
field, describing virtual gravitons, in the quantum coherent states then 
presents oscillating corrections with respect to the classical geometry 
5

that depend on 𝑘IR and 𝑘UV).
H s ∞ H

A total Hamiltonian for an evaporating gas of such gravitons at 
the Hawking temperature (2.21) was constructed as the direct sum 
of 𝑁 single-particle Hamiltonians, such that its expectation value on 
the (background) coherent state equals the ADM mass 𝑀 of the com-

pact system in the black hole limit 𝑅s → 𝑅H [see Eq. (2.26)]. The 
thermodynamic canonical entropy (2.30) was then computed, which 
reproduces the Bekenstein-Hawking entropy for black holes, and satu-

rates the Bekenstein bound in general, at leading order for 𝑀 ≫ 𝑚p. 
The thermodynamic entropy is therefore directly related to the total oc-

cupation number (2.10), hence the normalisation of the coherent state. 
An additional (logarithmic) term is present in Eq. (2.30), depending on 
the relative probability amplitude for each graviton to be in the thermal 
state rather than the background. This term derives from a correction to 
the energy that increases the specific heat and indicates that the evap-

oration slows down for values of the ADM mass near the Planck scale. 
This result is corroborated by the microcanonical description of evapo-

rating black holes.

The information entropy (DCE) was used to study the quantum 
Schwarzschild geometry described by pure quantum coherent states. 
The DCE should measure the contribution of a range of modes, between 
the IR and UV cut-offs, to the shape complexity of the occupation num-

bers and was analytically computed from the modal fraction (2.39) by 
introducing a reference length scale 𝓁. The analytical expression (2.40)

of the DCE does not depend on the ADM mass 𝑀 of the quantum 
Schwarzschild geometry unless 𝓁 is set to be proportional to 𝑀 . First, 
a box normalisation was employed, in which the reference length 𝓁 is 
of the order of the size 𝑅∞ ∼ 1∕𝑘IR of the gravitational system. For 
this case, larger values of the ratio 𝑅s∕𝑅∞ ∼ 𝑘IR∕𝑘UV, correspond-

ing to a narrower range of the wavenumber between the IR and the 
UV cut-offs, yield lower values of the (exponential of the) DCE, which 

should therefore represent more stable configurations for the quantum 
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Fig. 3. Plot of the DCE in Eq. (2.44) (left panel) and its exponential (right panel).
coherent state. In particular, the (exponential of the) DCE diverges for 
𝑅s → 0, as does the total occupation number (2.10), which signals that 
the coherent state becomes highly unstable in this limit and the classical 
Schwarzschild geometry cannot be realised. For studying black holes, 
the choice of the mass normalisation 𝓁 ∼𝑀 appears more interesting. 
The exponential of the DCE with 𝑅s = 𝑅H in Eq. (2.44) shows a max-

imum value for 𝑅H ∼ 𝑅∞∕10 and vanishes both for 𝑅H → 𝑅∞ (when 
the black hole fills the entire available space) and 𝑅H → 0 (correspond-

ing to a black hole with vanishing mass, hence approaching the empty 
Minkowski spacetime). Such limiting configurations should therefore be 
the most stable, with finite mass black holes being unstable, in agree-

ment with the prediction of the Hawking process.
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