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How to handle negative interest rates in a
CIR framework

Marco Di Francesco∗ Kevin Kamm†

June 8, 2021

Abstract

In this paper, we propose a new model to address the problem of negative interest
rates that preserves the analytical tractability of the original Cox-Ingersoll-Ross (CIR)
model without introducing a shift to the market interest rates, because it is defined as
the difference of two independent CIR processes. The strength of our model lies within
the fact that it is very simple and can be calibrated to the market zero yield curve using
an analytical formula. We run several numerical experiments at two different dates, once
with a partially sub-zero interest rate and once with a fully negative interest rate. In both
cases, we obtain good results in the sense that the model reproduces the market term
structures very well. We then simulate the model using the Euler-Maruyama scheme and
examine the mean, variance and distribution of the model. The latter agrees with the
skewness and fat tail seen in the original CIR model. In addition, we compare the model’s
zero coupon prices with market prices at different future points in time. Finally, we test
the market consistency of the model by evaluating swaptions with different tenors and
maturities.

Keywords: CIR model, Negative interest rates, Calibration, Forecasting and simulation,
Riccati Equations.
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1. Introduction

1. Introduction

The Cox-Ingersoll-Ross model (hereafter referred to as CIR model) has been regarded as the
reference model in interest rate modeling by both practitioners and academics for several
decades, not only because of its analytical tractability as an affine model, but also because
of its derivation from a general equilibrium framework (see for example [6]), among other
reasons. The well-known feature of the CIR model that ultimately led to this paper is that
interest rates never become negative. This long-standing paradigm of non-negative interest
rates made the CIR model and its extensions one of the most appropriate models for interest
rate modeling.
Today, however, negative interest rates are very common and thus the need for models that

can handle this paradigm shift is highly desirable, provided that they have as few shortcomings
as possible compared to the original CIR models.
In this paper, we present a very simple and effective idea how this can be realized by

modeling interest rates as the difference of two independent CIR processes, which—to the
best of our knowledge—has not been considered yet.
We will propose a term structure in the risk-neutral world suitable for the difference of two

independent affine processes and obtain a pricing formula for default-free zero-coupon bonds
by deriving the associated Riccati equations arising from this no-arbitrage framework. In the
special case of two CIR processes we will then solve the Riccati equations explicitly, which
preserves the analytical tractability of its non-negative interest rate counterpart.
Afterwards, we will show some numerical experiments to demonstrate the merits of this

approach in practice.
Let us consider the following affine dynamicsdx(t) = (λx(t)x(t) + ηx(t)) dt+

√
γx(t)x(t) + δx(t)dWx(t)

x(0) = x0,
(1.1)

dy(t) = (λy(t)y(t) + ηy(t)) dt+
√
γy(t)y(t) + δy(t)dWy(t)

y(0) = y0,
(1.2)

where henceforth throughout the whole paper Wy and Wx are two independent standard
Brownian motions on a stochastic basis

(
Ω,F , (Ft)t∈[0,T ] ,Q

)
, Q is a martingale measure and

T > 0 is a finite time horizon. The initial values x0, y0 ∈ R are real-valued constants and
the coefficients λz, ηz, γz, δz, z ∈ {x, y}, are all real-valued deterministic functions, such that
(1.1) and (1.2) are well-defined.
Furthermore, let the the instantaneous short-rate process be given by

r(t) := x(t)− y(t). (1.3)

In the case where y ≡ 0, this reduces to the standard affine one-factor short rate model class.
If additionally δx(t) ≡ 0, λx(t) ≡ −kx ηx(t) ≡ kxθx and γx(t) ≡ σ2

x, where kx, σx, θx ∈ R≥0,
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1.1. Description of the main results

it reduces to the standard CIR model

dx(t) = kx(θx − x(t))dt+ σx

√
x(t)dWx(t), (1.4)

which lets (1.3) preserve all the features of a standard CIR model in a non-negative interest
rate setting.

1.1. Description of the main results

The main result consists of two main parts. First of all, we derive the zero-coupon bond price
for (1.3) in the case of the difference of (1.1) and (1.2) being two independent CIR processes
as in (1.4). Secondly, we provide numerical experiments to demonstrate the features of this
model in Section 3.

Theorem 1.1. Let
(
Ω,F , (Ft)t∈[0,T ] ,Q

)
be a stochastic basis, where Q is a martingale mea-

sure, T > 0 a finite time horizon and let the σ-algebra (Ft)t∈[0,T ] fulfill the usual conditions
and support two independent standard Brownian motions Wx and Wy.
The price of a zero-coupon bond in the model r(t) = x(t) − y(t) with x and y being two

independent CIR processes as in (1.4) is given by

P (t, T ) = Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t), (1.5)

where t ≤ T and for z ∈ {x, y}

Az(t, T ) =

 φz1e
φz2(T−t)

φz2

(
eφ

z
1(T−t) − 1

)
+ φz1

φz3

Bz(t, T ) = eφ
z
1(T−t) − 1

φz2

(
eφ

z
1(T−t) − 1

)
+ φz1

(1.6)

with φzi ≥ 0, i = 1, 2, 3, z ∈ {x, y}, such that the Feller condition 2kzθz ≥ σ2
z is satisfied and

φx1 =
√
k2
x + 2σ2

x, φx2 = kx + φx1
2 , φx3 = 2kxθx

σ2
x

φy1 =
√
k2
y − 2σ2

y , φy2 = ky + φy1
2 , φy3 = 2kyθy

σ2
y

.

(1.7)

The technical part of the proof is quite standard and referred to Appendix A with a
description for deriving this result in Section 2. Formula (1.5) will provide the necessary
ingredient for the numerical experiments in Section 3 to calibrate the model to the market
term structure. In Section 3 we will perform several experiments at two different dates
30/12/2019 and 30/11/2020, where negative interest rates are observed in the market to
uncover the features of this model.
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1.2. Review of the literature and comparison

1.2. Review of the literature and comparison

There is a vast literature on interest rate modeling, among these for example the comprehen-
sive works of [2], [5] and [11], which we cannot cover to its full extent in this small review. The
most popular approach in modern interest rate modeling is the direct modeling of short rates
r(t) under a risk-neutral measure Q inspired by no-arbitrage arguments, especially, because
the price at time t > 0 of a contingent claim with payoff HT , T > t, under the risk-neutral
measure is given by (cf. [22])

Ht = EQ
t [e−

∫ T
t
r(s)dsHT ], (1.8)

where EQ
t denotes the conditional expectation with respect to some filtration Ft under mea-

sure Q. In particular, choosing HT := P (T, T ) = 1, where P (t, T ) denotes a zero-coupon
bond, gives rise to a convenient way to calibrate a short rate model to the market term
structure, which we will utilize for our approach as well.
Starting with the pioneering works of Merton [17] in 1973 and Vasicek [23] in 1977, many

one-factor short rate models were introduced, see [5] for a detailed overview. Among all, a
model that has had a particular importance in the past, equally among both practitioners
and academics, is the well-known CIR model, proposed by Cox, Ingersoll & Ross in [7]. It
provides the basis for this paper and is a generalization to the Vasicek model by introducing
a non-constant volatility given by (1.4).
Clearly, the square root term precludes the possibility of negative interest rates and under

the assumption of the Feller-condition 2kθ ≥ σ2, see for instance [14], the origin is inaccessible.
These two properties combined with its analytical tractability make the CIR model well-suited
for a non-negative interest rate setting.
There is a rich literature on extensions to the classical CIR model in order to obtain

more sophisticated models, which could fit the market data better, allowing to price interest
rate derivatives more accurately. For example, Chen in [1] proposed a three-factor model;
Brigo and Mercurio in [5] proposed a jump diffusion model (JCIR). In order to include time
dependent coefficients in (1.4), Brigo and Mercurio in [4] proposed to add a deterministic
function into equation (1.4). This model, called CIR++, is able to fit the observed term
structure of interest rates exactly, while preserving the positivity of the process r(t). Brigo
and El-Bachir in [3] generalized the CIR++ model by adding a jump term described by
a time-homogeneous Poisson process and Brigo and Mercurio in [5] studied the CIR2++
model. Another way to generalize the CIR model by including time dependent coefficients in
equation (1.4) was introduced by Jamshidian in [13] and Maghsoodi in [15], which are known
as extended CIR models.
But in the last decade the financial industry encountered a paradigm shift by allowing the

possibility of negative interest rates, making the classical CIR model unsuitable.
One way to handle the challenges entailed by negative interest rates is to use Gaussian

models with one or more factors, such as the Hull and White model (see [12]), which also has
a very good analytical tractability. A generalization of these models with a good calibration
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2. A model for negative interest rates

to swaption market prices was found in [9], while Mercurio and Pallavicini in [16] proposed
a mixing Gaussian model coupled with parameter uncertainty.
But the glamor of the CIR model is still alive even in the current market environment

with negative interest rates. Orlando et al. suggest in several papers (cf. [19], [20] and
[21]) a new framework, which they call CIR# model, that fits the term structure of interest
rates. Additionally, it preserves the market volatility, as well as the analytical tractability of
the original CIR model. Their new methodology consists in partitioning the entire available
market data sample, which usually consists of a mixture of probability distributions of the
same type. They use a technique to detect suitable sub-samples with normal or gamma
distributions. In a next step, they calibrate the CIR parameters to shifted market interest
rates, such that the interest rates are positive, and use a Monte Carlo scheme to simulate the
expected value of interest rates.
In this paper, however, we introduce a new methodology for handling the challenges arising

from negative interest rates. In our model, the instantaneous spot rate is defined as the
difference between two independent classical CIR processes, which allows the preservation
of the analytical tractability of the original CIR model without introducing any shift to the
market interest rates.
The paper is organized as follows. In Section 2 we introduce the model in a general affine

model setup and describe our main result Theorem 1.1. We will derive the Riccati equations
associated with the proposed term structure suitable for the difference of two independent
affine processes and solve those explicitly in a CIR framework.
After that, in Section 3, we will conduct some numerical experiments. First, we calibrate

our model via (1.5) to the market data at 30/12/2019 and 30/11/2020 in Section 3.2. Sub-
sequently, we simulate the model by using the Euler-Maruyama scheme in Section 3.3 and
study the mean, variance and distribution of the model in Section 3.4. Then we test how
the calibrated model performs when pricing zero-coupon bonds at future times in Section 3.5
and conclude our numerical tests by pricing swaptions in Section 3.6. Finally, we summarize
the results of the paper in Section 4 and discuss possible extensions for future research.

2. A model for negative interest rates

We will now describe how Theorem 1.1 can be derived. As aforementioned, we consider all
dynamics under the risk-neutral measure Q and give now a heuristic argument, why it makes
sense to choose the term structure in Theorem 1.1 as in (1.5).
Suppose, that x(t) and y(t) are both independent affine processes. Then the the price of a

zero-coupon bond for each of them separately (cf. [5] p. 69) is given by

P (t, T ) = EQ
t

[
e−
∫ T
t
z(s)ds

]
= Az(t, T )e−Bz(t,T )z(t), (2.1)

where z ∈ {x, y} and EQ
t denotes the conditional expectation with respect to Ft under the
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2. A model for negative interest rates

measure Q. Now, consider r(t) = x(t)− y(t), then we have by linearity and independence

P (t, T ) = EQ
t

[
e−
∫ T
t
r(s)ds

]
= EQ

t

[
e−
∫ T
t

(x(s)−y(s))ds
]

= EQ
t

[
e−
∫ T
t
x(s)ds

]
EQ
t

[
e
∫ T
t
y(s)ds

]
.

If we concentrate in (2.1) only on the right-hand side, it would make sense for two independent
processes x and y that we can apply these formulas with a change of sign in front of By, leading
to

P (t, T ) != Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t).

In the following Lemma we will make this argument rigorous.

Lemma 2.1. Let everything be as in Theorem 1.1 but let x(t) and y(t) follow the general
affine dynamics described in (1.1) and (1.2).
Then, the price of a Zero-coupon bond is given by

P (t, T ) = EQ
t

[
e−
∫ T
t
r(s)ds

]
= Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t), (2.2)

where Az and Bz, z ∈ {x, y}, are deterministic functions and are a classical solution to the
following system of Riccati equations

−1−Bx(t, T )λx(t)− (∂tBx) (t, T ) + 1
2B

2
x(t, T )γx(t) = 0, Bx(T, T ) = 0

−Bx(t, T )ηx(t) + 1
2B

2
x(t, T )δx(t) + ∂t (logAx) (t, T ) = 0, Ax(T, T ) = 1

1 +By(t, T )λy(t) + (∂tBy) (t, T ) + 1
2B

2
y(t, T )γy(t) = 0, By(T, T ) = 0

By(t, T )ηy(t) + 1
2B

2
y(t, T )δy(t) + ∂t (logAy) (t, T ) = 0, Ay(T, T ) = 1.

(2.3)

The proof of this Lemma is referred to Appendix A. The independence of x and y ensures
that the Riccati equations for Ax and Bx are decoupled from the ones for Ay and By, making
it possible to use the existing literature on explicit solutions in the context of short rate
models to construct easily a solution for our difference process (1.3) in the case where x (1.1)
and y (1.2) are CIR processes.

Remark 2.2. One can immediately use Lemma 2.1 and the ideas in Appendix A to construct
solutions to other popular one-factor affine short rate models, where an explicit solution is
available, e.g. the Vasicek model, provided that x and y are independent.

Introducing dependence between x and y suggests a coupling of Ax and Bx to Ay and By
and might have an impact on the analytical tractability, but is left for future research.

It is well-known that, under the conditions 2kzθz ≥ σ2
z , z ∈ {x, y}, the processes x(t) and

y(t) are strictly positive for every t ≥ 0 (see for instance [7] or [14]). We underline that
even if the processes x(t) and y(t) are strictly positive, the instantaneous spot rate r(t) could
be negative since it is defined as the difference of x(t) and y(t) for every t > 0, which is
illustrated in Figure 1 together with several percentiles of r(t).
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3. Numerical tests

Figure 1.: An example of a trajectory with negative interest rates r = x − y and its decom-
position in x and −y, obtained with the market data on 30/12/2019 and parameters given
in Table 2.

3. Numerical tests

We will now perform some numerical experiments in our model. In Section 3.1 we will briefly
discuss the market data, which we will use to perform all numerical tests in the subsequent
sections. Afterwards, we will describe the calibration procedure of our model to the zero-
coupon curves at 30/12/2019 and 30/11/2020 in Section 3.2. This is followed by a short
subsection on simulating the model with the Euler-Maruyama scheme in Section 3.3 and we
investigate the mean, variance and distribution of the short rate model in Section 3.4. In
Section 3.5 we price zero-coupon bonds at future dates and compare the results to the market
prices. Last but not least, Section 3.6 will show results on pricing swaptions in our model.
We used for the calculations Matlab 2021a with the (Global) Optimization Toolbox run-

ning on Windows 10 Pro, on a machine with the following specifications: processor Intel(R)
Core(TM) i7-8750H CPU @ 2.20GHz and 2x32GB (Dual Channel) Samsung SODIMM
DDR4 RAM @ 2667 MHz.

3.1. Market Data

To obtain the market zero-coupon bond term structure, we first build the EUR Euribor-swap
curve which is created from the most liquid interest rate instruments available in the market
and constructed as follows: We consider deposit rates and Euribor rates with maturity from
one day to one year and par-swap rates versus six-month Euribor rates with maturity from
two years to thirty years. Then the zero interest curve and the zero-coupon bond curve
are calculated using a standard “bootstrapping” technique in conjunction with cubic spline
interpolation of the continuously compounded rate (cf. [18] for more details).

6



3.2. Calibration

We choose two different dates and we take the data at the end of each business day. In
particular, we test our model at 30/12/2019 and at 30/11/2020. At the first date, the zero
interest rates were negative up to year six, while at the second date the entire zero interest
rate structure was negative. In Table 6 and in Table 7 we report the zero interest rate curve
and the zero-coupon bond curve at the two different dates.
Furthermore, in Section 3.6 we need the strikes to compute the model swaption prices and

the market prices of the swaptions to compare our model, which are for both dates in the
Appendix in Table 8, Table 9, Table 10 and Table 11, respectively.
All data has been downloaded from Bloomberg and is used in the following subsections for

our numerical experiments. We start in the next subsection with calibrating our model to
the zero-coupon curve.

3.2. Calibration

In this subsection we will discuss how we calibrate our model to the market zero-coupon
curve given in Table 6 and Table 7 by using the formula derived in (1.5).
Let us denote Π := [φx1 , φx2 , φx3 , φ

y
1, φ

y
2, φ

y
3, x0, y0]T ∈ R8. We will formulate the calibration

procedure as a constraint minimization problem in R8 for the parameters Π with objective
function

f(Π) :=
n∑
i=1

(
PM (0, Ti)
P (Π; 0, Ti)

− 1
)2

, (3.1)

where n ∈ N is the number of time points, where market data is available, and Ti, i = 1, . . . , n
are these maturities. The market zero-coupon curve is denoted by PM (0, Ti) and P (Π; 0, Ti)
is the price of a zero-coupon bond in our model given by (1.5) with parameters Π.
The objective function describes the relative square difference between the market zero-

coupon bond prices and the theoretical prices from the model given by (1.5).
The set of admissible parameters A will consist of the following constraints arising from

the well-definedness of the formulas (1.7):
(i) First of all, let us note that there is a one-to-one correspondence between the parameters

Π and kz, σz and θz if one is looking for positive real solutions only. We have

kx = 2φx2 − φx1 , ky = 2φy2 − φ
y
1,

σx =
√

2
(
φx2φ

x
1 − (φx2)2

)
, σy =

√
−2
(
φy2φ

y
1 − (φy2)2

)
,

θx = −φ
2
xφ

3
x(φ1

x − φ2
x)

φ1
x − 2φ2

x

, θy =
φ2
yφ

3
y(φ1

y − φ2
y)

φ1
y − 2φ2

y

.

(3.2)

(ii) We require σz ∈ R≥0, z ∈ {x, y}. By rearranging (3.2), these conditions are equivalent
to φx1 ≥ φx2 and φy2 ≥ φ

y
1;

(iii) A positive mean-reversion speed, i.e. kz ≥ 0, is equivalent to 2φz2 ≥ φz1, z ∈ {a, b};
(iv) The Feller condition 2kzθz ≥ σ2

z is equivalent to φz3 ≥ 1, z ∈ {a, b};
(v) A positive mean for each CIR process, i.e. θz ≥ 0, is by positivity of σ2

z and kz equivalent
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3.2. Calibration

to φz3 ≥ 0, which is already satisfied by the Feller condition;
(vi) The parameter φz1, assuming that it is real-valued, is positive by definition, meaning

that by the positivity of the mean reversion speed, φz2 will be as well. Therefore, all φ
are positive;

(vii) As both CIR processes xt and yt, individually, are positive processes, we additionally
require x0 ≥ 0 and y0 ≥ 0.

The advantage of using the parameters Π instead of kz, σz and θz is that we can rewrite these
conditions as a system of linear inequality constraints in matrix notation A ·Π ≤ 0, where

A :=


−1 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0
1 −2 0 0 0 0 0 0
0 0 0 1 −2 0 0 0


with boundary conditions Πi ≥ 0, i = 1, . . . , 8, and Π3 = φx3 ≥ 1, as well as Π6 = φy3 ≥ 1.

In total, the set of admissible parameters is given by

A :=
{

Π ∈ R8
≥0,Π3,Π6 ≥ 1 : A ·Π ≤ 0

}
. (3.3)

Finally, a solution Π∗ to the calibration problem is a minimizer of

min
Π∈A

f (Π) . (3.4)

To solve (3.4) numerically, we want to use Matlab’s function fmincon in the (Global)
Optimization Toolbox. In order to use this function, we need an initial guess of the parameter
Π and the computational time will depend on that choice. In Table 1 we present a few
choices for initial guesses of Π. The first row for each date 30/12/2019 or 30/11/2020 refers
to Matlab’s function ga in the (Global) Optimization Toolbox, which uses a generic global
optimization algorithm to find a solution of (3.4) without starting from an initial guess,
which takes a long time to compute, roughly 35 to 43 seconds. In the following three rows
are three manual initial guesses. We can see that the first two choices work for both dates
exceptionally fast (0.3 seconds) and the accuracy is almost identical to all other choices,
making this model a good choice if live calibration to the data is needed, which we also
use in the following numerical experiments. In the last two rows we used random starting
parameters to demonstrate that the error remains stable but the computational time varies.
For the algorithms used by Matlab we refer the reader to [10], in the context of financial

mathematics.
The results of the aforementioned calibration procedure are displayed in Table 2 for both

dates 30/12/2019 and 30/11/2020. On the left-hand side, one can see the parameters Π∗

and on the right-hand side the corresponding model parameters derived from Π∗. At both
dates we obtain good results in fitting the market term structure. The mean relative error
(MRE), i.e. 1

n

∑n
i=1

∣∣∣ PM (0,Ti)
P (Π∗;0,Ti) − 1

∣∣∣, over the entire term structure is 0.144 % at the first date
and 0.138 % at the second date.

8



3.2. Calibration

Table 1.: Calibration times and corresponding mean relative errors (MRE) for different initial
parameters at 30/12/2019 and 30/11/2020.

Inital Parameter Times (in s) MRE (in %)
Calibration at 30/12/2019

ga 42.136 0.142014 %
0.50001 0.50001 1.5 0.50001 0.50001 1.5 0.50001 0.50001 0.287 0.143798 %

1 1 2 1 1 2 1 1 0.229 0.146769 %
1e-05 1e-05 1 1e-05 1e-05 1 1e-05 1e-05 0.276 0.145207 %

0.048808 0.72079 1.4275 0.64469 0.32152 1.4794 0.2556 0.25427 0.334 0.146509 %
0.66073 0.78158 1.5547 0.3779 0.24209 1.249 0.74017 0.63334 103.949 0.14374 %

Calibration at 30/11/2020
ga 35.842 0.135885 %

0.50001 0.50001 1.5 0.50001 0.50001 1.5 0.50001 0.50001 0.280 0.137577 %
1 1 2 1 1 2 1 1 0.188 0.138228 %

1e-05 1e-05 1 1e-05 1e-05 1 1e-05 1e-05 40.864 0.13642 %
0.87647 0.89591 1.4508 0.10496 0.63629 1.3009 0.3297 0.74067 0.185 0.140284 %
0.51541 0.83366 1.9624 0.79757 0.13068 1.6517 0.54064 0.43674 0.342 0.14292 %

Table 2.: Calibration parameters Π∗, model parameters and mean relative errors (MRE) at
30/12/2019 and 30/11/2020, obtained with the market data given in Table 6 and Table 7.

Parameter 30/12/2019 30/11/2020
φx1 0.710501 0.767497
φx2 0.644564 0.699649
φx3 1.60862 1.6014
x0 0.268914 0.257145
φy1 0.468673 0.523363
φy2 0.533206 0.594629
φy3 1.50249 1.49966
y0 0.280095 0.270007

f (Π∗) 3.247465e− 04 3.548162e− 04
MRE 0.144 % 0.138 %

Parameter 30/12/2019 30/11/2020
kx 0.578626 0.631802
σx 0.291551 0.308122
θx 0.118155 0.120319

ky 0.59774 0.665895
σy 0.262334 0.291125
θy 0.0864925 0.0954364
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3.3. Euler-Monte-Carlo simulation
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Figure 2.: A comparison of the market zero-coupon prices (Table 6) to the model zero-coupon
prices with absolute errors at 30/12/2019 with parameters given in Table 2.

3.3. Euler-Monte-Carlo simulation

In order to forecast the future expected interest rate, we use the Euler-Maruyama scheme
to simulate the instantaneous spot rate r (1.3). We refer to [8] and the references therein
for a list of different Euler-type methods to simulate a CIR process. In our experiments, we
simulate the processes x(t) and y(t) by the truncated Euler scheme defined as follows:

First of all, we fix a homogeneous time grid 0 = t0 ≤ t1 ≤ · · · ≤ tN = T for the interval [0, T ]
with N +1 time points and mesh ∆ti := ti+1− ti ≡ ∆ := T

N for all i = 0, . . . , N−1. Secondly,
we simulate the two independent Brownian motions Wz, z ∈ {x, y}, and define their time
increment as ∆Wz(ti) := Wz(ti+1)−Wz(ti). In total, we compute r(ti+1) := x(ti+1)− y(ti+1)
for i = 0, . . . , N − 1, where

x(ti+1) = x(ti) + kx(θx − x(ti))∆ti + σx

√
max(x(ti), 0)∆Wx(ti)

y(ti+1) = y(ti) + ky(θy − y(ti))∆ti + σy

√
max(y(ti), 0)∆Wy(ti).

(3.5)

We choose the max inside the square-root to ensure that the square-root remains real, because
due to discretization effects the positivity of x(ti) and y(ti) might be violated.
In the following experiments we choose ∆ = 1

256 and use M = 10000 samples for each of
the Brownian motions. In Figure 3 we show the mean and 99.9 % confidence interval (under
the assumption of the central limit theorem) of the model discount factors compared to the
market discount factors at 30/12/2019. One can see that the mean does not differ from the
market discount factors very much till 5 years with an error of magnitude 0.005 and increases
slightly to a magnitude of 0.05 afterwards till 30 years.

A more detailed comparison of the mean absolute errors, i.e. the absolute value of the
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3.4. Mean and variance
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Figure 3.: A comparison of the market discount factors (Table 6) to the mean of the model
discount factors with absolute errors at 30/12/2019 with parameters given in Table 2 by using
(3.5) with ∆ = 1

256 and M = 10000.

difference of the mean over all simulations of our model to the market data, at each maturity
can be found in the appendix in Table 5.

3.4. Mean and variance

The Fs-conditional mean and variance of the CIR process are well-known (cf. [5] p. 66
equation (3.23)) and are given by

EQ
s [z(t)] = z(s)e−kz(t−s) + θz

(
1− e−kz(t−s)

)
VarQs [z(t)] = z(s)σ

2
z

kz

(
e−kz(t−s) − e−2kz(t−s)

)
+ θz

σ2
z

2kz

(
1− e−kz(t−s)

)2
,

where z ∈ {x, y}. In the case of the difference of two CIR processes we have

EQ
s [r(t)] = EQ

s [x(t)− y(t)] = EQ
s [x(t)]− EQ

s [y(t)] (3.6)

and by independence

VarQs [r(t)] = VarQs [x(t)] + VarQs [y(t)] . (3.7)

In Figure 5 we show for each date the histogram of the short rate distribution after 30 years.
To describe the distribution of r(t) after 30 years better, we also compare it to the density of
a normal random variable with the same mean and variance. As one expects, the distribution
of r shows a slight skewness and fatter tail with respect to the normal distribution.
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3.5. t-Forward zero-coupon prices
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Figure 4.: Mean and standard deviation of r(t) using the calibrated parameters in Table 2,
obtained with (3.6) and (3.7). The left picture shows the results at 30/12/2019 and the right
at 30/11/2020.

Figure 5.: Distribution of the simulated short rate r(t) compared to the normal distribution
at t = 30 using the calibrated parameters in Table 2, ∆ = 1

256 and M = 10000. The left
picture shows the results at 30/12/2019 and the right at 30/11/2020.

3.5. t-Forward zero-coupon prices

In this subsection we examine, if our model is able to replicate the interest rate term structure
not only at the start date but also in the future. Therefore, we compare the market and model
prices of zero-coupon bonds at future times t by using the continuously-compounded spot
interest rates (cf. [5] Definition 1.2.3.) to obtain the market prices.
To be more precise, let us briefly recall the definition of the continuously-compounded spot

interest rates

R(t, T ) := − logP (t, T )
T − t

, (3.8)

where we use the day-count convention T − t in years.
To compute this rate for the market at a fixed future date t > 0 with maturity T > t we

use
RM (t, T ) := TRM (0, T )− tRM (0, t)

T − t
(3.9)

where RM (0, t) and RM (0, T ) are the market zero rates with maturity t and T respectively.
By rearranging (3.8) we derive the market zero-coupon price at a future date t with maturity

T as

PM (t, T ) = exp
(
−RM (t, T )(T − t)

)
. (3.10)
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3.6. Pricing swaptions

0 5 10 15 20 25 30

Time to maturity in years

0.75

0.8

0.85

0.9

0.95

1

1.05

1
-f

o
rw

a
rd

 z
e

ro
 c

o
u

p
n

 p
ri
c
e

s

0
.0

0
9

0
.0

1
3

0
.0

1
4

0
.0

1
5

0
.0

1
6

0
.0

1
7

0
.0

1
8

0
.0

1
9

0
.0

1
8

0
.0

1
8

0
.0

1
8

0
.0

1
7

0
.0

1
5

0
.0

1
2

0
.0

1
1

0
.0

1
1

0
.0

0
9

0
.0

0
8

0
.0

0
6

0
.0

0
7

0
.0

0
8

0
.0

0
9

0
.0

0
9

0
.0

1
0

0
.0

1
2

0
.0

1
5

0
.0

1
7

0
.0

2
0

0
.0

2
3

0 5 10 15 20 25 30

Time to maturity in years

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1
-f

o
rw

a
rd

 z
e

ro
 c

o
u

p
n

 p
ri
c
e

s

0
.0

0
9

0
.0

1
3

0
.0

1
5

0
.0

1
6

0
.0

1
7

0
.0

1
8

0
.0

1
9

0
.0

1
9

0
.0

1
9

0
.0

1
9

0
.0

1
8

0
.0

1
6

0
.0

1
4

0
.0

1
1

0
.0

1
1

0
.0

1
0

0
.0

0
9

0
.0

0
8

0
.0

0
7

0
.0

0
8

0
.0

0
9

0
.0

1
0

0
.0

1
2

0
.0

1
3

0
.0

1
6

0
.0

1
9

0
.0

2
2

0
.0

2
5

0
.0

2
9

Figure 6.: Mean and 99 % confidence interval of the model t-forward zero-coupon prices
compared to the market t-forward zero-coupon prices at t = 1 using the calibrated parameters
in Table 2, ∆ = 1

256 and M = 10000. The left picture shows the results at 30/12/2019 and
the right at 30/11/2020.
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Figure 7.: Mean and 99 % confidence interval of the model t-forward zero-coupon prices
compared to the market t-forward zero-coupon prices at t = 3 using the calibrated parameters
in Table 2, ∆ = 1

256 and M = 10000. The left picture shows the results at 30/12/2019 and
the right at 30/11/2020.

Now, we can compare (3.10) to the mean over all simulated trajectories of the model
t-forward zero-coupon price derived from (1.5).

In Figure 6, Figure 7 and Figure 8 we show a comparison of (3.10) to (1.5) at 30/12/2019
and 30/11/2020 with parameters Π∗ from Table 2 for future times t = 1, 3, 5, respectively.
The behavior shown by the model t-forward prices coincides with typical one-factor short

interest rate models. At short future dates, one year for example, the model is able to
reproduce the market forward zero-coupon price for 30/12/2019, i.e. the error is of magnitude
0.01, whereas at long future dates, e.g. Figure 8, the model prices are deviating further from
the market prices, i.e. the error is of magnitude 0.03. For 30/11/2020 we can see that the
errors are not very large but the model seems to have difficulties to match the shape of the
predicted market prices.

3.6. Pricing swaptions

In this subsection we test if our model is market consistent, in the sense whether the model
is able to reproduce market swaption prices or not.
We compare market swaption prices to model swaption prices with different tenors (1, 2, 5, 7, 10

years) and maturities (1, 2, 5, 7, 10, 15, 20 years). The market swaption prices are computed
by Bachelier’s formula from normal volatilities quoted in the market whereas the model swap-

13



3.6. Pricing swaptions
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Figure 8.: Mean and 99 % confidence interval of the model t-forward zero-coupon prices
compared to the market t-forward zero-coupon prices at t = 5 using the calibrated parameters
in Table 2, ∆ = 1

256 and M = 10000. The left picture shows the results at 30/12/2019 and
the right at 30/11/2020.

Table 3.: 30/12/2019: difference between swaption model price and swaption market price

Maturity
Tenor 1 2 5 7 10

1 4.82602 % 3.72741 % 1.56009 % 0.601718 % −0.554628 %
2 4.70047 % 3.56775 % 1.18057 % 0.0467543 % −1.37405 %
5 3.60511 % 2.4125 % −0.249531 % −1.64559 % −3.50471 %
7 3.23362 % 1.97696 % −0.945175 % −2.48803 % −4.54551 %
10 2.85895 % 1.49467 % −1.69265 % −3.37829 % −5.63478 %
15 2.63259 % 1.17927 % −2.21714 % −4.05043 % −6.53224 %
20 2.48029 % 1.01554 % −2.47166 % −4.39298 % −6.98019 %

tion prices are from the simulated future zero-coupon prices in (1.5). The difference between
market price to model prices for 30/12/2019 and 30/11/2020 are reported in Table 3 and Ta-
ble 4, respectively. We notice that, similar to one-factor short interest rate model, our model
fails to capture the full swaption volatility surface. This result is not surprising, since the
model uses essentially a single volatility factor due to the fact that the model parameters are
constant and the Brownian motion are independent. A way to make the model able to match
the entire volatility surface is the inclusion of time-dependent parameters to fit exactly the
market term structure or, equivalently, adding a deterministic function of time to the short
rate process r, which is left for future research.

Table 4.: 30/11/2020: difference between swaption model price and swaption market price

Maturity
Tenor 1 2 5 7 10

1 4.87829 % 3.71571 % 1.62322 % 0.745822 % −0.307305 %
2 4.62191 % 3.4627 % 1.22337 % 0.167669 % −1.18931 %
5 3.82762 % 2.596 % −0.0624237 % −1.4526 % −3.34358 %
7 3.45837 % 2.13705 % −0.80375 % −2.35496 % −4.46368 %
10 3.24577 % 1.77121 % −1.56541 % −3.3177 % −5.74088 %
15 3.02788 % 1.4328 % −2.26341 % −4.2787 % −7.03714 %
20 3.16548 % 1.42331 % −2.6344 % −4.8421 % −7.85129 %
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4. Conclusion and future research

4. Conclusion and future research

In this paper, we propose a new model to handle the challenges arising from negative interest
rates, while preserving the analytical tractability of the original CIR model without intro-
ducing any shift to the market interest rates. The strength of our model is that it is very
simple, fast to calibrate and fits the present market term structure very well for an essentially
one-factor short rate model.
Let us briefly summarize our discoveries of the numerical section. We show that the

distribution of the short rate after 30 years has similar features compared to the original CIR
model in terms of skewness and fat tail. At 30/12/2019 we show that the model is quite
capable of pricing zero-bonds at future times, while for 30/11/2020 the error is not too large
but an improvement of the current model would be desirous to allow a better fit to the shape
of the market prices. Similarly, we show that we require an extension of the model to price
swaptions more accurately.
That being said, the authors would like to stress that this is a first step in this methodology

of using two CIR processes as a difference to model negative interest rates. Naturally, its
extensions, such as considering time-dependent coefficients to fit the market term structure
perfectly or, equivalently, adding a deterministic shift extension in the sense of [5], will be a
next step and is left for future research.

A. Derivation of the Riccati equations and coefficients

Let everything be as in Lemma 2.1. In particular, let

P (t, T ) != Ax(t, T ) exp (−Bx(t, T )x(t))Ay(t, T ) exp (By(t, T )y(t)) .

To derive the Riccati equations (2.3) we use the fact, that we are modelling under the
martingale measure Q, therefore the discounted price process exp

(
−
∫ t
0 r(s)ds

)
P (t, T ) needs

to be a martingale.
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A. Derivation of the Riccati equations and coefficients

By independence of x and y, as well as Itô’s formula we derive after some algebra

d

[
exp

(
−
∫ t

0
r(s)ds

)
Ax(t, T ) exp (−Bx(t, T )x(t))Ay(t, T ) exp (By(t, T )y(t))

]

= Ax(t, T ) exp
(
−
∫ t

0
x(s)ds−Bx(t, T )x(t)

)[
exp

(∫ t

0
y(s)ds+By(t, T )y(t)

)[

Ay(t, T )
[
y(t)dt+By(t, T )dy(t) + y(t) (∂tBy) (t, T )dt+ 1

2B
2
y(t, T )d 〈y〉t

]

+ (∂tAy) (t, T )dt
]]

+Ay(t, T ) exp
(∫ t

0
y(s)ds+By(t, T )y(t)

)[
exp

(
−
∫ t

0
x(s)ds+Bx(t, T )x(t)

)[

Ax(t, T )
[
−x(t)dt−Bx(t, T )dx(t)− x(t) (∂tBx) (t, T )dt+ 1

2B
2
x(t, T )d 〈x〉t

]

+ (∂tAx) (t, T )dt
]]
.

Now, in order to be a martingale the parts of bounded variation have to vanish, which leads
us after rearranging the terms to

0 != y(t)
[
Ax(t, T )Ay(t, T )

[
1 +By(t, T )λy(t) + (∂tBy) (t, T ) + 1

2B
2
y(t, T )γy(t)

]]

+ x(t)
[
Ay(t, T )Ax(t, T )

[
− 1−Bx(t, T )λx(t)− (∂tBx) (t, T ) + 1

2B
2
x(t, T )γx(t)

]]

+Ax(t, T )Ay(t, T )
[
By(t, T )ηy(t) + 1

2B
2
y(t, T )δy(t)−Bx(t, T )ηx(t) + 1

2B
2
x(t, T )δx(t)

]
+Ax(t, T ) (∂tAy) (t, T ) +Ay(t, T ) (∂tAx) (t, T ).

Thus, we derive the following Riccati System

1 +By(t, T )λy(t) + (∂tBy) (t, T ) + 1
2B

2
y(t, T )γy(t) = 0, By(T, T ) = 0,

−1−Bx(t, T )λx(t)− (∂tBx) (t, T ) + 1
2B

2
x(t, T )γx(t) = 0, Bx(T, T ) = 0,

By(t, T )ηy(t) + 1
2B

2
y(t, T )δy(t)−Bx(t, T )ηx(t) + 1

2B
2
x(t, T )δx(t)

+ ∂t (logAy) (t, T ) + ∂t (logAx) (t, T ) = 0.

A solution to the last equation can be found by further assuming that the individual x and
y parts will be zero, leading to two separate equations

By(t, T )ηy(t) + 1
2B

2
y(t, T )δy(t) + ∂t (logAy) (t, T ) = 0, Ay(T, T ) = 1,

−Bx(t, T )ηx(t) + 1
2B

2
x(t, T )δx(t) + ∂t (logAx) (t, T ) = 0, Ax(T, T ) = 1.

16



A. Derivation of the Riccati equations and coefficients

We will now turn to the special case of the CIR processes (1.4). We see immediately that
the equations for x are in the usual form and defining λx(t) ≡ −kx, ηx(t) ≡ kxθx, γx(t) ≡
σ2
x, δx(t) ≡ 0 yields the explicit solution from the literature (cf. [5] p. 66 equation (3.25)).
Concerning the y terms, we make the following educated guess and verify, that it solves

the equation:

A(t, T ) =
( 2h exp ((k + h)(T − t)/2)

2h+ (k + h) (exp ((T − t)h)− 1) ,
) 2kθ

σ2

B(t, T ) = 2 (exp ((T − t)h)− 1)
2h+ (k + h) (exp ((T − t)h)− 1) ,

h =
√
k2 − 2σ2,

where we will drop the index for indicating that we are considering the y coefficients for
readability and assume that k2 ≥ 2σ2.

Verification for B We will first check the formula for the Riccati equation in B:
We will now simplify the nominator and the denominator of ∂tB + 1

2σ
2B2 − kB, which is

given by

∂tB + 1
2σ

2B2 − kB =

σ2
(
2 e
√
k2−2σ2 (T−t) − 2

)2

2
((

e
√
k2−2σ2 (T−t) − 1

) (
k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

)2

− 2 e
√
k2−2σ2 (T−t)√k2 − 2σ2(

e
√
k2−2σ2 (T−t) − 1

) (
k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

−
k
(
2 e
√
k2−2σ2 (T−t) − 2

)
(
e
√
k2−2σ2 (T−t) − 1

) (
k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

+
e
√
k2−2σ2 (T−t)√k2 − 2σ2

(
k +
√
k2 − 2σ2

) (
2 e
√
k2−2σ2 (T−t) − 2

)
((

e
√
k2−2σ2 (T−t) − 1

) (
k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

)2 .

After bringing the terms to the common denominator, we consider now the nominator of
this transformation

1
2σ

2
(
2 exp

(√
k2 − 2σ2τ

)
− 2

)2

−
(
2
√
k2 − 2σ2 exp

(√
k2 − 2σ2τ

)
+ k

(
2 exp

(√
k2 − 2σ2τ

)
− 2

))
((

exp
(√

k2 − 2σ2τ
)
− 1

) (
k +

√
k2 − 2σ2

)
+ 2

√
k2 − 2σ2

)
+ exp

(√
k2 − 2σ2τ

)√
k2 − 2σ2

(
k +

√
k2 − 2σ2

) (
2 exp

(√
k2 − 2σ2τ

)
− 2

)
= 2h k − 2 k2 − 2 k2 e2h τ + 2σ2 + 4σ2 eh τ + 2σ2 e2h τ − 2h k e2h τ ,

where we substituted τ := T − t and h :=
√
k2 − 2σ2. The denominator can be simplified in
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B. Instantaneous forward rate

the same way, leading to

2 k2 − 2h k + 2 k2 e2h τ − 2σ2 − 4σ2 eh τ − 2σ2 e2h τ + 2h k e2h τ .

In total, we see that the denominator differs only by a sign, hence ∂tB+ 1
2σ

2B2−kB = −1,
which yields the claim.

Verification for A The formula can be derived by just integrating and taking the exponen-
tial.

(
2he

1
2 τ(k+h)

(eτ h − 1) (h+ k) + 2h

) 2 k θ
σ2

,

where h :=
√
k2 − 2σ2 and τ := T − t.

Let us just take the logarithm and derivative to verify this formula:

log (A(τ)) = τ
(
2 k2 θ + 2 k θ h

)
2σ2 −

2 k θ ln
(
eτ h h− k + h+ k eτ h

)
σ2 +

2 k θ ln
(
2
√
k2 − 2σ2

)
σ2 .

Now, taking the derivative yields

∂τ (log (A (τ))) =
2 k θ

(
eτ h − 1

)
eτ h h− k + h+ k eτ h = kθ

2
(
eτ h − 1

)
(eτ h − 1) (h+ k) + 2h.

After undoing the substitution for τ this is equal to kθB, which yields the claim.

B. Instantaneous forward rate

The definition of the instantaneous forward rate (cf. [5] p. 13 equation (1.23)) is given by

f(t, T ) := −∂T log (P (t, T )) .

By (1.5) we therefore have

f(t, T ) = −∂T
(
log

(
Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t)

))
= −∂T (log (Ax(t, T ))−Bx(t, T )x(t))− ∂T (log (Ay(t, T )) +By(t, T )y(t))

= −∂T (Ax(t, T ))
Ax(t, T ) + ∂T (Bx(t, T ))x(t)− ∂T (Ay(t, T ))

Ay(t, T ) − ∂T (By(t, T )) y(t).
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C. Mean error of discount factors

Let z ∈ {x, y} and consider the case of the CIR model (1.4). Then those derivatives are given
by the following expressions: Let us calculate the derivative of Az first

∂T (Az(t, T ))

= φ3
z

(
φ1
zφ

2
ze
φ2
z(T−t)

φ1
z + φ2

z

(
eφ1

z(T−t) − 1
) − (

φ1
z

)2
φ2
ze
φ1
z (T−t)eφ

2
z(T−t)(

φ1
z + φ2

z

(
eφ1

z(T−t) − 1
))2
)(

φ1
ze
φ2
z(T−t)

φ1
z + φ2

z

(
eφ1

z(T−t) − 1
))φ3

z−1

.

Hence, we get

−∂T (Ax(t, T ))
Ax(t, T ) =

φ2
zφ

3
z

(
φ1
z − φ2

z

) (
e(T−t)φ1

z − 1
)

φ1
z + φ2

z

(
e(T−t)φ1

z − 1
) .

Now, we compute the derivative of Bz

∂T (Bz(t, T )) =
(
φ1
z

)2
e(T−t)φ1

z(
φ1
z + φ2

z

(
e(T−t)φ1

z − 1
))2 .

C. Mean error of discount factors
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D. Market data

Table 5.: Mean error of discount factors (DF) of our model with parameters given in Table 2
at 30/12/2019 and 30/11/2020.

Maturity (in years) Mean Error of DF at 30/12/2019
0.0833333 0.000409963

0.25 0.00112268
0.5 0.00161849
0.75 0.00137477

1 0.000814101
1.25 0.000328491
1.5 1.4362e− 05
1.75 5.62967e− 05

2 0.000402274
2.25 0.000824884
2.5 0.0011063
2.75 0.00133005

3 0.00143482
3.25 0.0018223
3.5 0.00242705
3.75 0.00303645

4 0.00354305
4.25 0.00409665
4.5 0.00461513
4.75 0.00491301

5 0.00502117
5.25 0.00485501
5.5 0.0048752
5.75 0.00549422

6 0.00642713
6.25 0.00743045
6.5 0.00841358
6.75 0.00945159

7 0.010154
7.25 0.0105884
7.5 0.0111652
7.75 0.0116295

8 0.0120698
8.25 0.0125788
8.5 0.0132799
8.75 0.0138392

9 0.0146873
9.25 0.0156794
9.5 0.0166502
9.75 0.0174248
10 0.0180652
15 0.0251373
20 0.0331911
25 0.0160001
30 0.00094742

Mean Error of DF at 30/11/2020
0.000560815
0.00119113
0.00144972
0.00113393
0.000550498
0.000398677
0.000571146
0.000805009
0.00125292
0.00191315
0.00288173
0.00356734
0.00401817
0.00441028
0.00477583
0.00512345
0.00537247
0.0051572
0.00473785
0.00449665
0.00423046
0.00398605
0.00410309
0.00442951
0.00477755
0.00495872
0.00514248
0.00546137
0.00596334
0.006623

0.00753078
0.00803137
0.00842589
0.00889094
0.00938679
0.00983092
0.0100521
0.0103367
0.0109601
0.0117957
0.0126498
0.0314676
0.0233781
0.0174282
0.00846645

D. Market data
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D. Market data

Table 6.: Market data containing the zero rate curve and zero coupon curve at 30/12/2019.
Maturity (in years) Zero rate (in %) Zero-coupon price
0.0833333333333333 −0.469999993219972 1.0004001991529

0.25 −0.388000020757318 1.00096969387991
0.5 −0.324999983422458 1.00163343819125
0.75 −0.314333918504417 1.00237481461989

1 −0.322000007145107 1.00323926670136
1.25 −0.323286440253412 1.00405360258242
1.5 −0.316161320131414 1.00476558980205
1.75 −0.303842297803669 1.00535001652119

2 −0.289547047577798 1.00582418019158
2.25 −0.275860329135469 1.00623288634409
2.5 −0.262835313503729 1.006604855007
2.75 −0.249892233800608 1.00691299093433

3 −0.236451346427202 1.00713375064174
3.25 −0.222084053437044 1.00725039326453
3.5 −0.20696636298112 1.00728054250496
3.75 −0.191425434683623 1.00721781901104

4 −0.175788428168744 1.00706740209126
4.25 −0.160311330630236 1.00684531811395
4.5 −0.144965462482105 1.00655553463348
4.75 −0.129650957156002 1.00618948972951

5 −0.114267959725112 1.00573933685071
5.25 −0.0987154224631581 1.00520062530541
5.5 −0.0828875612342017 1.00457454544122
5.75 −0.0666773874613114 1.00384671986489

6 −0.0499779242090881 1.00300667524933
6.25 −0.0327643402378897 1.00205088034181
6.5 −0.0153403983915723 1.00099833086134
6.75 0.00190798987986796 0.999871102605028

7 0.0185949131264351 0.998698306220564
7.25 0.0344518735623467 0.997505079039002
7.5 0.0496800311054812 0.996279818846146
7.75 0.0645979575189415 0.995003816465917

8 0.0795242260210216 0.993656440330286
8.25 0.0947347900819295 0.992214008696662
8.5 0.110335148849572 0.990662992494919
8.75 0.126388167535652 0.988997743889118

9 0.142956722993404 0.987213788328959
9.25 0.160050573928316 0.985308478446392
9.5 0.177466994199449 0.983284710270437
9.75 0.194950156980411 0.981173005874126
10 0.212244223803282 0.979004189945635
15 0.473523046821356 0.931543316237289
20 0.611338950693607 0.885166902653398
25 0.652327481657267 0.849865688031976
30 0.640345783904195 0.825611308910539
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Table 7.: Market data containing the zero rate curve and zero coupon curve at 30/11/2020.
Maturity (in years) Zero rate (in %) Zero-coupon price
0.0833333333333333 −0.499999988824129 1.00041207460911
0.244444444444444 −0.526142632588744 1.00130160930003

0.5 −0.507755391299725 1.00252751322004
0.75 −0.503638433292508 1.00378359716281

1 −0.517199980095029 1.00519888845098
1.24444444444444 −0.524928161568994 1.00658242962185

1.5 −0.525975602238304 1.00791998180754
1.75 −0.522984338103072 1.00920759910672

2 −0.518596358597279 1.01045317135578
2.24444444444444 −0.514924664329897 1.01166557509739

2.5 −0.511966253088758 1.0128933501334
2.75 −0.509189122195153 1.01412683679008

3 −0.50606126897037 1.01533680279481
3.24722222222222 −0.502153361016866 1.0164921683478

3.5 −0.497446840398652 1.01760034898714
3.75 −0.492025761253245 1.01867206863544

4 −0.485974224284291 1.01969106459461
4.24444444444444 −0.479376664922526 1.02062910472473

4.5 −0.47231881015648 1.02152663951854
4.75 −0.464886791550967 1.02238363928715

5 −0.457166694104671 1.02318805666289
5.24444444444444 −0.449221897941854 1.02391569856637

5.5 −0.441024916645461 1.0246017102629
5.75 −0.432525547282481 1.02524040701367

6 −0.423673586919904 1.02581359580938
6.24444444444444 −0.414435069675712 1.02629288605375

6.5 −0.404840884313273 1.02671307570551
6.75 −0.394938214854612 1.02707383363012

7 −0.384774198755622 1.02736441987847
7.24722222222222 −0.37439006592308 1.02757527517123

7.5 −0.363803462582268 1.02771717281163
7.75 −0.353026057560157 1.0277994267812

8 −0.342069566249847 1.02781095336332
8.24444444444444 −0.330958580803831 1.02773379298185

8.5 −0.319769247063562 1.02760240180053
8.75 −0.308590599271419 1.02742329257773

9 −0.297511671669781 1.02719551414522
9.24444444444444 −0.286599750659389 1.02691014728746

9.5 −0.275835084599585 1.02659173861864
9.75 −0.265176203111905 1.02623638422587
10 −0.254581612534821 1.02583261454546
15 −0.0622837862465531 1.00939445284171
20 0.0184025324415416 0.996324084241296
25 0.0234601888223551 0.994148968990786
30 −0.00393075206375215 1.00118069913068
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Table 8.: Market data containing the swaption prices at 30/12/2019.

Maturity
Tenor 1 2 5 7 10

1 0.000702236 0.00175071 0.00706456 0.0112631 0.0181169
2 0.0014433 0.00333027 0.0111956 0.017189 0.0265694
5 0.00391314 0.00796766 0.0214221 0.0308074 0.0453508
7 0.00521117 0.0104082 0.0268942 0.0380283 0.0548627
10 0.00668368 0.0132567 0.0330802 0.045932 0.0651091
15 0.00781681 0.0154396 0.0378811 0.0525334 0.0743464
20 0.00840243 0.0166069 0.0407885 0.0565876 0.0795953

Table 9.: Market data containing the swaption prices at 30/11/2020.

Maturity
Tenor 1 2 5 7 10

1 0.000661505 0.00151259 0.00547626 0.00900521 0.0149394
2 0.00121578 0.00278226 0.00916199 0.0145571 0.0235389
5 0.00336776 0.00707345 0.0194074 0.0285692 0.0433793
7 0.0047279 0.00963075 0.0253482 0.0364087 0.0537919
10 0.00630168 0.0126162 0.0323949 0.0456958 0.0665005
15 0.00790807 0.0157371 0.0397201 0.0558865 0.0802858
20 0.00898181 0.017927 0.0451252 0.0631302 0.0898938

Table 10.: Market data containing the swaption strikes at 30/12/2019.

Maturity
Tenor 1 2 5 7 10

1 −0.260793 % −0.195187 % −0.011405 % 0.140129 % 0.330514 %
2 −0.129665 % −0.0782444 % 0.139932 % 0.273273 % 0.449172 %
5 0.268095 % 0.38307 % 0.556996 % 0.655339 % 0.757978 %
7 0.547079 % 0.611571 % 0.76683 % 0.830788 % 0.891069 %
10 0.880582 % 0.907944 % 0.967521 % 0.988131 % 0.992003 %
15 1.04232 % 1.04153 % 1.01776 % 0.985317 % 0.924744 %
20 0.925377 % 0.901441 % 0.827386 % 0.778437 % 0.721445 %

Table 11.: Market data containing the swaption strikes at 30/11/2020.

Maturity
Tenor 1 2 5 7 10

1 −0.558066 % −0.544838 % −0.455765 % −0.37221 % −0.238803 %
2 −0.531679 % −0.502856 % −0.386908 % −0.294521 % −0.162606 %
5 −0.315638 % −0.264729 % −0.117094 % −0.0324645 % 0.0536401 %
7 −0.117189 % −0.0652544 % 0.0603589 % 0.1157 % 0.150538 %
10 0.150213 % 0.179568 % 0.225372 % 0.223805 % 0.196761 %
15 0.234862 % 0.219855 % 0.16784 % 0.12791 % 0.0641018 %
20 0.0500327 % 0.0277677 % −0.0398808 % −0.0837531 % −0.134806 %
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