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A B S T R A C T   

Large carnivores are making remarkable comebacks in Europe, but how this affects human-wildlife conflict 
remains unclear. Rebounding carnivore populations lead to increasing livestock depredation, which in turn leads 
to greater economic losses for farmers. However, returning carnivores could also influence the behavior of wild 
ungulates, which are themselves responsible for major crop damage and associated economic losses. Here, we 
exploit the natural experiment of a rebounding wolf population in the Italian Apennines to study how this 
affected both types of human-wildlife conflic. We used large datasets of wolf occurrences (n = 351), livestock 
depredation events (n = 165), and crop damage events by wild boar (n = 3442) to independently model the 
determinants of livestock depredation and crop damage distribution in relation to wolf habitat suitability over a 
ten-year period of increasing wolf numbers. These analyses yielded two major insights. First, livestock depre
dations were mainly related to insufficient prevention measures (e.g. lacking fencing) rather than landscape 
context, providing a clear pathway to conflict mitigation. Second, crop damage decreased in areas of higher wolf 
habitat suitability and became more likely in areas of lower wolf habitat suitability, closer to settlements. This 
suggests increasing predation pressure forces wild boars to avoid the most suitable wolf habitat, leading to a 
redistribution of crop damage in the landscape. More generally, our study highlights complex human-wildlife 
interactions as large carnivores recover in human-dominated landscapes, suggesting that multiple, co- 
occurring conflicts need to be assessed jointly and adaptively in order to foster coexistence between humans 
and wildlife.   

1. Introduction 

Large carnivores play a key role in ecosystem dynamics, but are 
disappearing across the world (Ripple et al., 2014). These species 
require extensive areas of habitat and are particularly vulnerable to 
habitat loss and fragmentation (Romero-Muñoz et al., 2019; Wolf and 
Ripple, 2017). Furthermore, large carnivores are often considered to be 
a threat, real or perceived, to humans and livestock. This often leads to 

the legal or illegal killing of carnivores to prevent, or in response to, 
conflicts (Morehouse et al., 2018). As a result, conflict is currently the 
main reason why many large carnivore populations are on the brink of 
collapse (Loveridge et al., 2017). Understanding why and where human- 
carnivore conflict occurs is therefore critically important for fostering 
coexistence between wildlife and humans (Miller, 2015). 

In some regions, such as Europe and North America, large carnivores 
are currently re-expanding their ranges after centuries of persecution 
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and local extirpation (Chapron et al., 2014; Smith et al., 2016). Several 
factors contribute to these trends, including revised hunting regulations, 
better protection (Boitani and Linnell, 2015), and structural changes in 
agriculture that lead to farmland abandonment and outmigration from 
rural areas (Kuemmerle et al., 2016; Navarro and Pereira, 2015). The 
recovery of large carnivore populations is encouraging, given that most 
of these species are vulnerable or endangered (Chapron et al., 2014). 
Additionally, the return of large carnivores can restore lost ecological 
functions, including predatory pressure on herbivores (Berti et al., 2019; 
Ripple et al., 2014). However, a major concern surrounding the come
back of large carnivores is the potential escalation of conflicts with 
humans (Broekhuis et al., 2017), which may lead to declining public 
acceptance of carnivores and undermine conservation success in the 
long run (Behr et al., 2017; Kuijper et al., 2019). 

A key concern in this context is that traditional husbandry methods 
to prevent conflict with large carnivores have declined or were aban
doned as landscapes became predator-free (Ciucci and Boitani, 1998). 
As a result, livestock today often graze freely and unsupervised, making 
them vulnerable to attacks (Hanley et al., 2018). A wide range of factors 
have been found to influence livestock depredation risk (Miller, 2015). 
For instance, preventive measures such as proper fencing and surveil
lance of livestock strongly lower the risk associated with carnivores 
presence (Dondina et al., 2015). Conversely, landscape patterns, and 
particularly a high interface between pastures and carnivore habitat, can 
increase the risk for livestock (Boitani and Linnell, 2015). Protected 
areas provide refuge to large carnivores in human-dominated landscapes 
(Grilo et al., 2019), and can potentially increase livestock vulnerability 
in their surroundings. On the other hand, protected areas typically have 
a higher natural prey base and can thus also serve to mitigate conflict 
(Wolf and Ripple, 2018). The relative importance of these spatial factors 
remains poorly understood, particularly for rebounding carnivore pop
ulations. Closing this knowledge gap is important for proactively 
implementing conflict mitigation strategies and for the spatial prioriti
zation of interventions (Rio-Maior et al., 2019; Wolf and Ripple, 2017). 

Conflicts associated with rebounding large carnivore populations, 
however, potentially extend beyond direct livestock depredation (Muhly 
et al., 2011). A central, yet frequently overlooked aspect in human- 
wildlife conflict mitigation is that recovering carnivores might influ
ence the behavior of their wild prey, which can alter local densities and 
activity patterns (Cunningham et al., 2019; Laundré et al., 2014). Many 
prey species are themselves associated with conflict with humans in the 
form of crop damage, whose costs typically outweigh economic losses 
due to livestock depredation. For example, economic damages caused by 
wild ungulates in Europe reach €80 million/year (Valente et al., 2020). 
In Germany alone, crop damage by wild boar (Sus scrofa) is estimated at 
more than €17 million/year, compared to about €1 million/year of 
damages caused by wolves (Canis lupus; Welt.de, T-online.de, accessed 
June 2019). As a consequence, even if returning large carnivores have a 
relatively small effect on the behavior of their wild prey and associated 
prevalence of conflict, the economic impacts of such effects could be 
very substantial in the long run. 

Rebounding gray wolf populations in Europe provide a unique op
portunity to better understand dynamics in human-wildlife conflict. 
Wolves have been heavily persecuted in Europe for centuries, leading to 
their widespread extirpation in the 19th and early 20th centuries 
(Meriggi et al., 2011). Wolves persisted in Eastern Europe and the Bal
kans, as well as in several small and isolated populations in Italy, Spain, 
and Finland. From there, wolves have recolonized much of their his
torical range since the mid-20th century (Boitani et al., 2018), which has 
led to increasing conflict with humans. However, to what extent a 
rebounding wolf population might impact agriculture through changes 
in prey density or behavior remains unassessed. Here, we make use of 
the natural experiment of a rebounding wolf population in the northern 
Apennines, Italy, to investigate the changing dynamics of livestock 
depredation and of crop damage by wild boar, the primary prey of 
wolves in this region (Torretta et al., 2017). We used a dataset of wolf 

presences, livestock depredation events, and crop damage claims to 
address two main research questions:  

1. Which factors, particularly those related to husbandry systems and 
landscape patterns, determine livestock depredation risk? 

2. Did the increasing wolf population in the study area affect the dis
tribution of crop damage over the period 2009–2018? 

2. Material and methods 

2.1. Study area 

We focused on a 1950 km2 study area in the Italian northern Apen
nines, corresponding to 34 municipalities in the lowlands and moun
tains south of the city of Bologna (Fig. 1). Elevation ranges from 50 to 
2000 m above sea level. Climate is temperate-continental, with annual 
average temperature of 11.5 ◦C and rainfall of 900 mm (Cervi et al., 
2018). Land cover consists of mixed forests and other semi natural areas 
(56%), as well as croplands (33%) and urban areas (9%) (Milanesi et al., 
2015). Protected areas cover 11% of the study region. These areas are 
Regional Parks where historical sites and cultural land-use practices, 
including livestock farming, are protected alongside local flora and 
fauna, with strict regulations on hunting and timber harvesting. Live
stock farming is widespread in the area, primarily of sheep, goats, and 
cattle, and to a lesser extent horses and donkeys. During the grazing 
season (April to September), livestock roam freely in fenced pastures 
(Dondina et al., 2015). Transhumance is very rare. Wolves were his
torically widespread in the region but were extirpated after World War 
II. Starting in the late 1990s, wolves began returning to the area and 
their population has been increasing since (Galaverni et al., 2016; Loy 
et al., 2019). The preferred wolf prey species in the area is wild boar, but 
also roe deer (Capreolus capreolus) and red deer (Cervus elaphus) (Meriggi 
et al., 2020). 

2.2. Datasets used 

We used data on livestock depredation events caused by wolves 
during the period 2011–2016 from the official, verified records of 
regional authorities (http://regione.emilia-romagna.it; accessed May 
2018). These reports contain farm names, date of depredation events, 
livestock species, and number of lost animals. Using these data, we 
contacted, visited and interviewed 66 farmers who claimed depredation 
events, as well as 19 neighboring farmers who did not suffer livestock 
depredation during 2011–2016. Neighboring farmers were selected 
within a distance of 3 km from pastures with depredation events 
(following Mech et al., 2000). We considered only pastures with ≥8 
goats/sheep heads for at least five years during 2011–2016. For each 
farm, we collected information on the husbandry systems (Table 1), 
including type of reared livestock species, presence of multiple livestock 
species on the same pasture, presence and quality of fences around the 
pasture, surveillance by human shepherds or guardian dogs, and pres
ence of night-time corrals for livestock. 

Our wolf occurrence data included 351 georeferenced presence lo
cations, which were genetically-verified from samples that were non- 
invasively collected (e.g., hair, feces, urine, blood traces and tissues 
from carcasses) between 2008 and 2012 across the northern Apennines 
(Caniglia et al., 2014). Data on crop damage by wild boar consisted of 
georeferenced and dated events (n = 3442) that were compiled by 
regional authorities for the period 2009–2018 (Centro Servizi ATC 
Bologna; contacted April 2020). These data were collected by expert 
surveyors as part of the official damage compensation process provided 
by the regional government to farmers. 

We gathered a dataset of geospatial data characterizing landscape 
patterns (Table 1) of the study area from the regional government geo
database (http://geoportale.regione.emilia-romagna.it; accessed December 
2018). We considered features that were previously found to explain 
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wolf habitat suitability in Italy (e.g., Falcucci et al., 2013; Milanesi et al., 
2015), including variables related to land cover, human disturbance, 
topography, and distance from refuge-like areas (i.e., protected areas 
where wildlife hunting is forbidden and human activities are limited), 
which could affect patterns of livestock depredation risk and, more 
generally, predators' space use. Notably, land-cover features were 
derived from a regionally-adapted CORINE land-cover map with 90 
classes a spatial resolution of 40 m, and a minimum mapping unit of 
0.16 ha. We resampled all features to an equal-area coordinate system 
(ETRS89/UTM Zone 32 N) using bilinear interpolation, and to spatial 
resolutions of 100 m, 200 m, 300 m, 400 m, 500 m, and 600 m (see next 
section for rationale) using a moving window approach. Note that each 
of these resolutions is much larger than the original spatial resolution of 
the land-cover map. 

2.3. Analytical framework 

Our overall approach consisted of three main steps (Fig. 2). First, to 
understand the main drivers of livestock depredation, we modelled the 
number of depredation events per pasture (considering farms surveyed 
in the field; Fig. 1) as a function of landscape patterns and husbandry 
systems. Second, we modelled and mapped wolf habitat suitability 
across the study area as a function of landscape patterns. Third, we 
modelled the relationship between wolf habitat suitability and the dis
tribution of crop damage by wild boar as function of time in 2009–2018, 
a period over which the wolf population size has increased significantly 
(Galaverni et al., 2016). 

To understand the determinants of livestock depredation events, we 
considered only depredation events on sheep and goats, which 
accounted for about 90% of all events registered during 2011–2016. We 
did this to reduce data heterogeneity due to different husbandry systems 
for cattle and equids (Pimenta et al., 2018) and the overall small number 
of depredation events for these species. As response variable, we used 
the number of depredation events per pasture (maximum = 6). To assess 
the importance of each potential determinant of livestock depredation 

(Table 1 - all variables), we used generalized linear models (GLM). First, 
we tested for multi-collinearity among variables using the variance 
inflation factor (VIF), by fitting an exploratory model including all 
variables, with threshold set at VIF > 3, but no collinearity was found. 
We used a Poisson error distribution, and the Kolmogorov-Smirnov test 
to assess data dispersion (using the R package DHARMa; Hartig and 
Hartig, 2017). This confirmed a Poisson distribution of errors as fitting 
our response variable. We also tested for spatial autocorrelation in our 
response variable using a test based on Moran's I, as implemented in the 
R package ape (Paradis and Schliep, 2019), and found no indication of 
spatial autocorrelation. We then built three GLMs: one with all variables 
(n = 9), a second with husbandry system variables only (n = 5), and a 
third with the landscape pattern variables only (n = 4), the resolution of 
which was correspondent to the wolf habitat suitability model with 
highest AUC score (see next section). We compared the performance of 
these three models using Nagelkerke's R2 calculated through the R 
package Performance (Nakagawa et al., 2017). For each of the three 
models, we compared all possible combinations of variables using the R 
package MuMIn (Barton, 2016), and ranked each individual (sub-)model 
based on the Bayesian Information Criterion (BIC). We then averaged 
the best-performing models (i.e., models within a ΔBIC ≤4 from the 
best-performing model; Anderson and Burnham, 2002; Grueber et al., 
2011) and assessed final univariate variable importance by hierarchical 
partitioning (Mac Nally, 2002). 

To predict wolf habitat suitability across our study area, we used 
Maximum Entropy modelling (MaxEnt; Phillips et al., 2006). This al
gorithm performs well with small sample sizes, ranks consistently 
among the highest performing algorithms, and can consider spatial bias 
in occurrence data by using similarly biased background data, as needed 
in our analysis (Elith et al., 2011). We used the wolf occurrence points as 
presence locations, and as they were spatially clustered towards areas 
where wolf packs occurred during the time of data collection, we created 
a Gaussian kernel density map and sampled ten times as many back
ground points as wolf presence records (Harris et al., 2014; Merow et al., 
2013), stratified according to this density pattern (Kramer-Schadt et al., 

Fig. 1. Study area in the Italian northern Apennines, located in the south of the city of Bologna in northern Italy (inset map). Dots represent the pastures surveyed for 
our analysis (dots are colored and seized according to the number of depredation events n = 0–6). 
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2013). As predictor variables, we tested the landscape pattern variables 
(Table 1 - Landscapes patterns), summarized at different resolutions (i. 
e., 100 m, 200 m, 300 m, 400 m, 500 m, 600 m). We systematically 
compared MaxEnt models for each set of predictors (i.e., each resolu
tion) to find the best-performing set given our dataset. For every model, 
we tested for potential multi-collinearity among predictors using VIF > 3 
as a threshold, but found no indication of multi-collinearity. To identify 
the best MaxEnt parameterization for each model, we used the R pack
age ENMeval (Muscarella et al., 2014), aiming at a balance between 
goodness-of-fit and model complexity (Merow et al., 2013). We tested a 
wide range of penalties for model complexity (i.e., 0.5 to 8, at 0.5 steps) 
and combinations of predictor transformations (i.e., linear, hinge, 
quadratic, linear-quadratic). We then selected the best-performing 
parametrization based on the Akaike Information Criterion (AIC), 
calculated using five-fold cross-validation (James et al., 2013). Finally, 
we compared among the best-performing models per resolution to 
identify the single-best model using the averaged area under the curve 
(AUC) statistic, also calculated based on five-fold cross validation. 

To estimate whether the rebounding wolf population affected the 
distribution of crop damage across the 10-year period, we built two, 
complementary regression models. First, we modelled wolf habitat 
suitability values at crop damage sites as a function of time (model one), 
with years as the time step. Second, we modelled damage occurrence at 
damage sites as function of wolf habitat suitability (model two), where 
our response variable consisted of damage occurrence vs. absence at 
these sites. We note that modelling crop damage occurrence vs. a 
random sample of (pseudo-)absences is not feasible in our case as the 
occurrence of crop damage depends on wild boar distribution and 
farmers' willingness to claim for damages. Not controlling for these 
variables would introduce considerable bias, but spatial data for these 
factors is unavailable. We therefore focused on damage sites only (i.e., 
where we know that wild boar occur and that farmers are reporting 
damages). Both of our models assume wolf habitat suitability patterns to 
be stable during our observation period, which appears justified because 
wolves had recolonized the entire area before that period and generally 
showed a stable distribution in the Apennines, also at fine spatial scales 
(Caniglia et al., 2014; Mancinelli et al., 2018). However, the wolf pop
ulation increased substantially during the observation period (Galaverni 
et al., 2016), suggesting a potentially increasing effect on wild prey. 

As the response variable in model one (wolf habitat suitability ~ 
time) was scaled between 0 and 1, we used quasi-binomial regression 
modelling (Consul, 1990). We extracted the wolf habitat suitability and 
year of damage occurrence for event and modelled wolf habitat suit
ability as a function of time (years). A positive correlation between these 
two variables indicates that damage increasingly occurs in better wolf 
habitat, for example as wild boars increasingly use crops as refuges 
against increasing predation pressure. In contrast, a negative correlation 
indicates decreasing damage prevalence in areas most suitable for 
wolves, for example because wild boars seek to avoid such areas due to a 
higher risk of predation. The response variable in model two (damage 
occurrence ~ wolf habitat suitability * time) was binary (presence vs. 
absence of damage) so we used logistic regression modelling. We iden
tified the presence and absence of damage for every year at sites where 
at least one damage was reported in the study period. We then modelled 
damage likelihood as a function of wolf habitat suitability and time 
(years). A positive coefficient of the interaction of suitability * time in
dicates an increasing likelihood that damages occur in better wolf 
habitat, whereas a negative correlation indicates decreasing damage 
recurrence in areas most suitable for wolves. 

After detecting spatial autocorrelation in model residuals for both 
models using Moran's I test (R package spdep; Bivand and Piras, 2015), 
we decided to use Generalized Linear Mixed Models using Penalized 
Quasi-likelihood (R package MASS; Ripley et al., 2013), which perform 
well for both logistic and quasi-binomial distributions (Zuur et al., 
2009). To limit effects of spatial and temporal autocorrelation, we 
included spatial correlation structure between sites of crop damage 

Table 1 
Variables used in the livestock depredation risk model (GLMs - all variables) and 
the wolf habitat suitability model (MaxEnt – landscape pattern variables only).  

Category Name Hypothesis Description 

Husbandry 
systems 

Quality of 
fences 

Higher quality fences 
reduce livestock 
depredation risk 

High: fences higher 
than 1.5 m, with at least 
one further wolf 
deterrent such as 
electrification, fladry 
fencing, or 
underground fencing 
(> 20 cm depth). Fences 
are periodically 
monitored and along 
the whole perimeter 
Low: all other fences (or 
no fences) 

Degree of 
surveillance 

Continuous 
surveillance by human 
shepherds and/or 
guardian dogs  
lowers depredation 
risk 

High: at least one 
shepherd or two 
guardian dogs for every 
100 livestock heads. 
Surveillance is always 
present when livestock 
is on pastures 
Low or absent: all the 
rest 

Presence of 
equids/cattle 

Husbandry systems 
for cattle and equids 
enhance overall 
livestock vulnerability 
(Pimenta et al., 2018) 

Yes: at least five cattle 
and/or equids present 
No: otherwise 

Pasture area Larger pastures 
increase vulnerability 
due to a higher 
interface with natural 
habitat and increasing 
fencing costs 

Pasture area measured 
in ha 

Presence of 
corrals 

Sheltering animals 
during the night 
decreases depredation 
risk 

Yes: corrals present, 
inaccessible by wolves, 
animals are sheltered at 
night during the grazing 
season 
No: all other cases 

Landscape 
patterns 

Share of 
woodlands 

Wolf habitat 
suitability is higher in  
woodland areas. 
Livestock depredation 
risk is higher close  
to woodlands ( 
Mancinelli et al., 
2019) 

Share of woodlands 
land cover (CORINE LC 
level 3) computed at 
cell resolutions of 100 
m, 200 m, 300 m, 400 
m, 500 m, 600 m using 
a moving window 

Number of 
buildings 

Wolf habitat 
suitability is lower in 
areas 
with high number of 
buildings 
Livestock depredation 
risk is lower in  
areas with high 
number of buildings ( 
Dondina et al., 2015) 

Number of buildings 
per unit (cell) area 
computed at cell 
resolutions of 100 m, 
200 m, 300 m, 400 m, 
500 m, 600 m using a 
moving window 

Terrain 
ruggedness 

Wolf habitat 
suitability decreases 
on flat terrain, where 
human disturbance is 
higher 
Livestock depredation 
risk is higher in 
rugged terrain (Treves 
et al., 2004) 

Terrain ruggedness 
index (TRI; Riley et al., 
1999), calculated using 
s DEM 90 m res (COP- 
DEM_GLO-90-DTED) 
from https://spacedata. 
copernicus.eu/ 

Distance from 
protected 
areas 

Wolf habitat 
suitability is lower 
further  
away from refuges ( 
Grilo et al., 2019) 
Livestock depredation 
risk increases  
closer to protected 
areas 

Euclidean distance from 
pastures centroid or of a 
raster cell to the border 
of the closest protected 
area  
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using the corSpatial function (R package nlme; Pinheiro et al., 2017), and 
we used the municipalities of the study area as random intercept factor. 

3. Results 

3.1. Determinants of livestock depredation 

Our data included a total of 528 livestock heads that were killed in 

165 individual depredation events between 2011 and 2016. The mean 
annual number of animals killed was 88 (standard deviation SD = 38.5) 
in 29 events (SD = 11.0). Sheep were killed in the majority of depre
dation events (69.4% of events), followed by goats (18.8%), cattle 
(10%), and equids (1.8%). 

Our averaged model of livestock depredation risk considering all 
variables, based on depredation events of sheep and goats only, had a 
Nagelkerke's R2 of 0.44. Eleven models were equally well-supported 

Fig. 2. Overview of the main analytical steps carried out: (A) models of livestock depredation risk, (B) model of wolf habitat suitability, and (C) model to link the 
distribution of crop damage by wild boar with wolf habitat suitability over the period of wolf population increase. 

Fig. 3. Variables explaining livestock depredation risk based on our final, averaged model linking depredation events and variables describing landscape patterns 
and husbandry systems. (A) Model coefficients. (B) Univariate variable importance (Nagelkerke's R2), assessed through hierarchical partitioning. 
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(BIC ≤ 4) as the best-performing model. We thus averaged them, and our 
final average model included six variables (presence of equids/cattle, 
quality of fences, pasture area, degree of surveillance, number of 
buildings, presence of corrals; Fig. 3). All eleven models included the 
variable quality of fences, eight included the variable presence of 
equids/cattle, and five the variable pasture area. Only one out of the four 
landscape pattern variables (i.e., number of buildings) was selected in 
the final model. 

In terms of relative variable influence (Fig. 3-A), livestock depreda
tion risk increased with lower fence quality (coefficient ± standard 
error = 1.20 ± 0.39, p = 0.002), the presence of equids/cattle on the 
same pasture with sheep and goats (0.94 ± 0.37, p = 0.012), and larger 
pasture area (0.02 ± 0.01, p = 0.054). Lacking herd surveillance, the 
absence of corrals, and lower number of buildings were also all posi
tively related to increasing depredation risk, but these relationships 
were not significant (p > 0.05; Table 2). Comparing the model with all 
variables, based on both husbandry systems and landscape patterns, to 
models using only one of these variable groups showed that husbandry 
systems model had only a marginally lower Nagelkerke's R2 (0.41) than 
the full model, whereas the model based on only landscape pattern 
variables performed poorly (R2 = 0.08). 

3.2. Wolf habitat suitability 

The sensitivity analyses of habitat suitability models calculated for 
predictor variables of different spatial resolutions showed the highest 
goodness-of-fit for a resolution of 500 m. We report here only results for 
this resolution and refer to the Supplementary Material for the full re
sults. Our wolf habitat suitability model overall had a high goodness-of- 
fit, with an AUC of 0.81. Our Maxent model-selection procedure sug
gested a model with low complexity penalty (i.e., 1) and only hinge 
features as best-performing. The most important explanatory predictor 
in the model was the share of woodlands (with a modelling contribution 
of 69%), followed by distance from protected areas (21%) and terrain 
ruggedness (10%). The predictor number of buildings did not contribute 
appreciably to the model (< 1%), although this variable was sometimes 
more important in coarser resolution models (Fig. S1). The response 
curves of our best-performing model (Fig. 4-B) showed generally plau
sible relationships, highlighting an increase in wolf habitat suitability 
with an increasing share of woodlands and a decrease of wolf habitat to 
matrix/unsuitable levels distant from protected areas and in rugged 
terrains. 

Predicting wolf habitat suitability showed that patches of high- 
quality habitat occurred across the study area and at all elevations, 
generally in areas where human disturbance is lower in this landscape 
(Fig. 4-A). Matrix habitat was particularly widespread in the norther 
study area, where intensive human pressure prevails, coinciding with 
the suburban area of Bologna and the margin of the Po plain. In the 
southern study area, widespread suitable habitat was predicted along 
the northern Apennines ridge. 

3.3. Crop damage risk and wolf habitat suitability 

Our crop damage dataset included a total of 3442 events occurring in 

all 34 municipalities (min = 3 events/municipality, max = 810 events/ 
municipality, average = 101 ± 142.2 SD). Crop damage by wild boar 
was distributed fairly evenly over time, with average 344 damage events 
per year (SD = 64.0). The highest annual number of damages occurred 
in 2012 (497 events). Crop damage was generally widespread in the 
study area, but more frequent in the southern part (i.e., in more 
mountainous and densely forests areas; Fig. 5-B). On average, 3.4 (SD =
3.4) crop-raiding events occurred at the same site. 

Our first model (model one), which assessed wolf habitat suitability at 
crop damage localities as a function of time (with years as a time step), 
revealed a significant correlation between these variables (− 0.0191 ±
0.0077, p = 0.014; Table S2). This correlation was negative, suggesting a 
tendency of crop damage to occur in areas of lower habitat suitability for 
wolves over time and of less crop damage events to occur in highly 
suitable wolf habitat (Fig. 5-A). While the coefficient for this model was 
relatively small, due to the temporal unit of one year in our model, the 
overall effect is considerable when aggregated over time. For example, 
our results suggest a decrease in habitat suitability values at crop 
damage sites of about 1.9% per year, or 19.1% over the entire time 
period covered by crop damage dataset (2009–2018). Our second model 
(model two), which assessed the likelihood of crop-raiding recurrence at 
same sites of damage as a function of wolf habitat suitability and time 
(again, with annual time step), also revealed significant correlation 
between these variables (− 0.1089 ± 0.0412, p = 0.008; Table S3). The 
negative coefficient here suggests a tendency of crop damage likelihood 
to decrease in sites located in areas of higher wolf habitat suitability 
(Fig. 5-A). This result is consistent with those from our first model of 
crop damage. 

4. Discussion 

Human-carnivore conflicts translate into major challenges for the 
conservation of large carnivores, particularly where these species return 
to human-dominated landscapes after historical extirpation (Ghoddousi 
et al., 2021; Wolf and Ripple, 2017). Understanding what determines 
patterns of conflict in such situations is key for fostering long-term 
coexistence of humans and large predators (Chapron and López-Bao, 
2016; Lamb et al., 2020). Efforts have so far mainly focused on conflicts 
directly attributable to carnivores, such as what determines livestock 
depredation risk and where depredation risk is high. However, this ne
glects the additional and potentially widespread indirect effects that 
returning top predators can have on the space use of their natural prey, 
which themselves are associated with conflict, such as in the form of 
crop damage. 

Focusing on the case of a rebounding wolf population in the Italian 
Apennines, we carried out, to the best of our knowledge, the first 
exploration of both types of conflict, using spatial models of wolf habitat 
suitability, livestock depredation risk, and crop damage distribution by 
wild boar. Two main findings emerge from our work. First, our results 
indicate a clear association of livestock depredation events with inade
quate livestock protection, independent of landscape patterns. This 
suggests that re-adopting livestock protection measures, which have 
been largely abandoned due to the long absence of wolves in the area, 
can substantially minimize direct conflict between wolves and people. 
Second, we found crop damage to decreasingly occur in areas most 
suitable for wolves, according to our habitat mapping. We suggest this 
indicates a redistribution of crop damage in our study area as predation 
pressure by wolves grew during the time when the wolf population 
increased, and wild boar frequented areas associated with higher human 
disturbance, where they can avoid wolves, more often. On a more 
general level, our study highlights that managing for human-carnivore 
coexistence must consider the geography of multiple, co-occurring 
conflicts, as carnivores are recolonizing their historical ranges. 

Inadequate livestock protection, particularly weak fences, increased 
the risk of wolf attacks to livestock in our case (Fig. 3). Fences are costly 
and difficult to maintain, particularly for large pastures and in rugged 

Table 2 
Results of the averaged livestock depredation risk model (average based on all 
best-performing models with ΔBIC ≤4).  

Variables Coefficient Std. error p-Value 

(intercept) 1.80 0.40 <0.001 
quality of fences - low 1.20 0.39 <0.005 
presence of equids/cattle - yes 0.94 0.37 <0.05 
pasture area 0.02 0.01 0.054 
number of buildings − 0.01 0.01 0.128 
presence of corrals - yes − 0.52 0.37 0.170 
degree of surveillance - high − 0.69 0.43 0.115  
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terrains, often resulting in inefficient prevention (Dondina et al., 2015). 
Large pastures are frequently associated with mixed livestock groups, 
including equids and cattle, and such husbandry systems were related to 
higher depredation risk in our study (Fig. 3-A) and elsewhere (e.g., 
northern Portugal; Pimenta et al., 2018). Indeed, cattle and equids 
require large pastures, which are harder to keep fenced effectively (e.g., 
maintenance of holes in fences). Moreover, larger pastures are usually 
more isolated than smaller pastures, thus having a greater interface with 
woodlands. Similarly, smaller pastures are often closer to settlements. 
Together, these factors likely explain why sheep and goats reared 
alongside horses and cattle suffer from higher depredation risk. In the 
Italian northern Apennines, pasture fencing for preventing wolf attacks 
has only recently been adopted (Gazzola et al., 2008) and our results 
highlight the potential for lowering depredation risk if fences were 
upgraded and more widely used. Additionally, our results corroborate 
views that sheltering livestock during the night and surveilling livestock 
on pastures, both of which has characterized livestock husbandry 

systems historically (Boitani et al., 2010), could further decrease the 
depredation risk (Dondina et al., 2015; Ogada et al., 2003; Pimenta 
et al., 2017). 

Husbandry system variables were generally more important than 
landscape patterns in explaining depredation risk in our case. This is in 
line with recent work by Pimenta et al. (2018), which stresses the 
importance of preventive measures on pastures located inside the home 
ranges of wolf packs in northern Portugal, regardless of landscape 
context. In contrast, prior work in our region highlighted the importance 
of specific landscape variables in determining depredation risk, 
including elevation and the share of grasslands (Milanesi et al., 2019). 
However, this study did not consider variables related to the husbandry 
system, which is not surprising, because such variables are typically 
hard to obtain and require extensive fieldwork. Our work thus highlights 
the importance of accounting for characteristics of the livestock hus
bandry systems, besides landscape patterns, and cautions against causal 
interpretations of models solely based on landscape variables. While 

Fig. 4. Results from the wolf habitat suitability modelling. (A) Continuous habitat suitability index across the study area, mapped based on wolf occurrence data 
from 2008 to 2012 and predictor variables aggregated at a resolution of 500 m. (B) Partial dependency plots of the predictor variables in our final habitat suit
ability model. 

Fig. 5. Distribution of crop damage over time and space. (A) Violin plots that group by year the wolf habitat suitability values at the sites of crop damage events by 
wild boar in the period 2009–2018. (B) Distribution of crop damage locations across the study area, categorized by year (note that multiple damage events can occur 
at the same location and we show here always the most recent event). 
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landscape variables can indeed be useful indirect proxies for assessing 
depredation risk, allowing for upscaling and predictions across larger 
areas, variables that more directly describe livestock husbandry fea
tures, such as the existence of fencing, the composition of livestock 
herds, or the presence of herd surveillance and overnight structures, are 
likely more powerful predictors of depredation risk, and therefore more 
useful to inform conflict management. 

Interestingly, we did not find a direct relationship between the 
presence of guardian dogs and livestock depredation risk, although 
guarding dogs are usually recognized as an effective prevention measure 
(Mosley et al., 2020). However, we note that guarding dogs, particularly 
dogs staying with livestock herds day and night, are not common in the 
northern Apennines. Indeed, in many of the farms we visited, the 
guardian dogs were juvenile or lacking proper training, which reduces 
their effectiveness in protecting livestock (Khorozyan et al., 2017). As a 
result, our findings should not necessarily be interpreted as discouraging 
the use of guarding dogs or questioning their usefulness in the Apennine 
context or elsewhere. 

A key finding of our study was that crop damage by wild boar, the 
principal prey of wolves in Italy (Mori et al., 2017), decreased in areas 
most suitable for wolves and increased elsewhere. A possible explana
tion for this finding is the phenomena of the ‘landscape of fear’ that 
predators create and that prey respond to (Laundré et al., 2014). There is 
increasing evidence for top-down effects of carnivores on the behavior of 
prey species, although these effects have predominantly been shown for 
undisturbed, natural systems (Ripple et al., 2014). In human-dominated 
landscapes, these effects are typically weaker, and the landscape of fear 
is driven by human disturbance, to which both predators and their prey 
respond by avoiding human-dominated areas (Ciuti et al., 2012; Dor
resteijn et al., 2014; Gaynor et al., 2019). In our study area, populations 
of wolves and their wild prey mainly cluster in patches of semi-natural 
vegetation surrounded by a matrix of human-dominated areas, 
including agricultural areas and settlements (Mancinelli et al., 2018). 
These semi-natural patches thus function as refuges for both wolves and 
prey. With wolf populations increasing, prey must trade-off between 
avoiding humans and avoiding predation- risk by carnivores (Gordon, 
2009). Prey species often manage this trade-off by becoming more 
tolerant to human disturbance and sometimes even seeking out such 
areas, as this reduces predation risk (Berger, 2007; Palmer et al., 2021; 
Schmitz et al., 2004). In our situation, with wolf population size and 
predation pressure increasing, we would expect wild boar to increas
ingly avoid the most suitable habitat patches for wolves. This, in turn, 
would increase wild boar presence in more human-disturbed areas— 
which is what we found, as crop damages were more likely to occur in 
less suitable areas for wolves over time (Fig. 5-A). 

Key assumptions of this interpretation are that wolves had recolon
ized available habitat in our study area prior to our observation period, 
and that despite this, the number of wolves increased in our observation 
period. Both assumptions are supported by available observations and 
data, with wolves numbers doubling across the Apennines since 2008 
(Galaverni et al., 2016), when wolves were already found all across our 
study area (Caniglia et al., 2014). A plausible explanation is thus that an 
increasing wolf population led to an expanding landscape of fear 
through increasing predation pressure, thereby redistributing wild boars 
and their crop damage in the landscape. If the wolf population would not 
have been in equilibrium with its environment in our study area, wolves 
likely have continued to fill in less suitable, secondary habitat after 
2012. This cannot be ruled out, although we consider it to be an unlikely 
scenario, since wolves already occurred in the north of our study area 
close to the Po plain, one of the most human-modified areas in Europe, 
in 2012 (Caniglia et al., 2014). Regardless, the observed response we 
found could still be explained by wild boars increasingly seeking shelter 
in the more human-dominated areas frequented by wolves in the last 
years of the period covered by our study, such as agricultural areas 
within a natural matrix. Unfortunately, we were unable to quantitatively 
test whether wolf habitat suitability was stable during our study period 

due to missing robust wolf occurrence data after 2012. 
To our knowledge, this is the first study providing indication for 

returning large carnivores having an effect on prey-related human- 
wildlife conflicts (i.e., the redistribution of crop damage by wild boar in 
our case). Our findings are broadly in accordance with the predator-prey 
space race theory (Muhly et al., 2011; Sih et al., 2005) and in line with 
studies suggesting large predators exert some level of top-down control 
in human-dominated landscapes as well (Dorresteijn et al., 2015). From 
a conflict perspective, changing prey behavior in landscapes recolonized 
by carnivores may have negative effects (e.g., higher intensity or 
redistribution of crop damage) or positive effects (e.g., lower risk of car 
collisions; Gilbert et al., 2017). Quasi-experimental studies, for example 
comparing recolonization areas with appropriate counterfactual areas 
where carnivores are still absent, could quantify these effects, thereby 
informing land-use and conservation planning. Still, we caution against 
over-generalizing our results. The outcomes of large carnivore recovery 
in human-dominated landscapes are likely dependent on the social- 
ecological context in which recovery happens. For instance, if carni
vores are culled when exceeding tolerated population densities, which 
are usually very low, their ecological effects on wild prey's behavior are 
small (Kuijper et al., 2016). Likewise, intensive poaching of carnivores 
may result in high rate of pack turnover, which can increase livestock 
depredation (Lovari et al., 2007). 

Many species of ungulates are considered overabundant in Europe, 
leading to widespread damage to agriculture and forestry (Apollonio 
et al., 2010). Given the continued range expansion and population 
growth of large carnivores in Europe, and particularly of wolves, the 
effects of re-distributing patterns of damage could be widespread, but 
remains so far largely unexplored. This is unfortunate, given that dam
ages by ungulates are economically much more significant than the 
direct damages by carnivores through livestock depredation (Carpio 
et al., 2021). Furthermore, damages by vehicle collisions with ungulates 
are also economically relevant (Raynor et al., 2021), and frequencies 
and spatial patterns of such collisions could be affected by the return of 
large carnivores. From a conservation planning and wildlife manage
ment perspective, this means that the prediction of carnivore range 
expansion should be accompanied by assessments of potential effects by 
carnivores on wild prey behavior. More generally, holistic assessments 
of large carnivore recoveries should consider trophic interactions as 
large carnivores return to human-dominated landscapes, as well as the 
services and disservices that large carnivores deliver (Rode et al., 2021). 
Designing effective conservation strategies to achieve coexistence thus 
requires that we simultaneously address multiple types of human- 
wildlife conflict, often with stakeholders with diverging interests 
(König et al., 2020), to achieve long-term coexistence of humans and 
wildlife in shared landscapes (Carter and Linnell, 2016; Kuijper et al., 
2019, 2016). 
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Cromsigt, J.P.G.M., 2016. Paws without claws? Ecological effects of large carnivores 
in anthropogenic landscapes. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/ 
rspb.2016.1625. 

Kuijper, D.P.J., Churski, M., Trouwborst, A., Heurich, M., Smit, C., Kerley, G.I.H., 
Cromsigt, J.P.G.M., 2019. Keep the wolf from the door: how to conserve wolves in 
Europe’s human-dominated landscapes? Biol. Conserv. 235, 102–111. https://doi. 
org/10.1016/j.biocon.2019.04.004. 

Lamb, C.T., Ford, A.T., McLellan, B.N., Proctor, M.F., Mowat, G., Ciarniello, L., 
Nielsen, S.E., Boutin, S., 2020. The ecology of human–carnivore coexistence. Proc. 
Natl. Acad. Sci. U. S. A. 117, 17876–17883. https://doi.org/10.1073/ 
pnas.1922097117. 
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