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Abstract: Fast-Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful,

non-destructive magnetic resonance technique that enables, among other things, the investigation of

slow molecular dynamics at low magnetic field intensities. FFC-NMR relaxometry measurements

provide insight into molecular motion across various timescales within a single experiment. This

study focuses on a model-free approach, representing the NMRD profile R1 as a linear combination

of Lorentzian functions, thereby addressing the challenges of fitting data within an ill-conditioned

linear least-squares framework. Tackling this problem, we present a comprehensive review and

experimental validation of three regularization approaches to implement the model-free approach to

analyzing NMRD profiles. These include (1) MF-UPen, utilizing locally adapted L2 regularization;

(2) MF-L1, based on L1 penalties; and (3) a hybrid approach combining locally adapted L2 and global

L1 penalties. Each method’s regularization parameters are determined automatically according

to the Balancing and Uniform Penalty principles. Our contributions include the implementation

and experimental validation of the MF-UPen and MF-MUPen algorithms, and the development of

a “dispersion analysis” technique to assess the existence range of the estimated parameters. The

objective of this work is to delineate the variance in fit quality and correlation time distribution yielded

by each algorithm, thus broadening the set of software tools for the analysis of sample structures in

FFC-NMR studies. The findings underline the efficacy and applicability of these algorithms in the

analysis of NMRD profiles from samples representing different potential scenarios.

Keywords: fast-field-cycling (FFC) NMR relaxometry; model-free approach to NMR dispersion profiles;

MuPen and L1 regularization algorithms

1. Introduction

Fast-Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a pow-
erful, non-destructive magnetic resonance technique that allows the exploration of slow
molecular dynamics, accessible only at extremely low magnetic field intensities. By varying
the strength of the relaxation magnetic fields, FFC enables the assessment of the frequency
dispersion of the longitudinal relaxation rate (R1) within a sample, consequently producing
NMR Dispersion (NMRD) profiles. Accordingly, FFC-NMR relaxometry measurements can
detect molecular motion across a broad spectrum of timescales within a single experiment.

Under the proper constraints [1], spin relaxation theory characterizes relaxation rates
as linear combinations of spectral density functions, which are the Fourier transforms of
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the time correlation functions. These functions capture the frequencies and their intensities
present in the correlation function. Several models exist in the literature (see [2] for a
survey) where the longitudinal relaxation rates are related to the parameters representing
the physical phenomena occurring in the analyzed sample. Thus, all these approaches
depend on the specific sample examined. There are several software tools that can be used
in these cases, for example, see [3–6].

An approach that allows greater flexibility is known as the model-free approach [7],
where the NMRD profile R1 is expressed as a linear combination of Lorentzian functions.

The model-free approach leads to a data fit problem consisting of an ill-conditioned
linear least-squares problem whose stable solution requires appropriate regularization [8,9].

We propose a review of three potential approaches: MF-UPen, which employs locally
adapted L2 regularization; an algorithm based on the L1 penalty, referred to as MF-L1; and
finally, a method called MF-MUPen, which utilizes both locally adapted L2 and global L1
penalties. In all these approaches, the regularization parameters are computed through
automatic procedures founded on the Balancing Principle (BP) [10] and the Uniform Penalty
principle [11].

All the algorithms are inspired by two-dimensional time-domain NMR relaxometry
techniques. The locally adapted L2 regularization was originally introduced by Bortolotti
et al. in [11], where the regularization parameters are determined by applying the Uniform
Penalty principle. The global L1 regularization has been applied in [12], which addresses
the more complex problem of data exhibiting spurious peaks caused by Quadrupolar
Relaxation Enhancement. Finally, the coupling of locally adapted L2 and global L1 penalties
was originally introduced by Bortolotti et al. in [13] for inverting two-dimensional NMR
relaxation data and has been adapted to NMRD profiles.

The contributions of this work are the following:

1. The implementation and experimental testing of the MF-UPen algorithm, featuring a
novel rule for automatically computing the threshold parameter β0.

2. The implementation and experimental testing of the MF-MUPen algorithm.
3. Development of a “dispersion analysis” procedure, enabling the determination of the

existence range for estimated parameters.

Our aim is to illustrate the diversity of results achievable with different algorithms,
focusing on fit quality and correlation time distribution. These insights will enrich the suite
of software tools available for enhancing sample structure analysis in FFC-NMR studies.

Following this introduction, the mathematical problem and numerical methods are
detailed in Sections 2 and 3, respectively. Section 4 then discusses the results from testing
on two sets of NMRD profiles, each representing significant potential scenarios.

2. The Parameter Identification Problem

In the following, we first describe the continuous model for NMRD profiles and then
derive its discretization.

Lo Meo et al. [14] developed a heuristic algorithm to model the NMRD profiles R1(ω)
based on the model-free approach, where the profiles are defined as a combination of
two terms:

R1(ω) = R0 + RHH(ω) (1)

where ω is the Larmor angular frequency. The first term R0 ≥ 0 is an unknown offset, taking
into account very fast molecular motions; the second term RHH(ω) describes 1H −1 H
relaxation as

RHH(ω) =

∫ +∞

0





τ
(

1 + (ωτ)2
) +

4τ
(

1 + 4(ωτ)2
)



 f (τ)dτ (2)
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where τ represents the correlation time, i.e., the average time required by a molecule to
rotate one radian or to move for a distance as large as its radius of gyration, and f is the
distribution to be recovered. Equation (1) represents a parameter identification problem
where the unknown parameters ( f (τ), R0) have to be estimated from NMRD profile values.

By discretizing Equation (1), we obtain the following linear system:

y = K f + R0, (3)

where K ∈ R
m×n is derived from the discretization of the integral for RHH in (2):

Ki,j =
τj

(

1 +
(

ωiτj

)2
) +

4τj
(

1 + 4
(

ωiτj

)2
) , i = 1, . . . , m; j = 1, . . . , n. (4)

with the vector ω ∈ R
m representing the m Larmor angular frequency values (ω = 2πν,

with ν in MHz) at which the signal R1 is evaluated. The unknown vector of the correlation
times distribution f ∈ R

n is obtained by sampling f (τ) in n logarithmically equispaced
values τ1, . . . , τn. The vector y ∈ R

m represents the observation vector, i.e., yi = R1(ωi),
with i = 1, . . . , m. Generally, for a typical FFC-NMR experiment, m ≪ n.

Defining x ≡ ( f , R0) ∈ R
n+1 and Ke ≡ [K 1] ∈ R

m×(n+1), we can reformulate (3) in a
more compact form:

y = Kex. (5)

We underline that the model-free analysis provides a fingerprint of the possible motion
regimes regardless of their physical–chemical interpretation. In fact, the integral form
of Equation (2) unconstrainedly gives only the number of the possible correlation times
describing the dynamics of the overall physical system. Instead, the typical approach used
in FFC NMR relaxometry requests an ad-hoc mathematical model containing information
about the number and meaning of the correlation times that describe a given system [12].

3. The Algorithms

From a mathematical point of view, the estimation of the parameters f and R0 starting
from the experimental observation y represents an ill-conditioned linear inverse problem.

In this section, we describe the proposed algorithms based on locally adapted L2
regularization (MF-UPen), L1-based regularization (MF-L1), and multi-penalty consisting
of local-L2 and L1 penalties (MF-MUPen).

3.1. MF-UPen Algorithm

This algorithm, implementing the locally adapted L2 regularization, solves the follow-
ing constrained minimization problem:

min
x≥0

{

∥y − Kex∥2
2 +

n

∑
i=1

λi(Lx)2
i

}

(6)

with L = [∆, 0] ∈ R
n×(n+1), where ∆ is the discretization of the second derivative operator,

according to central finite difference formulas, and 0 is the n−components null column
vector. Observe that the regularization is imposed only on the parameter f since the sum
in (6) ranges for indices i from 1 to n. The regularization parameters λi, i = 1, . . . , n are
computed according to the following relaxed UPEN principle [11]:

λi =
∥y − Kex∥2

n

(

β0 + βp maxµ∈Ii

(

pµ

)2
+ βc maxµ∈Ii

(

cµ

)2
) , i = 1, . . . , n (7)
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where c = Lx, p = [∇, 0]x, and Ii are the indices subsets related to the neighborhood of
the i−th entry, i.e., Ii = {i − 1, i, i + 1}. The β’s are positive parameters. The parameter
β0 prevents division by zero and is a compliance floor, which should be small enough to
prevent under-smoothing and large enough to avoid over-smoothing. The optimum value
of β’s could substantially change with the nature of the measured sample.

The parameters βp, βc are used to enhance or mitigate the local effects of slope/curvature.
A preliminary trial value that often yields satisfactory results is βp = βc = 1. The parameter
β0, however, is more critical; its value should not exceed the threshold defined by

max
i

{

βp max
µ∈Ii

(

pµ

)2
+ βc max

µ∈Ii

(

cµ

)2
}

, (8)

while a too-small value, especially in cases where slope (p) and curvature (c) approach
zero, would lead to an extremely ill-conditioned problem, hence causing computational
challenges.

Therefore, we propose an automatic rule for determining β0 based on the estimate
of (8) obtained from a tentative solution f̂ computed by the Truncated Singular Value
Decomposition [15] of the matrix K = UΣVT :

f̂ = ∑
σi>Tolσ

uT
i y

σi
vi, Tolσ = 10−6σ1,

where σ1 ≥ σ2 ≥ · · · ≥ σi ≥ · · · represent the singular values, and the vectors ui, vi

represent the i-th columns of U and V, respectively [16].
By setting

Vi = βp max
µ∈Ii

(

p̂µ

)2
+ βc max

µ∈Ii

(

ĉµ

)2, i = 1, . . . , n,

where ĉ = ∆ f̂ and p̂ = ∇ f̂ , we calculate β0 as follows:

β0 = ρ∥V∥∞, 0 < ρ < 1. (9)

The advantage of this approach is that it substitutes the parameter β0, which can
range in (0, ∞), with the parameter ρ, which is confined within the interval (0, 1). This
substitution ensures that β0 remains lower than the highest values of V but higher than the
lowest ones. This makes determining β0 more intuitive, particularly when supported by a
visual representation of V.

To summarize, MF-UPen is an iterative scheme where, given an initial guess λ
(0)
i ,

i = 1, . . . , n, an approximate solution x(k) ≡ ( f (k), R
(k)
0 ) is computed by solving (6) for fixed

λ
(k)
i , i = 1, . . . , n, and the regularization parameters values are updated according to (7).

The minimization problem (6) is solved by the Newton projection method (NP) [11]. MF-
UPen is sketched in Algorithm 1; the iterations are stopped when the following condition
is satisfied:

n

∑
i=1

|λ
(k+1)
i − λ

(k)
i | < Tol

n

∑
i=1

|λ
(k)
i | (10)

where Tol is a fixed tolerance.
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Algorithm 1 MF-UPen

1: Set k = 0, and choose a starting guess λ
(0)
i , i = 1, . . . , n.

2: Compute β0 according to (9).
3: repeat
4: k = k + 1
5: NMRD parameters update. By using the Newton Projection method compute

x(k) = arg min
x

∥y − Kex∥2
2 +

n

∑
i=1

λ
(k−1)
i (Lx)2

i

6: Regularization parameter update. Set

λ
(k)
i =

∥

∥

∥
y − Kex(k)

∥

∥

∥

2

n

(

β0 + βp maxµ∈Ii

(

p
(k)
µ

)2
+ βc maxµ∈Ii

(

c
(k)
µ

)2
) , i = 1, . . . , n

7: until converge condition (10)
8: return ( f , R0) = x(k) ▷ Result ( f , R0)

3.2. MF-L1 Algorithm

This algorithm employs an L1-norm-based penalty, which is preferred for inducing
sparsity in f . This approach is based on the assumption that the f (τ) distribution is a
sparse function characterized by only a few non-zero terms.

The problem of parameter identification is reformulated as the following optimization
problem:

min
x≥0

{

∥y − Kex∥2
2 + α∥x∥1

}

(11)

where α > 0 is the regularization parameter computed according to the Balancing Principle
(BP) [10]. Following [12], we rewrite (11) as

min
x

{

∥y − Kex∥2
2 + α∥x∥1 + η∥x∥2

2

}

s.t. x ≥ 0
(12)

In this new formulation (12), the last L2-based penalty term, η∥x∥2
2, is introduced only to

ensure that KT
e Ke + ηI is a definite positive matrix to ensure that (12) is well-posed. It is

not a regularization term, and a small positive value for η ≈ 10−10 is fixed.
The MF-L1 algorithm is an iterative procedure where, starting from an initial guess

λ(0), at each iteration k, an estimate of the parameters ( f (k), R
(k)
0 ) is computed by solving

the parameter estimation problem (12) for fixed α(k) by the truncated Newton interior-point
method [17] (see Algorithm 2, step (4)). Then, a new value α(k+1) is determined by using the
BP (see [10] for a deep theoretical discussion). The BP selects the regularization parameter
α so that the data fidelity and the regularization terms are balanced up to a multiplicative
factor γ, i.e.,

γα∥x∥1 = ∥y − Kex∥2
2 + η∥x∥2

2. (13)

We fix γ = 1, and we obtain the following rule for the parameter selection:

α =
∥y − Kex∥2

2 + η∥x∥2
2

∥x∥1
. (14)

The MF-L1 method is summarized in Algorithm 2.
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Algorithm 2 MF-L1

1: Set k = 0, η = 10−10, and choose a starting guess α(0).
2: repeat
3: k = k + 1
4: NMRD parameters update. By using the truncated Newton interior-point method,

compute
x(k) = arg min

x≥0
∥y − Kex∥2

2 + α(k−1)∥x∥1 + η∥x∥2
2

5: Regularization parameter update. Set

α(k) =
∥y − Kex(k)∥2

2 + η∥x(k)∥2
2

∥x(k)∥1

6: until |α(k) − α(k−1)| ≤ Tol|α(k)|
7: return ( f , R0) = x(k) ▷ Result ( f , R0)

The Matlab implementation of this algorithm is part of the freeware Matlab tool,
ModelFreeFFC, which addresses the more complex issue of data exhibiting spurious peaks
caused by Quadrupolar Relaxation Enhancement. The software can be downloaded from
https://site.unibo.it/softwaredicam/en/modelfree, accessed on 21 May 2024. For a de-
tailed discussion, please refer to [12].

3.3. MF-MUPen Algorithm

This algorithm implements the multi-penalty approach proposed in [13] for the two-
dimensional NMR relaxometry data. MF-MUPen solves the following unconstrained
minimization problem:

min
x

{

∥y − Kex∥2
2 +

n

∑
i=1

λi(Lx)2
i + α∥x∥1

}

(15)

which incorporates both penalty functions from MF-UPen and MF-L1. The regularization
parameters are then calculated using (7) for λi, i = 1, n and (14) for α.

To summarize, MF-MUPen is an iterative scheme where, given an initial guess λ
(0)
i ,

i = 1, . . . , n, a parameter estimate ( f (k), R
(k)
0 ) is computed by solving (15) for fixed λ

(k)
i ,

i = 1, . . . , n + 1. Problem (15) is solved by the FISTA method [18], which is one of the
most popular methods for minimizing L1-penalized least squares functions. MF-MUPenis
stopped when the following condition is satisfied:

n

∑
i=1

|λ
(k+1)
i − λ

(k)
i |+ |α(k+1) − α(k)| < Tol

(

n

∑
i=1

|λ
(k)
i |+ |α(k)|

)

. (16)

MF-MUPen is sketched in Algorithm 3.
Algorithms 1–3 require an initial estimate for the regularization parameters. This

can be obtained by computing a rough approximation x̃ to the following non-negatively
constrained least squares problem:

min
x≥0

∥y − Kex∥2
2 (17)

and then by using the Balancing and Uniform Penalty principles to obtain the initial guess.
More precisely,

α(0) =
∥y − Ke x̃∥2

2 + η∥x̃∥2
2

∥x̃∥1

https://site.unibo.it/softwaredicam/en/modelfree
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in Algorithms 2 and 3, and

λ
(0)
i =

∥y − Ke x̃∥2

n

(

β0 + βp maxµ∈Ii

(

p̃µ

)2
+ βc maxµ∈Ii

(

c̃µ

)2
) , i = 1, . . . , n

in Algorithms 1 and 3.

Algorithm 3 MF-MUPen

1: Set k = 0, and choose a starting guess λ
(0)
i , i = 1, . . . , n, α(0).

2: repeat
3: k = k + 1
4: NMRD parameters update. By using the FISTA method, compute

x(k) = arg min
x

∥y − Kex∥2
2 +

n

∑
i=1

λ
(k−1)
i (Lx)2

i + α(k−1)∥x∥1

5: Regularization parameter update. Set

λ
(k)
i =

∥

∥

∥
y − Kex(k)

∥

∥

∥

2

n

(

β0 + βp maxµ∈Ii

(

p
(k)
µ

)2
+ βc maxµ∈Ii

(

c
(k)
µ

)2
) , i = 1, . . . , n

α(k) =

∥

∥

∥
y − Kex(k)

∥

∥

∥

2

n∥x(k)∥1

6: until converge condition (16)
7: return ( f , R0) = x(k) ▷ Result ( f , R0)

4. Results and Discussion

In this section, we report and discuss the results obtained by the proposed algorithms
on samples of two different materials, which represent typical case tests well.

In Section 4.1, we present the metrics used to evaluate the results’ quality quantitatively
and the experimental setting. In Section 4.2, we report and discuss the results obtained by
the algorithms.

Numerical computations were carried out using Matlab R2022b on a laptop equipped
with an Apple M1 chip with 16 GB of RAM. Please observe that throughout the section, we
refer to the frequencies ν instead of the angular frequencies ω, i.e., ν ≡ ω/(2π).

4.1. Experimental Setting

The fitted NMRD profiles, computed by Algorithms 1–3 are compared to the R1 data
by means of the χ2 value, which is defined as follows:

χ2 =
m

∑
i=1

(ei − yi)
2

m − 1
(18)

where e is the estimated data value, i.e.,

e = K f̃ + R̃0

with ( f̃ , R̃0) being the computed parameters. We quantitatively compare the computed
correlation time distributions f given by the three algorithms, determining the peak values
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and the area below f in the neighborhood of such peaks, and defining a value such as
SpecificWeight. Let us assume that f has np local maxima at the correlation times τcℓ ,
ℓ = 1, . . . , np. Then, we define the neighborhood of interest Iℓ using the Full Width at Half
Maximum parameter, i.e.,

Iℓ ≡ [τlow
ℓ

, τ
up
ℓ

] s.t. f (τlow
ℓ

) = f (τ
up
ℓ

) =
1
2

f (τcℓ) ℓ = 1, . . . , np.

We compute the SpecificWeight value for each peak τcℓ , i.e.,

SpecificWeight
ℓ
=

nℓ

∑
j=1

τcj
f (τcj

), τcj
∈ Iℓ, (19)

where nℓ is the number of correlation times belonging to Iℓ, ℓ = 1, . . . , np.
The value of the tolerance parameters used in the stopping criteria of all algorithms is

Tol = 10−2. Moreover, a maximum number of 10 iterations k has been set but never been
reached. The computational cost is evaluated in terms of execution time.
To test the algorithms’ robustness, we apply them to a set of s = 500 artificial profiles ob-
tained by adding to R1 uniformly distributed noise within the experimental error intervals.
With these tests, referred to as dispersion analysis, we aim to explore the intervals containing
the recovered parameter R0 and how the calculated estimates scatter around the average
value. Additionally, we want to examine how the position and value of the peaks change
in the recovered correlation times distributions.

4.2. Numerical Results from FFC Measures

We present the results obtained by applying all the algorithms to NMRD profiles
obtained from two experimental samples, Manganese and Poplar, respectively. Both
systems are considered a “gold standard” in relaxometry studies, especially when the
involvement of paramagnetic species is necessary. The relaxometric properties of aqueous
manganese solutions have been thoroughly investigated [19,20] and, as such, these solutions
are routinely utilized to assess the performance and stability of instruments. Additionally,
the characteristics of Poplar char have been extensively studied [21], making it an effective
model for examining the textural properties and functional mobility of solvents within
these porous materials. The NMRD profile for the manganese sample was acquired by the
authors, while the data pertaining to Poplar char were taken from [22].

These two samples show how the algorithms’ results can complement each other to
improve the overall quality of the information provided. We evaluate the global quality of
the examined methods in terms of χ

2, offset R0, and computation time.
The R1 data for the Manganese Sample are measured at 26 frequency values ν, ranging

from 10−2 to 101 MHz. The error intervals for these measurements vary from ±0.4 s−1 to
±1.1 s−1. These are illustrated by the black error bars in the left panel of Figure 1. The
R1 data for the Poplar sample are measured at 21 frequency values ν, ranging from 10−2

to 101 MHz. The error intervals for these measurements vary from ±0.06 s−1 to ±0.3 s−1.
These are illustrated by the black error bar in the right panel of Figure 1.

Table 1 presents the estimated parameter R0, the goodness-of-fit measure χ
2, and the

computation time in seconds obtained by the three algorithms. We observe that MF-L1
achieves a moderate χ

2 value and the shortest computation time. In contrast, MF-UPen
shows a slightly higher χ

2 and takes longer to compute. Conversely, MF-MUPen achieves
the best fit, as evidenced by the lowest χ

2. This suggests superior model accuracy, with a
modest increase in computation time.
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Figure 1. Comparison of R1 relaxation rates for the Manganese and Poplar samples. The plots show
the comparative analysis between the actual data and the results from the MF-UPen, MF-L1, and
MF-MUPen algorithms.

Table 1. Manganese sample. Computational results of the proposed methods.

Algorithm
R0 χ

2 Computation Time

[s−1] [−] [s]

MF-UPen 6.64 × 100 6.23 × 10−1 9.86 × 10−1

MF-L1 1.19 × 101 5.55 × 10−1 1.35 × 10−1

MF-MUPen 9.98 × 100 4.10 × 10−1 1.24 × 100

Table 2 outlines the computational results obtained for the Poplar sample by the three
algorithms. MF-UPen and MF-L1 both report nearly identical values for R0, with mini-
mal χ

2 and very short computation times, indicating efficient and effective performance.
However, MF-MUPen, while yielding a similar R0 to the other two algorithms, shows a
higher χ

2 value, suggesting a slightly poorer fit. Additionally, MF-MUPen requires longer
computation time.

Table 2. Poplar sample. Computational results of the proposed methods.

Algorithm
R0 χ

2 Computation Time

[s−1] [−] [s]

MF-UPen 5.40 × 100 7.94 × 10−3 7.41 × 10−2

MF-L1 5.41 × 100 8.84 × 10−3 6.65 × 10−2

MF-MUPen 5.41 × 100 2.19 × 10−2 3.76 × 10−1

The outcomes for the Manganese and Poplar samples represent two scenarios, each
indicative of the potential variability in sample analysis. This diversity highlights the
importance of utilizing multiple methods to fully understand sample characteristics under
varying conditions. The peak analysis for both the Manganese and Poplar samples across
the three methods is performed by plotting the correlation times amplitudes f computed
by each method in Figure 2 and reporting the peak position amplitudes, half-width, and
SpecificWeights for each sample in Tables 3 and 4.

In Table 3, we observe a perfect agreement among the three methods in locating
the peak at the longest correlation time τ = 7.74 × 10−1 [µs]. Meanwhile, MF-UPen and
MF-L1 have quite good agreement at the intermediate times: τc = 3.76 × 10−2 [µs] and
τc = 4.23 × 10−2 [µs], respectively. The distribution pattern in Figure 2, left panel, shows
similarity features between MF-UPen and MF-MUPen, and reveals a tendency of MF-L1 to
resolve multiple components at the shortest times.

In the case of the Poplar sample, as shown in the right panel of Figure 2 and Table 4,
we observe a tighter clustering of peaks across the methods, particularly at the highest
amplitude peak around τc = 4.23 × 10−2 [µs]. This suggests that all three methods are in
agreement concerning the main features of the Poplar sample’s distribution.
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Figure 2. Distribution intensity as a function of τc for the Manganese and Poplar samples. The plots
show the results from the MF-UPen, MF-L1, and MF-MUPen algorithms.

Table 3. Manganese sample analysis. Position (τc) and amplitude f (τc) of the distribution peaks
sorted by f (τc).

Algorithm
τc f (τc) Half-Width SpecificWeight

[µs] [a.u.] [µs] [a.u.]

MF-UPen

8.30 × 10−3 9.78 × 101 8.19 × 10−3 6.94 × 100

3.76 × 10−2 2.95 × 101 8.47 × 10−3 2.13 × 100

7.74 × 10−1 9.61 × 100 1.18 × 10−1 1.09 × 101

4.86 × 10−1 4.63 × 100 5.67 × 10−2 2.25 × 100

3.43 × 10−1 4.85 × 10−2 4.98 × 10−2 2.17 × 10−2

MF-L1

1.05 × 10−2 5.13 × 102 1.34 × 10−3 6.30 × 100

4.23 × 10−2 3.63 × 101 5.36 × 10−3 1.75 × 100

7.74 × 10−1 1.16 × 101 1.21 × 10−1 1.24 × 101

3.43 × 10−1 2.28 × 100 4.00 × 10−2 7.84 × 10−1

1.63 × 10−3 3.79 × 10−3 7.04 × 10−4 5.17 × 10−5

MF-MUPen

9.33 × 10−3 8.49 × 101 1.09 × 10−2 6.98 × 100

4.75 × 10−2 1.09 × 101 1.55 × 10−2 1.47 × 100

7.74 × 10−1 1.15 × 101 1.23 × 10−1 1.24 × 101

3.43 × 10−1 1.49 × 100 5.24 × 10−2 7.56 × 10−1

Table 4. Poplar sample analysis. Position (τc) and amplitude f (τc) of the distribution peaks sorted
by f (τc).

Algorithm
τc f (τc) Half-Width SpecificWeight

[µs] [a.u.] [µs] [a.u.]

MF-UPen

4.23 × 10−2 1.02 × 100 3.92 × 10−2 3.54 × 10−1

3.05 × 10−1 4.65 × 10−1 1.25 × 10−1 5.00 × 10−1

1.56 × 100 1.75 × 10−1 5.38 × 10−1 8.05 × 10−1

3.51 × 100 5.53 × 10−2 9.32 × 10−1 4.53 × 10−1

MF-L1

4.75 × 10−2 3.77 × 100 1.04 × 10−2 3.34 × 10−1

2.72 × 10−1 1.59 × 100 3.50 × 10−2 5.11 × 10−1

1.56 × 100 4.85 × 10−1 1.89 × 10−1 8.20 × 10−1

3.94 × 100 1.15 × 10−1 4.60 × 10−1 4.55 × 10−1

MF-MUPen

4.23 × 10−2 1.87 × 100 2.13 × 10−2 3.40 × 10−1

2.72 × 10−1 7.80 × 10−1 7.49 × 10−2 5.11 × 10−1

1.56 × 100 4.41 × 10−1 2.02 × 10−1 8.19 × 10−1

3.94 × 100 1.14 × 10−1 4.60 × 10−1 4.50 × 10−1

4.3. Dispersion Analysis

The robustness of the methods is investigated through the dispersion analysis, de-
scribed in Section 4.1. The boxplots in Figure 3 offer a comparative view of algorithmic
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performance on the two samples. Each boxplot outlines the algorithms’ interquartile range
(IQR) and median of χ2 values.

We observe uniformity in medians for the Manganese sample, with outliers high-
lighted by red plus symbols, suggesting occasional significant deviations for MF-UPen.
The symmetry of the data is evident from the whiskers’ lengths.

Conversely, the Poplar sample exhibits a tighter IQR for each algorithm, denoting less
variability. Despite the close median values indicating consistent algorithmic performance,
outliers for MF-L1 reveal notable deviations in some cases.

Figure 3. Boxplot of the χ2 values for the Manganese and Poplar samples comparing the results of
the different algorithms on 500 data realizations.

Table 5 compares the R0 confidence intervals [23], mean R0, and medians for both
Manganese and Poplar samples across the three algorithms.

The confidence intervals and mean R0 values suggest a wider range of estimates
for the Manganese sample, indicating a less uniform agreement among the algorithms.
The median values, while closer, still reflect notable variation between the algorithms,
suggesting that the model fit depends on the algorithm applied.

Conversely, the Poplar sample demonstrates remarkable consistency, with both confi-
dence intervals and mean R0 values being nearly identical across all three algorithms. The
median values also closely align, reinforcing the observation of uniform performance. This
indicates that for the Poplar sample, the choice of algorithm does not significantly influence
the outcome, and all three algorithms provide equivalent information.

Table 5 represents two distinct scenarios that may emerge when these algorithms
are applied to samples with varying characteristics. In the case of the Poplar sample, the
outcome from all three algorithms is congruent, implying that the algorithms are robust and
interchangeable for this type of sample. Conversely, the Manganese sample demonstrates
less consistency across the algorithms, suggesting that additional insights from alternative
investigative methods are necessary to supplement the analysis.

Table 5. Comparison of R0 confidence intervals, mean R0, and median for Manganese and Poplar samples.

Sample Algorithm
R0 Confidence Interval R0 Mean Median

[s−1] [s−1] [s−1]

Manganese
MF-UPen [5.240, 9.253] 7.25 × 100 8.26 × 100

MF-L1 [9.251, 12.12] 1.07 × 101 1.12 × 101

MF-MUPen [9.652, 11.38] 1.05 × 101 1.05 × 101

Poplar
MF-UPen [5.363, 5.406] 5.39 × 100 5.39 × 100

MF-L1 [5.370, 5.413] 5.39 × 100 5.39 × 100

MF-MUPen [5.370, 5.416] 5.39 × 100 5.39 × 100

Concerning the distribution intensities, we computed the mean distribution ob-
tained by each method and analyzed the peak positions and amplitudes analogously
to Tables 1 and 4 for the single samples.
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From Tables 6 and 7, we notice that MF-L1 tends to identify a greater number of peaks
compared to the other two methods, suggesting a higher sensitivity of the algorithm.

In the case of the Manganese sample, the data reported in Table 6 show that there is a
perfect correspondence in peak position at the longest correlation time τc = 7.743 × 10−1

among the three algorithms, while the peaks at shortest and intermediate times are split
into multiple components.

Concerning the Poplar sample (Table 7), we observe that all algorithms show identical
peak positioning corresponding to the largest amplitude, which was reached at the shortest
correlation time τc = 4.229 × 10−2 [µs]. At the longest correlation times, MF-UPen finds a
single peak around τc = 1.748× 100 [µs], while MF-L1 and MF-MUPen split the amplitudes
into two peaks at τc = 1.556 × 100, 1.963 × 100 [µs] and τc = 1.556 × 100, 2.205 × 100 [µs],
respectively.

However, despite the differences in the number of peaks identified, Figure 4 shows
that all three algorithms exhibit a fundamental robustness in the localization of the positions
of the highest peaks.

From Table 5, we observe that MF-MUPen has the smallest confidence intervals in
both samples and Figure 3 shows that the number of outliers in MF-MUPen is smaller
than in the other methods. This, together with Figure 4, suggests a higher robustness of
MF-MUPen compared to the other methods.

Figure 4. Mean distribution amplitude over 500 data realizations for Manganese and Poplar samples.

Table 6. Manganese sample. Analysis of mean distribution over 500 realizations. Position (τc) and
amplitude f (τc) of the distribution peaks sorted by f (τc).

Algorithm
τc f (τc) Half-Width SpecificWeight

[µs] [a.u.] [µs] [a.u.]

MF-UPen

9.326 × 10−3 8.640 × 101 8.889 × 10−3 6.949 × 100

3.765 × 10−2 1.727 × 101 9.075 × 10−3 1.617 × 100

7.743 × 10−1 9.004 × 100 1.385 × 10−1 1.168 × 101

5.462 × 10−1 9.534 × 10−1 1.139 × 10−1 4.464 × 100

5.995 × 10−2 7.407 × 10−1 7.643 × 10−3 1.208 × 10−1

MF-L1

1.048 × 10−2 1.642 × 102 4.173 × 10−3 6.216 × 100

6.579 × 10−3 3.024 × 101 4.493 × 10−4 5.120 × 10−1

7.743 × 10−1 1.061 × 101 1.264 × 10−1 1.215 × 101

3.765 × 10−2 8.763 × 100 1.897 × 10−2 1.702 × 100

3.854 × 10−1 5.470 × 10−1 7.072 × 10−2 5.642 × 10−1

4.863 × 10−1 3.761 × 10−1 3.575 × 10−2 4.885 × 10−1

2.420 × 10−1 1.233 × 10−1 1.700 × 10−2 7.589 × 10−2

MF-MUPen

1.048 × 10−2 8.461 × 101 9.725 × 10−3 6.954 × 100

7.743 × 10−1 9.675 × 100 1.466 × 10−1 1.219 × 101

4.229 × 10−2 5.630 × 100 2.526 × 10−2 2.163 × 100

4.863 × 10−1 4.064 × 10−1 1.402 × 10−1 9.117 × 10−1
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Table 7. Poplar sample. Analysis of mean distribution over 500 realizations. Position (τc) and
amplitude f (τc) of the distribution peaks sorted by f (τc).

Algorithm
τc f (τc) Half-Width SpecificWeight

[µs] [a.u.] [µs] [a.u.]

MF-UPen
4.229 × 10−2 7.234 × 10−1 5.094 × 10−2 3.369 × 10−1

2.719 × 10−1 1.830 × 10−1 8.540 × 10−2 2.547 × 10−1

1.748 × 100 7.503 × 10−2 1.211 × 100 1.091 × 100

MF-L1

4.229 × 10−2 1.652 × 100 1.794 × 10−2 2.811 × 10−1

2.719 × 10−1 2.662 × 10−1 1.465 × 10−1 4.595 × 10−1

8.498 × 10−2 1.744 × 10−1 2.187 × 10−2 6.473 × 10−2

1.204 × 10−1 1.287 × 10−1 1.081 × 10−2 3.840 × 10−2

1.963 × 100 8.927 × 10−2 1.045 × 100 1.007 × 100

1.556 × 100 8.810 × 10−2 1.176 × 10−1 3.459 × 10−1

6.136 × 10−1 2.873 × 10−2 7.136 × 10−2 4.805 × 10−2

7.925 × 100 1.298 × 10−3 5.589 × 10−1 2.304 × 10−2

MF-MUPen

4.229 × 10−2 1.312 × 100 2.518 × 10−2 3.009 × 10−1

2.420 × 10−1 2.697 × 10−1 1.420 × 10−1 4.568 × 10−1

1.072 × 10−1 1.047 × 10−1 2.110 × 10−2 5.096 × 10−2

1.556 × 100 7.936 × 10−2 1.204 × 100 1.180 × 100

2.205 × 100 7.194 × 10−2 1.217 × 10−1 2.996 × 10−1

6.893 × 10−1 2.774 × 10−2 1.504 × 10−1 8.125 × 10−2

4.431 × 100 7.331 × 10−3 2.851 × 10−1 7.834 × 10−2

5. Conclusions

This study reviews three algorithms designed for the analysis of NMRD profiles from
experimental data, showing their efficacy in two different datasets representative of possible
application scenarios. The comparative analysis of the three algorithms, while revealing
a general consistency in identifying the primary peak positions, shows that MF-MUPen
exhibits higher robustness in the presence of data noise.

In conclusion, the proposed algorithms have the potential to significantly improve
the quality of NMRD profile analysis and enrich the toolkit available to researchers for
investigating the molecular dynamics of various samples.
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