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Abstract

We present a general procedure to introduce electronic polarization into classical Molec-

ular Dynamics (MD) force-fields using a Neural Network (NN) model. We apply this

framework to the simulation of a solid-liquid interface where the polarization of the

surface is essential to correctly capture the main features of the system. By introduc-

ing a multi-input, multi-output NN and treating the surface polarization as a discrete

classification problem we are able to obtain very good accuracy in terms of quality of

predictions. Through the definition of a custom loss function we are able to impose

a physically motivated constraint within the NN itself making this model extremely

versatile, especially in the modelling of different surface charge states. The NN is

validated considering the redistribution of electronic charge density within a graphene

based electrode in contact with aqueous electrolyte solution, a system highly rele-

vant to the development of next generation low-cost supercapacitors. We compare the
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performances of our NN/MD model against Quantum Mechanics/Molecular dynamics

simulations where we obtain a most satisfactory agreement.

The first reports of Machine Learning (ML) in computational materials modelling emerged

close to three decades ago1, yet only very recently has their presence in this field become

ubiquitous, in particular in the form of Supervised Learning (SL)2–4. SL encompasses a

group of methodologies with the same principal philosophy: given a set of observations in

the form of input and output data, the goal is to determine a model that can make accurate

output predictions given an arbitrary input. Examples of SL within materials modelling

include Gaussian Approximated Potentials (GAP)5–7 that use Gaussian random processes

to predict atomistic Potential Energy Surfaces (PES)8–10, Kriging regression11,12, which is

used in the geometrical optimization of molecules13 and PES prediction14–16, kernel-ridge

regression for the description of the multipole of a molecule17,18, and Neural Networks (NN)

that are also used to make predictions about the PES8–10 and predict the difference between

forces obtained from DFT and classical force fields19. In particular, NNs represent the one

most widely utilized techniques in materials modelling owing to their versatile and broad

applications; NNs have been applied to the parametrization of wave functions20 and quantum

density matrices21 as well as applications within Quantum Monte Carlo simulations22. More

recently, NN also found applications in Computational Fluid Dynamics Simulations23,24.

Here, NNs are employed to model the quantum mechanical fluctuations of the electron

density of a charged solid surface that lead to polarization effects at solid-liquid interfaces.

In the investigation of solid-liquid interfaces by classical Molecular Dynamics (MD) sim-

ulations, the standard practice in all-atom approaches is to assign to each species a fixed

charge that is representative of its nuclear charge plus an attributable proportion of the

average shared electron density. Polarisation effects that give rise to stronger attractive or

repulsive interactions between non-bonded species may be treated in an average way through

a parameterized non-bonded Lennard-Jones interaction potential25,26. However, this treat-

ment neglects the dynamical aspect of the interface polarizability which can be important for
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capturing the correct physisorption and diffusion behaviour27,28. In strictly metallic systems,

the redistribution of the electronic density, and thence surface charge, can be modelled for

instance by the constant potential method29–31. In semiconducting and insulating materi-

als polarizable force fields can be applied to surfaces, accounting for dynamical effects by

tethering a dummy charge to polarizable atoms via a harmonic spring, thereby allowing for

modulation of the atomic charge density in response to the environment.28,32,33 In the case

of graphene/electrolyte interfaces, in our previous work we observed that ions induce a long

ranged redistribution of surface electron densities that can only be accurately accounted for

by methods which compute directly the electronic surface density34. To this end we im-

plemented an iterative Quantum Mechanics/Molecular Dynamics (QM/MD) workflow, by

which the dynamics of surface-electrolyte interfaces can be modelled in a classical framework

all the while including a QM description of the polarization of the surface.

In the QM/MD scheme the state of the surface polarization evolves in response to the

local electrostatic potential arising from the relative positions of molecules in the liquid

phase. This could be for instance the water molecule dipole and/or charges associated with

a solute. At a given time-step, the specific configuration of surface charges are obtained

through Mulliken population analysis of the electronic charge density obtained at the Den-

sity Functional Tight Binding (DFTB) level of theory. In order to avoid very large-scale

quantum mechanical calculations, only the surface atoms are treated by DFTB, and the

specific arrangement of the electrolyte atoms enters into the calculation as a field of point

charges. The DFTB surface atom populations are translated to a set of atomic charges and

included as parameters in the classical MD force field (FF). Iteration of this procedure for

many time steps ensures that there is feedback between the classically determined positions

of the electrolyte atoms and the QM derived surface charges.

Within this framework, the need of the DFTB calculations represents the bottleneck

for the simulation time, and a trade-off between the accuracy and practical viability of the

simulation must be established for the feedback between the quantum and classical model.
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High frequency updates of the surface charge would improve the sampling of the electronic

potential energy surface and reduce the time lag between the QM and MD calculations, but

this comes at the cost of a slow down in the simulation time. Supervised Learning of the

QM polarizability, in particular using NNs, represents a novel avenue by which we can avoid

the computationally expensive QM calculations, instead calling upon a trained model in-situ

to retain the dynamical description of the polarizability of the surface. Along these lines,

this work, introduces a NN model for the on-the-fly prediction of the surface atomic partial

charges, within a classical force field (FF), that accounts for the evolving polarizability of

the surface. The NN, which is trained over the QM calculations is then fully integrated into

a ML/MD workflow replacing the QM calculations, still effectively reaching the same goal

of obtaining an improved FF which is not constrained by fixed point charges.

It is worth highlighting, our approach includes substantial deviations from the standard

application of NN models to MD, more specifically: (i) We propose a multi-output neural

network scheme35, where a single NN gives for each prediction the instantaneous value of the

charge on each atom of the surface, (ii) We introduce a formal constraint in the generation

of the NN model, to link the model to the physics of the system where the total surface

charge must be preserved. This, in turn, is done by modifying the Loss Function (LF) used

to train the model.

Finally, (iii) we simplify the problem from a standard regression one, where the prediction

involves continuous intervals (i.e., numbers in R), to a problem similar to a classification one,

where we are dividing our output in a finite number of classes (i.e., we are dividing the range

of values assumed by the charges in discrete intervals) and predicting in which class each

charge falls instead. Although classification problems find use outside of computational

materials science, they received little attention within the community. Here we show that

they increase the flexibility and performances of the ML models particularly for the problem

at hand (i.e. simulating a solid/liquid interface). We validate the framework simulating the

interfacial properties of an electrified graphene/electrolyte interface.
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The system considered here is a charged semi-infinite graphene electrode in contact with

a 1M NaCl electrolyte solution. The electrode is comprised of NC = 336 carbon atoms and

carries an excess charge of 4 e. The electrolyte solution has 2065 water molecules and 90

and 86 fully dissociated Na+ and Cl− ions respectively. A sketch of this system is presented

in fig. 1. It should be noted that the excess of Na ions balances the charge of the electrode,

preventing problems with the computation of long-ranged electrostatic interactions in the

MD step. In our previous work, (see34) we observed that there exist a finite amount of charge

for which any two charges differing by this value are not seen as different by the system.

This observation, which will be made more quantitative in the next section, will be essential

for the work developed here.

The work is organized as follows: we first describe the Neural Network architecture,

highlighting the novelties introduced in this paper, namely the use a multi-output NN trained

with a modified loss function, and the transformation of the problem from a pure regression

to a classification one. Then, we describe the setup of the simulations used to derive the

training points needed to train our NN and the set up of the MD simulations that use the

distribution of carbon atom charges predicted by the NN. We then show some results related

to the performance of the NN and the accuracy of the NN/MD calculations. The conclusions

close the manuscript.

1 Network Structure

The first important novelty added in this work stems in the way we simplify the problem

by not considering it only a pure regression but a regression/classification one. This simpli-

fication is allowed by the physics of the system and the fact that the simulation results are

insensitive to small changes34 (ε = 0.015 e ) in the carbon partial charges within a classical

force field. By looking at the distribution of the charges, dividing them into bins of finite

size and assigning a label to each of them, we can ask our NN to predict only the bin in
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which the particular charge falls rather than the actual value of the charge. That means

that we translated a pure regression problem into a labelling (classification) problem, even

though a standard regression seems a natural choice given the continuity of the value of the

charge. Thus the problem becomes to find the correct label for each surface carbon atom (i.e.

correct class in the distribution of charges) given a specific electrolyte configuration, which,

in this set up, represents the input of our NN. The reduction of the cardinality of the space

of the outputs from infinite to a series of finite discrete values, is a well-known procedure in

the ML community. This reduction is called quantization (as in “quantize” a data set from

continuous to discrete quantities) “bucketization”, or “data binning”. We prefer to avoid

the term quantization here, since this notion is not related to quantum mechanics concepts.

The use of data binning presents some advantages in the creation of the NN, namely the

NN does not waste resources trying to learn all the finest details of the outputs which are

physically irrelevant, as the system cannot discriminate between two charges below a certain

threshold, focusing on the more essential task to reproduce the correct distribution of the

charges on the graphene layer, given a particular configuration of the electrolyte. One of

the disadvantages of the binning is usually the fact that there is no a priori prescription on

how to select the bins. In our work, we do not have such a problem. We are guided by the

physics, and the criteria we choose is obtained by the true distribution of the charges and

the physical threshold ε.

Once the label is obtained, it can be mapped back to the corresponding charge. When

a given charge is assigned to one of the bins it is replaced by the median value of that bin.

Therefore, the size of the bin, b, must be chosen smaller than ε. However, we require a stricter

condition on b, in particular we require that b < ε/2. The reason lies in the discretization

performed when we assign each charge to the bins, which is explained in detail in section 2.3.

If b < ε/2 then a label prediction which is close enough to the real one can be still considered

correct, as it will be shown in the next section. In this work we use a value of b = 0.007 e.

The basic architecture of a NN, ( see fig. 1) is represented by a set on neurons in several
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layers; each neuron within a layer is connected to all of the neurons in the subsequent layer.

The first and last layers are special ones, the first layer represents the input layer, and the

number on neurons here is equal to the number of features of the problem. The last layer is

the output layer and in our case is composed of several outputs36.

Figure 1: Sketch of the loop for NN/MD calculations which shows the sequence of operations
included. We highlighted the Multi-output Neural Network step with M inputs and NC

outputs, along with the definitions of the inputs extracted from the MD simulation (the
position of the ions) and outputs entering into the MD simulation (i.e. the charge on the
carbons).

The output of the j-th neuron in the k-th layer, y
(k)
j , depends on the output of the

previous layer k − 1 and can be written as:

y
(k)
j = f

b(k−1) +
m(k−1)∑
i=1

wk
i,jy

(k−1)
i

 (1)

where the superscript (k− 1) refers to objects in the k− 1-th layer, m(k−1) is the number of
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neurons in the layer, wk
i,j is the weight associated to the i-th neuron, b(k−1) is the bias and f

is the activation function. If y
(k)
j is the output of the last layer k runs over all the different

outputs.

In order to obtain a NN model, the weights wk
i,j must be optimized for each neuron in

each layer, in practice this means minimising a certain Loss Function (LF), L(y
(out)
i , ŷi),

which measures the “distance” between prediction and true value of the property:

wopt = argmin
w
L(y(out), ŷ) (2)

where y(out) and ŷ are the NC-dimensional vector of the respectively true and the predicted

label attached to, in the present case, the NC carbons within the graphene layer.

By definition, the true charges computed in the QM step sum to the charge applied to

the electrode. In order to enforce this constraint we include it as an extra term into the loss

function appearing in eq. (2). Our new loss function reads as:

L(y(out), ŷ) =
1

Nc

[
NC∑
i=1

∣∣y(out),ji − ŷi
∣∣+ λ

∣∣ NC∑
i=1

y(out) · 1−
NC∑
i=1

ŷ · 1
∣∣] (3)

where 1 is the NC-dimensional vector of ones, and (·) is a scalar product. The first absolute

value is the Mean Absolute Error (MAE) loss function optimized during the NN training,

and represents the magnitude of error committed on the predictions. The second absolute

value represents a so-called soft constraint, i.e. a penalty over the predictions, calculated

as the difference between the sum of the total predicted charges and that of the true total

charge. λ is an adjustable parameter which quantifies the strength of the coupling of the

loss function with the penalization term. In this work, we set a value of λ = 1 which gives

satisfactorily results. The modification of the loss function presented here represents one of

the possible ways to include this constraint in the NN. In particular, this method of including

such constraint as an additional term of the loss function is known as “regularization”37 and

the constraint we use is a type of soft-constraint. Such constraints are defined soft as opposed
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to hard-constraints (such as the ones calculated using Lagrange multipliers) because they

can be violated. However, any such violation results in a penalization (i.e. a positive term

added to the loss function). Their overall effect is therefore a penalization of the learning

of unnecessary complex models. This, in turn, is represented in our case by the fact that

our NN needs to learn only over models which return a total value of the property equal to∑NC

i=1 y(out) · 1.

An important part of the creation of a ML model is the selection of the inputs, or features.

In our system, the distribution of charges on the graphene sheet depends on the configuration

of the water molecules and ions in the electrolyte solution. However, the correlation among

the positions of the water molecules and the ions during the simulation, strongly implies that

we do not need to include all the molecules in the creation of the features. In this work, we

show that using the ions configurations is enough to obtain good descriptors for the training

of the NN. This last fact represents a key observation for the generation of NN models for

MD simulations and here we argue that the amount of information needed to create good

ML models can be reduced with respect to the naive choice of considering everything within

the system.

Now, we need to explicitly describe the features to be used in the NN model. Generally,

Cartesian coordinates are not considered good candidates for ML models in MD. The fact

that they lack some essential symmetries, i.e. they are neither translationally nor rotationally

invariant, or invariant to an exchange of identical atoms, is generally a problem for ML model

generation. The issue originates from the fact that NNs consider two input geometries which

differ only by a rotation or translation of the system as being unique. In literature, different

methods have been proposed to take into account these symmetries38–42.

However, in the present case, the use of absolute Cartesian coordinates as input does

not suffer of the problems outlined. In our work, the graphene carbons are fixed in space

throughout the simulation. If two configurations differ by a translation of any ion within

the simulation box, they are different with respect to the fixed graphene interface. There-
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fore, they effectively represents different configurations 1. For this same reason, namely the

graphene sheet is fixed in space, we do not need to consider the permutation of the carbons

on the sheet. As long as the ordering of the carbons in the simulation is consistent with the

training of the NN, the predictions will not need to consider the permutation of the carbon

on the surface.

Another disadvantage of cartesian coordinates for the input features resides in the lack of

transferability of the model with respect to the molarity of the solution (i.e., the number of

ions in the system). However, as we discussed, the model we are presenting here is not relying

on the use of cartesian coordinates, which are just a convenient and straightforward way to

present the main novelty of this work. These considerations encompass the transferability

with respect to different systems. If a different electrolyte solution is considered (i.e., different

ions in water), then a different network will be needed. However, the type of problem we are

considering suggests that a possible route would be to train the NN with different electrolyte

solutions, to obtain a single NN able to describe different systems. This last consideration

is however outside the scope of this paper and will be considered for future publications.

In terms of the output, the architecture we are proposing fixes the number of carbons of

the solid surface. However, this latter fact does not represents a major inconvenience. Once

a sufficiently large interface is considered, the behaviour of the electrolyte is not affected by

the surface size.

The set up for the inclusion of the NN into the MD calculations is similar to the one fol-

lowed for the QM/MM workflow (see also34 ) with the only difference being the replacement

of the DFTB calculations for the prediction of the surface charges with the NN.

Every 5 ps the ions coordinates are extracted from the trajectory and transformed into the

input configuration for the NN model, from which the new charges are predicted. A sketch

of the loop of the NN/MD calculation is reported in fig. 1. In practice, this functionality is

implemented as a set of drivers which couples TensorFlow43 with Gromacs44. By maintaing

1A translation symmetry along the direction perpendicular to the plane of the electrode exists but it’s
not considered here since all the configurations are obtained with respect the same position of the electrode.
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these as a set of flexible python drivers of third party software the framework is rigidly

transferable across multiple MD software that can be chosen to suit the users needs.

2 Computational Details

2.1 QM/MD Polarized Graphene layer

We present a brief description of the simulation we used to obtain the training points for

the construction of the neural network, for more details we refer to our original work34. The

system under investigation is a charged semi-infinite graphene electrode in contact with a

1M NaCl electrolyte solution. The electrode is composed by 336 carbon atoms and carries

an excess charge of 4 e. The electrolyte solution has 2065 water molecules and 90 and 86

fully dissociated Na+ and Cl− ions respectively. It should be noted that the excess of Na

ions balances the charge of the electrode, preventing problems with the computation of long-

ranged electrostatic interactions in the MD step. The dimensions of the simulation box are

approximately 3×3×16 nm3, where in the system non-periodic direction (orthogonal to the

electrode plane) there is an 8 nm slab of electrolyte plus a further 8 nm of vacuum separating

periodic images. The configuration we considered for our system mitigates the emergence of

dipole interactions across the cell. For the DFTb calculations we performed, we determined

that 6 nm of electrolyte is sufficient to screen the electric field arising from the electric double

layer. For the classical molecular dynamics simulations we use the Gromacs44 software

suite version 2018.4. The surface polarization evolves in response to the local electrostatic

potential created by the water molecules and ions in solution, but it represents a quantum

mechanical property of the surface electrons. In order to capture the redistribution of the

electron density we iteratively couple density functional tight binding simulations of the

graphene surface to the classical molecular dynamics trajectory. In practice we convert the

coordinates of the electrolyte atoms (Hydrogen , Oxygen, Sodium and Chloride) from a

snapshot of the classical trajectory into a set of point charges; the magnitude of the charge
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is taken from the classical force-field. The point charges form the background electrostatic

potential for DFTB simulation of the graphene surface. The DFTB simulation in turn

gives rise to a distribution of the surface electron density in response to the position of the

electrolyte atoms. From the distribution of the electron density we estimate the atomic

charges through mulliken populations of the atomic orbitals. These atomic charges define

the charges used in the classical force field for the generation of the future configuration.

For the aqueous graphene interfaces we find that a coupling time of 5 ps between quantum

mechanical feedback is sufficient for keeping the error in the atomic charges below 0.015 e.

From these calculations we obtained 30000 different configurations saved every 1 ps to

reduce the correlation among the different geometries.

2.2 Neural Network with Tensorflow

The NN model was obtained using Tensorflow/Keras library v. 2.3.1. Each of the 30000

configuration includes the positions and charges of the ions and the charges on the graphene

layer, as input and output features, respectively. Therefore, the number of input features of

each configurations is 704, calculated as: (number of Cl− + number of Na+ ) times four, for

the three spatial coordinates and the charge of each ion. As we discussed in section 1, in our

setup the neural network is trained using density functional tight binding calculations where

each of the electrolyte atoms (O, H, Na, Cl) are included as point charges. This means

that the resultant surface polarization seen by the neural network is polarized according

to the specific configuration of the H2O molecules. In this way, the contribution of the

water molecules to the surface polarization is implicitly included during the fitting procedure

allowing the use of a simplified set of input features (namely, the spatial positions of ions

only). In turn, even if this strong correlation may not be an universal behaviour which can

be easily translated to any kind of systems, the agreement of the results with the target

calculations we obtained (see section 3) is an indication that such correlation can be safely

assumed in this case.
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We randomly split the total set of configurations in a training set composed by 27000

configurations and the holdout/test set with the remaining ones. Moreover, we use 10-fold

cross validation, by dividing the training set into 10 subsets and repeating the model training

10 times, with a single subset as holdout/test set.

Figure 2: Histogram of the distribution of charges on the carbon atoms of the electrode
obtained from 27000 training geometries. The histogram is normalized in the sense that the
sum of all the bins gives the total number of carbons atoms considered on the electrode.

From the 27000 configurations in the training set, we built the histogram showing the

relative frequency of the charges which is reported in fig. 2. The spacing of the bins of this

histogram was chosen to be sb = 0.007e. The choice of the bin spacing has some important

consequences for our work and we will describe it in more detail in the next section (see

section 2.3). The charge of the k-th carbon, qk, was then assigned to nk
b -th bin of the

histogram, according to:

nk
b =

⌈
qk − qmin

qmax − qmin

⌉
(4)

where qmax and qmin are determined by the smallest and largest charges encountered in the

27000 points of the training set.
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Multi-output/multi-target classification is not directly supported by NNs. Therefore, we

built a multi-output regression NN and explicitly round the floating point predictions to

integers, i.e. the discrete charge bin numbers. In turn, these bin numbers can be mapped to

the actual charge values.

The NN is a typical multilayer perceptron (MLP) with four fully-connected dense hidden

layers of 1024 neurons with ReLU activation which represents a good compromise between

speed and robustness of the model. The custom loss function that combines the normal

mean absolute error loss and the loss that penalizes the differences between the sum of real

and predicted values is depicted in Listing 1.

The training is performed with the Adam() optimizer with initial learning rate lr=2e-4.

Moreover, the training is automatically stopped with an early stopping mechanism if no

improvement of the validation loss has been observed after 100 epochs.

def cus tom los s ( y true , y pred ) :

# MAE l o s s

e r r = K. mean(K. abs ( y true−y pred ) , a x i s=−1)

# Pena l i z a t i on o f d i f f e r e n c e s between sum( y t ru e ) and sum( y pred )

f a c = 1 .0/336 . 0

c o n s t r a i n t = fac ∗K. abs (K.sum( y pred , a x i s=−1)−K.sum( y true , a x i s =−1))

return ( e r r+c o n s t r a i n t )

Listing 1: Code for the definition of the Custom Loss Function defined in Eq. 3, here we

assumed λ = 1.
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2.3 Bin definition

Figure 3: Sketch of the assignment of the charges into the bins. Blue dot is the real charge,
which is replaced with the value of the charge assigned to the bin i (represented by the red
line in bin i). Red dot is the predicted charge which is predicted in the wrong bin i + 1. if
the spacing between bins is greater than half of the threshold (see Sec. I of the main paper),
then the prediction is not correct. By choosing a bin size smaller than half of the threshold,
the prediction in the bin i+ 1 is still correct .

Once a given charge is assigned to one of the bins, it is replaced by the median value of that

bin. In fig. 3 we show one possible scenario for the prediction of the charges. The real charge

is represented by the blue dot, and it can be anywhere in the region bounded by the upper

and lower extrema of the bin. This latter fact puts a constraint on the maximum size of the

bin, which has to be such that b < ε.

If the predicted value, represented by the red dot in fig. 3, is in the bin i + 1, then the

median value for the charge of the bin i + 1 is assigned. If the size of the bin is ε, the

difference between the real charge (the blue dot) and the predicted charge (the red dot) is

greater than ε and the prediction is wrong. If we use a spacing between the bins such that

b < e/2 we can assume that the wrongly predicted label, with a difference of ±1 from the

real one, is actually correct.

3 Results

In this section we will start by showing the performances of the NN model on a prediction

set composed of 3000 electrolyte configurations and the resultant carbon charges computed
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by DFTB simulations (to which we will refer as the “real” charges). We then conclude

by reporting the results of the fully integrated NN/MD simulation and comparing various

properties with those obtained from an analogous QM/MD trajectory.

In Figure 4 we plot histograms that compare the distributions of the real and predicted

charges. Leveraging that i) the differences in the charges which are smaller than ε are not

seen as different and ii) the size of the bin, b, is such that b < ε/2, it follows that if the NN

predicts a label for a charge which is ±1 away from its correct one, it can be assigned back

to its correct label. By filtering out the results in fig. 4a, which represents the distribution

as obtained by the NN model, using this consideration, we obtain the histogram shown

in fig. 4b. Our model is able to correctly capture the behaviour of the system in terms of

identification of the most important classes, which in turn, represent the most likely observed

charges. However, our model yields a lower likelihood that charges on the left tail of the

distribution will be observed. These charges are those appearing with the least frequency

during the time evolution of the electrolyte configurations, which are therefore likely to be

under-represented using the random sampling we employed to construct the whole data set.

An improved sampling of the training set may help in reducing this effect (e.g.45), but as we

will show next, under representation of these labels does not have a noticeable effect on the

NN/ML simulation results.

Figure 5 reports the sum of the charges, for each frame, of the predicted set, with and

without the constraint applied in the loss function. This serves to highlight the importance

of the constraint since without it the sum of the predicted charges has a mean value different

from the one set in the classical step (4.0 e for the system considered here). If the NN does

not conserve the electrode charge, then firstly, the modelled system is fundamentally different

from the real system and secondly, on a more technical note this can lead to instabilities

in the evaluation of the Ewald summation during the classical MD step, where the overall

electrolyte charge no longer counter balances the electrode. In fact, our results suggest that

the inclusion of a physically motivated term within the loss function can lead to better
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(a) (b)

Figure 4: Histogram of the true charges as calculated by the DFTB (in red) and comparison
with their NN predicted values (in green). On the left panel we reported the charges as
they are predicted from the NN, on the right panel we report the filtered charges using the
threshold defined in the main text.

models generally. One thing to highlight here is that, while the average of the total charge

shown in fig. 5 has the correct mean, its instantaneous value can be different from 4.0 e

which is needed to ensure the neutrality of the system. In order to avoid this effect, in this

work we enforced the neutrality by calculating the difference between the instantaneous total

charge after each prediction and dividing it evenly among all the carbons on the surface.

This procedure is not going to modify the system, since the charge added to each carbon on

the graphene layer is well below the treshold ε 2.

We have shown in fig. 4 and fig. 5 the performance of the predictions in terms of the

relative frequency of the charges compared with the real ones.

On top of their histograms, we can also consider the real space distributions of the pre-

dicted labels in comparison with the true charges, since this will give rise to the dynamical

feedback with the electrolyte during the NN/MD loop. In particular, this difference be-

tween the QM and NN charges should be minimal in order to avoid nonphysical charge

(de)localization.

2Let us assume an error as large as 1 e, then 1/336 ≈ 0.003 e which is a quantity well below ε.
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Figure 5: Sum of charges for the test configurations

The comparison between the true and predicted charges has been carried out on the test

set by calculating the difference between the value of the real charges and the prediction of

the NN model on the same configuration, which we report in fig. 6. If the error on the charge

is smaller than the threshold of 0.015 than an error of zero is assigned to that particular

carbon. We observe that given this constraint the difference between the real and predicted

charges is zero for the majority of C atoms across all frames. Moreover, where individual

C atoms take a value different from zero, the prediction appears to be isolated in space

and across different frames. As a consequence, the resultant polarization of the sheet is not

affected and the contribution of these larger deviations is averaged out over the course of

even several tens of ps. As observed for fig. 4, the NN has a slight bias towards highest

labels which can be possibly mitigated by a more accurate generation of the data set points,

but overall the qualitative behavior is similar to the one observed in QM calculations with

regions with a larger (negative) charge, regions mostly neutral and very few positive charges.

The distribution of the predicted charged gives the overall behaviour of the predictions,

but does not give any indication on the error committed in each prediction. The most

straightforward evaluation of the performances of any NN is the prediction error with respect

to the charges on the prediction set. As shown in fig. 7, where we report an S-curve showing

the percentile on the y-axis and the absolute error on the x-axis. Each point gives on the
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Figure 6: A two dimensional plot of the difference between the QM and NN distribution
of charges on the Carbon atoms in the graphene sheet for a randomly selected snapshot, a
movie over the trajectory is available as part of the SI. The legend is given in units of the
threshold ε.

y-axis the percentage of the carbons in the predictions set with error lower than the one

marked by the x position. The error is given in terms of the distance of the predicted label

from the true one. A distance of zero means the label was correctly predicted. The S-curve

for the predictions on the charges on the graphene layer is plotted in fig. 7. Even though each

prediction gives all the charges on the graphene layer at the same time, we consider for fig. 7

each charges separately, i.e. the picture is showing the errors committed on a single charge.

In this figure we also included a black vertical line at 0.015 e. From fig. 7 it results that with

the 0.015 e threshold we can consider correct almost 87% of the charges predicted. Naturally,

the threshold we used has still to be tested in a simulation, where we can confirm that such

an approximation is enough to obtain reliable results from the MD simulations. Figure 8

shows the normalized density of water, Na+and Cl− across the simulation box as function

of the distance from the graphene layer (which, in our configuration is perpendicular to the

z-direction and is located at z = 0). As expected, the density of the Cl− ion is smaller than

the Na+near the surface since the graphene layer is negatively charged. One thing we can

notice from fig. 8 by comparing the relative height of the first peaks for water and sodium

(comparable to the first solvation shell for the graphene layer) is that the relative height of
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The vertical black dashed line represents the threshold ε.

the peaks is preserved in NN/MD. The distribution of the chlorine shows a better agreement

with QM/MD calculations than the sodium. This fact could be due to the fact that chlorine

being, on average, repelled from the interface is less sensitive to the small differences between

the QM and NN description of the graphene layer.
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Figure 8: From top to bottom: normalized density of water, Na+ and Cl− as function of the
distance from the graphene layer for QM/MD, NN/MD calculations.

These results show the potential of this different paradigm for NN for MD simulations. In
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particular, we showed how the classification problem can be used in the generation of NN for

MD calculations instead of the more complicate regression one. We showed that Cartesian

coordinates can be used as features, giving good results, even though other feature selection

may improve the predictions as well as a more clever choice of the training set geometries.

In terms of speed-up of the calculations, the time needed for a NN/MD simulation is of

the same order of magnitude of a standard MD simulation, which is a huge computational

advantage compared with any other procedure to include surface polarizability. However,

the model presented here suffers of a not fully integration with the MD code, which surely

represents the next step in the development of NN/MD models.
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The video included represents a two dimensional plot of the difference between the QM and

NN distribution of charges on the Carbon atoms in the graphene sheet for a 10 ns trajectory.

The legend is given in units of the threshold ε.
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