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ABSTRACT
Cosmic voids occupy most of the volume of the Universe, and their statistical properties can be
exploited for constraining dark energy, as well as for testing theories of gravity. Nevertheless,
in spite of their growing popularity as cosmological probes, a gap of knowledge between
cosmic void observations and theory still persists. In particular, the void size function models
proposed in literature have been proven unsuccessful in reproducing the results obtained from
cosmological simulations in which cosmic voids are detected from biased tracers of the density
field. The goal of this work is to cover this gap. In particular, we make use of the findings
of a previous work in which we have improved the void selection procedure, presenting
an algorithm that redefines the void ridges and, consequently, their radii. By applying this
algorithm, we validate the volume conserving model of the void size function on a set of
unbiased simulated density field tracers. We highlight the difference in the internal structure
between voids selected in this way and those identified by the popular VIDE void finder. We
also extend the validation of the model to the case of biased tracers. We find that a relation
exists between the tracer used to sample the underlying dark matter density field and its
unbiased counterpart. Moreover, we demonstrate that, as long as this relation is accounted for,
the size function is a viable approach for studying cosmology with cosmic voids.

Key words: methods: numerical – methods: statistical – large-scale structure of Universe –
cosmology: theory.

1 I N T RO D U C T I O N

Cosmic voids are large underdense regions where matter is evacu-
ated and then squeezed in between their boundaries. While galaxy
clusters encapsulate most of the mass in the Universe, voids
dominate it in terms of volume. Voids are only mildly non-linear
objects since, during their evolution, they encounter a crucial
physical limit: matter density cannot be less than zero, that is the
minimum possible density contrast is δ = −1. Conversely to what
happens to overdensities, the void evolution tends to reduce the
possible non-sphericity of the initial density perturbations (Icke
1984). These properties suggest that the employment of a simplified
spherical expansion model may be more accurate in describing
the void formation and evolution than it is in the description of
overdensities (Blumenthal et al. 1992).

� E-mail: tronconi@sissa.it

In the last decade, cosmic voids have gathered a large popularity
as cosmological tools. With typical sizes over tens of megaparsecs,
they are by far the largest observable structures in the Universe. For
this reason they are particularly suited to provide information about
several hot topics. They are indeed extreme objects, meaning that
they generate from the longest wavelengths of the matter pertur-
bation power spectrum. Moreover, their underdense nature makes
them suitable for a wide range of dark energy measurements. Indeed,
the super-Hubble velocity field within voids causes a suppression in
structure growth, making them a pristine environment in which to
study structure formation (Benson et al. 2003; Van de Weygaert &
Platen 2011), and a test bench for constraining dark matter (DM),
dark energy, and theories of gravity (Lavaux & Wandelt 2012; Li,
Zhao & Koyama 2012; Sutter et al. 2014; Hamaus et al. 2015, 2016;
Massara et al. 2015; Pollina et al. 2016; Kreisch et al. 2018).

The excursion-set model has been applied to the study of
underdensities, in particular to predict the size function of cosmic
voids detected in the DM field (Sheth & van de Weygaert 2004,
hereafter SvdW). It is based on the assumption that cosmic voids
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are nearly spherical regions which have gone through shell-crossing.
The latter represents the time when the inner, more underdense,
matter shells inside voids have reached the outer, as a result of the
differential outwards acceleration they experience. Jennings, Li &
Hu (2013) then proposed a modification of this model that makes it
in better agreement with the actual size distribution of cosmic voids
measured in both simulated and real void catalogues.

The first goal of our work is to further validate the Jennings
et al. (2013) size function model on simulated void catalogues
detected from unbiased density field tracers, at different redshifts
and numerical resolutions. Then, we extend the model to account
for the more realistic case of biased tracers, covering the existing
gap between the theoretical and observational sides of the problem.

Our work is organized as follows. In Section 2, the existing
void size function theoretical models are presented. We focus in
particular on their realm of applicability, underlining the existing
issues in modelling void statistics in biased matter distributions. We
then propose a modification of the Jennings et al. (2013) void size
function model to account for the tracer bias. Section 3 is dedicated
to the validation of our fiducial model. We investigate its reliability
using void catalogues extracted from a set of cosmological N-
body simulations with different selections. Specifically, while in
Section 3.1 we make use of DM particle simulations, meaning
that voids are detected from unbiased tracers of the density field, in
Section 3.2 we extend our study to voids identified in the distribution
of biased DM haloes. Finally, in Section 4 we draw our conclusions.

2 M E T H O D O L O G Y

Whether it is possible to exploit cosmic voids as cosmological
probes is a matter of how reliable is our capability to model their
properties. The most straightforward measure we can compute from
whatever survey of extragalactic sources is the abundance of sources
as a function of a particular feature. In the case of cosmic voids,
this is the size function.

In Section 2.1, we first present the existing theoretical models for
the size function of cosmic voids extracted from unbiased tracers of
the DM density field. Then, we introduce our new parametrization
to describe the void size function in the more realistic case of void
catalogues extracted from biased tracer distributions. In Section 2.2,
we introduce the detailed procedure that we will use later on to
identify the cosmic voids in a set of DM-only N-body simulations,
and to clean the catalogue.

The simulations employed in this work have been performed
with the C-GADGET module (Baldi et al. 2010), a modified version
of the (non-public) GADGET3 N-body code (Springel 2005), while
the software exploited for the post-processing and the data analysis1

has been presented in Ronconi & Marulli (2017, RM17 hereafter),
where we also provided a first description of our new theoretical
size function model and cleaning method.

2.1 Size function

The development of any theoretical model of void size function
relies on the definition of cosmic voids. Let us stick with the

1Specifically, we use the numerical tools to handle cosmic void catalogues
provided by the COSMOBOLOGNALIB, V5.1 (Marulli, Veropalumbo &
Moresco 2016). This consists of a large set of C+ + /PYTHON free
software libraries, freely available at the following GitHub repository:
https://github.com/federicomarulli/CosmoBolognaLib.

common assumption that an isolated void evolves from an initial
spherical top-hat depression in the density field. This is analogous to
the assumption that an isolated DM halo results from the spherical
collapse of a top-hat peak in the density field. The evolution of
both overdensities (peaks) and underdensities (depressions) can be
described via the classical spherical evolution model (Blumenthal
et al. 1992). In the overdensity case, a halo is said to have formed
at the moment its density contrast reaches a level corresponding
to either the virialization of the spherical perturbation (the critical
linear overdensity δc ≈ 1.69, for an EdS universe, see e.g. Bond et al.
1991; Paranjape, Lam & Sheth 2012) or, with a milder assumption,
when the perturbation reaches the turnaround (δt ≈ 1.06, for an
EdS universe2), and detaches from the overall expansion of the
Universe.

On the other hand, cosmic voids do not ever detach from
the overall expansion, but instead they expand with a super-
Hubble flow. The expansion rate is inversely proportional to the
embedded density, therefore shells centred around the same point
are expected to expand faster as closer as they are to the centre.
This eventually leads to the inner shells reaching the outer, the
so-called shell-crossing, which is typically assumed to be the
moment when a void can be said to have formed. In linear
theory, the shell-crossing occurs at a fixed level of density contrast
(δL

v ≈ −2.71, for an EdS universe3). This threshold can be used
in an excursion-set framework to predict the typical distribution
of voids, analogously to the case of halo formation by spherical
collapse (Bond et al. 1991; Zentner 2007). With these assumptions,
SvdW developed a model of the void size function that, furthermore,
considers the void-in-cloud side effect, which accounts for the
squeezing of voids that happen to evolve within larger scale
overdensities.

In this framework, the probability distribution of voids of a certain
size is given by

fln σ (σ ) = 2
∞∑

j=1

jπx2 sin(jπ�) exp

[
− (jπx)2

2

]
, (1)

where

x = �

|δL
v |σ (2)

and

� = |δL
v |

δc + |δL
v | . (3)

The size-dependence of equation (1) is given by the square root of
the variance,

σ 2(r) = 1

2π

∫
k2P (k)W 2(k, r) dk, (4)

where P(k) is the matter power spectrum, W(k, r) the window
function, and r is the smoothing scale, that is the radius of the
spherical underdense region we define as void. In this work, we
apply the approximation proposed by Jennings et al. (2013), which

2We will generically refer to both the critical and turn-around densities with
the same symbol, δc.
3We will use the superscript L to identify linear extrapolated quantities,
while the superscript NL will mark their non-linear counterparts.
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is accurate at the 0.2 per cent level:

fln σ (σ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2
π

|δL
v |
σ

exp

(
− δL

v
2

2σ 2

)
x ≤ 0.276

2
4∑

j=1

jπx2 sin(jπ�) exp

[
− (jπx)2

2

]
x > 0.276.

(5)

With the kernel probability distribution of equation (1), it is
straightforward to obtain the size-abundance distribution of cosmic
voids by applying:

dn

d ln r

∣∣∣∣
linear

= fln σ (σ )

V (r)

d ln σ−1

d ln r
. (6)

In order to derive the void size function in the non-linear regime,
a conservation criterion has to be applied. The SvdW size function
relies on the assumption that the total number of voids is conserved
when going from linear to non-linear regimes.4 While reaching
shell-crossing, underdensities are expected to have expanded by a
factor a ∝ (1 + δNL

v )−1/3, thus a correction in radius by this factor
is required:

d n

d ln r

∣∣∣∣
SvdW

= d n

d ln(a r)

∣∣∣∣
linear

. (7)

Jennings et al. (2013) argued that such a prescription is unphysical,
since this leads to a volume fraction occupied by voids which is
larger than the total volume of the Universe. They thus introduced
a volume conserving model (hereafter Vdn model) in which it is
instead assumed that the total volume occupied by cosmic voids
is conserved in the transition to non-linearity. None the less,
when shell-crossing is reached, voids are thought to recover the
overall expansion rate, and continue growing with the Hubble flow
(Blumenthal et al. 1992; Sheth & van de Weygaert 2004). The
conservation of volume is achieved by applying:

d n

d ln r

∣∣∣∣
Vdn

= d n

d ln r

∣∣∣∣
linear

V (rL)

V (r)

d ln rL

d ln r
, (8)

where rL indicates the radius predicted by linear theory (i.e. not
accounting for the conversion factor a).

Several authors have tested the SvdW model on both simulated
DM density fields and in mock halo catalogues, finding out that it
systematically underpredicts the void comoving number density
(see e.g. Colberg et al. 2005; Sutter et al. 2012; Nadathur &
Hotchkiss 2015; Pisani et al. 2015). To overcome this mismatch,
the underdensity threshold δL

v is commonly left as a free parameter,
tuned on simulated halo catalogues. This severely affects the
possibility of using the void size function as a cosmological probe.
Jennings et al. (2013) have shown that the Vdn model does not
require such a fine-tuning, as long as the void catalogue is properly
cleaned from spurious voids. However, their results are limited to
the case of cosmic voids detected from simulated DM distributions.
We extend their study to the case of biased samples, such as mock
DM halo catalogues, which are more representative of the real case.

Several authors have underlined that the tracer bias has to be taken
into account in order to extract unbiased cosmological information
from the number counts of cosmic voids detected in galaxy redshift
surveys (see e.g. Pollina et al. 2018). In fact, the comoving number

4This is the same assumption which is implicitly made to derive the halo-
mass function.

density and sizes of voids traced by the DM distribution are different
from the ones of the voids traced by a biased DM halo density field.

In RM17, we introduced a simple modification of the void size
function model that accounts for this effect. It follows from the
results by Pollina et al. (2017), that showed that the DM density
field within voids, δNL

v, DM, is linearly related to the density field
traced by some biased tracers, δNL

v, tr:

δNL
v, tr = b δNL

v, DM. (9)

Therefore, the threshold density to be used in the size function model
of cosmic voids detected from biased tracers has to be corrected
taking into account equation (9). Moreover, to recover the linear
extrapolated value δL

v, tr, we use the fitting formula provided by
Bernardeau (1994), namely

δNL = (1 − δL/C)−C, (10)

with C = 1.594. equation (10) provides a good fit, with errors below
0.2 per cent, for standard cosmological models with any values of
�M and ��, especially in the case of underdense regions (δL <

0), and it is exact in the limit �M → 0, for �� = 0. Combining
equation (10) with equation (9), it gives

δL
v, tr = C

[
1 − (1 + b δNL

v, DM)−1/C] . (11)

Our recipe for a void size function that works regardless of whether
the void catalogue is affected or not by a tracer bias is to use the
value of δL

v found with equation (11) in the probability function
given by equation (1).

2.2 Void finding and data reduction

There is not a general concordance in the definition of voids.
Indeed, many different techniques have been proposed and applied
over the years (see e.g. Colberg et al. 2008; Elyiv et al. 2015). A
significant part of our work has been dedicated to cover this gap of
knowledge, through the development of a procedure to standardize
the outcome of void finders of different types (see also RM17). In
this work, we use the public void finder VIDE5 (Sutter et al. 2015,
Void IDentification and Examination Toolkit), which implements an
enhanced version of ZOBOV (Neyrinck 2008, ZOnes Bordering On
Voidness) to construct voids with a watershed algorithm, whatever
the nature of the tracers and independently of the presence of a
biasing factor. The VIDE catalogues obtained are then cleaned with
the pipeline developed and presented in RM17. This allows us to
align the objects included in the void catalogue with the theoretical
definition of cosmic voids used to derive the void size function
(Section 2.1).

We summarize here the main features of the cleaning pipeline,
referring to RM17 for a detailed description. The procedure is
divided into three main steps: (i) a preliminary trimming of the
catalogue based on density and reliability criteria, (ii) a rescaling of
the effective radius of all the voids in the catalogue and, finally, (iii)
the catalogue is trimmed again to erase overlapping between voids,
selecting the voids with the smaller central density or, equivalently,
with the larger density contrast (see e.g. Neyrinck 2008).6 As

5http://www.cosmicvoids.net
6The overlap-check acts on the rescaled voids by comparing either the
central density or the internal density ratio (i.e. the ratio between the overall
density contrast measured inside the void and its central density contrast) of
two overlapping voids, discarding one of the two. Since in step (ii) of the
algorithm we impose the overall density embedded by the voids to be equal
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Table 1. Fiducial cosmological parameters of the N-body simulations used
in this work.

h0 �CDM �b �� As ns

0.7 0.226 0.0451 0.7289 2.194 · 10−9 0.96

underlined also in RM17, this cleaning method is necessary to
match the distribution of voids measured in simulated catalogues
with the predictions of the Vdn model. The rescaling part of the
procedure [step (ii)] is based on the requirement that cosmic voids
have to embed a density matching the shell-crossing prescription
defined by the model. This is crucial in order to have a reliable
description of their distribution in terms of spherical expansion.
Specifically, spheres are grown around the centre of voids selected
by the adopted void finder algorithm up to the scale inside which an
a priori chosen value of underdensity is reached. The latter value is
typically chosen as the non-linear counterpart of the shell-crossing
threshold, namely δNL

v ≈ −0.795 at redshift z = 0 for an EdS
universe.

Even though it is reasonable to select this particular value as the
critical threshold in both the model and cleaning method, there are
no restrictions in this sense and whatever value is acceptable, as long
as it is used in both measuring (that is when applying the cleaning
algorithm) and modelling the distribution (that is when building
the modified model described in Section 2.1). This is a key issue:
the choice of the underdensity threshold, that has to be embedded
by the voids identified in whatever tracer distribution, must match
the threshold δL

v in the model (equation 1) used to predict their
distribution. Given that when measuring the size distribution of
cosmic voids we are dealing with a non-linear universe, while the
theoretical model is derived from linear theory, a prescription to
convert the threshold back and forth (such as the fitting relation
from Bernardeau 1994) is necessary.

3 RESULTS

We test the procedure outlined in Section 2 with both a set
of DM-only N-body simulation snapshots, and a set of mock
halo catalogues extracted by means of a friends-of-friends (FoF)
algorithm and applying different mass selection cuts. Specifically,
we consider a suite of N-body simulations of the standard �CDM
cosmology performed with the C-GADGET module (Baldi et al.
2010) for different box sizes and particle numbers. Our largest
box corresponds to the �CDM run of the L-CODECS simulations
(Baldi 2012), with a volume of (1 Gpc h−1)3 and a total number of
10243 particles, with a mass resolution of 6 × 1010 M� h−1. The
smaller simulations have been run with the same code specifically

to a fixed value, these two measures are strictly related for our rescaled voids:
voids with smaller central density have a larger internal density ratio and
vice versa. In the original algorithm presented in RM17, choosing whether
to discard the void with the larger central density (smaller internal density
ratio) or the one with the smaller central density (larger internal density
ratio) was left to the user. Selecting among these two choices reduces to
deciding whether to keep the larger voids (which typically have a smaller
central density, thus, a larger internal density ratio) or the smaller ones.
Given that, as also stated in the original ZOBOV paper (Neyrinck 2008),
voids with a larger internal density ratio are statistically more significant, we
decided to remove this free parameter in the newer version of our algorithm
which now automatically applies the criterion we dubbed larger favoured in
the previous versions.

Table 2. Our set of cosmological simulations with the corresponding
relevant physical quantities: Lbox is the simulation box-side length in units of
(Mpc h−1); Np is the total number of particles; m.i.s. is the mean interparticle
separation in the box in units of (Mpc h−1); in the last column, the particle
mass in units of (1010 M� h−1) is reported.

Lbox Np m.i.s. Particle mass

(Mpc h−1) (Mpc h−1) (1010 M� h−1)

1000 10243 ≈1.00 5.84
500 2563 ≈2.00 56.06
256 2563 1.00 7.52
128 2563 0.50 0.94
64 2563 0.25 0.12

for this work, and share with the largest box the same fiducial
cosmological parameters (consistent with WMAP7 constraints, see
Table 1; Komatsu et al. 2011), spanning a range of lower, equal, and
higher particle mass and spatial resolutions, with the aim of testing
the dependence of our analysis on these numerical parameters. The
main properties of the different simulations are reported in Table 2.

As a first step, in Section 3.1 we validate our procedure on
the four N-body simulations with 2563 particles listed in Table 2.
These simulations vary in mass resolution and mean interparticle
separation (m.i.s.). We gathered snapshots at four different redshifts
(z = 0 , 0.5 , 1 , 1.5) for each of these four simulations.

Afterwards, in Section 3.2 we extend our analysis to the case
of biased tracers. The set of halo catalogues is extracted from a
snapshot at redshift z = 0 of the simulation with box-side length
Lbox = 1000 Mpc h−1. We could not use the same simulations used
in the validation part of the work because of the extremely low
number of voids identified by VIDE in those small boxes.

3.1 Unbiased tracers

In order to validate our procedure, we first run the VIDE void finder
on top of each of the 16 simulation snapshots described before
with varying resolution and redshift. The resulting void catalogues
are then cleaned with our pipeline. We evolve the shell-crossing
threshold, δL

v = −2.71, as

δL
v (z) = δL

v × D(z)

D(0)
, (12)

by means of the growth factor D(z) at redshift z. Applying the
fitting formula given in equation (10), we obtain its non-linear
extrapolation, δNL

v (z), and use this value as a threshold in the
cleaning pipeline. Doing so, all the voids in our catalogues embed
a fixed density

ρv = 〈ρ〉 [1 + δNL
v (z)

]
, (13)

where 〈ρ〉 is the average matter density of the snapshot.
First, we investigate the difference between the void density

profiles before and after the application of our cleaning algorithm. It
is generally believed that, in the standard �CDM cosmology, voids
have a self-similar internal structure, which does not depend on the
tracers used to define them (see e.g. Ricciardelli, Quilis & Planelles
2013; Hamaus, Sutter & Wandelt 2014; Ricciardelli, Quilis & Varela
2014). The self-similarity assures that the internal structure of voids
can be characterized by a single parameter, the void effective radius,
reff, which is the radius of a sphere embedding the same volume
embedded by a given cosmic void. Despite the wide range of
values this parameter covers, it is possible to average the internal
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density distribution to recover a common behaviour for voids with
approximately the same reff.

It has been noticed that, to recover self-similarity, some criteria
have to be applied to the selection of objects to be classified as
voids (Nadathur & Hotchkiss 2015). Nevertheless, the most crucial
role seems to be played by the cut on the minimum density of
the candidates, ρmin, which has to be sufficiently low (that is ρmin

� 0.3〈ρ〉). All voids undergoing our cleaning procedure with our
chosen value of δNL

v satisfy this requirement by construction. We
are therefore confident that the objects we select should behave in
a self-similar manner.

We select all the cosmic voids in the range of radii 1 Mpc h−1 <

reff < 1.5 Mpc h−1, from the catalogue with box side length Lbox =
128 Mpc h−1, at four different redshifts. This is a compromise
between having a large box (thus having more objects) and having
a high resolution. None the less, the results we are going to present
are similar for the other simulations used in this section. The radius
window has been chosen to have a sufficiently high number of
objects with radii far enough from the lower limit imposed by the
spatial resolution of the box that, for this catalogue, is 0.5 Mpc h−1

(see Table 2).
In Fig. 1, we show the stacked void profiles before and after

cleaning the void catalogues with our algorithm. The stacked voids
are all centred in the VIDE centres. We measure the cumulative
number density of particles as a function of the distance from the
centre, given in units of reff, for each of the selected voids, particle-
per-particle from 0.3 reff to 3.5 reff. We divide this range of radii in
30 equally spaced bins and average the profiles. This procedure is
repeated before and after applying the cleaning algorithm.

From Fig. 1 it is possible to appreciate how differently we
define the ridges of a void: the orange dashed profiles show the
profiles of voids identified with VIDE, while the blue solid ones
are for the same voids after cleaning. The vertical dotted lines
mark the void radius in both cases. We also show the background
density level (solid horizontal black line) and the underdensity
threshold of equation (12) computed for the different redshifts
(dashed horizontal black line) as a reference. It can be noticed
that, while VIDE void limits reside close to the compensation wall
and embed a density that approaches the background, our voids are,
by construction, defined in much deeper regions of the density field.

These observations have to be kept in mind to understand how
the algorithm we apply to clean the cosmic void catalogues affects
the void structure. Thanks to this modification, we can be confident
that the voids we are using to measure the size function are as close
as possible to the objects for which we are able to construct the
theoretical model.

Fig. 2 compares the measured and modelled void size functions,
defined as the comoving number density of voids in logarithmic bins
of effective radii, divided by the logarithmic extent of the bins. The
four panels show the results at different redshifts. The different sym-
bols in the upper part of each panel show the void size distributions
measured in the simulation snapshots at different resolutions, while
the gray shaded regions represent the model predictions. The model
depends on two thresholds, the one of the shell-crossing, which
is fixed at the value δL

v = −2.71, corresponding to our choice of
threshold in the void catalogue cleaning, and the overdensity one,
δc, used to account for the void-in-cloud effect. There is a persisting
uncertainty on the definition of the latter, since it is not clear if this
effect becomes relevant at turn-around (corresponding to a density
contrast of δc ≈ 1.06) or when the overdensity collapses (at a density
contrast δc ≈ 1.69). Since in realistic occurrences we do not expect
the spatial resolution of tracers to be high enough to inspect the

radii range in which the void size function becomes sensitive to the
void-in-cloud effect, we leave the overdensity threshold free to vary
in the range 1.06 ≤ δc ≤ 1.69, thus the shaded region of Fig. 2.

We cut the distribution measured in each of the simulations
at twice the m.i.s. of the given simulation box (see Table 2). To
highlight the difference between the theoretical model predictions
and the measured distributions, we show in the lower part of each
panel the logarithmic difference between the simulation data and
the model. Since voids are wide underdense regions, their measured
properties and number density can be significantly affected by the
spatial resolution of the sample. At scales comparable to the spatial
resolution of the simulation, voids are not well represented by the
mass tracers of the underlying density field. This causes a loss of
power in the number counts, which can be noticed at the smallest
scales in each panel of Fig. 2, in spite of the applied cut. At large
scales, instead, the measurements are limited by the simulation
box extension. Since our cleaning algorithm does not consider the
periodic boundary conditions of the N-body simulations yet, the
largest peripheral objects of the box may exceed the box boundaries.
As a consequence, we cannot trust voids close to the boundaries of
the simulation box, and therefore we choose to reject them from
our analysis. Contrary to the limits at small radii, which cannot
be overcome without increasing the resolution of the sample, this
inaccuracy in the void counts at large radii could be faced with an
upgrade of the void finding algorithm to account for the periodicity
of the box. None the less, since our final goal is to provide a
framework to exploit the distributions of voids observed in real
catalogues, this issue is not addressed in this work and we simply
cut away these objects and reduce the total volume of the box
consistently.

Fig. 2 shows that the Vdn model predictions are in overall good
agreement with the results from N-body �CDM simulations, when
cosmic voids are selected from unbiased matter tracers. We notice
that the model predictions are closer to the simulation measurements
at higher redshifts, in the full range of investigated radii. This might
be due to the larger value of the underdensity threshold used for
cleaning the catalogue: cosmic voids are less evolved at more distant
cosmic epochs and have had less time to evacuate their interiors. A
higher threshold means a higher density of tracers, thus, a higher
resolution. Concerning the time evolution of the void size function,
the density of the larger voids decreases with increasing redshifts.
On the other hand, the smaller scales are less affected. The Vdn
model well predicts this behaviour.

3.2 Biased tracers

Having established the reliability of the Vdn model in predicting the
number counts of cosmic voids detected in a simulated distribution
of DM particles, we now extend our analysis to the case of biased
tracers of the underlying DM density field. Our ultimate goal is to
implement a model capable of predicting the void size distribution
for observable tracers of the underlying density field, such as
galaxies or clusters of galaxies. In this paper, we start focusing
on the simplest case of biased tracers, namely DM haloes.

It has been extensively demonstrated that voids in biased tracers
of the underlying DM distribution are systematically larger than
those predicted by the void size function models (Colberg et al.
2005; Sutter et al. 2012; Nadathur & Hotchkiss 2015; Pisani et al.
2015). Specifically, the typical void sizes increase with the minimum
mass of the tracers, that is with their effective bias (Furlanetto &
Piran 2006).
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Figure 1. Comparison between the density profile within voids obtained with VIDE before (dashed orange line) and after (solid blue line) applying our
cleaning algorithm. Each panel shows the result of averaging all the density profiles in a narrow bin of radii (with 1 < reff [ Mpc h−1] < 1.5) and the 2σ

confidence as a shaded region around the mean, at four different redshifts. The two horizontal lines show the position of the shell-crossing threshold (dashed
line) and of the background density (solid line). The vertical dotted line highlights the position of the effective radius.

To infer cosmological constraints from the number count statis-
tics of cosmic voids, the development of a reliable model indepen-
dent of the tracers used to detect them is crucial. In this section,
we make use of the set of halo catalogues obtained by means of a
FoF algorithm applied to the N-body simulation snapshot at redshift
z = 0 with volume 1 (Gpc h−1)3, whose properties are reported in
Table 2.

These catalogues are obtained by cutting the original FoF samples
at 3 different minimum masses: Mmin = {2 × 1012 M� h−1, 5 ×
1012 M� h−1, 1013 M� h−1} (see Table 3). These catalogues differ
for the biasing factor with respect to the underlying DM distribution.

Our hypothesis is that the existing theoretical size function
models fail in predicting the abundances of voids in the observed
distributions of tracers because they implicitly assume that voids
in biased tracers embed the same level of underdensity of the
underlying DM distribution. This is far from being true and can
be shown by a simple analysis of the density profiles around the
void centres.

We obtain the VIDE void catalogues from each of the DM halo
catalogues reported in Table 3, and clean them following the same
procedure considered in Section 3.1 for the unbiased DM distri-
butions. In particular, we keep the cleaning underdensity threshold
parameter unchanged, meaning that we set it to δNL

v = −0.795, as
we have done in Section 3.1 for the unbiased catalogues at z =
0. This choice is dictated by the need of selecting sufficiently
underdense regions, to be distinguishable from noise, but at the
same time sufficiently dense in tracers not to incur in resolution

issues. None the less, we checked our final conclusions are robust
with respect to the adopted threshold (Contarini et al. 2019).

We then divide our catalogue of cosmic voids into a set of
logarithmically equally spaced bins within the radii ranges reported
in Table 3, and compute the stacked density profile in each bin.
Fig. 3 compares the stacked density profiles of the voids selected in
DM halo catalogues with three different mass cuts, measured in the
halo and DM distributions. The profiles stacked in each bin of radii
varies from a minimum of 5 objects to a maximum of 300 objects
and depends on the total number of voids found by the algorithm in
the considered range. The number decreases going from smaller to
larger radii. In order to have a reasonable convergence of the mean
profile, we only consider the stacked profiles for which we have
at least 30 objects to average. Fig. 3 also shows the background
density and the shell-crossing underdensity level used to clean the
catalogues which, by definition, crosses the profiles at r = reff.
The void density profiles measured from the distribution of DM
haloes are significantly different with respect to those measured
in the background matter density field, except at radii larger than
about 2 reff , approximately where the background density level is
recovered. Specifically, the density measured within voids in the
DM halo distribution is way deeper than that measured in the
underlying DM density field.

The clear discrepancy between the halo-void density profiles and
the underlying DM density profiles is the reason why we cannot
use the Vdn model directly to predict void abundances in biased
tracers: theoretical models of the void size function are based on
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Figure 2. Upper part of each panel: Void size function prediction (gray shaded region) at four different redshifts (different panels) compared to the distribution
of cosmic voids after applying the cleaning method described in Section 2.2 (different markers correspond to different simulations, the values of Lbox in legend
corresponding to those of Table 2). Lower part of each panel: Logarithmic differences between the measured distribution and the Vdn model prediction. For
the largest simulation (Lbox = 1000 Mpc h−1) we only have snapshots at z = 0 and z = 1, thus the corresponding abundances are missing from the z = 0.5
and z = 1.5 panels.

Table 3. Characteristic quantities for our set of halo catalogues. We report the minimum halo mass Mmin, the total number of haloes NH, the corresponding
mean numerical density 〈n〉, the m.i.s., the radii range used for profiling, the coefficients of the linear fit of equation (14) (bslope and coffset) with the value of the
residuals (res.), and the ratio between the profile measured in the underlying unbiased DM distribution and in the DM halo distribution [(δhalo/δDM)(reff, h)]. All
the catalogues have been obtained by applying different lower mass cuts (reported in the first column) to the FoF halo catalogue extracted from the simulation
with 10243 particles (see Table 2).

Mmin NH 〈n〉 m.i.s. Radii range bslope coffset Res. (δhalo/δDM)(reff, h)

(M� h−1) 105 (Mpc h−1)−3 (Mpc h−1) (Mpc h−1)

2 × 1012 15.8 1.58 × 10−3 8.58 18 ≤ reff ≤ 40 1.408 0.022 0.005 1.406 ± 0.001
5 × 1012 7.6 7.62 × 10−4 10.95 22 ≤ reff ≤ 45 1.488 0.013 0.002 1.522 ± 0.001
1013 3.9 3.94 × 10−4 13.64 27 ≤ reff ≤ 50 1.657 0.026 0.008 1.668 ± 0.003

the evolution of underdensities in the DM density field and their
shape severely depends on the void density contrast. Ideally, we
would like to recover the tracer density contrast, which corresponds
to the shell-crossing value. However, since tracers are typically
sparse, this is not practically viable: such a density contrast would
be too low to be traced with enough statistics. What we can do
instead is to fix the density threshold in the tracer distribution and
recover the corresponding density contrast in the underlying DM
distribution. Given the hypothesis that voids in tracers are centred
in the same position of their DM counterparts, we search for the
density contrast that voids identified in the tracer distribution reach
in the underlying DM distribution. By taking the ratio between the
two profiles, as suggested by Pollina et al. (2017), one can infer the
relation between the density measured from biased tracers and the
underlying unbiased DM density.

Fig. 4 shows the ratio between all the stacked profiles obtained for
each catalogue, markers with error bars representing the uncertainty
on the mean in the bin. Given the high level of uncertainty in the
inner regions of the profiles, due to the sparsity of tracers, we
exclude all the values with r ≤ 0.5 reff. In agreement with the results
by Pollina et al. (2017), we find that the densities measured with the
two different tracers, that is DM particles and haloes, are linearly
related:

δhalo = bslope × δDM + coffset. (14)

The best-fitting values of the two free parameters, bslope and coffset,
are reported in Table 3. The relation between the best-fitting values
of bslope and coffset to the large-scale effective bias of the tracer
samples, beff, is addressed in Contarini et al. (2019).
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The existing theoretical models predict the comoving number
density of underdense regions characterized by a given embedded
density contrast in the DM density field. Thus, to extend the models
to the case of voids identified in the halo density field, we have to
assess the density contrast in the underlying DM distribution. This
can be obtained by taking the ratio between the density profiles
measured in the two different tracers. Estimating it at exactly one
effective radius allows us to associate the precise DM density
contrast, required by the size function model for voids detected
in distributions of biased tracers.

Fig. 5 shows the ratio between the density contrast we have
requested in the cleaning algorithm for halo-voids (δNL

halo = −0.795)
and the value of δNL

DM(reff ) measured from the three different
catalogues. Of all the stacked profiles we have obtained, we use
for this measurement only those which counted at least 30 objects
in the radial bins to avoid issues with the convergence of the mean
profile. The mean value of this ratio is therefore the conversion
factor between the underdensity thresholds used in the detection
and cleaning of cosmic voids in our halo catalogues and the non-
linear counterpart of the DM underdensity threshold required by
the void size function theoretical model (the values of the mean
and standard deviations are reported in Table 3). In the considered
range of effective radii, the mean value of this ratio is consistent
with what can be inferred from a linear fit, as also shown in Fig. 5.

Using the Vdn size function model, we can describe the distribu-
tion of voids in the DM distribution underlying the distribution of
tracers. If a cosmic void with radius reff embeds a density contrast

δNL
v, DM in the DM density field, then the same radius reff will embed

a density contrast δNL
v, tr in the tracer distribution, with δNL

v, tr and δNL
v, DM

given by equation (9). Therefore, if δNL
v, tr is the threshold we use

when cleaning the original void catalogue (Section 2.2), then the
resulting void size distribution has to be modelled by a size function
with an underdensity threshold given by:

δL
v, DM = C

[
1 − (

1 + δNL
v, DM

)−1/C
]
, (15)

where δNL
v, DM is the value shown in Fig. 5.

Fig. 6 shows the measured size functions of the voids detected
in the three different DM halo catalogues, compared to the size
function model described above. The shaded band in each plot
shows the 2σ confidence region around the average value of δNL

v, DM,
obtained from the analysis of the void density profiles.

We find an excellent agreement between the measured and
predicted void size functions in all the considered catalogues (almost
all the points are within the 2σ confidence region), except at the
smallest radii, where the spatial resolution of our catalogues does
not allow us to have enough statistics of voids with reff � 2.5 m.i.s.,
thus causing a loss of power. On the other hand, at large radii
the size of the simulation box limits the possibility to obtain a
reliable counting of large voids. To investigate the impact of the
offset parameter, coffset, in Fig. 6 we also show the size function
model obtained by considering only b = bslope as the correction
parameter. This model systematically underestimates the measured
void size function, though the mismatch is within 2σ , considering

Figure 3. Stacked density profiles in different radii bins, for the three catalogues considered (Mmin = 2 × 1012 M� h−1, 5 × 1012 M� h−1, 1013 M� h−1, from
left to right). Each panel shows the void stacked density profile. The dashed lines show the profiles measured in the DM halo distribution, while the solid lines
represent the profile measured in the underlying DM distribution. The shaded bands around the mean profiles mark the 2σ confidence region. These density
profiles have been measured using the cleaned VIDE void catalogues. The set of parameters used for the cleaning is the same one used for the unbiased DM
voids in Section 3.1.

Figure 4. Density contrast in the unbiased tracer distribution, δDM, versus density contrast in the biased tracer distribution, δhalo. Points are obtained gathering
the measures of all the stacked profiles; the error bars represent a 1σ uncertainty on the mean values. The solid lines show the linear fit (the fitting parameters
bslope and coffset are reported in Table 3), while the narrow shaded regions show the uncertainty on the best-fitting values given in terms of the residuals (also
reported in Table 3). Each panel shows the results for one of the halo catalogues of Table 3, from left to right: Mmin = 2 × 1012 M� h−1, 5 × 1012 M� h−1,
1013 M� h−1.
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Figure 5. The ratio between δhalo and δDM measured at r = reff for voids with different sizes. Each point is obtained by measuring δDM(reff) in different
effective radius bins. The dashed lines are the values of bslope measured from the linear fit of Fig. 4, while the solid lines are the average values, with the
corresponding shaded regions delimiting 2σ deviations from the mean. Each panel shows the results for one of the halo catalogues of Table 3, from left to
right: Mmin = 2 × 1012 M� h−1, 5 × 1012 M� h−1, 1013 M� h−1.

Figure 6. Size distribution of VIDE voids after the application of our cleaning prescriptions, measured in three different halo catalogues (markers). The shaded
bands represent the 2σ confidence region around the mean values of the Vdn model modified to account for the different levels of DM underdensity enclosed
by halo voids (solid lines). The dashed line shows the modified Vdn model in which, instead, we have used a threshold modified with the value of bslope. Each
panel shows the results for one of the halo catalogues of Table 3, from left to right: Mmin = 2 × 1012 M� h−1, 5 × 1012 M� h−1, 1013 M� h−1. For comparison,
in each plot we show the size-abundance distribution of cosmic voids measured in the VIDE void catalogue before the cleaning is applied (empty markers).

the estimated uncertainties. This suggests that, even though it might
not be the case when working with cosmic void density profiles, as
stated in Pollina et al. (2017), the value of the coffset coefficient of
the relation cannot be ignored when computing the size function of
cosmic voids.

The shell-crossing threshold provides a reasonable value to define
a cosmic void. However, the size function model is not forced to
be constructed using this threshold. The model is in fact potentially
capable of predicting the first-order statistics of density fluctuations
whatever the threshold. In particular, in this section we choose
to use the shell-crossing threshold (δNL

v ) to clean the catalogues,
selecting and rescaling the voids to the radius at which they reach
this specific density contrast. Then, in the theoretical size function
model (equation 1), we substitute the threshold δL

v with the value that
we measured from the stacked profiles (δDM), converted to its linear
extrapolated counterpart by means of equation (10). On the one
hand, this is required for being representative of the underdensities
embedded by the voids traced by biased distributions. On the other
hand, it also demonstrates that the use of the shell-crossing threshold
is strictly required. The detection of voids is prone to the nature
of the tracer used for sampling the underlying DM distribution.
Our work highlights that modelling their statistics cannot be done
trivially without accounting for this nature.

The results presented in this section rely on the existence of a
linear relation between the density contrast embedded by voids in
the tracer distribution and the density contrast of the underlying
DM distribution. This relation, given by equation (14), has been

calibrated on DM-only N-body simulations of the standard �CDM
model (see also Pollina et al. 2017; Contarini et al. 2019). A larger
set of simulations in different cosmological frameworks, possibly
including also baryonic effects, are required to better calibrate this
relation in a more general context. This goes beyond the scope of
this paper, and will be addressed in a forthcoming work.

Our overall conclusion is that the number count statistics of
cosmic voids is completely determined by the cosmological model
and by the relation between the density contrast of void tracers and
DM inside the voids. This represents a key step towards the use of
the void size function as a cosmological probe.

4 SU M M A RY

The main goal of this work was to develop a theoretical model of
the size function of cosmic voids detected from the distribution of
biased tracers, extending the Vdn model, up to now validated for
the DM distribution only.

The main steps of our analysis can be summarized as follows:

(i) We have developed a method to clean cosmic void catalogues,
whose numerical implementation was presented in RM17. In partic-
ular, we have searched for the largest spherical regions embedding
a mean density contrast of 0.2 ρ, with ρ being the average density
of the considered sample, ensuring that the identified regions do not
overlap. The condition on the mean density ensures that the selected
underdensities have actually passed through shell-crossing, while
the second condition guarantees the volume conservation.
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(ii) We have validated the theoretical void size function using
a set of DM catalogues extracted from N-body simulations with
different characteristics in terms of box size and resolution. We
have verified that the predictions of the Vdn model are reliable
when modelling the distribution of cosmic voids in the DM density
field using the void samples cleaned with our method. Indeed,
we have found a good agreement between the model and the
measurements for all the redshifts considered and on a large range of
void radii.

(iii) To extend the theoretical size function model to the case
of voids extracted from the distribution of biased mass tracers, we
have built void catalogues from mock DM halo catalogues with
different mass selections. Then, we have computed the stacked
density profiles, in a large range of radii, both in terms of density
of haloes and of the underlying DM distribution.

(iv) We have found a linear relation between the halo-profiles
and the DM-profiles inside cosmic voids, in agreement with Pollina
et al. (2017).

(v) By measuring the ratio between the density contrast of
stacked profiles in haloes and DM at r = reff, we have found the
value of the multiplicative constant b, to be used to model the cosmic
void size function in biased distributions (equation 9), as the ratio
between the density profiles measured in the tracers distribution and
the density profiles measured in the underlying DM distribution, at
one effective radius reff.

(vi) Finally, we have compared the proposed size function model
to the ones measured from DM halo catalogues with different mass
cuts, finding an excellent agreement.

In order to investigate the possibility to provide forecasts on the
cosmological constraints that can be inferred from number count
statistics of cosmic voids, a more accurate study of the tracers bias
as to be conducted. We address in more detail this topic in Contarini
et al. (2019).
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