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Estimating the Total Volume of Queries
to a Search Engine

Fabrizio Lillo and Salvatore Ruggieri

Abstract—We study the problem of estimating the total number of searches (volume) of queries in a specific domain, which were

submitted to a search engine in a given time period. Our statistical model assumes that the distribution of searches follows a Zipf’s

law, and that the observed sample volumes are biased accordingly to three possible scenarios. These assumptions are consistent

with empirical data, with keyword research practices, and with approximate algorithms used to take counts of query frequencies. A few

estimators of the parameters of the distribution are devised and experimented, based on the nature of the empirical/simulated data.

For continuous data, we recommend using nonlinear least square regression (NLS) on the top-volume queries, where the bound on

the volume is obtained from the well-known Clauset, Shalizi and Newman (CSN) estimation of power-law parameters. For binned data,

we propose using a Chi-square minimization approach restricted to the top-volume queries, where the bound is obtained by the binned

version of the CSN method. Estimations are then derived for the total number of queries and for the total volume of the population,

including statistical error bounds. We apply the methods on the domain of recipes and cooking queries searched in Italian in 2017.

The observed volumes of sample queries are collected from Google Trends (continuous data) and SearchVolume (binned data). The

estimated total number of queries and total volume are computed for the two cases, and the results are compared and discussed.

Index Terms—Search engine query, Volume estimation, Zipf’s law, Power law, Google Trends.

✦

1 INTRODUCTION

THE problem of computing the total number of searches
(volume) of queries belonging to a specific domain is

extremely relevant and, at the same time, challenging. For
example, in web marketing the total volume V of queries
quantifies the potential market of search engine advertising
in the domain. When performing sociological or political
research, instead, one might be interested in estimating
the volume of queries belonging to a given macro-topic
(e.g., immigration, ecology, health, etc.) searched in a given
time period and from a given geographical area. In epi-
demiological investigations the total volume can be used
to estimate the amount of information requested by the
population for items related to some specific disease. An
even more interesting quantity is the total volume Vv of
queries searched at least v times. In the web marketing
example, Vv quantifies the potential market of queries with
a minimum guaranteed volume. Related to the above, the
total number of queries N in the domain, or of queries
Nv searched at least v times, are also extremely useful
information for market analysis.

However, the stream of queries submitted to a search
engine is so massive that it is impractical to keep frequency
counts of every possible query, particularly of those in the
long tail of the distribution. In this paper, we study the
problem of estimating the total volume of queries submitted
to a search engine for a specific domain in a given time
period. We design estimation methods from sample data
and experiment with them using both simulated and real
data. As a specific example, we consider empirical data in
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Fig. 1. Empirical rank-volume distribution (scaled Google Trends esti-
mates) for the investigated dataset (see Section 7 for details). Best view
in color.

the domain of recipes and cooking, which consists of queries
with the name of the recipe of a dish, excluding drinks. The
advantage over other domains is that it is relatively easy to
collect sample recipes and to validate whether a given text is
a recipe or not. In particular, we crawled popular websites of
Italian recipes and cooking, collecting a sample of more than
120K distinct queries. We then resorted to Search Engine Op-
timization (SEO) tools for obtaining estimates of the number
of searches to Google for each single query in the sample
during the whole year 2017. We call such an estimate, the
observed volume of a query. We collected observed volumes
from Google Trends1 and SearchVolume2.

Our key problem is to estimate the total volume of the
queries in the whole population, starting from a possibly
biased empirical sample of observed volumes for a small
set of queries. We start from the basic assumption that the

1. https://trends.google.com
2. https://searchvolume.io

ar
X

iv
:2

10
1.

09
80

7v
1 

 [
cs

.I
R

] 
 2

4 
Ja

n 
20

21

mailto:fabrizio.lillo@unibo.it
mailto:salvatore.ruggieri@unipi.it
https://trends.google.com
https://searchvolume.io/


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

rank-volume distribution of the whole population of queries
(i.e. observed and unobserved) follows a Zipf’s law. This
assumption is supported by previous work [1] and by the
empirical rank-volume distribution3 of Figure 1.

Observed volumes may be biased. Bias in observed
volumes can be attributed to the adoption by SEO tools
of sampling strategies and/or approximate counting tech-
niques [2], e.g., count-min sketch summaries [3]. Such strate-
gies favor volume estimation of popular queries against
the ones in the long tail of the distribution. This yields
the visible drop in volume in the tail of the empirical
distribution of Figure 1. For instance, only 18.5K queries are
assigned an observed volume estimate by Google Trends
and only 12K queries by SearchVolume. Queries with low
volume are monitored with lower probability by SEO tools,
which then return no observed volume for them. We are
able to model this behavior by assuming that the sample
of observed volumes is not uniform, but it depends on
the rank of queries over the population (non-uniform sam-
pling). Moreover, in order to account for approximations
in the SEO tool data, we additionally assume that the ob-
served volumes are noisy, and discuss two specific sampling
schemes (noisy and sketchy sampling). The parameters of the
Zipf distribution are estimated by a variant of Nonlinear
Least Square (NLS) regression for continuous data, and of
Chi-square optimization for binned data. Simulations show
such estimators perform better than an alternative approach
based on power law parameter estimation from continuous
data [4] and binned data [5] respectively. We derive then
estimators of total volumes V and Vv , and number of
(distinct) queries N and Nv , including closed formula for
statistical errors of such estimators. In summary, this paper
makes the following contributions:

• we formalize the problem of estimating the total
volume of queries submitted to a search engine, and
propose a statistical model which is consistent with
empirical data;

• we design methods to infer parameters of the sta-
tistical model from both continuous and binned em-
pirical data, and show that they perform well under
simulated conditions;

• we apply the approach to the domain of recipes
and cooking for queries in Italian, and produce es-
timations for the volume Vv of queries searched at
least v times in 2017 starting from empirical data
collected from Google Trends (continuous data) and
SearchVolume (binned data).

This paper is organized as follows. First, we report on
related work in Section 2. Next, we state the addressed prob-
lem in Section 3. Section 4 provides models of sampling bias.
Section 5 introduces and experiment with two estimators
of the parameters of the Zipf’s law, and builds on them
for estimating the number and total volume of queries in
the population. Section 6 extends the approach to the case
of binned empirical data. Section 7 describes the empirical
data obtained from Google Trends and SearchVolume tools,
and it applies the estimators proposed in this paper to such
data. Finally, conclusions summarize the contribution of the
paper and open challenges for future work.

3. The dataset is described in detail in Section 7.

2 RELATED WORK

Power laws distributions, Pareto distributions and Zipf’s
laws are ubiquitous in empirical data of many fields [4],
[6], and in information retrieval in particular [1].

Several works [1], [7], [8], [9] have observed that the
probability that a query is searched v times is approximately
Power law distributed, namely P (V = v) ∝ 1/vα. This
information on query frequencies has been used to optimize
caching and distribution strategies in search engines and
peer-to-peer systems. For our purposes, it implies that the
the probability that a query is ranked i-th follows a Zipf’s
law P (R = i) ∝ 1/iβ with β = 1/(α−1) (see e.g., [10], [11]).
Hence, we can resort to the literature on the estimation of
parameters of Power law distributions. Popular methods [1]
have relied on: graphical methods, straight-line approxi-
mation, maximum-likelihood estimation. The estimated tail
exponent, even in simulated data, significantly depends on
the adopted method [12]. A major breakthrough was the
method proposed in [4], which consists in a maximum-
likelihood estimation, with a cutoff for the fitting region
determined with a Kolmogorov-Smirnov test. This method
is implemented in the powerLaw package [13] of R [14].
Moreover, the method has been extended to the case of
binned data in [5].

In the context of city size data, a standard approach
for estimating the exponent of a Pareto distribution is to
adopt ordinary (linear) least squares (OLS) regression of
the log-ranks of cities based on their log-population [15].
Since Pareto fits well for the largest cities only, [16] proposes
a recursive-truncation method (in the same line as [4]) for
determining the best cut-off of minimum city size according
to the Kolmogorov-Smirnov test.

The method developed in this paper makes the paramet-
ric assumption that the distribution of searches follows a
Zipf’s law. Empirical data investigated in this paper appear
to agree with this assumption for more than three orders of
magnitude (see Figure 1) and we attribute the deviations for
very low rank queries to the sampling procedure rather than
to a different functional form. An alternative explanation is
that data in the population follows a different distribution
(for example exponentially truncated Zipf’s law). Indeed in
other domains (e.g., city sizes) there is an ongoing debate
about the accuracy of power law distribution in explaining
empirical data (see [16, Figure 1] for cities and more gener-
ally [17], [18], [19]). We believe that our approach could be
extended to functional forms different from exact Zipf’s law,
but this is clearly beyond the scope of the paper.

The unseen species problem asks how many biological
species are present in a region, given that in an observation
campaign a certain number of species with their relative
frequency have been observed. Despite there are several
estimators for the unseen species problem (for example, see
[20]), the problem tackled here is different in an important
aspect. In the unseen species problem, it is often assumed
that in the sample used to build the estimator, the observed
frequencies are proportional to the true frequencies in the
population. In other words, there is no bias in the construc-
tion of the sample. In our approach, the elements of the
sample are chosen ex-ante and the probability of being in
the sample is not necessarily proportional to true frequency.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Regarding SEO tools, there is little documentation on
how they collect, sample and filter query logs for providing
observed volumes. The biases behind observed volumes
reported by SEO tools remain unknown. Google Trends
can rely on Google search engine logs. Independent SEO
tools (Searchvolume, Ubersuggest, Semrush, Keywordkeg,
etc.) rely on a more limited user base. [21] compares Google
Trends and Baidu Index (restricted to searches from China
only), and finds that their estimates are highly correlated.
An advantage of Baidu Index over Google Trends is that
it provides absolute estimates, not relative ones. Generally,
SEO tools provide observed volumes of a given query,
not aggregate volumes over a domain. One exception is
Google Trends, which returns (relative) volumes for a topic,
which is defined as “a group of terms [a.k.a., queries] that
share the same concept in any language”. Such volumes
are aggregated over the queries in the group monitored
by Google Trends, which filters out low volume queries.
Therefore, they are not estimates of the total volume of the
population of queries, as considered in this paper.

Finally, this paper substantially extends preliminary re-
sults appeared in [22], which were restricted to the case of
continuous data (Section 5). Moreover, [22] largely focuses
on the data collection issues, which are not part of this paper.

3 PROBLEM STATEMENT

Let us assume that the population of all (distinct) queries to
a search engine in a reference domain and period of time
is composed by N queries. The volume of a query is the
number of times the query is searched in the given period
of time. We model the volumes as random variables and we
label them in such a way that V1 ≥ V2 ≥ . . . ≥ VN . In other
words, when writing Vi, we intend the volume of i-th rank4.

We assume that the distribution of searches follows a
Zipf’s law, which predicts that the probability of observing
a search of the query corresponding to Vi is:

f(i) =
A

iβ
(1)

where A−1 =
∑N

i=1 i
−β = [ζ(β) − ζ(β,N + 1)] is a nor-

malizing constant and ζ(β) =
∑

∞

i=1 i
−β and ζ(β,N + 1) =

∑

∞

i=N+1 i
−β are the Riemann zeta and Hurwitz functions,

respectively.
If V is the total volume over the population, the expected

volume of the query corresponding to Vi is V̄i = Vf(i) = c
iβ

where:

c =
V

ζ(β)− ζ(β,N + 1)
(2)

Thus, the expected volumes follow the law:

V̄i =
c

iβ
(3)

The parameters c and β are called the intercept and the
coefficient respectively, and in a log-log plot Eq. 3 is a straight
line. c is the expected volume of the most popular query,
while β characterizes how quickly the volume of queries
declines with increasing rank.

Notice that the Vi’s model integer values (the number
of searches), whilst the V̄i’s may be not an integer. Clearly,

4. These are also called order statistics.
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Fig. 2. Simulation of different samplings from a Zipf’s law.

when an observed sample of volumes v1, . . . , vN is avail-
able, Eq. 3 is fitted on it (even if the V̄i’s are not necessarily
integers), as for instance it is in Figure 1. Moreover, when all
the volumes are observed without noise, the total volume is
trivially computed as V =

∑N
i=1 vi and the number N of dis-

tinct queries is clearly known. The problem becomes much
more complicated when: (i) the volumes are contaminated
by some observation noise which biases their observed
values, which we model as random variables X1, . . . , XN ;
(ii) not all the biased volumes are observed, but only an
empirical sample v1 ≥ v2 ≥ . . . ≥ vn of size n < N . In
this case the total volume V and the number of queries N
become random variables: the objective of this paper is to
provide an estimation method for V and for N assuming a
specific distribution of the searches, in our case a Zipf’s law.
We now present how we model the sources of bias and then
introduce the estimation methods.

4 BIASES IN SAMPLING FROM A ZIPF

Starting from the assumption that the frequency of searches
follows a Zipf distribution (see Eq. 1), we point out that the
empirical distribution in Figure 1 shows a drop of volume
in its tail. We investigate on this. We will consider the effects
of different sampling methods from a Zipf’s law, as well
as of noisy samples, and check whether the conclusions are
consistent with our empirical data.

Clearly, uniform sampling from a Zipf’s law cannot
explain the drop of volume in the tail of the empirical dis-
tribution. In fact, queries in an empirical sample are rarely
chosen uniformly. The approach followed in our reference
domain, for instance, relies on collecting recipe names from
specialized websites. The contents of such websites are typi-
cally optimized at targeting high-volume keywords through
domain-specific keyword research. As a consequence, our
empirical data suffers from an unavoidable selection bias
in favor of high-volume queries. A similar bias against
very low volume queries is introduced by the SEO tools
used to obtain observed volumes of queries in a sample.
Low volume queries are monitored with low probability by
SEO tools. For such queries, SEO tools return no observed
volume. In summary, our empirical data is likely to be a
non-uniform sampling of the query population. We assume
here that sampling depends on the rank of queries over the
population, and call this non-uniform sampling. Formally, we
assume that the i-th most searched query is sampled with
a probability pi. We want to check whether the observed
rank plot over a sample of the population is different from
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Fig. 4. Simulations on estimation of β: error bars (mean ± stdev).

a Zipf’s law. To this end, we consider a geometric sampling
pi ∝ p(1 − p)i−1, i.e., the sampling probability decays
exponentially with the rank. For example, if p = 0.01, the
probability that the query with the largest volume in the
population is observed is p, then the second, third, fourth,
etc. query in terms of volume will be observed (i.e. sampled)
with probability 0.99p, 0.992p, 0.993p, etc. Figure 2 shows a
numerical simulation with the following parameters of the
population:

N = 106, c = 105, β = 0.7745. (4)

The choice of β, in particular, has been driven by the em-
pirical distribution of Figure 1. Samples consist of n = 1000
queries, and p = 0.001 is set for the geometric sampling. The
black line is the whole population, the blue line is obtained
with non-uniform sampling while the grey line is obtained
with uniform sampling. The non-uniform sampling is con-
sistent with the tail of the empirical distribution in Figure 1.

As a second bias worth to be considered, SEO tools
typically provide approximated values of the true volume of
queries, due to a limited user base and/or to computational
heuristics in frequency counting. Therefore, we assume that
empirical data is drawn from noisy observed volumes Xi’s
of the true volumes Vi’s. We assume that:

Xi = Viǫi

where ǫi are independent observation noise with common
distribution characterized by the same mean µ and variance
σ2
i . Clearly, the presence of noise scrambles the frequencies,

and, a fortiori, the ranks of observed volumes may differ
from the ranks of true volumes. Figure 2 includes also a
noisy and non-uniform sample (red line) generated assum-
ing ǫi normally distributed, but truncated to 0 to avoid
negative Xi’s. Parameters are set as follows: µ = 1, i.e., noise

is unbiased, and σ2
i = 0.01/9, i.e., 99.7% of noise is in

the range ±3σ = ±10% of the true value. Noisy and non-
uniform sampling (hereafter just noisy sampling) produces an
empirical distribution very close to the one of non-uniform
sampling and that is also consistent with our empirical data.

Another source of bias is due to the use by SEO tools of
computationally approximate counting methods [2]. Count-
min sketches [3], in particular, are extensively used in stream
processing. They can be modeled by setting:

Xi = Vi + γic (5)

where γi is uniformly distributed in the range [0, γ]. In such
case, the noise overestimates Vi up to a fraction γ of the
top volume V1 = c/1β = c. For low volumes, the noise
may considerably increase the observed value. However,
for a sufficiently low γ, the non-uniform sampling alleviates
from this problem, since low volumes are sampled with low
probability. We set γ = 0.001 in simulations. The empirical
distribution generated lies in between the ones of non-
uniform and noisy sampling. For readability reasons, it is
not shown in Figure 2. We call such model the sketchy and
non-uniform sampling, hereafter just sketchy sampling.

5 ESTIMATION METHODS

5.1 Estimating β and c

We start considering the estimation of the coefficient β and
intercept c in Eq. 3 by exploring two alternative methods
for continuous empirical data. Regarding the coefficient, we
observe that β is the exponent of the distribution of Eq. 1.
Thus, we can rely on the well-known method of Clauset,
Shalizi and Newman [4] (hereafter, the CSN method) for
estimating the β parameter in Eq. 3. Strictly speaking, [4] is
a maximum-likelihood estimator α̂ of the α exponent of the



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

6 × 10
6

8 × 10
6

10
7

1.2 × 10
7

● ● ● ● ● ● ●

CSN method, max−estimator

1000 4000 8000 12000 16000

n

to
ta

l 
v
o

lu
m

e
 V

●true V

non−uniform

noisy

sketchy 6 × 10
6

8 × 10
6

10
7

1.2 × 10
7

●

●
● ● ● ● ● ● ●

NLS regression

1000 4000 8000 12000 16000

n

to
ta

l 
v
o

lu
m

e
 V

●true V

non−uniform

noisy

sketchy

Fig. 5. Simulations on the estimation of the total volume V: error bars (mean ± stdev).

Power law of volume distribution, P (V = v) ∝ 1/vα, from
the high-volume tail of observed volumes vmax ≤ . . . ≤ v1.
Since in many empirical data the Power law tail is observed
only for a range of values, [4] uses a Kolmogorv-Smirnov
like test to determine vmax which is the optimal value after
which the distribution is Power law tailed. Using the well-
known relation β = 1/(α− 1) between exponents of Power
law and continuous Zipf’s law (see [10], [11]), we obtain

the estimate β̂ = 1/(α̂ − 1) of the coefficient of the rank-
volume distribution for top ranks 1 to max . The theoretical
advantage of this method is that it automatically selects the
rank max from which to regress the coefficient.

As the second estimator of β, we use a variant of the
standard Nonlinear Least Square (NLS) regression of the
empirical volume vi from their rank i. The parameters c and

β are those minimizing the sum of squares:
∑M

i=1

(

vi −
c
iβ

)2
,

where M is the maximal rank considered in the regression5.
Since the empirical data follows a Zipf’s law only for the
top ranks, we regress the top M = max rank-volume data,
where max is the rank returned by the CSN method. In this
sense, NLS is a variant of standard Nonlinear Least Square.
NLS has two advantages over CSN. First, intercept c and
coefficient β are estimated together in the same procedure.
Second, the regression directly estimates β, while in the
CSN method β is estimated with a formula involving the
estimator of α. Finally, the second estimator of the intercept
that we consider here is the maximum observed volume,
namely v1. We call it the max-estimator of c. This is motivated
by observing that, from Eq. 3, c is the expected volume of
the most popular query.

Let us now investigate how those estimators are affected
by the non-uniform, noisy, and sketchy sampling from a
Zipf’s law. Numerical simulations with parameters as in (4),
are repeated at the variation of the sample size n for 1000
times and results averaged.

Figure 3 shows that both the max-estimator and the
NLS regression converge to the true value of the intercept
c. For noisy data, however, there is some error, which is
proportional to the noise level (set to ±10%). Variability is
slightly lower for NLS regression. Larger error bars can be
observed for small values of n. They are due to the chances
of not having the queries of the population with the largest

5. NLS regression requires to specify initial values for β and c to
start with. We compute them using OLS regression of the log, i.e.
minimizing

∑
(log vi− log c−β log i)2. OLS regression performs worse

than NLS (simulations not shown, see also [12]) since it gives too much
importance to deviations of low rank with respect to high rank queries.

volumes included in the sample. In Section 5.3, we will
discuss this issue with regard to the estimation of the total
volume. In practical settings, the selection of the sample
queries must carefully consider the issue of including in
the empirical sample the most popular queries from the
population. This has been one of our main concerns in
collecting queries in the recipe and cooking domain.

Figure 4 shows some differences in the estimation of β.
Regarding the CSN method, the estimated values for non-
uniform and noisy samplings are slighly lower than the true
β. Underestimation in the sketchy sampling case is, instead,
considerable. Regarding the NLS regression, it is unbiased
for non-uniform and noisy sampling. For sketchy sampling,
β is slightly underestimated. Estimations rapidly converge
for increasing n’s, except for noisy sampling in the case of
NLS, and for sketchy sampling in the case of CSN.

Finally, all estimations are weakly dependent on n: start-
ing from samples of 0.4% of the population, they become
stable.

5.2 Estimating N

In the following, we focus on a simple but effective esti-
mator of the size N of the query population. We assume
that VN , the smallest volume of a query in the popula-
tion, is known. This assumption is realistic for absolute
frequencies, since VN = 1. From Eq. 3, for i = N , we have
N = (c/VN )1/β . This motivates the following estimator:

N̂ =

(

ĉ

VN

)1/β̂

(6)

where ĉ is an estimator of c, and β̂ is an estimator of β. Eq. 6
can be extended to an estimator of the number of queries
whose volume is greater or equal than a given value v as:

N̂v = (ĉ/v)1/β̂ (7)

Numerical simulations with parameters as in (4) are

shown in Figure 6 for: (1) β̂ obtained by the CSN method

and ĉ obtained by the max-estimator; and (2) β̂ and ĉ
obtained by NLS regression. The first method is biased,
showing a slight overestimation for non-uniform and noisy
sampling and a large overestimation for sketchy sampling
(not shown because exceeding the y-axis limits). The second
method converges to the true value of N for non-uniform
and noisy sampling (on average), and it slightly overesti-
mates it for sketchy sampling. Thus the only advantage of
the first method over the second one, is a smaller variability
of the estimates in the case of noisy sampling.
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Fig. 6. Simulations on estimation of the population size N : error bars (mean ± stdev). Sketchy case in the left plot exceeds the y-axis limits.
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5.3 Estimating V

Building on the estimators and simulations conducted so
far, the proposed procedure for estimating the total volume
V is composed of the following steps:

• estimate β and c, as described in Section 5.1;
• use the estimated β̂ and ĉ as inputs for estimating N

as shown in Section 5.2;
• the estimator of V is obtained from Eq. 2 as follows:

V̂ = ĉ[ζ(β̂)− ζ(β̂, N̂ + 1)]

Notice that by Eq. 6, the estimator V̂ can be stated using

only β̂ and ĉ:

V̂ = ĉ[ζ(β̂)− ζ(β̂,

(

ĉ

VN

)1/β̂

+ 1)] (8)

These estimators can be generalized to estimators of the total
volumes of queries with minimum volume v by replacing
VN by v:

V̂v = ĉ[ζ(β̂)− ζ(β̂, (ĉ/v)1/β̂ + 1)] (9)

Let us continue the previous numerical simulations. With
the settings in (4), it turns out V = 9, 609, 224. First consider
using the NLS regression method in the first step of the

procedure. Figure 5 (right) shows that V̂ converges to V

for non-uniform and noisy sampling, and overestimates it
for sketchy sampling. For noisy sampling, there is some
variability, which is in the order of the noise introduced
during sampling (±10%). The overestimation in the case of
sketchy sampling follows from the overestimation of N (see
Figure 6).

Consider now the case of using in the first step of the
procedure the CSN method coupled with the max-estimator.
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Fig. 8. Scatterplot of empirical vs estimated total volume.

The total volume shown in Figure 5 (left) is slightly overes-
timated for non-uniform sampling and for noisy sampling.
In the latter case, there is some variability, which appears
lower than for the CSN method. This can be tracked back
to lower variability in the estimation of β (see Figure 4). For
sketchy sampling, the overestimation is very large: it is out
of the bounds of the plot. Again, this can be traced back to a
larger underestimation of β compared to the CSN method.

The impact of biased β̂ on the estimated total volume

V̂ can be readily explained when ĉ = c – which holds in
simulations, as shown in Figure 3. We plot Eq. 8 as a function

of V̂ , under the assumption that VN is known, in Figure 7.
The left plot shows simulations for the parameters in (4)
used so far. The right plot uses the same N and c, but a

β greater than 1. In both cases, the bias of V̂ is inversely
proportional to bias of β. Note the log scale in the y-axis,
which comes from the fact β appears as exponent in Eq. 8.
For β’s lower than 1, error (or variability) of the estimator

β̂ has a greater impact on error (or variability) of V̂ than for
β’s greater than 1.

We already observed that the performances of the esti-
mators become stable from n = 4, 000 on, which is 0.4%
of the population size. Let us now focus on smaller sample
sizes, for which instead there is a large standard deviation
over the experimental runs. Fix n = 2, 000, and consider
NLS regression and non-uniform sampling. From Figure 5
(right), we have that the standard deviation of the estimates

V̂ over the 1,000 experimental runs is approximately 3×106.
What is the source of such variability? Figure 8 shows the
scatter plot of the estimated total volume vs the empirical
volume (i.e., the sum of observed volumes) of the sample
for each of the 1,000 runs. Runs with a lower empirical
volume exhibit most of the variability (notice that the y-axis
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Fig. 9. Left: empirical rank-volume distribution (SearchVolume estimates). Right: bins from the empirical distribution.

is in log-scale). If the empirical volume is sufficiently large,
the estimated total volume converges to the true volume.
Moreover, if the sample includes the query with the largest
volume in the population V1 (blue points in Figure 8), the
estimate is less biased than in the case the sample does not
include V1 (red points). Not having V1 in the sample causes
underestimation of β, which in turn causes overestimation
of the total volume. Overall, this reinforces our previous
conclusion that, in practical settings, the selection of sample
queries must carefully include the most popular ones.

As a summary of the simulations, we therefore recom-
mend using the NLS regression method for estimating c and
β, and, using Eqs. 8–9, for estimating V and Vv .

5.4 Errors on the estimates

We now compute the error on the estimated N obtained
from Eq. 6. Using the propagation of errors under the
assumption that the errors ∆β on β and ∆c on c are

independent, the error on N̂ is:

∆N =

√

√

√

√

(

∂N̂

∂ĉ
∆c

)2

+

(

∂N̂

∂β̂
∆β

)2

The values ∆c and ∆β are set to the standard errors of
the parameter estimation. In particular, for NLS regression
they are directly provided by the nls() function of the R
stats package, which uses a linearization approach6. To have
a more conservative estimate of ∆N , taking into account
correlations between errors, one can replace the previous
formula with the sum of the absolute values:

∆N =

∣

∣

∣

∣

∣

∂N̂

∂ĉ
∆c

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂N̂

∂β̂
∆β

∣

∣

∣

∣

∣

(10)

The partial derivatives in the previous expression are:

∂N̂

∂ĉ
=

(

ĉ

VN

)1/β̂ 1

β̂ĉ
=

N̂

β̂ĉ

∂N̂

∂β̂
= −

(

ĉ

VN

)1/β̂ 1

β̂2
log

ĉ

VN
= −

N̂

β̂2
log

ĉ

VN

Similarly, the error on the total volume is:

∆V =

∣

∣

∣

∣

∣

∂V̂

∂ĉ

∣

∣

∣

∣

∣

∆c+

∣

∣

∣

∣

∣

∂V̂

∂β̂

∣

∣

∣

∣

∣

∆β (11)

6. http://sia.webpopix.org/nonlinearRegression.html#standard-errors-of-
the-parameter-estimates
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Fig. 10. Simulation of binned sampling from a Zipf’s law.

The calculation of the partial derivatives is a bit more

involved. We start from Eq. 8, where V̂ is a function of ĉ
and β̂. We find:

∂V

∂ĉ
=

V̂

ĉ
+ N̂ζ

(

β̂ + 1, N̂ + 1
)

∂V

∂β̂
= ĉ

(

ζ′(β̂)− ζ(1,0)(β̂, N̂ + 1)−
N̂ log( ĉ

VN
)ζ(β̂ + 1, N̂ + 1)

β̂

)

where ζ ′(x) is the derivative of the Riemann Zeta function
and ζ(1,0)(s, a) is the partial derivative of the Hurwitz
function with respect to s.

6 THE CASE OF BINNED DATA

Most SEO tools do not provide an absolute observed volume
of a query, but rather they provide an interval estimate of
the volume, i.e., binned observed volumes. The motivation
is that intervals ameliorate for the noise introduced in the es-
timation process. Figure 9 (left) shows the rank-volume dis-
tribution of a sub-sample of recipes queries whose binned
observed volumes are obtained from the SearchVolume
tool. Differences with Google Trends distribution will be
discussed later on in Section 7.2. For now, we observe that
the rank-volume distribution is still Zipfian.

The binned nature of data demands for specific estima-
tion methods. For example, [5] generalizes the CSN method
to the estimation of the coefficient of Power law distributed
data if these are binned. We extend here the approach of
the previous section to the case of discrete data obtained by
binning (possibly noisy or sketchy) values. Specifically, we
consider two strategies, one based on the method from [5]
and the other based on Chi-square minimization.

As before, we assume that the frequency of searches
follow a Zipf law (see Eq. 1), but the observed volumes are

http://sia.webpopix.org/nonlinearRegression.html#standard-errors-of-the-parameter-estimates
http://sia.webpopix.org/nonlinearRegression.html#standard-errors-of-the-parameter-estimates
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Fig. 11. Simulations on estimation of c for binned data: error bars (mean ± stdev). The horizontal line is the true value of c.
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Fig. 12. Simulations on estimation of β for binned data: error bars (mean ± stdev). The horizontal line is the true value of β.

binned according to some scheme. We assume that there are
M bins, and that for j ∈ [1,M ], the j-th bin consists of the
interval [ℓj−1, ℓj), where ℓ0 = VN (the smallest volume).
SEO tools typically report as observed volume the upper
bound ℓj of the bin. For instance, Figure 9 (right), reports
the ℓj ’s values for the SearchVolume data shown in the left
panel of the figure. They approximately follow a geometric
progression, namely:

for j ∈ [1,M ] ℓj = ℓ1δ
j−1. (12)

Under such a binning scheme, a continuous volume V ≥ VN

belongs to the jV -th bin, where:

jV = max

{

1, 2 +

⌊

logδ
V

ℓ1

⌋}

and its binned volume is ℓjV = ℓ1δ
max

{

0,1+
⌊

logδ
V
ℓ1

⌋}

.
In simulations throughout this section, we apply such

a discretization scheme to the non-uniform, noisy, and
sketchy continuous sample data with parameters as in (4),
and keep the same nomenclature for the discretized versions
of those sampling methods. Figure 10 shows the impact
of sampling, for the same settings of Figure 2 but with
geometric binning where:

δ = 1.2324 (13)

is the ratio used by SearchVolume, as shown in Figure
9 (right). As for the continuous case, uniform sampling is
not consistent with empirical data, while the other strategies
are.

6.1 Binned-CSN

Ref. [5] extends to the case of binned data the original CSN
approach of using a maximum likelihood estimator of the

exponent and a Kolmogorov-Smirnov test for selecting the
tail of values that best fit a Power law. As a consequence,

we can extend our CSN-based estimator β̂ = 1/(α̂ − 1) to
binned data, where α̂ is the estimator of the exponent of a
binned Power law.

As in the continuous case, we will also make use in
the next subsections of the tail of the (binned) values
vmax ≤ . . . ≤ v1 that best fit a Power law. This corresponds
to consider bins [jvmax

,M ], where jvmax
is the bin of vmax .

Simulation results in Figure 12 (left) show that Binned-
CSN performs very well for non-uniform and noisy sam-
pling, while it under-estimates β for sketchy sampling.

6.2 Chi-square Minimization

For binned data, the analogue of Least Square regression
method consists of minimizing the χ2 (Chi-square) statis-
tics [23]. Let us denote by ne

j and no
j the expected and ob-

served number of queries in the j-th bin [ℓj−1, ℓj). The latter
is observed from data, while the former can be estimated as
follows. From Eq. 7, the volume ℓj (resp., ℓj−1) is the one

of the query with rank N̂ℓj (resp., N̂ℓj−1
). Thus the expected

number of queries in the j-th bin is:

ne
j(c, β) = N̂ℓj−1

− N̂ℓj = (c/ℓj−1)
1/β

− (c/ℓj)
1/β

where we explicitly write the parameters c and β. We now
estimate the values of c and β as those minimizing the χ2:

(ĉ, β̂) = argmin
(c,β)

M
∑

j=jvmax

(

no
j − ne

j(c, β)
)2

ne
j(c, β)

(14)

As in the continuous case, we restrict to tail values that best
fit a Power-law. This is why the summation in Eq. 14 starts
from jvmax

, the bin of the vmax value returned by the Binned-
CSN method.
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Fig. 14. Left: Zipf and Zipf+Sketchy populations. Right: sketchy-optimized volume estimation (binned data).

Simulation results are shown in Figures 11–12 (right). In
particular, the estimation of β performs comparably well to
the Binned-CSN method for non-uniform and noisy sam-
pling (see Figure 11). For sktechy sampling, the Chi-square
method is preferrable to Binned-CSN. In fact, while it shows
a slightly larger variance, it has a significantly smaller bias,
summing up to an overall smaller mean square error.

6.3 Constrained Chi-square Minimization

Binned-CSN only provides an estimation for the coefficient
β, while Chi-square provides an estimator for the intercept
c as well. We are interested here in the definition of an
estimator of c to be used together with Binned-CSN. In the
continuous case, the max-estimator performed comparably
well to NLS (cfr. Figure 3). Unfortunately, the maximal
observed volume v1 in the sample provides a very biased
estimation of c for binned data. This is due to the fact the
bin of v1 corresponds to a large range of possible true values.
Therefore the estimation of c should take into account the
observed values at several bins, as the Chi-square method
does. We propose to combine the strengths of Binned-CSN
and Chi-square methods as follows. First, we obtain an

estimate β̂CSN of β by applying the Binned-CSN method.
Then, to estimate c we solve the optimization problem:

ĉ = argmin
c

M
∑

j=jvmax

(

no
j − ne

j(c, β̂CSN )
)2

ne
j(c, β̂CSN )

(15)

which is a constrained version of Eq. 14.

Simulations results in Figure 11 (left) show that Con-
strained Chi-square provides an almost unbiased estima-
tor of c for non-uniform and noisy sampling, while it
under-estimates c for sketchy sampling. Standard deviations

are smaller than the Chi-square estimator shown in Fig-
ure 11 (right). However, bias for sketchy sampling is higher.

6.4 Overall approach

Assuming no information on the sampling bias, from the
previous simulation results, the Chi-square method is to
be preferred to Binned-CSN plus Constrained Chi-square

for estimating β̂ and ĉ. This conclusion is in line with the
comparison between CSN and NLS in the continuous case.
However, for binned data the difference is not so neat.

Starting from the estimations of β̂ and ĉ, the procedures
described in Section 5.3 for estimating the total number
of queries N in the population and their total volume V

apply unaltered to the case of binned data. Figure 13 reports
the simulation results for the estimation of the population
size N and total volume V . The overall approach performs
extremely well for non-uniform and noisy sampling. For
the latter, there is even a smaller variance than in the
continuous case (cfr. Figures 6-5 (right)). Intuitively, the
variability impact of noise is canceled out when it does not
extend beyond the same bin of the true value. Regarding
sketchy sampling, instead, the estimator is biased and with
non-negligible variance.

Finally, the procedure of Section 5.4 for calculating errors
∆N and ∆V extends to binned data as far as ∆β and ∆c are
provided in input. For uniformity with NLS regression, sta-
tistical errors ∆β and ∆c are calculated using an adaption
of the linearization method to Chi-square minimization.

6.5 Sketchy-optimized approach

Let us finally investigate an approach to reduce bias and
variance in the case of sketchy sampling under the further
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Google Trends SearchVolume

v v/12 N̂v ∆Nv V̂v ∆Vv N̂v ∆Nv V̂v ∆Vv

12 1 269,214,520 ± 18,507,467 14,169.58 M ± 827.91 M 5,849,311,206 ± 10,205,374,040 157,547.70 M ± 262,434.70 M
120 10 13,770,732 ± 815,062 7,171.15 M ± 354.03 M 91,968,610 ± 136,211,457 24,766.71 M ± 34,731.11 M

1,200 100 704,394 ± 33,959 3,591.35 M ± 145.85 M 1,446,021 ± 1,760,408 3,889.59 M ± 4,433.55 M
12,000 1,000 36,031 ± 1,444 1,760.23 M ± 56.87 M 22,736 ± 21,685 607.08 M ± 535.30 M

120,000 10,000 1,843 ± 56 823.63 M ± 20.30 M 357 ± 247 91.03 M ± 58.45 M
600,000 50,000 231 ± 5 456.95 M ± 9.06 M 20 ± 10 21.4 M ± 10.89 M

TABLE 1
Estimated Nv and Vv for queries with at least v searches in 2017. v/12 is the monthly average of v.

assumption that we know that data is actually sketchy sam-
pled and we know the fraction7 γ in the noise of Eq. 5. The
formula in such an equation is a sum of two independent
random variables, whose density function can be explicitly
calculated using convolution of probability distributions.
We omit the details of the calculation, but, as it could be
expected, the resulting density is closer to a Zipf for large
volumes and it is closer to uniform distribution for small
volumes. Figure 14 (left) shows the population of a pure Zipf
and the effects of adding noise8 as in Eq. 5 with γ = 0.001.
Intuitively, volumes smaller than γc = c/1000 are heavily
modified. Volumes larger than c/1000 are less modified.
However, the method estimating β may understimate it due
to the data with volume close to c/1000. Around such a
volume the Power law starts becoming apparent, but with a
biased coefficient. If we concentrate on volumes larger than
10γc = c/100, sketchy sampling may impact for at most
10% of the volume, hence reducing the bias due to noise of
Eq. 5.

In summary, we propose the following simple modifica-
tion to the estimation procedure for sketchy sampling: use
sample data whose volume is larger or equal than 10γv1,
where γ is assumed to be known and v1 is the largest
observed volume in the sample data.

We have experimented this modified procedure for both
Binned-CSN and Chi-square methods. The latter continues
to perform slightly better even in such setting. Simulation
results for the estimation of the total volume are shown
in Figure 14 (right). Contrasted to Figure 13 (right), the
estimations in the sketchy sampling schema are less biased
and with smaller variances. Moreover, such an approach
does not degrade the performances of Chi-square for non-
uniform and noisy sampling under the simulation param-
eters. Intuitively, such two sampling schemes do not sys-
tematically impact on the slope of the empirical sample dis-
tribution, hence restricting to top-volumes (larger or equal
than 10γv1) does not affect coefficient estimation.

7 EMPIRICAL ANALYSIS

In this section, we conduct an empirical analysis on a real
dataset. We generated a sample of 120K queries by crawling
18 popular Italian websites about recipes and cooking. The

7. Alternatively, γc (which is the actual value needed in the sketchy-
optimized approach) can be estimated starting from a sample of queries
for which we know both the true volume Vi and the noisy volume Xi.
In fact, by Eq. 5, we have that Xi − Vi = γic is drawn from a uniform
distribution in the range [0, γc].

8. Figure 14 (left) shows the effects on the whole population. The
resulting distribution differs (in the tail) from Figure 2, where non-
uniform sampling is also considered in addition to adding noise.

list of websites was compiled with the help of web market-
ing experts and by looking at the rankings of SEO tools9.
Queries were generated in one of the following forms: the
name of a recipe as reported in metadata available at web
pages10(e.g., “spaghetti with tomato sauce”), queries based
on a selected list of ingredients (e.g., “recipes with pep-
peroni”), queries suggested from SEO tools starting from a
selected list of keywords, and web marketer expert queries
used in past advertising campaigns (in particular, large
volume queries such as “recipe”, “cake”, “pizza”). Next,
queries were validated/filtered by humans as belonging to
the recipe and cooking domain. Finally, variants of queries
without stop words were also added. We then submitted
the 120K queries to Google Trends (continuous values) and
to SearchVolume (binned values) to collect the observed
volume of each query for the reference year 2017 and for
Italian user agents. Considering a whole year prevents sea-
sonal bias in data. Most of the queries received no observed
volume, due to the fact they belong to the long tail of the
distribution and then SEO tools do not monitor them. This is
expected, under the assumption of a Zipf’s law distribution
of the population of all queries.

7.1 Google Trends (continuous data)

Google Trends has several advantages over other SEO tools.
First, the observed volumes provided are computed from
(a sample of) the Google search engine query logs, and not
from unspecified sources which may have unknown forms
of bias. Second, data can be aggregated for arbitrary ranges
of time and user agent languages. Most of the other tools,
instead, provide monthly averages at the time of request,
making it impossible to extend an experiment incrementally
to new queries. Third, observed volumes of Google Trends
are ratio-scaled, while other SEO tools provide binned val-
ues, i.e., ranges of observed volumes. On the negative side,
the observed volume provided by Google Trends is relative,
not absolute. Google Trends reports the observed volumes
of a set of queries in each week of a time period by setting to
100 the largest volume in a week and scaling all other week
volumes into the range [0, 100]. We then fixed one specific
query to the conventional yearly volume of 1, and collected
observed volume of all other queries in comparison to
the specific query. Next, we scaled the relative volumes to
absolute volumes by relying on an estimation procedure of a
scaling factor. Details on the calculation of relative volumes
and of the scaling factor are in [22].

9. E.g., https://serpstat.com
10. Such metadata are standardized in the Structured Data format

and they are intended to optimize search engine indexing of the web
page, see https://developers.google.com/search/docs/data-types/recipe.

https://serpstat.com
https://developers.google.com/search/docs/data-types/recipe
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We obtained observed volumes by Google Trends for
about 18.5K queries out of the 120K in the sample set of
queries. The resulting rank-volume distribution is shown in
Figure 1. The remaining queries belong to the long tail, for
which Google Trends returns no observed volume.

Let us now apply the estimation model designed in
Section 5 to the empirical data of Google Trends. As shown
by the red line fit in Figure 1 (left panel), the NLS regression
estimates are:

β̂ = 0.7745 ĉ = e17.5189 = 40, 584, 860.

The NLS fit is considered for the top max = 1725 queries
determined by the CSN method. The statistical errors of the
above estimates are considerably low:

∆β = 0.0025 ∆c = 199, 263 (16)

We can now use Eq. 6 for estimating the number Nv of
queries having a volume of at least v, and Eq. 10 for
calculating the statistical error ∆Nv . Similarly, Eq. 9 can be
used for estimating the total volume Vv of queries having a
volume of at least v, and Eq. 11 for calculating its statistical
error ∆Vv . Table 1 reports the estimates for a few values of
v. As a means of comparison, the total empirical volume
of the 18.5K queries in our sample amounts at 1,057 M
searches. Such a large number is consistent with the fact
that the sample is not uniform, but top ranked queries are
more likely to be in the sample. Moreover, it also gives con-
fidence that the sample is sufficiently large (as per empirical
volume) to correctly estimate the true volume. According to

the simulations of Figure 5, the values N̂v and V̂v may over-
estimate the true Nv and Vv respectively, if some sketchy
approximation is introduced in the observed volume data
by Google Trends. In case of noisy sampling, instead, a small
under or overestimation may occur. It is worth noting that
these conclusions hold under the assumption that observed
volumes are biased only as modeled in Section 4. However,
other biases may be present in observed volumes from SEO
tools. In the case of Google Trends, one other bias is due to
the scaling procedure from relative to absolute volumes.

7.2 SearchVolume (binned data)

SearchVolume is a popular SEO tool providing free access
to bulk observed volumes. Also, SearchVolume provides
the observed volume of queries for a few specific countries,
including Italy. The underlying methods and log data used
by the system are undisclosed. We submitted to SearchVol-
ume the 18.5K queries for which Google Trends provided
observed volumes, and obtained (binned) observed vol-
umes for about 12.5K of them. The resulting rank-volume
distribution is shown in Figure 9 (left).

A number of facts are worth being pointed out when
contrasting that distribution with the one of Google Trends
in Figure 1. First, SearchVolume returned no result for about
6K queries, which are not necessarily low volume ones
according to Google Trends. For instance, 26 out of the top
100 Google Trends observed volume queries are assigned no
observed volume by SearchVolume. As already pointed out,
each SEO tool comes with its own biases on the set of queries
covered and on the values of the observed volumes. In fact,
as a second point, top observed volumes are up to 10×

smaller than the top volumes of Google Trends. In particu-
lar, the total empirical volume of the 12.5K queries amounts
at 206 M searches vs the 805M searches of Google Trends for
the same set of queries. Independent SEO tools are known
to be more conservative than Google-owned tools. Another
possible reason is that the multiplicative factor devised
in [22] to scale Google Trends relative volumes may have
been over-estimated. Third, Google Trends data has a larger
empirical variance than SearchVolume: top volume are up
to 65 standard deviations from the mean volume for Google
Trends and up to 38 for SearchVolume. Fourth, correlation
between SearchVolume and Google Trends volumes is weak,
with Kendall’s τ = 0.3717. These last two points could
originate by the different sampling biases of the two tools.

The above arguments are not specific of the two tools
we are considering in this paper, but they apply when
contrasting any pair of SEO tools. In fact, in web marketing
practice, the adoption of a specific SEO tool is mainly based
on reputation and trust on the tool.

Let us apply the estimation model designed in Sec-
tion 6.4 to the empirical data of SearchVolume. The esti-
mated values are:

β̂ = 0.5545 ĉ = e14.9551 = 3, 125, 485.

The Chi-square fit is considered for the top max = 119
queries determined by the Binned-CSN method. It turns out
that the Sketchy-optimized method of Section 6.5 provided
exactly the same results. The statistical errors of the above
estimates are larger than (16):

∆β = 0.0352 ∆c = 549, 134

This is somehow expected, and it can be attributed to the
loss of information due to binning. Numerical experiments
on synthetic data shows, in fact, that the error of the
coefficients of the Zipf’s law are more than one order of
magnitude larger than the error when the data are observed
without binning. Finally, the estimated values for the num-
ber Nv of queries having a volume of at least v, and the total
volume Vv are reported in Table 1.

Contrasting the estimations inferred from SearchVolume
and Google Trends data, the smaller coefficient of the former
implies a larger number of queries in the long tail. There
are, in fact, 5.85B queries searched at least once a month
for SearchVolume vs only about 270M for Google Trends.
On the contrary, a larger number of top-volume queries
are estimated from Google Trends data. The two methods
get closer in estimating the number of queries with at least
1,000 searches per month (23K vs 36K), and in estimating the
total volume of queries with at least 100 searches per month
(3.9B vs 3.6B). Finally, the larger statistical errors ∆β and
∆c produce considerably larger estimates ∆Nv and ∆Vv

for SearchVolume in comparison to Google Trends.

8 CONCLUSION

We investigated the problem of estimating the total number
of searches of queries belonging to a specific domain in a
given period of time. By doing the sensible assumption that
the unobserved rank distribution of query volumes follows
a Zipf’s law, our approach can be decomposed in two parts.
First, we model biases in obtaining observed volumes from
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SEO tools. Such biases consist of non-uniform sampling pos-
sibly coupled with noise and approximation errors. Second,
we devised estimation methods to infer the total volume of
the queries of the domain starting from a biased sample.
The estimation methods distinguish continuous and binned
empirical data. They are able to find the total number and
the total volume of the queries in the domain which have
been searched at least v times in a given time period. This
kind of information is extremely useful in web marketing
research and advertising to quantify the market value of a
domain. A large set of numerical simulations supports the
validity of the proposed methods. Finally, we presented an
empirical application w.r.t. the domain of recipes and cooking
for Italian searches in 2017, including a comparison of the
continuous vs binned data cases.

The first critical issue for extending our analysis to other
domains consists of checking the hypothesis that the pop-
ulation of queries in the domain is Zipfian. As shown in
Figures 1 and 9 (left), empirical data in the domain of
recipes and cooking appear to be Zipfian. This motivated
our assumption that the reference population, namely the
queries searched in a reference domain, follows a Zipf’s
law. Ref. [24] points out that the granularity and extent of a
reference population should exhibit a “coherence” property.
This is particularly relevant, since splitting or merging two
Zipfian sets does not necessarily yield another Zipfian set,
hence the actual definition of what is and what is not in a
domain is essential in meeting our assumption. The domain
considered in this paper has well-defined boundaries that
make it reasonably coherent.

The second critical issue is the construction of the sample
set of queries. As shown by the numerical simulations, the
capability of correctly inferring the total volume signifi-
cantly depends on the inclusion in the empirical sample of
top volume queries from the population. Empirical sample
queries should then carefully collected, e.g., by resorting
to domain’s expert knowledge or, if feasible, by crawling
a set of specialized websites. Finding estimators which are
(more) robust to the choice of the query sample is certainly
an interesting potential extension of our approach to the
case when it is costly to construct sufficiently large samples.

The third critical issue is concerned with understanding
(eg., through statistical tests) which type of bias is likely to
be present in empirical data provided by a specific SEO tool.
In this paper, we considered three possible scenarios: uni-
form sampling alone, or together with normally distributed
noise (noisy sampling), or together with count-min sketch
like approximation (sketchy sampling). Other scenarios can
be conceived, e.g., noise due to data anonymization [25],
[26]. Further work is necessary to test which scenario fits
better for a given empirical data.

Finally, the estimation methods devised in this paper are
generally applicable to any context where the population
is Zipfian. One such context, suggested by an anonymous
reviewer, regards the Internet Domain Name System (DNS).
Here, client machines query a distributed database for re-
solving the numeric IP address of a given host name. A DNS
server local to an organization may maintain (approximate)
counts of the number of queries per host name. The volume
per host name is known to follow a Zipf’s law [27]. Hence,
our methods can be used to estimate the total number of

distinct host names (in our notation, N ) served by a local
DNS server without having to store them explicitly – which
could compromise efficiency of the DNS server. Also, by
aggregating the counts of top volume host names for several
DNS servers, we can estimate the size of the Internet (the
number of IP addresses) accessed by the user base served.

SOFTWARE CODE

Software code in R [14] of all estimation methods is available
at https://github.com/ruggieris/QVolume.
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