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Abstract—The estimations of amplitude and phase are of great 
importance in the synchronous phasor measurement for power 
systems. In addition to the off-nominal frequency, the amplitude 
and phase estimations accuracy level of the power system signal is 
affected by the inevitable noise. In this paper, the effect of white 
noise on amplitude and phase estimations provided by DFT-based 
frequency shifting and filtering (FSF) is analysed. With the help of 
the Equivalent Weighting Filter’s merits, viz., Equivalent Noise 
BandWidth and Overlap Correlation, the FSF-based amplitude 
and phase variance expressions are derived theoretically by 
considering the overlap of two processed samples. The 
effectiveness of the proposed amplitude and phase variance 
expressions are verified through computer simulations. 

Index Terms—Variance analysis, Frequency shifting, Filtering, 
Signal to noise ratio, Cramer-Rao Lower Bound. 

NOMENCLATURE 
h Order of harmonic 
fh Frequency of hth harmonic (in herz) 
Ah Amplitude of hth harmonic (in volts) 
θh Phase angle of hth harmonic (in radians) 
fr Nominal frequency (in herz) 
D Number of samples per cycle at fr 
L Iteration times 
K Order of Equivalent Weighting Filter (EWF) 
N Number of samples 
M Measurement interval 
n1 The 1st measuring point 
n2 The 2nd measuring point 
ENBW Equivalent Noise BandWidth 
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I. INTRODUCTION

The safety and stable operation of the power systems 
confront challenges due to the introduction of renewable 
energy, as well as the development of the distributed system. 
Thanks to the Wide Area Measurement System (WAMS), the 
real-time monitoring and control level of the power system has 
been improved to the extent that can ensure the normal 
operation of the grid. As a main component of WAMS, Phasor 
Measurement Unit (PMU) which can provide the phasor 
estimation of the power systems has been developed 
tremendously in recent decades.  

The IEEE standard C37.118.1-2011 [1], which is the widely 
used basis for the PMU applied in power systems in the world, 
stipulates that the performance of PMU is evaluated through the 
indicators such as Total Vector Error (TVE), Frequency Error 
(FE), and Rate of change of Frequency Error (RFE), etc. In 
addition to the influence of hardware devices, these indicators 
are mainly affected by the phasor estimator, including 
amplitude estimator, phase estimator and frequency estimator, 
which is the core of PMU. 

Accurate phasor estimation can effectively reflect the 
real-time status of the power systems and provide a reliable 
basis for power grid protection control action. Therefore, 
estimating these three parameters fast and accurately has 
become a crucial task, which results in the proposal of several 
methods, e.g., the Discrete Fourier transform (DFT) [2], 
phase-locked loop [3], Taylor method [4], wavelet 
transform [5], Quasi-synchronous sampling method [6], 
least-square method [7], ADALINE [8], Kalman filtering [9], 
etc. Among them, one variant of the DFT, which is known as 
the Windowed Interpolation Fast Fourier transform (WIFFT), 
is widely spread because it well addresses the spectrum leakage 
and picket fence effect caused by asynchronous sampling 
through windowing and interpolation [10]. However, there are 
many data in the spectrum that are useless for the phasor 
estimation, which limits the efficiency of the WIFFT. In 
addition, the growing proportion of renewable energy sources, 
e.g., solar energy and wind power, requires a large number of
portable low-cost monitoring devices, e.g., the micro PMUs, to
provide the phasor estimations for the real-time monitoring of
grid operation [11]. Thus, a more efficient phasor estimator
with satisfactory performance is needed with limited
computing resource and low power consumption.

The Frequency Shifting and Filtering algorithm (FSF), a 
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variant of DFT, estimates the frequency, amplitude, and phase 
of the power systems only by three steps in time domain: first, 
shifting the negative fundamental frequency of the sampled 
signal by reference signal; then, the frequency shifted signal is 
filtered by the iterative filtering process based on the averaging 
filter; finally, the parameters of the power system signal are 
estimated by two filtered samples [12]. In [13], the accuracy of 
FSF on harmonic estimation is analysed, moreover, the 
computational burden of FSF is reduced by using the proposed 
Equivalent Weighting Filter (EWF). Authors in [14] analyses 
the systematic error of FSF on harmonic estimation and 
proposes an improved FSF with systematic error compensation. 
As well known, the accuracy of the estimations in practical 
applications is not only determined by the estimator itself but 
also affected by the unavoidable noise introduced by the 
acquisition and the inherent noise [15-18]. According to [19] 
and [20], it is known that the inherent noise (background noise) 
in power system signals can be treated as white noise, and the 
signal-to-noise ratio (SNR) of distribution level grid signals 
reaches 60-70dB. [21] details the source and the principle of 
acquisition noise, furthermore, it analyses how the white noise 
affects the accuracy of frequency and ROCOF estimations in 
phasor measurement based on filtered heterodyned analyses. In 
[15] and [22], the effect of white noise on the WIFFT-based 
power system signal parameter estimations is analysed by 
deducing the variance expressions. [23] and [24] gives the 
variance expressions of FSF-based frequency and phase 
estimators according to the measurement interval to show how 
the estimations vary under the effect of white noise. However, 
the analysis of FSF-based amplitude estimation on noisy 
signals is still unpublished.

This paper is a technical extension of [24]. In this paper, the 
FSF-based amplitude and phase estimators are firstly reviewed. 
Then, the effect of the white noise on FSF-based amplitude and 
phase measurement is studied by deducing the theoretical 
amplitude and phase variance expressions with respect to SNR. 
After that, the relationship between the variance and its 
Cramer-Rao Lower Bound (CRLB) is analysed.  

The remainder of the paper is structured as follows: Section 
II recalls the FSF on the power system amplitude and phase 
estimation. Section III analyses the influence of the white noise 
on FSF-based amplitude and phase estimators through the 
derivation of variance expressions, studies the relationship 
between the variances and their CRLB. Section IV provides the 
simulation tests and results that can verify the proposed 
expressions. Finally, Section V draws some conclusions. 

II. AMPLITUDE AND PHASE ESTIMATION BASED ON FSF
Define x(n) is a discrete signal of pure sine wave distorted by

harmonics: 

( )
1 s

2πsin
H

h
h h

h

f nx n A
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 
= + 
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where fh, Ah, and θh are the frequency, amplitude and phase 
angle of hth harmonic, h=1,2,3,…,H, H is the highest order of 
harmonic, n=0,1,2,…,N-1, N is the number of samples, fs 

represents the sampling frequency. For the power systems, fs is 
set to Dfr, where D is an integer, fr is the nominal frequency. 

In practical applications, there will be a deviation Δf between 
nominal frequency fr and practical fundamental frequency f1, 
i.e., Δf=fr-f1, and it is known that Δf<<f1 in general.

To estimate the fundamental phasor, a reference signal r(n)
with frequency fr is generated as: 

r

s

2π 2π

( )
nf nj jf Dr n e e= = , (2) 

where j is the imaginary unit.  
Then, x(n) is frequency shifted using r(n) as:  

( ) ( ) ( )s n x n r n= ⋅ , (3) 

where s(n) is the frequency shifted signal. 
After that, s(n) is filtered by the weq(n) as: 

( ) ( )eq

1
( ) 1

K n
L

i n
s n s i i nw

− +

=
= ⋅ − + . (4) 

where sL(n) is the samples processed by FSF with iteration 
times L, weq(n) represents the K-order EWF which is consisted 
of L averaging filters as: 

( ) ( ) ( ) ( )eq A A A

L

w n w n w n w n= ∗ ∗ ∗  , (5) 

where wA(n) is the D-order averaging filter, “*” means the 
convolution operation. Thus, it can be seen that K=L(D-1)+1.  

By virtue of frequency shifting and filtering process, the 
amplitude and phase of the fundamental wave are estimated by: 
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where G( ) is the magnitude response of D-order averaging 
filter, ωN-1 is the sampling angular difference of fundamental 
negative component estimated by two samples of sL(n) as: 

( ) ( )2 1
N-1

arg ( ) arg ( )L Ls n s n

M
ω

−
= , (8) 

where M=n2-n1. Accordingly, the minimum number of required 
samples of x(n) is N=K+M. 

III. INFLUENCE OF WHITE NOISE ON FSF-BASED AMPLITUDE 
AND PHASE ESTIMATION 

While x(n) is corrupted by the white noise z(n), which can be 
represented as: 

( ) ( ) ( )y n x n z n= + , (9) 

where z(n) is assumed to be Additive White Gaussian Noise 
(AWGN) with the mean and variance zero and σ2, respectively. 
The SNR of y(n) is defined as: 

2
1

22
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For the sake of simplicity, sL(n) in (4) is expressed by a 
complex vector as: 

( ) ( ) ( )( ) ( )S N- P-
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where VS(n) is the complex vector of sL(n); VN-h(n) and VP-h(n) 
are the negative and the positive components of hth harmonic in 
sL(n) while VZ(n) is the filtered AWGN. The expressions of 
VN-h(n), VP-h(n), and VZ(n) are:  
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where ϕN-h(n), ϕP-h(n) and ϕZ(n) represent the angle of VN-h(n), 
VP-h(n) and VZ(n), respectively; AN-h, AP-h, and B are the 
modules of VN-h(n), VP-h(n), and VZ(n), respectively. ω is the 
sampling angular frequency, and ωN-h=2π(fr-fh)/fs, 
ωP-h=2π(fr+fh)/fs. 

Assume that the interferences in VS(n), i.e., VN-h(n) 
(h=2,3,…,H) and VP-h(n) (h=1,2,3,…,H), are filtered totally, 
thereby the only one which can lower the accuracy level is the 
filtered AWGN VZ(n), shown as: 

( ) ( ) ( )S N-1 zn nn ≈ +V V V . (15) 

A. Derivation of the variance expressions
To analyse the effect of white noise on amplitude and phase

estimations, the following characteristics of the AWGN z(n) is 
introduced: 

( )E 0Z n =  V , (16) 

( ) 2Var Z n K NNPGσ= ⋅  V , (17) 

where NNPG is the Normalized Noise Power Gain of the EWF. 
By considering the influence of VZ(n), VS(n) can be rewritten 

as: 
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where AS(n) and η(n) are the module and the angle of VS(n), 
respectively, which can be expressed as: 

( )
( ) ( )( )

1
2 2

N-1
S N-1

N-1
N-1

1

2 cos Z

AA n A
B

B

n
A

n ϕϕ

  
 +  


−

 =  
 +
  

, (19) 

( ) ( )N-1n nη ϕ=  

( ) ( )( )

( ) ( )( )

N-1
N-1

N-1
N-1

sin
arctan

1 cos

Z

Z

B n
A

B n
A

n

n

ϕ ϕ

ϕ ϕ

 
 
 +
 +  

−

−
.  (20) 

With SNR>>1, we know that B/AN-1<<1. Thus, AS(n) and η(n) 
can be simplified as: 

( ) ( ) ( )( )
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Applying Taylor expansion and ignoring the effects of 
high-order items, (21) can be simplified as: 

( ) ( ) ( )( )S N-1 N-1cos Z nA n A B nϕϕ −≈ +   (23) 

Due to φZ(n) is a random value in the range [0, 2π] while 
φN-1(n) and AN-1 are constants, according to the uncertainty 
propagation law [25], the variances of η(n) and AS(n) can be 
expressed by the second term of (22) and (23) as: 

( ) ( )S Var coa sV r ZA n B nϕ  ≈    (24) 

( ) ( ) ( )NVar / sinVar ZBn nAη ϕ    ≈   .  (25) 

In light of Re(VZ(n))=BcosφZ(n) and Im(VZ(n))=BsinφZ(n), 
the following expression can be obtained: 
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Accordingly, the variance of AS(n) is obtained as: 
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To simplify derivation of the variance, ENBW of the EWF is 
introduced as: 
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Under the assumption Δf<<f1, ωN-1(n)≈0 can be obtained. 
Thereby the variance of the estimated fundamental amplitude 
can be deduced as: 
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As for the deduction of FSF-based phase variance, the 
variance of η(n) is firstly obtained according to (12) as: 

( )Var ENBWn
K SNR

η =   ⋅
. (30) 

By substituting (8) into (7), we can rewrite the phase 
estimation expression as: 
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By replacing the first and second term of the latter equation 
as a and b, respectively, the variance of the phase estimation 
can be expressed as: 

[ ] [ ]
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where Cov[] represents the covariance. Var[a], Var[b], and 
Cov[a,b] are represented as: 
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From the previous analysis, we can see that the variance of 
the phase is determined by the result of Cov[η(n1), η(n2)]. To 
analyse the Cov[η(n1), η(n2)], an index of the EWF named 
Overlap Correlation (OC) [26] is introduced as: 
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where δ=(K-M)/K is the overlap coefficient. With the help of 
OC, the overlapped samples, when the weights of the EWF are 
different (L>1), are simplified as in the case of equal weights 
(L=1). Thus, the Cov[η(n1), η(n2)] is approximate as: 

( ) ( ) ( )1 2Cov , ENBWn n OC
K SNR

η η δ=   ⋅
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Accordingly, the phase variance is obtained as: 
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B. Comparison to the CRLB
The CRLB means a lower bound for the variance of an

unbiased estimator. The closer the estimator variance is to 
CRLB, the better the estimator is. Thus, it is necessary to 
analyse the relationship between the amplitude and phase 
variances to its CRLB. According to [25] and [27], CRLB of 
the unbiased amplitude and phase estimators for the sinusoidal 
signal are given as: 
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where N is the samples used, A and θ are amplitude and phase 
of the sinusoidal signal. For unbiased estimation of FSF-based 
measurement, the interval M must be set to K at least. Here, M 
is fixed to K for convenience which leads to N=2K. Also, the 
amplitude of the sinusoidal signal with harmonics can be 
approximated to A1. Accordingly, the CRLB of FSF-based 
fundamental amplitude and phase estimators thereby can be 
rewritten as: 
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Accordingly, the relation between the FSF-based amplitude 
variance and its CRLB is easily obtained as: 
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  (43) 

As for the phase variance, the OC is 0 when M=K, 
meanwhile, n1 is usually set to 0, thus the relationship of 
FSF-based phase variance and its CRLB is obtained as: 
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In light of (43) and (44), it is known that the ratio of Var[A1] 
and Var[A1]CRLB is 2ENBW, while the ratio of Var[θ1] and 
Var[θ1]CRLB is 5ENBW/4. 

IV. SIMULATIONS

To verify the proposed FSF-based amplitude and phase 
variance expressions, we firstly use a pure sinusoidal voltage
signal X with frequency f1=49.8 Hz, amplitude A1=220 V, and 
phase angle θ1=0.8 rad. Without loss of generality, each 
simulation result is based on 5000 independent runs. The 



theoretical amplitude and phase variances are calculated by (29) 
and (38), respectively. 

A. Influence of SNR
The sampling frequency fs of the adopted signal X is 3.2 kHz,

i.e., D=64. The measuring point n1=0, while M is fixed to M=32
and M=K corresponding to the cases OC>0 and OC=0,
respectively. The SNR of white noise added to the signal X
varies from 10 to 100 dB, with 2 dB steps. The signal X is
filtered for 2, 3, and 4 times. The simulation and theoretical
variance results of amplitude estimations are drawn in Fig. 1, as
well as the phase estimations.

Particularly, the CRLB results of the unbiased estimations 
are plotted in the figure to make a comparison. 

Fig. 1(a) and Fig. 1(b) compares the theoretical and 
simulation results of amplitude and phase variances versus 
different SNR, respectively. As it can be seen in Fig. 1, 
regardless of the value of OC, the theoretical variances are 
consistent with the simulation one, which can confirm the 
correctness of the proposed variance expressions. In addition, 
the amplitude and phase variances are totally in inverse 
proportion to the SNR. The reason can be found in (29) and (38) 
where the SNR is a denominator of the variance expressions. 

(a) 

(b) 

Fig. 1. Variances of the FSF-based estimations versus different SNRs, (a) 
amplitude variance, (b) phase variance. 

(a) 

(b) 

Fig. 2. Variances of the FSF-based estimations versus different M and SNRs, 
(a) amplitude variance, (b) phase variance. 

B. Influence of Number of Iterations
As the key parameter of FSF, the iteration times L

determines the accuracy level, time delay, and computational 
efficiency of the method. As shown in (29) and (38), we can see 
that L can affect it through ENBW and K. In addition, the phase 
variance also depends on OC which is an L-based parameter as 
well. Therefore, the effect of L on amplitude and phase 
variances must be evaluated. To this end, the pure signal X with 
SNR=75 dB is generated. The FSF is set as: D=64, n1=0, M is 
selected to be M=60 (OC>0) and M=K (OC=0), L ranges from 1 
to 8, N=K+M. The simulation results are listed in Table I. 

According to the simulation and theoretical variance values 
listed in Table I, it is known that the proposed amplitude and 
phase variance expressions can estimate the amplitude and 
phase variance in actual measurements. In addition, it can be 
seen that the amplitude and phase variances reduce as L 
increases. To analyse the cause of this phenomenon, the phase 
variance expression (38) is simplified with the case of OC=1 as:  

[ ]1Var ENBW
K SNR

θ ≈
⋅

. (45)



Compare (29) and (45), the same part ENBW/(K·SNR) can be 
found. In this same part, ENBW is proportional to Var[θ1] and 
Var[A1] while K is inversely proportional to them. On one hand, 
ENBW corresponding to L=1, 2, 3, 4, 5, 6, 7, and 8 are 1.00, 
1.32, 1.63, 1.89, 2.12, 2.32, 2.51, and 2.69, which means ENBW 
increases as L increases. On the other hand, K=L(D-1)+1 is 
proportional to L when D is fixed. However, the increasing rate 
of K is larger than that of ENBW, which means ENBW/K will 
reduce as L increases and this leads to the reduction of Var[θ1] 
and Var[A1]. The same thing can be found under the condition 
OC<1. However, the cost of computing resource, the 
measurement time delay, as well as the required number of 
samples, will increase if L increases. 

C. Influence of Measurement Interval
According to (6) and (7), we know that the FSF-based

amplitude and phase estimations are related to ωN-1, which is 
determined by two samples of processed signal with interval M 
through (8). To assess the effect of M on FSF-based amplitude 
and phase variance, signal X with SNR=55 dB and 75 dB is 
generated. The measurement interval M varies from 1 to 301, 
with steps of 4. The iteration times L is set to 2, 3, and 4, 
respectively. Other parameters of FSF are n1=0, D=64. The 
simulation and theoretical results are shown in Fig. 2. 

As shown in the picture, the theoretical variances versus 
different M are consistent with the simulation ones under the 
same conditions, and this can validate the correctness of the 
proposed amplitude and phase variance expressions. Although 
calculating the amplitude estimation requires ωN-1, the 
amplitude variance is independent to M. However, to the phase 
variance, affected by OC which is depended on M, it increases 
firstly and then reduces as the increment of M regardless of L. 
Focus on the variances with different L, we can see that when M 
is very small or big enough, the differences between the phase 
variances are quite reduced. The differences between the 
amplitude variances with different L are basically constant 
when M varies. According to these properties, if there is a high 
requirement for real-time measurement, it is recommended that 
M should be as small as possible since M directly determines 
the time delay of FSF. 

D. Influence of Frequency Deviation and Harmonic
Frequency fluctuations and harmonics are common issues in

power systems. To verify the proposed variance expressions 
under these influences, the pure signal X contaminated by 
AWGN of SNR=75dB is employed with the introductions of 
harmonics. The settings of the simulation are, D=64, n1=0, M=1, 
L=3 and 4, the parameters of the added 2nd and 3rd harmonic 
are, A2=5 V, A3=20 V, θ2=1.2 rad, θ3=0.3 rad. The fundamental 
frequency f1 varies from 48 Hz to 52 Hz, with a step of 0.1 Hz. 
The results of the simulation and theoretical variances are 
shown in Fig. 3. 

In Fig. 3(a), we can see that, no matter the harmonics and 
frequency deviations, the proposed amplitude variance 
expression can estimate the simulation variance in [48, 52] Hz. 
But for the phase variance shown in Fig. 3(b), the proposed 
expression only valid within the range [49.5, 50.5] Hz, 

frequency out of the range will leads to error between the 
theoretical and simulation phase variances. Same as the 
amplitude variance, harmonics basically have no effect on the 
FSF-based phase variance. 

E. Simulations With Fixed Number of Samples
In many applications of the power system measurement,

there will be a suggested number of signal cycles, in other 
words, the number of samples under fixed sampling frequency 
is given. Thus, to make full use of the given samples N, the 
values of L and M need to be tuned according to 
N=L(D-1)+1+M. In this part, signal X with fs=2500Hz, 
SNR=63dB is adopted, f1 varies from 48Hz to 52Hz by 
0.4Hz-step. N is set to 250 and 400, respectively, i.e., 
approximately 5 cycles and 8 cycles when D=50, n1=0, the 
pairs of (L,M) when N=250 can be (1,200), (2,151), (3,102), 
(4,53), and (5,4), the pairs of (L,M) when N=400 can be (1,350), 
(2,301), (3,252), (4,203), (5,154), (6,105), (7,56), and (8,7). the 
simulation and theoretical results are shown in Fig. 4. Besides, 
the Total Vector Error (TVE) results, which can represent the 
accuracy level of the phasor estimator, are provided. 

(a) 

(b) 

Fig. 3. Variances of the FSF-based estimations under influences of frequency 
deviations and harmonics, (a) amplitude variance, (b) phase variance. 



(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 4. Variances of the FSF-based estimations, (a) amplitude variance, 
N=250, (b) phase variance, N=250, (c) TVE, N=250, (d) amplitude 
variance, N=400, (e) phase variance, N=400, (f) TVE, N=400. 

From Fig. 4, the following conclusions can be drawn: 1) the 
availability of the deduced variance expressions are proved by 
the consistency between the simulation and theoretical results. 
2) the amplitude variance is independent of M, it decreases due
to the increment of L, whereas the phase variance decreases
first and then increases, thus, it is a tradeoff to select the
combination of (L,M). The TVE can reflect the performance of
the phasor measurement method including the amplitude and
phase estimators. Considering the computational burden and
storage requirements, according to the TVE results, the best
choice is L=3 when the samples number N is fixed.

F. Simulations for Variance vs. CRLB Comparison
To verify the theoretical ratios between the FSF-based

variance and its CRLB, signal X has been employed to carry out 
the following simulations. The settings of FSF are n1=0, D=64, 
L=2, 3 and 4. The measurement interval M is set to 123, 190, 
and 253, respectively, to the requirement of unbiased 
estimation when L equals 2, 3, and 4. The simulation and 
theoretical ratios are listed in Table II, also the corresponding 
simulation variance and CRLB are provided. The theoretical 
ratios of amplitude and phase to their CRLB are calculated by 
5ENBW and 5ENBW/4, respectively. 

As seen in Table II, the derived ratios can be used to predict 
the true ratios (simulation ratios). And this validates the 
correctness of the proposed expressions again. One thing needs 



TABLE I  INFLUENCE OF L ON PHASOR ESTIMATION WITH AWGN 

(L, M) Simulation, 
OC>0 

Theoretical, 
OC>0 (L, M) Simulation, 

OC=0 
Theoretical,

OC=0 
Variance of amplitude estimations 

1, 60 2.35E-05 2.39E-05 1, 64 2.35E-05 2.39E-05
2, 60 1.6E-05 1.59E-05 2, 127 1.58E-05 1.59E-05
3, 60 1.29E-05 1.32E-05 3, 190 1.34E-05 1.32E-05
4, 60 1.13E-05 1.15E-05 4, 253 1.14E-05 1.15E-05
5, 60 1.04E-05 1.03E-05 5, 316 1.02E-05 1.03E-05
6, 60 9.48E-06 9.42E-06 6, 379 9.56E-06 9.42E-06
7, 60 8.91E-06 8.74E-06 7, 442 8.84E-06 8.74E-06
8, 60 8.34E-06 8.19E-06 8, 505 8.27E-06 8.19E-06

Variance of phase estimations 
1, 60 1.32E-09 1.27E-09 1, 64 1.25E-09 1.25E-09
2, 60 1.37E-09 1.35E-09 2, 127 7.93E-10 8.28E-10
3, 60 1.57E-09 1.52E-09 3, 190 6.95E-10 6.82E-10
4, 60 1.71E-09 1.68E-09 4, 253 5.84E-10 5.94E-10
5, 60 1.83E-09 1.83E-09 5, 316 5.38E-10 5.33E-10
6, 60 1.94E-09 1.96E-09 6, 379 4.98E-10 4.87E-10
7, 60 2.07E-09 2.08E-09 7, 442 4.58E-10 4.52E-10
8, 60 2.20E-09 2.20E-09 8, 505 4.16E-10 4.23E-10

TABLE II  COMPARISON BETWEEN THE VARIANCE AND CRLB 

(L, SNR) 
Simulation 
Variance CRLB Simulation 

Ratio 
Theoretical

Ratio 
Variance of amplitude estimations 

(2, 30) 2.69E-05 1.57E-05 1.7172 1.6538 
(2, 60) 2.64E-08 1.57E-08 1.6862 1.6538 
(2, 90) 2.62E-11 1.57E-11 1.6722 1.6538 
(3, 30) 2.22E-05 1.05E-05 2.1188 2.0412 
(3, 60) 2.17E-08 1.05E-08 2.0676 2.0412 
(3, 90) 2.23E-11 1.05E-11 2.1277 2.0412 
(4, 30) 1.90E-05 7.88E-06 2.4118 2.3690 
(4, 60) 1.94E-08 7.88E-09 2.4640 2.3690 
(4, 90) 1.89E-11 7.88E-12 2.3929 2.3690 

Variance of phase estimations 
(2, 30) 5.15E-01 1.91E-01 2.7036 2.6462 
(2, 60) 4.89E-04 1.91E-04 2.5664 2.6462 
(2, 90) 5.16E-07 1.91E-07 2.7066 2.6462 
(3, 30) 4.16E-01 1.27E-01 3.3954 3.2660 
(3, 60) 4.16E-04 1.27E-04 3.3548 3.2660 
(3, 90) 4.16E-07 1.27E-07 3.2016 3.2660 
(4, 30) 3.74E-01 9.57E-02 3.9065 3.7904 
(4, 60) 3.58E-04 9.57E-05 3.7453 3.7904 
(4, 90) 3.70E-07 9.57E-08 3.8645 3.7904 

to pay attention to is that, ratio between the variances and the 
CRLB increases as L increases, which means the increment of L 
will lower the effectiveness of the FSF-based amplitude and 
phase estimators. 

V. CONCLUSION

This paper focuses on the amplitude and phase variances by 
the frequency and shifting algorithm. Through the merits of the 
adopted Equivalent Weighting Filter, e.g., Equivalent Noise 
Bandwidth and Overlap Correlation, the effect of white noise 
on the amplitude and phase estimations is analysed 
theoretically by deducing the variance expressions of the 
amplitude and phase estimations with respect to SNR. In light 

of the proposed expressions, the FSF-based phase variance is 
inversely proportional to SNR as well as the amplitude variance. 
Meanwhile, it is shown that the amplitude and phase variances 
are influenced by the iteration times and the sampling 
frequency. The difference is that the phase variance depends on 
the measurement interval while the amplitude variance not. In 
addition, according to the given simulation results, this paper 
suggests that the optimal choice of the iteration times under the 
condition of a fixed measurement period is 3. 
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