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Abstract

B Understanding natural scenes involves the contribution of
bottom—up analysis and top—down modulatory processes.
However, the interaction of these processes during the catego-
rization of natural scenes is not well understood. In the current
study, we approached this issue using ERPs and behavioral and
computational data. We presented pictures of natural scenes
and asked participants to categorize them in response to differ-
ent questions (Is it an animal/;vehicle? Is it indoors/outdoors? Are
there one/two foreground elements?). ERPs for target scenes re-
quiring a “yes” response began to differ from those of nontarget

INTRODUCTION

Adaptive interaction with the environment requires or-
ganisms to perceive external reality through sensory sys-
tems and execute meaningful responses. However, the
complexity of the environment, as well as the inherent
uncertainty in the visual input, prevent the system from
analyzing all possible information contained within a view
with the same fine-grained level of detail. Critical analysis
steps include filtering out irrelevant information and
noise and filling in missing information, with the ultimate
aim of making sense of a view. Moreover, visual analysis
relies on processes that prioritize relevant or novel infor-
mation (Lang, Bradley, & Cuthbert, 1997; Wolfe, Cave, &
Franzel, 1989; Sokolov, 1963) and ultimately achieve a
gist and a semantic interpretation of a view (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976).

The visual input involves the contribution of several
structures and processes, which analyze increasingly
more complex visual properties. Initial stages of process-
ing analyze visual information, which comprises several
spatial scales. It is well known that activity in early visual
areas is sensitive to changes in brightness, contrast, ori-
entation, and spatial frequency (Pratt, 2011). Moreover,
several studies from the mid 1980s (Field, 1987) empha-
sized the role of scene statistics in the processing of nat-
ural scenes (De Cesarei, Loftus, Mastria, & Codispoti,
2017; Simoncelli & Olshausen, 2001). Scene statistics
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scenes, beginning at 250 msec from picture onset, and this ERP
difference was unmodulated by the categorization questions.
Earlier ERPs showed category-specific differences (e.g., between
animals and vehicles), which were associated with the process-
ing of scene statistics. From 180 msec after scene onset, these
category-specific ERP differences were modulated by the cate-
gorization question that was asked. Categorization goals do
not modulate only later stages associated with target/nontarget
decision but also earlier perceptual stages, which are involved
in the processing of scene statistics. Il

can be defined as quantifiable properties of the percep-
tual appearance of a scene, such as visual clutter, spatial
arrangement, naturalness, and others. In the context of
scene understanding, scene statistics may aid categoriza-
tion when they describe regularities, which are common
to a class of stimuli. For instance, Torralba and colleagues
demonstrated that artifactual scenes, compared with nat-
uralistic scenes, contain more edges and sharp contours
(Torralba & Oliva, 2003). Scene statistics are particularly
important when the visual system deals with natural
world views such as natural scenes, rather than with
well-controlled but simplified laboratory stimuli (Groen,
Silson, & Baker, 2017; Hasson, Malach, & Heeger, 2010).
It has recently been suggested that the visual system can
make efficient use of scene statistics. For instance, scene
statistics of energy and clutter have been shown to modu-
late the overall activity over occipital scalp electrodes
approximately 100 msec after the onset of a visual stimulus
(Groen, Ghebreab, Lamme, & Scholte, 2012).

Based on the available information, categorization of
the visual input can take place. View-invariant visual rep-
resentations represent a cortical correlate of abstraction
and are first observed at the level of the extrastriate visual
areas (Cauchoix & Crouzet, 2013; Miyashita, 1993;
Nishijo, Ono, Tamura, & Nakamura, 1993). Focusing on
the categorization of objects in scenes, a number of
studies have used ERPs to investigate the electrocortical
correlates of categorization and revealed differences be-
tween a target category (animals) and distractors begin-
ning at 150 msec (Thorpe, Fize, & Marlot, 1996); it is
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likely that these differences originated from neural gen-
erators in the inferior temporal cortex (Codispoti, Ferrari,
Junghofer, & Schupp, 2006; Fize et al., 2000). Moreover,
several studies have further differentiated between an
initial modulation, which is tied to sensory differences
between stimuli, and a later modulation interval, associ-
ated with the target relevance of some stimuli, which is
defined by the task that participants are carrying out
(Johnson & Olshausen, 2003; VanRullen & Thorpe, 2001;
see also Rossion & Caharel, 2011, for similar results in
the processing of faces). Importantly, categorization in
these studies is observed when participants are told
beforehand what should be considered as a target, creat-
ing a top—down presetting, which may bias the rapid
categorization of natural scenes (De Cesarei, Peverato,
Mastria, & Codispoti, 2015; Schendan & Ganis, 2015;
Fabre-Thorpe, 2011; Treisman, 2006; Enns, 2004).

Little is currently known about whether rapid categori-
zation is restricted to some categorization tasks, such as
naturalistic—artifactual distinction, or whether it is linked
to more domain-general processes. A previous study ad-
dressed this issue by comparing the effects of different
task instructions (“categorize animals” or “categorize
vehicles”) on the processing of the same images (animals,
vehicles, or various distractors; VanRullen & Thorpe,
2001). When ERPs in response to the same images were
compared, depending on whether they were targets or
nontargets, the ERP began to differ between 156 and
212 msec, with differences in topography and latency
depending on the categorization goal. Furthermore,
another study used the same approach to examine the
categorization of animals and humans compared with
distractors and observed later effects for task-driven
effects compared with picture-related effects, for both
target categories (Rousselet, Macé, Thorpe, & Fabre-
Thorpe, 2007).

Top—-down modulations combine with bottom-up pro-
cesses in the analysis and interpretation of the visual
input. In terms of top—down processes, it has often
been noted that the brain analyzes incoming input
actively and through inferential processes. This concept
is not new and dates back to Von Helmholtz’s (1867)
concept of unconscious inferences, which was later de-
veloped by Gregory (1970) and, more recently, by several
models in cognitive neuroscience (Schendan & Ganis,
2015; Friston & Kiebel, 2009; Philiastides & Sajda, 2006;
Bar, 2003). Within these views, the system is thought to
analyze the incoming input not through a comprehensive
and exhaustive analysis but using an inferential pro-
cessing, which involves the generation and testing of per-
ceptual hypotheses. For this reason, visual perception
represents a form of perceptual decision-making (Seger
& Peterson, 2013; Philiastides & Sajda, 2006). Several
studies have investigated perceptual decision-making in
conditions in which the visual input is perceptually de-
graded, such as in peripheral vision. In all these cases,
the brain is called upon for an inferential choice to
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compensate for the loss of information, which is due to
perceptual degradation. Clear effects of degradation and
object category are usually observed at the level of
object-specific areas, such as the lateral occipital complex
(De Cesarei, Mastria, & Codispoti, 2013; Grill-Spector,
Kourtzi, & Kanwisher, 2001).

Recent studies have emphasized the interaction of
bottom—up and top—down factors in the interpretation
of natural scenes (Groen et al., 2017; Harel, Kravitz, &
Baker, 2014; VanRullen & Thorpe, 2001). Scenes are rich
in visual information, concerning, for instance, the spatial
position of objects, the paths for navigation, the geo-
graphic context, the biological relevance, novelty, and
so on (Malcolm, Groen, & Baker, 2016). Based on task
demands, each of these sources of information may re-
quire focused attention, resulting in a variety of percep-
tual tasks within the same scene. How is the animal in a
scene categorized when people are focusing on the envi-
ronment in which the animal is located? A recent study
presented pictures of objects and asked participants to
perform in one of six different tasks. It was observed that
object information could be decoded from fMRI activity
over posterior fusiform areas, but that object information
decoding varied between different tasks (Harel et al.,
2014). However, a recent study comparing the effects
of task goals on the processing of visual scenes failed
to observe goal-related modulations in the processing
of naturalness and spatial expanse up to the P2 ERP com-
ponent (Hansen, Noesen, Nador, & Harel, 2018). Taken
together, these results suggest that categorization goals
may modulate the accumulation of information from
the same visual input, at the level of extrastriate struc-
tures. However, the identification of the specific scene
or object properties for which processing can be modu-
lated remains a matter of debate, as does the timing at
which this modulation occurs.

The Research Problem

This study focused on the neural processes that are
implied in visual categorization and examined the extent
to which they are general or to which they depend on the
observer’s goal. To this end, pictures were presented,
and participants categorized the pictures according to
different goals (Figure 1). This study examined four re-
search questions (summarized in Table 1):

Research Question 1 (RQ1). What is the role of top—down
attention, independent of bottom—up features?
Expanding on previous studies (Rousselet et al.,
2007; VanRullen & Thorpe, 2001), this study examined
the role of task-related relevance on the processing
and response to a natural scene. Here, we used a de-
sign in which several categorization questions could
be asked (Figure 1), and the same picture could serve
both as target and as nontarget for different questions.
In this way, the overall difference between target and

Volume 31, Number 1

(/€91.8821/601/1/1€/4Pd-8]0ILE/UDOINPS W8P/ dRY WO} papeojuUMOQ

& U20|

¥20Z ABIN €2 uo Jasn YNOOTOE 1A 1ANLS 1193d VLISHIAINN A jpd'eeeL0



TRIAL 1 2 3 4
PICTURE
QUESTION ANIMAL? OUTDOOR? VEHICLE? ONE?
QUESTION 8
DOMAIN Content Scenario Content Number
CATEGORY Animal * Vehicle Vehicle * Animal
(* = probed by Outdoor Indoor * Outdoor Outdoor
question) One One Two Two *
DECISION Target Nontarget Target Nontarget

Figure 1. Example of four trials, with coding of the experimental factors.

nontarget scenes is not confounded by any physical
difference between scenes, as pictures contributing
to the “target” and “nontarget” conditions are the
same.

Research Question 2 (RQ2). What is the role of bottom—up

Sfeatures, independent of attention? Several previous
studies indicated that bottom—up features, including
sensory and compositional properties of a scene, are
associated with modulation of ERPs (e.g., spectral
power, De Cesarei et al., 2013; figure completion,
Hazenberg & Van Lier, 2015; symmetry, Bertamini &
Makin, 2014). In the current study, we examined ERP
differences between physically different scenes inde-
pendent of categorization goal and target status. The
functional meaning of these ERP modulations and
the extent to which they vary depending on one’s goals
were examined in RQ2.1 and RQ3.

Research Question 2.1 (RQ2.1). Are bottom—up driven

ERP category differences related to a categorization
based on scene statistics? The observation of bottom—up
related differences between the processing of two dif-
ferent scenes bears little information concerning which
scene features are being analyzed, how the processing
of these features contributes to the ERP modulation,
and how ERP differences reflect processes that are
related to the categorization task. Here, we approached
this issue from the point of view of a system engaged
in a binary classification task. Specifically, we compared
bottom—-up driven ERP modulations (RQ2) with the
performance of an artificial system, which had to
categorize scenes in the same categories as those given
to human participants, based solely on scene statistics
of energy and clutter (Groen et al., 2012; Scholte,
Ghebreab, Waldorp, Smeulders, & Lamme, 2009). A

similarity in the performance of the two systems (ERP
differences and artificial classification performance)
would support the idea that scene statistics are in-
volved in classification and that ERP modulations reflect
categorization-oriented processing of scene statistics.

Research Question 3 (RQ3). Do categorization goals

modulate bottom—up analysis? The moment in which
the observer’s goals and attention begin to modulate
visual processing is a matter of debate. Previous
studies compared active to passive tasks, in which
scenes were either relevant for the task that partici-
pants were carrying out or irrelevant and, in some
cases, distractors (e.g., Groen, Ghebreab, Lamme, &
Scholte, 2016). However, very few studies have, to
date, compared scene processing during active cate-
gorization tasks while varying the categorization
question (Hansen et al., 2018; Harel et al., 2014). In
this study, we compared scene processing after three
different categorization questions (Is it an animal/
vehicle? Is it indoors/outdoors? Are there one/two fore-
ground elements?) and examined the extent to which
bottom—up differences (observed in RQ2) were similar
across tasks or varied depending on the categorization
question.

Research Question 4 (RQ4). What is the role of memory

systems in maintaining the categorization goal?
Finally, we investigated to what extent a sustained cat-
egorization goal (i.e., having the same categorization
question for a series of trials) modulates the process-
ing of natural scenes, compared with a situation in
which the categorization goal varies on a trial by trial
basis. If the goal of the observer remains the same
throughout a long period, the system can be expected
to form a better template of the categorization target,
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which may result in earlier or stronger target-related
effects, compared with a condition in which the cate-
gorization question is constantly changing.

METHODS
Participants

A total of 36 participants (24 women) took part in the
study. Ages ranged from 19 to 37 years (M = 22.19 years,
SD = 3.21 years). All participants had normal or corrected-
to-normal vision, and none of them reported current or
past neurological or psychopathological problems.
Participants had no previous experience with the mate-
rials used in this experiment. The experimental protocol
conforms to the declaration of Helsinki and was approved
by the Bioethics Committee of the University of Bologna.

Stimuli

A total of 576 pictures were selected from the Internet for
this study. The picture set was created along three orthog-
onal dimensions: content (animal or vehicle), number of
foreground elements (one or two), and scenario (indoors
or outdoors). Thus, each picture portrayed one or two
foreground elements (animal or vehicle) in an indoor or
outdoor scenario, for a total of eight possible com-
binations, examples of which are reported in Figure 2.
For each combination of the three orthogonal factors,

Table 1. Main Research Questions

72 scenes were collected. Pictures were in color and
were balanced for brightness and contrast (0.5 and 0.8,
respectively, on a 0-1 linear scale). Each picture was re-
sized to 383 X 287 pixels and projected on a 21° monitor
placed 60 cm from the participant, yielding a visual angle
of 19.8° (horizontal) by 14.7° (vertical). We also used 128
additional pictures portraying pieces of furniture, houses,
flowers, and musical instruments for practice phases.

Scene Statistics Calculation and Machine
Learning Categorization

For each picture, spatial coherence and contrast energy
were calculated using the algorithm developed by
Scholte et al. (2009). This procedure estimates the beta
(contrast energy) and gamma (spatial coherence) param-
eters of the Weibull fit to the distribution of contrast.
Scene statistics were used to investigate the extent to
which an artificial classifier (support vector machine
[SVM)) is able to categorize scenes using the same tasks
that human participants were required to carry out: animals
versus vehicles, indoors versus outdoors, and one versus
two foreground elements. An SVM is a classification algo-
rithm dedicated to finding the best separation (hyper-
plane) between two classes of data based on one or
more continuous predictor variables and has been used
in previous research on visual categorization (De Cesarei
& Codispoti, 2015; Crouzet & Serre, 2011; Xiao, Hays,
Ehinger, Oliva, & Torralba, 2010). The picture set was split

Question Section

Critical Comparison Notes

RQ1 What is the role of top—down
attention, independent of
bottom-up features?

Research Question 1;
Figure 3; Figure 4

RQ2 What is the role of bottom—up Research Question 2;
features, independent of Figure 5A
attention?

RQ2.1 Are bottom-up driven ERP
category differences related
to a categorization based on
scene statistics?

Research Question 2.1;
Figure 5B; Figure 5C

RQ3 Do categorization goals
modulate bottom-up
analysis?

Research Question 3;
Figure 6

RQ4  What is the role of memory
systems in maintaining the
categorization goal?

Research Questions 1, 3

Factor decision:
target vs. nontarget

Factor category:
animal vs. vehicle;
indoors vs. outdoors;
one vs. two

Correlation ERP category
differences (RQ2) vs.
machine learning
performance based on
scene statistics

Interaction involving
category and question:
(animal* vs. vehicle*) vs.
(animal® vs. vehicle®) o

* = probed by question
(e.g., “Isitan
animal/vehicle?”)

= not probed by question
(e.g., “Is it indoors/outdoors/
one/two?”)

Interaction with factor
block (sustained;
randomized; uncued)

Each research question is listed, along with relevant sections in the paper and figures, and critical comparisons.
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Figure 2. Picture examples.
One representative example

for each combination of the ONE

content, scenario, and number
domain is displayed.

VEHICLES

INDOORS OUTDOORS

TWO ONE TWO

into a training subset and a test subset, keeping an equal
number of pictures from each category in each subset.
Contrast energy and spatial coherence for pictures in the
training set, along with corresponding category labels,
were given as input to an SVM. A total of 288 scenes were
used for training, and an equal number of pictures were
used for testing. The training and tests were repeated
100 times, and a different sample of pictures was selected
each time for training and testing. The results of these
runs were collapsed to obtain averages and standard
errors of the mean for SVM categorization accuracy.

Procedure

The experiment required participants to match pictures
and categorization questions. In each trial, a picture
and a question were presented, and participants had to
respond as to whether the picture and the question
matched each other (Figure 1). For instance, when see-
ing a picture of two cats in the kitchen, participants could
be asked whether the scene was an outdoor scene and,
thus, were expected to respond “no.” Alternatively, ob-
servers might see the same picture and be asked whether
it contained an animal, and therefore, the expected an-
swer was “yes.” Each participant saw each picture once.
Across participants, each picture was associated with all
questions (animal, vehicle, indoors, outdoors, one,
two). Throughout the experiment, each question was
associated an equal number of times with each combination

Table 2. Design of the Experimental Blocks

of the three orthogonal dimensions. This design allowed
each picture to be “target” and “nontarget” an equal
number of times, therefore ruling out any physical differ-
ence between targets and nontargets. Moreover, each
picture could be a target or nontarget for three different
reasons—because of its content, the number of ele-
ments, or the scenario—therefore allowing us to inves-
tigate the effects of the question domain (scenario,
content, or number) on the categorization of natural
scenes. The whole experiment lasted about 1 hr, includ-
ing breaks between blocks.

Block Procedure

The experiment was divided into three blocks (random-
ized, sustained, and uncued), and the order of blocks was
counterbalanced across participants (Table 2). Each block
consisted of 192 trials and was preceded by a practice
phase. In the randomized and sustained blocks, one of
six different questions (animal, vehicle, indoors, out-
doors, one, two) was presented before each picture,
whereas in the uncued block, the question was pre-
sented only after the picture. In all blocks, a yes/no re-
sponse was required.

In the randomized block, the order of questions was
pseudorandomized. In neighboring trials of the random-
ized block, a different question was asked. More specifi-
cally, as questions could pertain to the three orthogonal
domains of content, scenario, or number (Figure 1), it was

Block Description Categorization Question Picture Decision
Sustained Questions follow each  Presented before One from the orthogonal Defined based on the
other predictably the picture combination of content match between question
(same question (animal/vehicle), scenario and picture; 50% target,
32 times in a row) (indoors/outdoors), and 50% nontarget
number (one/two)
Randomized  Questions follow each  Presented before Same as above Same as above
other unpredictably the picture
Uncued Questions follow each ~ Presented after Same as above Same as above

other unpredictably the picture
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decided that questions from the same domain would
never be asked in two successive trials. Thus, for instance,
if in one trial the question “Is it an animal?” was asked,
the next trial could ask whether the picture was indoors,
outdoors, with one or with two foreground elements, but
not whether the picture portrayed an animal or a vehicle.
This was done to avoid repetition and response switch
effects between two successive trials. The randomized
block contained 192 trials and was preceded by 32 prac-
tice trials.

In the sustained block, the same question was asked 32
times in a row. Thus, an “animal” question was always
followed by an “animal” question. After all 32 trials, a
short break was given to provide instructions concerning
the following question, and after this break, new ques-
tions that were identical to each other were presented.
Similar to the randomized block, it was decided that
questions from the same domain would never be asked
in adjacent series of questions. The sustained block was
preceded by two practice blocks of 32 questions each.

Finally, in the uncued block, pictures were presented
before the categorization question. The uncued block
was pseudorandomized, with constraints that were iden-
tical to the randomized block, and it was also preceded
by 32 practice trials.

Trial Procedure

In the randomized and sustained block, each trial began
with the presentation of a question that remained on
screen for 1500 msec. A fixation cross was then presented
in the center of the screen for a variable interval of be-
tween 500 and 750 msec. After this interval, a picture
was presented and remained on screen for 20 msec.
After picture offset participants answered the question
while the screen was blank, and, following their response
and an additional 750 msec of blank screen, feedback was
presented and stayed on screen for 1500 msec. In par-
ticular, participants were asked to decide whether the
picture they had just seen matched the question that
had been asked before the picture and indicate their
choice by pressing one of two alternative keys (v or b)
on a computer keyboard. Participants were required to
respond in all trials, and the response key was counter-
balanced across participants. After an intertrial interval
of 500 msec, the next trial began. In the uncued block,
an initial fixation cross (500 msec) was followed by a
20-msec picture and a 1000-msec blank interval. The
question was then presented and stayed on screen until
the participant responded. Subsequently, feedback was
presented for 1500 msec.

EEG Recording and ERP Analysis

EEG was recorded at a sampling rate of 512 Hz from 62
active sites using an ActiveTwo Biosemi system. Three
additional sensors were placed below the participant’s
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left eye and laterally to the outer canthus of each eye
to allow for detection of blinks and eye movements.
The EEG was referenced to an additional reference elec-
trode located near Cz during the recording. A hardware
fifth-order low-pass filter with a —3 dB attenuation factor
at 50 Hz was applied online. Off-line analysis was per-
formed using Emegs (Peyk, De Cesarei, & Junghofer,
2011). EEG data were initially filtered (0.1 Hz high pass
and 40 Hz low pass), and eye movements were corrected
by means of an automated regressive method (Schlogl
et al., 2007). After this correction, the three additional
sensors for eye movement correction were discarded.
Trials and sensors containing artifactual data were de-
tected through a semiautomatic procedure (Junghofer,
Elbert, Tucker, & Rockstroh, 2000). Trials containing a
high number of neighboring bad sensors were discarded;
for the rest of the trials, sensors containing artifactual
data were replaced by interpolating the nearest good
sensors. Finally, data were rereferenced to the average
of all sensors, and a baseline correction was performed,
based on the 100 msec before stimulus onset.

Data Analysis
General Strategy

The experimental design contained an orthogonal asso-
ciation between picture content, scenario, and number
and the question that was asked. Specifically, this design
allowed us to independently investigate bottom—up cate-
gory differences or top—down decisional modulations.
The analysis was organized along the main questions of
the paper, which are summarized in Table 1.

RQ1. What Is the Role of Top—Down Attention,
Independent of Bottom—Up Features?

This analysis focused on the modulation, which is related
with target relevance, and therefore included a Decision
factor (target vs. nontarget). In addition, to examine
whether target-related differences depend on the ques-
tion that is being asked and whether they vary according
to the block structure (RQ4), we added Domain (con-
tent, scenario, or number) and Block (randomized, sus-
tained or uncued) as additional factors.

RQ2. What Is the Role of Bottom—Up Features,
Independent of Attention?

To examine bottom-up driven differences between
scenes, we averaged ERPs depending on the contents,
scenario, or number of elements that were present in
the picture. Therefore, this analysis involved the com-
parison of animals versus vehicles, indoors versus out-
doors, and one versus two elements. This analysis was
carried out in the uncued condition to examine scene
processing in a condition in which a categorization
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question had not been asked and in which participants
did not yet have a categorization template that could
modulate scene processing.

RQ2.1. Are Bottom—Up Driven ERP Category Differences
Related to a Categorization Based on Scene Statistics?

A further analysis was carried out to functionally charac-
terize the ERP differences observed in RQ2. Specifically,
we investigated the extent to which bottom—up ERP
modulations correlate with the performance of a classifi-
cation algorithm, which operates based solely on scene
statistics of energy and clutter.

RQ3. Do Categorization Goals Modulate
Bottom-Up Analysis?

A main objective of this study was to investigate whether an
active categorization goal is able to modulate bottom-up
processing. To this end, we replicated the analysis carried
out for RQ2 on all blocks (both cued and uncued) and
added an additional factor, Probed (probed, not probed
or uncued), which indicated whether each bottom—up
category (e.g., animal or vehicle) was probed by the cate-
gorization question (e.g., Is it an animal?) or not (e.g., Is it
indoors?). This factor is exemplified in Table 1 and in
Figure 1.

Q4. What Is the Role of Memory Systems in Maintaining
the Categorization Goal?

Categorization questions were shown before the image
in the randomized block, where they varied on a trial-
by-trial basis, and in the sustained block, where they re-
mained the same throughout 32 trials. Therefore, in the
analysis of RQ1, we included an additional factor, Block
(sustained, randomized, uncued), to investigate modula-
tions, which are related to the maintenance of a catego-
rization template through several trials. In RQ3, we
compared the cued (randomized and sustained) blocks
to the uncued block using the Probed factor (probed,
not probed, uncued). In a preliminary analysis, we used
a Probed factor with five levels (randomized probed, ran-
domized not probed, sustained probed, sustained not
probed, uncued) and observed similar patterns in the
sustained and randomized blocks. In the reported analy-
sis, the sustained and randomized blocks were therefore
collapsed together.

Behavioral Responses

RTs were collected after each picture in the cued condi-
tions (randomized and sustained) and after each ques-
tion in the uncued condition. RTs were only analyzed
for correct responses, and responses that were faster or
slower than 2.5 SD from the individual mean were ex-
cluded from the analysis. Error rates and RTs were

analyzed according to RQ1 and therefore were aver-
aged according to the question domain, the block in
which each trial was presented, and whether the picture
and the question matched or not (Decision factor: target
vs. nontarget).

Statistical Analysis

In all analyses, data were analyzed using repeated-measure
univariate ANOVAs with Huynh-Feldt correction. In all
cases in which a significant main effect of a factor with
more than two levels was observed, we proceeded with
post hoc tests using paired-sample ¢ tests. For all ANOVA
effects, we calculated and have reported the partial eta
squared, which reflects the proportion of variance that is
accounted for by experimental manipulations. For data
visualization, condition averages are accompanied by
within-participant SEMs (Loftus & Masson, 1994), calcu-
lated following the procedure suggested by O’Brien and
Cousineau (2014).

To collapse multidimensional ERP data for statistical
analysis, the region and time intervals of interest were
selected based on previous studies in the field of scene
and object categorization (Groen et al., 2016; De Cesarei
et al., 2013; Groen, Ghebreab, Prins, Lamme, & Scholte,
2013; Scholte et al., 2009; Rousselet et al., 2007; VanRullen
& Thorpe, 2001). For the analysis of top—-down modu-
lations (RQ1), ERPs were averaged over lateral temporal
areas in the 250400 msec time interval, and hemispheric
differences were analyzed by adding a Hemifield factor
(left vs. right) to the ANOVA design. In the analysis on
the effects of bottom—up features (Questions RQ2-RQ3),
two time intervals were selected, namely from 80 to 180 msec
and from 180 to 250 msec over central posterior sensors.

RESULTS
Behavioral Responses

Error rates and RTs are reported in Figure 3. In terms of
categorization accuracy, we observed a main effect of
Block, F(2, 70) = 4.172, p = .021, n?, = .107, with fewer
errors in the sustained block compared with both the
randomized block, #(35) = 2.37, p = .023, and the uncued
block, #(35) = 2.979, p = .005, and no difference be-
tween the randomized and the uncued block, #(35) =
—0.037, p = .971. We also observed significant differ-
ences between Question domains, F(2, 70) = 77.590,
p < .001, nlzj = .689, with fewer errors when the ques-
tion concerned picture content and lowest accuracy
when it concerned scenario, and significant differences
between all question domains, all #5(35) > 6.497, ps <
.001. No significant differences involving the Decision
factor (target vs. nontarget) were observed.

Analysis on RTs revealed main effects of Block, F(2, 70) =
34.758, p < .001, 15 = .498, with faster responses in the
sustained block compared with the randomized and
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Figure 3. Behavioral results for RTs (lines) and error rate (bars),
showing the effects of Decision (target vs. nontarget), Block
(sustained vs. randomized vs. uncued), and Question domain (content vs.
scenario vs. number). In each plot, error bars represent the SEM for
within-participant designs.
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uncued blocks, ts(35) > 6.307, ps < .001, and more rapid
responses in the randomized compared with the uncued
block, #(35) = 3.184, p = .003. We also observed a
Decision effect, F(1, 35) = 35.140, p < .001, 13 = .501, with
faster responses to target scenes compared with non-
target scenes, #(35) = 5.678, p < .001, and a Question
domain effect, F(2, 70) = 229.241, p < .001, T]Iz) = .868,
with faster responses to questions concerning scene con-
tent compared with those containing number of ele-
ments or scenario, ts(35) > 7.367, ps < .001, and more
rapid responses to number of elements compared with
scenario questions, #(35) = 15.25, ps < .001.

Finally, we observed an interaction between Block and
Question domain, F(4, 140) = 6.511, p < .001, 0}, = .157.
In all blocks, we observed a Question domain effect, F(2,
70) > 110.256, p < .001, nf, > 759, with faster responses
for questions concerning number than those regarding
scenario and faster responses for content rather than
scenario, s(35) > 4.73, ps < .001. In the uncued block,
no difference was observed between questions concern-
ing content and number, #(35) = .846, p = .403.

ERP Results

RQ1: What Is the Role of Top—Down Attention,
Independent of Bottom—Up Features?

We analyzed the data set regarding Decision (targets vs.
nontargets) to investigate the effects of the categori-
zation task, independent of bottom—-up differences
between scenes (Figure 4A). The main result of this anal-
ysis was that, on left sensors, targets elicited less positive
ERPs compared with nontargets in the sustained and
randomized, Fs(1, 35) > 5.793, ps = .021, s > .142,
but not in the uncued, blocks (Figure 4B). The ANOVA
results, analysis, and post hoc for the significant
Hemisphere X Block X Decision interaction are re-
ported in Table 3. In addition to the three-way inter-
action, a significant main effect of Block was observed,
F(2,70) = 453, p = .017, nf, = .115, indicating more
positive ERPs in the uncued compared with the ran-
domized block, #(35) = —2,624, p = .013. A significant
effect of Hemisphere, F(1, 35) = 5.89, p = .021, nf) =
.144, indicated more positive ERPs on right compared
with left sensors, and significant two-way interactions
between Hemisphere and Block, F(2, 70) = 6.499, p =
.003, 'r]lz) = .157, and Hemisphere and Decision, F(1, 35) =
9.288, p = .004, nf) = .210, were also observed as a result
of the three-way interaction described in Table 3. In this
analysis, no significant interactions simultaneously involv-
ing factors Domain and Decision were observed.

RQ2: What Is the Role of Bottom-Up Features,
Independent of Attention?

The effects of category were analyzed separately for
each picture domain in the uncued block (Figure SA).
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Figure 4. The effects of
Decision on ERPs. (A) ERP
waveforms for target and
nontarget scenes, separately

in cued and uncued blocks,
are represented. Sensors used
for computing these average
waveforms are reported in
green on the sensor map.
Topographic plots show the
ERP difference between targets
and nontargets, from a back of
head view. (B) ERP waveforms
for the target/nontarget
difference are reported, along
with a bar graph showing the
mean and within-participant
SEM of the scored 250—400 msec
time interval, separately for

left and right sensors and for
the cued and uncued blocks.
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Pictures of animals elicited significantly more positive
ERPs compared with vehicles in both time intervals.
Indoor scenes also elicited more positive ERPs compared
with outdoor scenes, but only in the 80-180 msec time

Table 3. ANOVA Results of the Hemisphere X Block X Decision Analysis

interval. For the number domain, no significant or close
to significant main effect or interaction was observed.
Statistical results for each comparison in the uncued
condition are reported in Table 4.

F df Effect df Error b nf)
Hemisphere X Block X Decision 4.189 2 70 .021 107
Left
Block X Decision 3.599 2 70 .033 .093
Sustained, decision effect: 5.839 1 35 .021 143
Randomized, decision effect: 5.793 1 35 .021 142
Uncued, decision effect: 0.535 1 35 469 .015
Decision 6.133 1 35 .002 252
Right
Block X Decision 1.855 2 70 164 .050
Decision 0.227 1 35 636 .006
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Figure 5. The effects of
Category on ERPs. (A) ERPs in
the uncued block are shown
for all categorical differences.
Sensors used for computing -
these average waveforms are
reported in green on the sensor
map. (B) Distribution of
pictures in the scene statistic
space defined by contrast
energy and spatial coherence.
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RQ2.1: Are Bottom-Up Driven ERP Category Differences
Related to a Categorization Based on
Scene Statistics?

An SVM was trained to perform the same classification
tasks as human participants based on scene statistics of
energy and clutter (Figure 5B). The SVM performed
above chance when categorizing according to the
Content and Scenario dimension (content accuracy M =
65.69%, SEM = 1.90%; scenario accuracy M = 58.35%,
SEM = 2.01%) but not for the number dimension (accu-
racy M = 51.13%, SEM = 1.85%).

SVM accuracy values were correlated with the category-
specific ERP modulation in the 80-180 and 180-250 msec
time intervals in the uncued condition (Figure 5C). To
increase the points in this correlation while keeping
enough trials and pictures in the ERP and machine learn-
ing analysis, the data set was further split into three
percentiles based on spatial coherence. Ranking was con-
ducted within each of the eight conditions defined by the
combination of content, scene, and number, and each
rank was equally present in the training and test set.
Confidence intervals for ERP data are calculated using
the suggested corrections for within-participant designs
(O’Brien & Cousineau, 2014; Loftus & Masson, 1994). For
both time intervals, a linear relationship between artificial
algorithm performance and ERP modulation was ob-
served, Pearson7(9) = —.85, p = .004, for the 80-180 msec
time interval, and Pearson 7(9) = —.781, p = .012, for the
180-250 msec time interval.

118  Journal of Cognitive Neuroscience

RQ3: Do Categorization Goals Modulate
Bottom-Up Analysis?

The effects of goals on the bottom—-up processing of
scenes are reported in Figure 6. The main result of this
analysis is that, in the 180-250 msec time interval,
bottom—up differences for the content dimension (ani-
mals vs. vehicles) were more pronounced in the cued
blocks when the categorization question did not probe
picture content, compared with both the uncued, F(1,
35) = 7.666, p = .009, 0} = .18, and the nonprobed
condition, F(1, 35) = 3.667, marginally significant p =
064, m = .095 (Figure 6A). The ANOVA results support-
ing this interaction are reported in Table 4. Moreover,
differences between indoor and outdoor scenes were
observed in the 180-250 msec time interval for the cued
blocks, F(1, 35) = 5.924, p = .020, 1’ = .145, but not for
the uncued block, F(1, 35) = 0.554, p = 462, 0}, = .016
(Figure 6B; Table 4). However, no interaction simul-
taneously involving factors Category and Probe, or
Category and Block, was observed in this analysis.
Finally, no significant effects or interactions involving
the Probe or Category factors were observed for the
number domain in either time interval.

DISCUSSION

This study investigated the categorization of natural
scenes and focused on the role of task goals. Specifically,
the same scenes were categorized under different task
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involving Category

factor

“Degrees of freedom are shown for the ANOVA interaction Time X Category.

goals that were operationalized as different categoriza-
tion questions. Initial visual processing was driven by
scene statistics, and later stages reflected target process-
ing. However, even early stages reflecting category-
specific differences were modulated by categorization
goals.

Decision-related and domain-independent effects were
first observed after the peak of the P2, from 250 to 400 msec
(RQ1). In this time interval, we did not observe any effect
related to question or category domain, and less positive
ERPs for targets compared with nontargets were observed
on left temporal sensors. Therefore, this ERP modulation
reflects processes related to the decision task that is being
carried out and is category-general rather than category-
specific. The direction of this ERP effect is reminiscent of
the classic rapid categorization effect (De Cesarei et al.,
2015; Rousselet et al., 2007; Codispoti et al., 2006;
VanRullen & Thorpe, 2001; Thorpe et al., 1996); in this
study, however, it was considerably delayed and lateralized.
A delayed task-related effect compared with sensory-driven
ERP modulations was observed in a previous study, in
which the target stimuli were animals or humans in dif-
ferent blocks (Rousselet et al., 2007). It has been suggested
that the switch of top—down biases, which is required when
multiple categorization goals are pursued throughout an
experiment, is responsible for the late effects that were ob-
served (Rousselet et al., 2007). However, in Rousselet
et al.’s study, each block contained 192 trials, whereas in
this study, the target category changed every 32 trials
(sustained block) or every other trial (randomized block).
Therefore, it is likely that a more flexible strategy was used
by the system to provide optimal top—down bias in rapid
scene categorization. This categorization strategy may
have prevented top—down modulations from influencing
earlier visual areas and restricted top—down decisional
presetting to a relatively later stage of processing, which
is reflected in the activity over temporal scalp areas
(Rousselet et al., 2007). In this study, the decision-related
ERP modulation was left-lateralized, which may suggest
that verbal processes, such as object naming, are in-
volved in this type of categorization task (e.g., Price,
Moore, Humphreys, Frackowiak, & Friston, 1996). An
intermediate stimulus representation, which is inde-
pendent from visual attributes, may be adaptive when
frequent changes in target stimulus require the system to
change top—down bias (Rousselet et al., 2007). However,
left lateralization on temporal or posterior regions was
not reported in two previous studies, which used a
multiple-category design (Harel et al., 2014; VanRullen &
Thorpe, 2001), although more left than right sensors
showed significant effects in Rousselet et al.’s (2007)
study. Therefore, future studies are needed to further
understand the role of lateralized processing in scene
categorization.

Scene statistics and, in particular, statistics of contrast
energy and spatial coherence modulated ERPs in the
time range from 80 to 250 msec from stimulus onset
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Figure 6. Modulation of
Category effects, separately for
the content and the scenario
category. (A) Average ERPs for 2
the animal and vehicle pictures
are shown, separately for trials
in which the picture was not
preceded by any question
(uncued), in which it was
preceded by a question probing
the “content” domain (i.e.,
“animal” or “vehicle”: probed)
or by another question (content
not probed). The bar graph
shows the category differences
in each of the three conditions.
Scalp topographies report the
ERP difference between the
Category modulation in

the probed and unprobed,
compared with the uncued,
conditions. (B) ERP modulation
in the cued and uncued
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(RQ2). This modulation is consistent with previous data
(Groen et al., 2012; Scholte et al., 2009), which indicated
that ERP activity at about 100 msec after stimulus onset
can be predicted based on these scene statistics. Moreover,
categorical differences were observed within some, but not
all, picture domains. More specifically, we observed that,
within each domain, different categories were associated
with differently pronounced ERP modulations, which were
maximal for content (animals vs. vehicles), intermediate for
scenario (indoors vs. outdoors), and absent for number
(one vs. two). What does this ERP modulation reflect
(RQ2.1)? Here, we observed a clear correlation between
these ERP modulations and the accuracy of an artificial
categorization algorithm, which categorized scenes solely
on the basis of contrast statistics. In this time interval,
ERP category modulations were associated with the
processing of category-specific visual regularities in con-
trast profile (Groen et al., 2012; Scholte et al., 2009).
Importantly, contrast statistics are by no means the only
factor that modulates early ERPs, and a number of sensory
and perceptual factors, including overall spectral power
(De Cesarei et al., 2013), figure completion (Hazenberg
& Van Lier, 2015), and symmetry (Bertamini & Makin,
2014), modulate early ERPs. The present results indicate

that ERP modulation in the 80-250 msec time interval re-
flects the processing of contrast statistics not only as a main
modulatory effect (Scholte et al., 2009) but also in terms of
categorical differences.

The analysis of bottom—up regularities and the guid-
ance by top—down goals interacted in the categorization
of natural scenes, and this interaction began early in time
(180 msec; RQ3). Similarly, in a previous study, partici-
pants viewed natural scenes, and the bottom—up driven
difference between manmade and natural scenes was
suppressed when participants performed an orthogonal
letter discrimination task or a 2-back memory task
(Groen et al., 2016); however, no task-related difference
in the bottom—up driven difference between manmade
and natural scenes was observed before 250 msec.
Although the exact latency for the observation of task
effects may depend on differences in task design or de-
mands, these results are consistent in indicating that top—
down presetting is able to modulate bottom—up driven
processing. Moreover, the current results indicate that
not only the presence of a picture task but also the spe-
cific categorization goal may modulate the use of scene
statistics as reflected by ERPs as early as 180 msec after
scene onset.
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Scenes are rich sources of information, and goal-
related attention can be directed to different features of
a scene (Malcolm et al., 2016). In particular, a distinction
has been made between vision at a glance, which rapidly
captures the categorical belonging or gist of a scene, and
vision with scrutiny, which happens after initial percep-
tion and allows observers to focus on nondefault scene
characteristics (Hochstein & Ahissar, 2002). In vision at
a glance, goal-directed attention is not required, and
default categorization is carried out even in the absence
of specific requirements (Rosch et al., 1976). The present
results showed that the categorization, which was carried
out in the uncued block, which was not guided by task
goals, did not differ from the categorization of the fore-
ground object; in other words, participants in the uncued
block categorized pictures according to the category
(animal/vehicle) of the foreground object. During vision
with scrutiny, however, when task goals required partic-
ipants to focus on scene properties such as object num-
ber or scene location, recurrent processing may take
place and require participants to keep processing the
same scenes, resulting in more pronounced, content-
specific modulations. Similarly, scenario-specific ERP
differences in the 180-250 msec time interval were only
evident when the system was actively engaged in cued
categorization, and recurrent processing may have di-
rected attention to a nondefault characteristic such as
scenario (Kadar & Ben-Shahar, 2012). Recurrent process-
ing refers to the activity of reentrant connections from
higher-order visual areas, such as parietal or frontal areas,
which interact with early visual areas. It has been sug-
gested that recurrent processing plays a critical role in
scene categorization (Koivisto, Railo, Revonsuo, Vanni,
& Salminen-Vaparanta, 2011; Lupyan, Thompson-Schill,
& Swingley, 2010; Hochstein & Ahissar, 2002), as well
as in visual awareness (Lamme & Roelfsema, 2000). In
particular, the Reverse Hierarchy Theory of visual percep-
tion (Hochstein & Ahissar, 2002) suggests that the out-
comes of the processing of low visual areas are, by
default, nonaccessible to explicit perception. When task
demands require further scrutiny, attention can turn
back to low visual areas, until task-relevant information
is accessed (Hochstein & Ahissar, 2002).

Here, we did not observe significant differences be-
tween the sustained and randomized categorization con-
ditions, in terms of ERP modulations (RQ4). In terms of
behavior, better performance was observed in the sus-
tained compared with the randomized context and in
the cued compared with the uncued blocks (Evans,
Horowitz, & Wolfe, 2011). In a previous study examining
the effects of varied versus blocked target change in a
visual search task (Wolfe, Horowitz, Kenner, Hyle, &
Vasan, 2004), behavioral facilitation was first observed
200 msec after the presentation of the category cue.
Moreover, extensive practice over a 3-week period did
not modulate early ERP differences (Fabre-Thorpe,
Delorme, Marlot, & Thorpe, 2001). Taking these results

122 Journal of Cognitive Neuroscience

together, this early categorization seems to reflect an at-
tentional set, which is aimed at attaining actual goals,
whereas long-term goals, which are supported by mem-
ory processes, come to play later on.

Categorization of scene content (animals vs. vehicles)
was faster and more accurate compared with decision-
making regarding both the scenario (indoors vs. out-
doors) and the number of foreground elements (one
vs. two). Previous studies varied categorization demands
to examine the speed and efficiency of the visual system.
The tasks carried out included those comparing basic and
superordinate categorization (Mack & Palmeri, 2015;
Loschky & Larson, 2010; Macé¢, Joubert, Nespoulous, &
Fabre-Thorpe, 2009), tasks based on the processing of
global scene properties (Hansen et al., 2018; Greene &
Oliva, 20092), and tasks probing the role of perceptual
and functional features (Groen et al., 2018; Greene &
Hansen, 2017). Global scene properties (including open-
ness, naturalness, and others; Oliva & Torralba, 2001)
and, in general, scene statistics (De Cesarei et al., 2017;
Simoncelli & Olshausen, 2001) allow the visual system to
rapidly understand the gist of a scene (Greene & Oliva,
2009b); for instance, similarly low exposure times were
required to make accurate judgments about these prop-
erties, including naturalness or openness (Greene &
Oliva, 20092). Our results are apparently at odds with
the previous observations of efficient categorization of
the “openness” property, as we observed a better perfor-
mance for content categorization (animal vs. vehicles)
than for scenario (indoors vs. outdoors) categorization.
However, the present categorization questions do not
fully coincide with global scene properties. Specifically,
although the animal/vehicle task can be carried out based
on the naturalness dimension, the same is not true for
the indoor/outdoor task; an “outdoor” scene may be high
in openness, as in the case of a landscape image of a
beach, or low in openness, as in the case of a courtyard
with trees blocking the horizon. Moreover, another study
reported slower responses for scenario decision (Is it
indoors/outdoors?) compared with content (Is it an
animal/vehicle?) decision (Kadar & Ben-Shahar, 2012).
Future studies may more specifically target the role of
global scene properties, in addition to perceptual and
functional characteristics (Groen et al., 2018; Greene &
Hansen, 2017; Fei-Fei, Iyer, Koch, & Perona, 2007), to
determine the timing of extraction of several types of
information from a visual scene.

Limitations and Future Directions

Although the present results highlight the interaction be-
tween bottom—up analysis and top—down modulation,
further studies are necessary to gain more insight into
how these processes interact in the categorization of nat-
ural scenes. For instance, as far as top—down modulations
are concerned, one avenue of future research could com-
pare goals that are based on global scene properties (e.g.,
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high/low in openness) with goals based on other classifi-
cations (e.g., indoors/outdoors; Kadar & Ben-Shahar,
2012; Fei-Fei et al., 2007), as has already been suggested
above. On the bottom—up end of the interaction, per-
ceptual features are central in determining the efficiency
of processing of a natural scene. For instance, the relative
area, which is subtended by the foreground and the
background elements, may be important in determining
the ease or difficulty of tasks that require participants to
decide on the object content (foreground element) or on
the scene location (background). In the endeavor of
investigating top—down and bottom—up contributions to
scene categorization, recent methods such as machine
learning and EEG/MEG decoding approaches may provide
important information. For instance, deep convolutional
neural networks rival human participants in accuracy
and show functional properties, which are reminiscent
of the organization of the visual system (VanRullen,
2017; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016).
Therefore, deep convolutional neural networks might
help us to understand which scene features are most di-
agnostic for the task at hand (Schyns, 1998). At the same
time, decoding EEG differences during categorization
tasks may help to understand the informational value of
EEG differences across the whole scalp during natural
scene categorization (Fahrenfort, Van Driel, Van Gaal, &
Olivers, 2018; Haxby et al., 2001).

The role of inferences in vision has been an object of
study since the 19th century (Von Helmholtz, 1867) and
is represented in the current debate on the principles
that govern brain functioning (Friston & Kiebel, 2009;
Bar, 2003). In vision, top—down inferences are most evi-
dent when the bottom—up information is present but de-
graded (Schendan & Ganis, 2015; Gregory, 1970).
Categorization goals may provide the system with a tem-
plate of the search item or feature, which may guide per-
ception. Therefore, effects of top—down goals might be
more evident when participants are confronted with
degraded (e.g., with alterations in the spatial frequency
domain such as low-pass filtering, high-pass filtering, or
phase scrambling), compared with intact, scenes.

The present results were observed with a relatively
brief exposure time of 20 msec. It has been suggested
that the processing of contextual information and the
preference for a basic or a superordinate level of catego-
rization may depend on the exposure time of a scene
(Vanmarcke, Calders, & Wagemans, 2016; Mack &
Palmeri, 2015). If exposure time determines different
perceptual goals, then these different goals may engage
the system in the selection and analysis of different
features of a visual scene (Malcolm et al., 2016) and ulti-
mately result in modulation of early scene processing. It
is possible that, with a longer exposure time, figures are
better separated from the background (Lamme, Zipser, &
Spekreijse, 2002) and context effects are observed.
However, several studies indicate that the processing that
can be carried out with a short exposure time, when the

picture is not backward masked, does not differ greatly
from that carried out with a longer exposure time
(Busey & Loftus, 1994; Loftus, Duncan, & Gehrig, 1992;
Loftus & Ginn, 1984). Therefore, future studies could in-
vestigate whether exposure time and backward masking
modulate early scene categorization or whether the iconic
scene representation that is obtained from a brief exposure
suffices for scene categorization.

Conclusions

Categorization goals are central in active vision, and
here, they modulated the use of scene statistics begin-
ning from an early stage of visual processing. We dis-
cussed the direction of this effect in relation to a shift
from a default “content” categorization goal to a non-
default and possibly more complex goal, such as the
indoor/outdoor distinction. Goals may involve either
default processing modes, which are aimed at quickly
making sense of the world, or task-specific settings,
which hijack existing processing stages to accomplish
current aims. Our comprehension of scene understand-
ing, including early stages of vision, can be greatly im-
proved when not only the presence or absence of goals
but also the type of goal is taken into account.

Reprint requests should be sent to Andrea De Cesarei,
Department of Psychology, University of Bologna, Viale Berti
Pichat 5, 40127 Bologna, Italy, or via e-mail: andrea.decesarei@
unibo.it.
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