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Abstract

The paper studies the case of shrinking cylindrical gas bubbles, acting as a radial piston and

generating acceleration waves. The behaviour of such waves and their improbable transformation

into shocks are illustrated theoretically, as well as through some examples inspired by experimental

data. The use of rational extended thermodynamics enables us to highlight the relevance of the

dissipation and the possible role played by dynamic pressure and stress tensor in bubble evolution

or shock formation. These results constitute an extension and a completion of a previous work

dedicated to the analysis of acceleration waves generated in oscillating spherical bubbles.

Keywords — Acceleration waves, cylindrical oscillating gas bubbles, polyatomic gases, dynamic

pressure, rational extended thermodynamics

2



I. INTRODUCTION

Since the beginning of last century, gas bubbles generated in a liquid and oscillating in a non-

linear way, for example in response to an acoustic signal or to a pressure impulse, have been the

topic of many researches, both theoretical and experimental. As a matter of fact, they undoubtedly

represent an amazing subject due to the surprising effects associated with their dynamics and to

the multitude of applications in the most varied fields of science and technology, covering a large

range of length scales [1].

After the pioneering studies by Lord Rayleigh [2] in 1917, the literature about bubbles has

been increasing exponentially and it is not possible to recall all the papers and books devoted to

this subject. We only mention some general reviews [1,3–8], underling that this is not a complete

reference list. Cavitation frequently involves the formation of a multi-bubble structure. Yet, in

many experimental configurations a clearer understanding of the countless bubble phenomena is

favoured by analysing a single one, generated in a liquid through different techniques (like the

irradiation with standing acoustic wave or a focused laser pulse). In many cases it is assumed

that bubbles present a perfect spherical shape, but it is well known that non-spherical bubble

walls can develop during the phases of growth and collapse [1, 5, 9]. Among the possible shapes,

there are many recent papers describing the dynamics of cylindrical bubbles [10, 11], that are

modelled by an extension of the Rayleigh-Plesset equation in the limit of two space dimensions [9].

Specifically, cylindrical bubbles were observed in confined geometries, such as parallel flat plates

[12,13], subtle organic structures like capillaries [14,15], or microfluidic systems (the so-called lab-

on-a-chip devices) [16–20]. In this last case, very important for several applications to microfluidic

devices, a laser-induced cavitation bubble is created inside microscopic narrow gaps. Initially

its form may be considered approximately spherical, if the bubble is at the gap centre, far from

boundaries, and if the parameters of the system are carefully controlled [20]. Then, the bubble

grows to become cylindrical at its maximum volume. This happens if its diameter overcomes the

height of the channel, but remains lower of its width. Finally, the bubble collapses conserving its

cylindrical symmetry.

The bubble oscillation can act as a radial piston on the gas, causing the formation of an

acceleration wave (AW, also called weak discontinuity); in other words a propagating surface

across which all the field variables are continuous, but not their first derivatives [21–23]. AWs are
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observed in different physical frameworks and in several materials, however in the present work we

concentrate on polyatomic gases. In gases AWs are generated by a suitable perturbation, such as

that of a piston during its accelerated motion [24–31]. An interesting question associated with this

topic is the potential AW degeneracy into shock waves. One speaks of stability or lack of stability of

the physical system if the AWs do not or do transform into a discontinuity wave [27]. In particular,

it was proved that the PDEs describing the gas dynamics should exhibit both hyperbolicity and

dissipation property, in order to make the transformation into a shock not only possible, but

also compatible with experimental observations [32]. A model of hyperbolic balance laws with

dissipative terms usually predicts the existence of a critical value of the initial AW amplitude,

below which no shock formation is possible [22,23,26–29,33].

To study AW evolution in cylindrical gas bubbles we refer to Rational Extended Thermo-

dynamics (from now on RET). This recent theory was developed firstly for rarefied monatomic

gases [34] and then expanded to polyatomic gases by Ruggeri, Sugiyama, Arima and Taniguchi

[33,35]. Its novelty with respect to other theories must be sought in the independent field variables

taken into consideration. As a matter of fact, non-equilibrium variables (for instance stress tensor,

dynamic pressure and heat flux) are seen as independent fields in the same way as the usual mass

density, momentum and energy. Moreover, the field equation system is composed by hyperbolic

balance laws and satisfies universal physical principles like relativity and entropy principles. The

well-known Grad 13-moment model is a particular RET example valid for monatomic rarefied

gases. In many cases, RET has predicted phenomena in accordance with experiments, in particu-

lar when the effects take place under non-equilibrium conditions [33, 34]. In [36] we applied RET

to the bubble framework for the first time, and the present work represents an extension of the

previous analysis to the case of cylindrical bubbles.

The paper is organized as following. In Section II we summarize the main ideas about oscil-

lating gas bubbles with particular attention to the cylindrical case. The AW theory is illustrated

in Section III, while Section IV is devoted to the RET theory. The AW evolution inside the bub-

ble is investigated in Section V, while some physical examples are presented in Section VI. The

conclusions are summarized in the last section.
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II. DYNAMICS OF AN OSCILLATING GAS BUBBLE IN A MICROCHANNEL

In the last decades many papers and books presented theoretical and experimental studies

about gas bubbles oscillating within a liquid in the presence of an external acoustic field. If the

bubble is away from the container walls, it is commonly supposed to keep a perfect spherical shape

and the dynamic of the bubble radius R = R(t) (if t is the time variable) is described by a non-

linear ordinary differential equation. If the liquid around the bubble can be seen as incompressible,

one usually refers to the Rayleigh-Plesset equation or to one of its variants [5, 8]:

RR̈+
3

2
Ṙ2 =

1

ρL

(
Pi − Pe

)
=

1

ρL

(
Pg(R)− P∞ + Pa(t)− 4ηṘ

R
− 2ς

R

)
+

R

ρLcL

d

dt
(Pg(R) + Pa(t)),

(1)

where Ṙ = dR/dt, R̈ = d2R/dt2, Pe and Pi indicate the external pressure in the liquid and the

internal pressure in the gas respectively, ρL is the mass density of the liquid, cL is the sound

velocity in the liquid around the bubble. The shear viscosity and the surface tension of the liquid

are denoted by η and ς. Moreover, the gas pressure in the bubble is Pg, the external acoustic

field is denoted by Pa, while P∞ is the constant undisturbed liquid pressure far from the bubble

(in spherical geometry an infinite distance is taken into account), which coincides with ambient

atmospheric pressure. Although relation (1) is determined imposing that the bubble radius varies

slower than the sound speed (both in the liquid, cL and in the gas, cg), it was verified that it

could be employed also in a supersonic case when Ṙ � cg and/or Ṙ � cL [4, 5, 37]. To derive (1)

it is also implicitly assumed that the gas pressure is spatially uniform within the bubble (the so

called ”homobaric” hypothesis). Actually, a non-vanishing acceleration of the bubble radius is not

compatible with a perfectly homogenous pressure, but it is was proved that the spatial dependence

of Pg can be physically neglected in many cases, and it is coherent with (1) [6, 38–40].

Equation (1) can be closed and numerically solved, imposing that the gas pressure is a

known function of the bubble radius, compatible with an isothermal or an adiabatic regime [6].

Alternatively, one can integrate the Rayleigh-Plesset equation coupled with the PDE system that

models the gas behaviour inside the bubble. This second approach is obviously more accurate, but

also much more computationally heavy [39–42]. If a periodic acoustic field like Pa = P ′a cos(ωat+φ)

is imposed to the system, the behaviour of the radius of a spherical bubble can be qualitatively
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illustrated in Figure 1(a): the initial value of R(t = 0) = RE corresponds to the equilibrium

radius, i.e. the bubble radius in the absence of the external sound. Switching on Pa, different

phases can be observed: an initial expansion of the bubble that reaches its maximum radius RM

and a consecutive shrinkage up to the minimum radius Rm < RE . The last part of the contraction

turns out to be very rapid and sometimes very violent, reaching values of Rm comparable with the

van der Waals hard core radius [1, 5–8]. The phenomenon comes always with bouncing damped

oscillations.

During the first phase of the contraction, when RM > R > RE , (1) is usually simplified,

neglecting the gas pressure Pg, the acoustic pressure Pa and their variations, the viscous term and

the surface tension, so that it is assumed [4,5, 37]

1

2
R3Ṙ2 =

P∞(R3
M −R3)

3ρf
. (2)

In many experiments it was analysed the case of an initially spherical (or semi-spherical)

bubble generated in a narrow channel, in the presence of an external sound field. It was observed

that the close proximity to a wall influences the bubble’s evolution. In particular, if the bubble

expands to a size greater than the distance between the walls, it transforms into a cylindrical

shape and the subsequent contraction should be modelled by an ODE derived similarly as the

Rayleigh-Plesset one, but capable of describing bidimensional radial phenomena [9]:

(RR̈+ Ṙ2) log(R/R∞) +
1

2
Ṙ2

(
1− R2

R2
∞

)
=
P∞ − pB

ρL
. (3)

We stress that (3) was introduced to model the effect of a radial symmetric shell of incompressible

fluid, whose radius goes from R(t) (the time-dependent cylindrical bubble radius) to R∞ > R(t)

(at which the velocity of the fluid is zero). Moreover, in (3) P∞ denotes the unperturbed liquid

pressure at R∞ ( here R∞ cannot tend to infinity) and pB represents the pressure in the bubble.

If one neglects the thermodynamics inside the bubble, the possible acoustic signal, the viscosity

terms and the contribute due to the surface tension, (3) can be simplied as [9, 16]

(RR̈+ Ṙ2) log

(
R

R∞

)
+

1

2
Ṙ2 =

P∞
ρL

. (4)
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(a) (b)

Fig. 1. In (a) the behaviour of the radius in a spherical bubble, described by Rayleigh-Plesset
equation. In (b) a comparison between spherical (3D) and cylindrical (2D) gas bubbles for different
maximum radii.

Comparisons with experimental data show a good agreement between (4) and the detected bubble

radius evolution [16–18] if the maximum radius, RM , is not too large. No bouncing oscillations

were observed. Figure 1(b) shows a qualitative comparison between the radius contraction in

spherical and cylindrical bubbles described by (2) and (4). In agreement with the experimental

results, the shrinkage of cylindrical bubbles turns out to be much slower than that in a spherical

domain, never reaching a supersonic regime. The comparison is proposed for the same values of

RM : in continuous line the radius of the cylindrical bubble, in dashed line that of the spherical

bubble.

As already remarked in the literature (see for instance [43]) and studied in [36], a contracting

bubble could act on the gas as a radial piston, giving rise to a radial acceleration wave under

particular circumstances.

III. ACCELERATION WAVES

One faces an acceleration wave (AW) when dealing with a propagating surface Γ across which

all the field variables are continuous, but at least one of them exhibits a jump in its derivative.
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Hence, if u represents the field vector, ϕ(z, t) = 0 is the equation of Γ and [[·]] = (.)ϕ=0− − (.)ϕ=0+

denotes a jump across such a wave front, for an AW it must hold [[u]] = 0, while [[ ∂u∂ϕ ]] = A 6= 0 [21].

Referring to a one-dimensional wave and a one-dimensional hyperbolic set of field equations of the

form

∂tu + B(u, z, t)∂zu = T(u, z, t), (5)

it was proved that [21–23]

� The velocity normal to the wave front V = −ϕt/|∇ϕ| coincides with a characteristic speed

λ of system (5) evaluated in the unperturbed field: V = λ(uu).

� The jump vector A is proportional to the right eigenvector r (of matrix B) corresponding to

λ, evaluated in uu, so that A = Ar(uu).

� The scalar amplitude A satisfies the Bernoulli equation: dA
dt +a(t)A2 +b(t)A = 0, where d/dt

denotes the time derivative along the characteristic line (dx/dx = λ(uu)) and coefficients a(t)

and b(t) depend on time.

The expression of the scalar amplitude as a function of t turns ot to be

A(t) =
A(0)g1(t)

1 +A(0)g2(t)
, with g1(t) = exp

(
−
∫ t

0

b(s)ds

)
and g2(t) =

∫ t

0

a(s)g1(s)ds, (6)

where A(0) is the initial values of A when t = 0.

The Bernoulli’s coefficients a and b, for one-dimensional waves and for a set of PDEs written

as (5), read [21–23]

a(t) = ϕz(t)(∇uλ · r)
∣∣∣
u
,

b(t) =

{
r((∇ul)

T −∇ul) ·
du

dt
+ (∇uλ · r)(l · uz)−∇u(l ·T) · r + l · d̃r

dt

}∣∣∣
u
,

(7)

where wz = ∂w/∂z for any w and ∇u· = ∂ · /∂u. In addition, l(u, z, t) and r(u, z, t) indicate the

left and right eigenvector of B associated with the eigenvalue λ. For any function w of the field

variables we refer to the notation: w|u = w(uu), while d·
dt = ∂t·+ λu∂z· and d̃·

dt = ( d·dt )|u=const.

In the models that we are going to employ in the next Sections, the second component of u
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corresponds always to the gas velocity v along the z-direction. Moreover, we will focus on the AW

propagating with a non-vanishing velocity. Therefore, we determine the left and right eigenvectors,

l and r in such a way that l ·r = 1 (this requirement is necessary to make valid the previous points),

and r2(uu) = − 1
λu

, so that the scalar amplitude A always satisfies the Hadamard condition [31,36].

Hyperbolic sets of PDEs present often different non-zero characteristic speeds and different

propagating AWs could be observed simultaneously. Usually the focus is restricted to the fastest

one, since it is the only wave travelling into the unperturbed solution u = uu.

Concerning the behaviour of A, it is well-known [21–23] that for an AW that satisfies the

condition ∂λ
∂u · r 6= 0 and for any suitable initial values |A(0)| > |Acr|, there exists a critical time

tcr such that the AW degenerates into a shock wave and the field variables present jumps across

Γ. Moreover, it is possible to prove that Acr = − limt→∞ 1/g2(t). The present work focuses on

incoming cylindrical waves travelling towards the axis. In this context, we define the time t∗ such

that x(t∗) = 0 and necessarily the critical scalar amplitude becomes Acr = − limt→t∗ 1/g2(t). For

the sake of simplicity, we neglect in the following analysis the possible interaction between the AW

and the bubble boundaries.

IV. RATIONAL EXTENDED THERMODYNAMICS MODELS

For a rarefied polyatomic gas it is possible to refer to kinetic theory [44] and introduce a

generalized Boltzmann equation [45], requiring that the distribution function depends not only on

time (t), space (z = (z1, z2, z3)) and microscopic velocity (c = (c1, c2, c3)), but also on the continu-

ous variable I (I ∈ [0,∞)) that accounts for the internal modes of the molecules. Such a function

(f = f(t, z, c, I)) satisfies a Boltzmann equation with the same structure as in a monatomic

case [45]:

∂tf +

3∑
j=1

cj∂jf = Q, (8)

where Q denotes the collision term, and ∂t· = ∂ · /∂t, ∂j · = ∂ · /∂zj .

RET theories for rarefied polyatomic gases can be derived from the kinetic theory through the

moment technique. In particular, two species of moments can be introduced [33]: the momentum-
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like F moments and the energy-like G moments, defined as

F = m

∫
R3

∫ +∞

0

fϕ(I)dI dc, Fi1i2...ih = m

∫
R3

∫ +∞

0

fci1ci2 . . . cihϕ(I)dIdc,

Gss = m

∫
R3

∫ +∞

0

f

(
c2 +

2I

m

)
ϕ(I)dIdc, Gssi1...ih = m

∫
R3

∫ +∞

0

f

(
c2 +

2I

m

)
ci1ci2 . . . cihϕ(I)dIdc,

if m denotes the mass of the gas molecule and the indexes h ∈ N\{0}, ih = 1, 2, 3. Moreover, for

a polytropic gas with internal energy ε = DkBT/(2m) (if kB denotes the Boltzmann constant, T

the temperature and D the degrees of freedom of a gas molecule) the wheighting function is given

by ϕ = I(D−5)/2.

In this way it is possible to derive from (8) a double infinite hierarchy of balance laws [33]:

∂tF + ∂jFj = 0,

↙

∂tFi1 + ∂jFji1 = 0,

↙

∂tFi1i2 + ∂jFji1i2 = Pi1i2 ,

↙

∂tFi1i2i3 + ∂jFji1i2i3 = Pi1i2i3 ,

...

∂tFi1i2...ih + ∂jFji1i2...ih = Pi1i2...ih ,

...

∂tGss + ∂jGssj = 0,

↙

∂tGssi1 + ∂jGssji1 = Qssi1 ,

...

∂tGssi1i2...ih + ∂jGssji1i2...ih = Qssi1i2...ih .

...

(9)

where Pi1...ih and Qssi1...ih denotes the production components obtained from the collisional term

of the Boltzmann equation, through the moment technique. For the sake of brevity, from now on

repeated indexes imply their sum, so that for example
∑3
j=1 is omitted in (9).

It is easily verified that the first two equations of the momentum-hierarchy and the first scalar

equation of the energy-hierarchy coincide with the usual conservation laws of mass, momentum and

energy. Both hierarchies (9) exhibit a peculiar mathematical structure since the density component

of one equation coincides with the flux component of the previous one [33]. To deduce a finite
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set of PDEs, the infinite set (9) is truncated at some truncation indexes (N for the F -hierarchy

and M for the G-hierarchy) and one expresses the last fluxes and production terms as functions

of the independent field variables referring to the Maximum Entropy Principle (closure of the

system) [33]. The resulting set of equations proves to be of hyperbolic type, and for a suitable

choice of the independent field variables (the so called main field [33, 34]), it could be written in

symmetric hyperbolic form with a convex entropy, guaranteeing the well-posedness of the Cauchy

problem.

The truncated and closed system is then commonly approximated by a Taylor expansion in

the neighbourhood of a local equilibrium. In the present work we will consider a linearized theory

with respect to the non-equilibrium variables [33] denoted by ET1
n,P , where the ’1’ recalls the first

order Taylor approximation, n indicates the number of scalar equations of the model and the letter

P is associated with a polyatomic gas.

For the sake of brevity, the density, the flux and the productions components can be written

as

F = (F, Fi1 , Fi1i2 , . . . Fi1i2...iN )T , Fj = (Fj , Fji1 , Fji1i2 , . . . Fji1i2...iN )T ,

Gss = (Gss, Gssi1 , Gssi1i2 , . . . Gssi1i2...iM )T , Gj
ss = (Gssj , Gssji1 , Gssji1i2 , . . . Gssji1i2...iM )T ,

P = (0, 0i1 , Pi1i2 , . . . Pi1i2...iN )T , Q = (0, Qssi1 , Qssi1i2 , . . . Qssi1i2...iM ),

and the PDEs summerized in the formulas:

∂tF + ∂jF
j = P, ∂tGss + ∂jG

j
ss = Q. (10)

If u denotes the vector of the field variables and if the dependence of only a scalar space

variable z = z1 is assumed, system (10) reduces to

C(u)∂tu + D(u)∂zu = T′, with C(u) = ∂u(F,Gss), D(u) = ∂u = ∂u(F1,G1
ss), (11)

where T′ = (P,Q) and ∂z = ∂ ·/∂z. A further simplification in the equation structure is developed

through the introduction of the material derivative
•∗ = ∂∗

∂t + v ∂∗∂z where v is the gas velocity along
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the z direction; hence, (11) becomes

∂tu + B(u)∂zu = T =⇒ •
u + A(u)∂zu = T, (12)

where B = C−1D, T = C−1T′ and A = B − vI, if I indicates an identity matrix of the same

size as the square matrix A. The characteristic velocities associated with the equation system are

obviously the eigenvalues λ of B, and there exists a relation between the eigenvalues Λ of A and

those of B: λ = Λ + v.

Here we restrict our analysis to ideal polyatomic gases, so that the equilibrium gas pressure

is p = kBρT/m (ρ is the mass density) and the specific heat at constant volume is cv = kBD/2m.

The parameter D is defined as the sum of translational and internal degrees of freedom of the

molecules: in general D ≥ 3, while D = 3 represents the case of a monatomic gas.

One of the most popular theories derived through the RET procedures is the 14-moment

system ET1
14,P , in which together with mass density ρ, velocity v = (v1, v2, v3) and equilibrium

pressure p, also the deviatoric part of the viscous stress tensor σ〈ij〉, the dynamic pressure Π and

the heat flux q = (q1, q2, q3) are treated as independent field variables:

F = (F, Fk, Fkl) , Fj = (Fj , Fjk, Fjkl) , Gss = (Gss, Gssk) , Gj
ss = (Gssj , Gssjk) ,

with F = ρ, Fk = ρvk, Fkl = ρvkvl + (p+ Π)δkl − σ〈kl〉,

Fjkl = ρvjvkvl + (p+ Π)(vjδkl + vkδjl + vlδjk)− σ〈jk〉vl − σ〈kl〉vj − σ〈jl〉vk+

+
2

D + 2
(qjδkl + qkδjl + qlδjk),

Gss = ρ|v|2 + 2ρε, Gssk = ρ|v|2vk + 2(ρε+ p+ Π)vk − 2σ〈ks〉vs + 2qk),

Gssjk = ρ|v|2vjvk + 2ρεvjvk + (p+ Π)(|v|2δjk + 4vjvk)− σ〈jk〉|v|2 − 2σ〈jh〉vkvh−

− 2σ〈kh〉vjvh +
2

D + 2
(2qhvhδjk + (D + 4)(qjvk + qkvj)) +

+
kBT

m
[(D + 2)p+ (D + 4)Π]δjk −

kBT

m
(D + 4)σ〈jk〉, if i, j, k, l, s = 1, 2, 3.

(13)

We remark that the well-known Grad’s model can be derived from ET1
14,P in the limit D → 3,

neglecting the dynamic pressure.
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IV.A. RET balance laws in an oscillating cylindrical domain

In the next Sections we are going to study the behaviour of a gas inside a shrinking cylindrical

bubble. To this aim it is convenient to rewrite the previous equations in cylindrical coordinates and

then to account for the domain oscillations introducing a suitable transformation of the space and

time variables. Firstly, we will refer to cylindrical coordinates (r, ϑ, x3) (ϑ ∈ [0, 2π[) and instead

of the usual contra- or co-variant components of vectors and tensors, we will employ the physical

components [46], so that, for example

q̄i =
√
giiq

i, σ̄〈ij〉 =
√
giigjjσ

〈ij〉, with i, j,= 1, 2, 3,

where the repeated underlined indexes are not summed and gij denotes the (ij) component of the

metric tensor (gij is a diagonal tensor with g11 = g33 = 1, g22 = r2 in the cylindrical case). The bar

denotes here the physical component, but in the following we will omit such a symbol for the sake

of brevity. We assume that the gas velocity and the heat flux are parallel to the radial direction

(v = (v, 0, 0), q = (q, 0, 0) with v = v1 and q = q1), and, moreover, σ〈ij〉 = 0 when i 6= j. We

recall that, by definition, σ〈ll〉 = 0, so in cylindrical symmetry the field vector should include σ〈22〉,

while σ〈33〉 = −σ〈11〉 − σ〈22〉. The equation system turns out to be

•
ρ+ ρ ∂rv = P1

•
v − 1

ρ
∂rσ
〈11〉 +

1

ρ
∂rΠ +

1

ρ
∂rp = P2

•
σ
〈11〉

+
7σ〈11〉 − 4(p+ Π)

3
∂rv −

8

3(D + 2)
∂rq = P3

•
σ
〈22〉

+

[
2

3
(p+ Π− σ〈11〉) + σ〈22〉

]
∂rv +

4

3(D + 2)
∂rq = P4

•
Π + [Π− 2(D − 3)(σ11 − p)

3D
]∂rv +

4(D − 3)

3D(D + 2)
∂rq = P5

•
p+ [p+

2(p− σ11)

D
]∂rv +

2

D
∂rq = P6

•
q +

p

2ρ2
[2σ11 − (D + 2)(p− σ11)]∂rρ+

2(D + 5)q

D + 2
∂rv −

σ11 + p

ρ
(∂rσ

〈11〉 − ∂rΠ)+

+
(D + 2)(p− σ11)

2ρ
∂rp = P7

(14)
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where

P1 = −ρv
r
, P2 =

(σ〈11〉 − σ〈22〉)

rρ
, P6 = −2

q

Dr
− 2

(p+ Π− σ〈22〉)v

Dr
− pv

r
,

P3 = −σ
〈11〉

τσ
− 4q

3(D + 2)r
− v

3r
[2(p+ Π) + 3σ〈11〉 − 2σ〈22〉],

P4 = −σ
〈22〉

τσ
+

8q

3(D + 2)r
− v

3r
[7σ〈22〉 − 4p− 4Π],

P5 = − Π

τΠ
− 4(D − 3)q

3D(D + 2)r
− 6(σ〈22〉 − p−Π) +D(−2σ〈22〉 + 5Π + 2p)v

3Dr
,

P7 = − q

τq
− 1

r

[
(σ〈22〉 − σ〈11〉)(p+ σ11)

ρ
+

(D + 4)qv

D + 2

]
.

(15)

For the relaxation times of dynamic pressure, stress tensor and heat flux, (denoted by τΠ, τσ and

τq) the following relations hold, if µb is the bulk viscosity, ν the shear viscosity and κ the heat

conductivity of the gas [33,35]:

τσ =
ν

p
, τq =

2κm

5kBp
, τΠ =

3Dµb
2(D − 3)p

. (16)

In addition, in (14) and (15) we introduce to the (11)-component of the viscous tensor σ11 =

σ〈11〉 −Π in order to compress some formulas.

The bubble radius varies in time and so does the domain in which the AWs propagate. To

simplify the calculations in the case of an oscillating cylindrical domain with a time variable radius

R = R(t), we consider a transformation from the usual time-space variables {t, r} (with r radial

coordinate inside the bubble r ∈ [0, R(t)]) to the more comfortable {t′, x} if t′ = t and x = r/R(t)

with x ∈ [0, 1]. Therefore, the PDE system (5) is transformed as following

∂tu + B∂ru = T ⇒ ∂tu +
1

R(t)

[
B− xṘ I

]
∂xu = T. (17)

It is easily proved that the characteristic velocities (λ′) of the transformed system (17)2 are related

14



to those (λ) of the initial system (17)1 by λ′ =
(
λ− xṘ

)
/R(t). System (14) can be rewritten as

∂tρ+
v − xṘ
R

∂xρ+
ρ

R
∂xv = − ρv

Rx
,

∂tv +
v − xṘ
R

∂xv +
1

ρR
∂x(p+ Π− σ〈11〉) =

σ〈11〉 − σ〈22〉

ρRx
,

∂tσ
〈11〉 +

7σ〈11〉 − 4(p+ Π)

3R
∂xv +

v − xṘ
R

∂xσ
〈11〉 − 8

3(D + 2)
∂xq =

= −σ
〈11〉

τσ
− 4q

3(D + 2)Rx
− v

3Rx
(2(p+ Π) + 3σ〈11〉 − 2σ〈22〉),

∂tσ
〈22〉 +

1

R
[
2

3
(p+ Π− σ〈11〉) + σ〈22〉]∂xv +

v − xṘ
R

∂xσ
〈22〉 +

4

3(D + 2)R
∂xq =

− σ〈22〉

τσ
+

8q

3(D + 2)Rx
− v

3Rx
[7σ〈22〉 − 4(p+ Π)],

∂tΠ +
2(D − 3)(p− σ〈11〉) + (5D − 6)Π

3DR
∂xv +

v − xṘ
R

∂xΠ +
4(D − 3)

3D(D + 2)R
∂xq =

= − Π

τΠ
− 4(D − 3)q

3D(D + 2)Rx
− 2(D − 3)(p+ Π− σ〈22〉) + 3DΠ

3DRx
v,

∂tp+
(D + 2)p− 2σ11

DR
∂xv +

v − xṘ
R

∂xp+
2

DR
∂xq = − 2q

DRx
− ((D + 2)p+ 2Π− 2σ〈22〉)v

DRx
,

∂tq +
p

2ρ2R
[2σ11 − (D + 2)(p− σ11)]∂xρ+

2(D + 5)q

(D + 2)R
∂xv −

σ11 + p

ρR
(∂xσ

〈11〉 − ∂xΠ)+

+
(D + 2)(p− σ11)

2ρR
∂xp+

v − xṘ
R

∂xq = − q

τq
− 1

Rx

[ (σ〈22〉 − σ〈11〉)(p+ σ11)

ρ
+

(D + 4)qv

D + 2

]
.

(18)

Neglecting the contribution of heat flux and stress tensor, the previous set of equations reduces

to the ET6,P model, where the only non-equilibrium variable taken into account is the dynamic

pressure [33]. Such a system is commonly employed when τΠ is much greater than τσ and τq

(see [33] and the references therein). Under the previous assumptions, system (18) transforms in

∂tρ+
v − xṘ
R

∂xρ+
ρ

R
∂xv = − ρv

Rx
,

∂tv +
v − xṘ
R

∂xv +
1

ρR
∂x(p+ Π) = 0,

∂tΠ +
2(D − 3)p+ (5D − 6)Π

3DR
∂xv +

v − xṘ
R

∂xΠ = − (2(D − 3)p+ (5D − 6)Π)v

3DRx
− Π

τΠ
,

∂tp+
(D + 2)p+ 2Π

DR
∂xv +

v − xṘ
R

∂xp = − (D + 2)pv

DRx
− 2Πv

DRx
.

(19)
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V. ACCELERATION WAVES IN A CYLINDRICAL BUBBLE MODELLED BY

RET THEORIES

In what follows the AW propagation is modelled referring to ET1
14,P and ET6,P equations.

We restrict the analysis to a linear time-dependence of the bubble radius

R(t) = R0(1 + µt), (20)

where R0 is the initial bubble radius, and µ < 0 represents the case of a linear contraction of the

bubble. Due to this assumption, the description of the unperturbed fields will be valid only for

small time intervals, accordingly with a fast AW propagation. Concerning the unperturbed field

vector uu we introduce also an adiabatic hypothesis (qu = 0) and the natural boundary conditions:

vu = 0 in x = 0 and vu = Ṙ in x = 1. In this manner, the requirement of a linear dependence of

vu on x implies vu = xṘ. Finally, neglecting the bubble wall acceleration it is possible to require

the space uniformity of unperturbed pressure, mass density and dynamic pressure. The procedure

is an extension of the results in [36].

V.A. ET6,P theory

If the AW propagating from the boundary to the centre of the bubble is described by a six-

moment RET theory (19), its characteristic velocity turns out to be λ̃ = − 1
R

√
5(p+Π)

3ρ (independent

on D [33]) and the wave front equation reads dx
dt = λ̃u with x(0) = 1, since the AW propagates

starting from the bubble wall. Considering the previous assumptions about the unperturbed field

vector uu = (ρ̃u, ṽu, Π̃u, p̃u), it is easily shown that only a solution with non-vanishing dynamic

pressure is compatible with (19). A similar result was already deduced in spherical symmetry for

the RET models [36]. Furthermore, it is easly verified that

ρ̃u = ρ0(R0/R)2,

dΠ̃u

dt
= −4(D − 3)p̃uṘ

3DR
− 2(5D − 6)Π̃uṘ

3DR
− Π̃u

τΠ
,

dp̃u
dt

= −2(D + 2)p̃uṘ

DR
− 4Π̃uṘ

DR
,

(21)
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where the previous ODE equations should be equipped with the initial conditions p̃u(0) = p0 and

Π̃u(0) = Π0. After some calculations the Bernoulli’s coefficients are completely determined

a = − 4

3λ̃uR
, b =

λ̃u
2x

+
11Ṙ

6R
+

4(D − 3)p̃u + (5D − 12)Π̃u

20D(p̃u + Π̃u)τΠ
, (22)

where x corresponds to the instantaneous position of the wavefront. Functions g1 and g2 in (6)

could be easily evaluated through a numerical integration, starting from the numerical solution of

the two ODEs in (21).

V.B. ET1
14,P theory

In the case of a 14-moment model, the calculations become more complicated and so, in this

work, we restrict our study to the case D = 5, similar results could be obtained fixing different

values for D. Concerning the unperturbed adiabatic solution, as already said, we assume that

q̂u = 0, v̂u = xṘ. Equations (18) in cylindrical symmetry require not only a non-zero dynamic

pressure (as for spherical geometry [36,47] and for ET6, P theory), but also a non-zero stress tensor,

while it is natural to impose σ̂
〈11〉
u = σ̂

〈22〉
u = ŝu. This fact is in accordance with the Navier-Stokes

(NS) approximation, since for a cylindrical gas bubble described by the Navier-Stokes theory it

must hold

ΠNS = −2
µbṘ

R
, σ

〈11〉
NS = −2

3

νṘ

R
. (23)

Through compatibility conditions it could be easily deduced that ∂xρ̂u = ∂xp̂u = ∂xΠ̂u =

∂xŝu = 0. Together with relation ρ̂u = ρ0(R0/R)2 (as in ET6, P ), the following ODEs hold for the

remaining unperturbed field components

dŝu
dt

=
2(p̂u + Π̂u − 4ŝu)Ṙ

3R
− ŝu
τσ
,

dΠ̂u

dt
= −2(4p̂u + 19Π̂u − 4ŝu)Ṙ

15R
− Π̂u

τΠ
,

dp̂u
dt

= −2(7p̂u + 2Π̂u − 2ŝu)Ṙ

5R
.

(24)

The negative characteristic speeds of the AW propagating into an unperturbed solution
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depend on D and when D = 5 they turn out to be

λ̂(1,2)
u = − 1

R

√
85p̂u − 69ŝu ±

√
3550p̂2

u − 4380p̂uŝu + 36ŝ2
u

35ρ̂u
. (25)

Moreover, the equation of the wave front presents the usual form dx/dt = λ̂u. Bernoulli’s coeffcients

can be determined after some calculations:

a = − λ̂
2
uρ̂uR

2ν4 + ν5

5λ̂3
uρ̂uR

3δ1
, b =

λ

2x
+ bṘ

Ṙ

R
+
bσ
τσ

+
bq
τq

+
bΠ
τΠ
,

bṘ =
3(ρ̂uλ̂

2
uR

2ν1 − 5ν2ν3)

25λ̂2
uρ̂uR

2δ1δ2
2

, bq =
7λ̂2

uρ̂uR
2(15p̂2

u − 14p̂uŝu − 6ŝ2
u))

4δ2
,

bσ =
7λ̂2

uρ̂uR
2(5ν7 + 3(Π̂u + ŝu)µ5)− ν3(5ν6 + 3(Π̂u + ŝu)µ4)

6λ̂2
uρ̂uR

2δ1δ2
,

bΠ =
7λ̂2

uρ̂uR
2(ν7 − 3Π̂uµ5)− ν3(ν6 − 3Π̂uµ4)

6λ̂2
uρ̂uR

2δ1δ2
,

(26)

where x coincide with the position of the wave front and

δ1 = (35λ2ρ̂uR
2 − 65p̂u + 33s)(35λ2ρ̂uR

2 − 85p̂u + 69ŝu),

δ2 = λ2ρ̂uR
2(175p̂2

u − 294p̂uŝu + 84ŝ2
u) + (−70p3 + 266p̂2

uŝu − 342p̂uŝ
2
u + 162ŝ3

u),

ν1 = 43584933125p̂8
u − 266040784375p̂7

uŝu + 661256633425p̂6
uŝ

2
u − 850946456275p̂5

uŝ
3
u+

+ 591162202044p̂4
uŝ

4
u − 204964083456p̂3

uŝ
5
u + 24819240204p̂2

uŝ
6
u + 1252289484p̂uŝ

7
u − 108094176ŝ8

u,

ν2 = 902412625p̂7
u − 4851681000p̂6

uŝu + 10228203095p̂5
uŝ

2
u − 10498223424p̂4

uŝ
3
u+

+ 5177323296p̂3
uŝ

4
u − 936327744p̂2

uŝ
5
u − 25847964p̂uŝ

6
u + 4498416ŝ7

u,

ν3 = 7p̂2
u − 14p̂uŝu + 9ŝ2

u,

ν4 = 7(10605p̂2
u − 15074p̂uŝu + 2364ŝ2

u), ν5 = −15(2527p̂3
u − 7301p̂2

uŝu + 7418p̂uŝ
2
u − 2724ŝ3

u),

ν6 = 28(3400p̂4
u − 10010p̂3

uŝu + 9237p̂2
uŝ

2
u − 2574p̂uŝ

3
u + 54ŝ4

u),

ν7 = 4(32875p̂5
u − 120985p̂4

uŝu + 157681p̂3
uŝ

2
u − 84057p̂2

uŝ
3
u + 14976p̂uŝ

4
u − 270ŝ5

u),

µ5 = 80275p̂4
u − 84245p̂3

uŝu − 128517p̂2
uŝ

2
u + 143064p̂uŝ

3
u − 15822ŝ4

u,

µ4 = 51850p̂3
u − 12885p̂2

uŝu − 103770p̂uŝ
2
u + 23706ŝ3

u.

(27)
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Through a numerical integration of (24), wave front equation and (26), g1 and g2 are evaluated as

functions of time.

VI. SOME PHYSICAL EXAMPLES

The determination of the unperturbed fields uu is the first step into the study of AWs.

Referring to Section IV, the unperturbed variables will be determined integrating numerically (24)

or (21). As already remarked, the 6-moment theory is incompatible with a vanishing dynamic

pressure, while the 14-moment model impose also the presence of a non-zero stress tensor, in

complete agreement with the Navier-Stokes approximation (23). The values of Πu and σ
〈11〉
u

should be related to the velocity of the bubble wall, and their contribution could become relevant

when R < RM and |Ṙ| >> 0.

In order to obtain semi-analytical results concerning the AW evolution, we have introduced

some simplifying assumptions, summarized in the following.

� The molecular degrees of freedom is fixed at a constant value; we have chosen D = 5, since it

is rather realistic for many common diatomic molecules at room temperature, although not

valid for all gases.

� Heat conductivity, shear and bulk viscosity are modelled as constant quantities, as well.

� We have imposed the adiabaticity of the system (so that qu = 0) and a linear behaviour of

the bubble radius (Ṙ = Ṙ0 = constant) during the wave propagation. Both assumptions are

compatible with the small size of the propagation time interval. As a matter of fact, the AW

presents a very high wave speed, if compared with the bubble wall velocity: the contraction

of the cylindrical bubble remains always subsonic and no violent phenomena were observed

in the experiments [16–19].

� The gas velocity is assumed to be linear in space: vu = xṘ0.

� t∗ indicates the propagation time of the AW that starts from the bubble wall and reaches

the cylinder axis. As already remarked in [36], it is physically meaningless to imagine the

wave front reaching x = 0. For an incoming AW, the wave front should stop at a distance

of at least the molecular kinetic diameter, δ, (x(t′∗) = δ/R) and bounce back. However, t∗
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is very close to t′∗ and in the cylindrical case the function g2 in (6) does not diverge when

x(t) → 0 [24, 36], in contrast with the spherical bubble case [24, 36, 43]. So, for the sake of

simplicity, from now on we will consider t∗ in spite of t′∗.

� R0 = R(0) and Ṙ0 = Ṙ(0) represents respectively the values of the bubble radius and the

bubble wall velocity, if t = 0 is the instant in which the AW is generated. Here, R0 = 43µm

and R∞ = 0.5mm as in [16].

� The integration of equations (24) requires the prescription of the initial values of equilibrium

pressure p0, dynamic pressure Π0 and stress tensor σ
〈11〉
0 . The initial pressure should be fixed

as p0 = pM (RM/R0)β where pM is the gas equilibrium pressure at RM , while β = 2 for an

isothermal bubble shrinkage, and β = 2(D+2)/D = 14/5 in an adiabatic bubble contraction.

It is natural to refer to the Navier-Stokes approximation (23) to choose Π0 and σ
〈11〉
0 .

� The solution of the system derived from to the RET theory with 6 moments follows the same

ideas, except for the stress tensor that is neglected by the model.

Due to the small value of t∗, no significant differences can be observed concerning the unperturbed

equilibrium pressure and the dynamic pressure described by the ET6,P and ET1
14,P . An illustrative

comparison of Πu and σ
〈11〉
u predicted by (24) for different gases is presented in Figure 2. The

physical parameters of the gases were fixed referring to [48]. We remark that the case of carbon

dioxide was studied under the assumption µb/ν = 50, but very different values of this ratio are

reported in the literature (see for instance [49–52]). It is easy to understand that higher values

of this ratio would give rise to values of the dynamic pressure (and consequently of the total gas

pressure) not compatible with approximation (4). This question should be further studied taking

into account the coupling between equation (3) and the gas dynamics PDEs.

Concerning the AWs, we refer to some physical examples and determine here the critical

values Acr of the scalar amplitude, predicted by RET theory with 14 or 6 moments, corresponding

to the fastest wave. In Figure 3 we present the qualitative behaviour of g2 as a function of time t/t∗

for different physical parameters in the case of a bubble filled with water vapour. In particular,

case 1: p0 = 103Pa, R0 ' 43µm, Ṙ0 ' −0.0062m/s; case 2: p0 ' 1.12 × 104Pa, R0 ' 18.1µm,

Ṙ ' −11.8m/s; case 3: p0 ' 8.07 × 105Pa, R0 ' 3.94µm, Ṙ ' −49.4m/s; case 4: p0 ' 102Pa,

R0 ' 43µm, Ṙ ' −0.0062m/s; case 5: p0 ' 1.12 × 103Pa, R0 ' 18.1µm, Ṙ ' −11.8m/s; where
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(a) (b)

Fig. 2. The behaviour of su = σ
〈11〉
u (a) and Πu (b) for different gases when p0 ' 1.12 × 103Pa,

R0 ' 18.1µm and Ṙ0 ' −11.8m/s; for CO2 it is assumed that µb/ν = 50.

c0 =
√
kBT0/m if T (0) = T0.

It is reasonable to assume that a possible initial scalar amplitude of the AW shares the same

magnitude order as the bubble wall acceleration A(0) ' R̈. Figure 4 contains the comparison of

R̈ and Acr.

AWs could transform into a shock wave only for negative initial scalar amplitude A(0) ≤ Acr

(g2(t) ≥ 0 for incoming waves), from Figures 4 one can easily conclude that no shock wave is

observable in cylindrical bubble, at least in the range of physical conditions considered here. R̈

and Acr differ actually by three or even more orders of magnitude. This fact is confirmed by

experimental observations. We stress that a slower bubble contraction, with respect to the spherical

case, and the absence of the bouncing oscillations contribute to make shock formation impossible.

The transformation of an AW into a shock is commonly seen as an instability property of the

physical system. Therefore, we can say that a cylindrical geometry support the stability of the gas

inside the bubble, regardless of the equation model employed to describe the phenomenon. This

is in contrast with spherical bubbles [36]. However, differences in the critical amplitude can be

observed in Figure 4 where the predictions of both RET theories are presented together. It turns
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(a) (b)

Fig. 3. A comparison between the RET 6-moment (a) and the 14-moment (b) theories: g2 as a
function of t/t∗ for different physical parameters in the case of H2O gas.

out that the critical values corresponding to ET1
14,P differ by some magnitude orders from those

calculated with ET6,P system. This observation highlights the role played by the dissipation terms

that were partially neglected in (21). The relevance of the dissipation is confirmed by Figure 4(b),

where Acr is plotted for different gas pressure (thus gas rarefaction) inside the bubble. Differences

between an adiabatic (β = 14/5) and an isothermal (β = 2) bubble contraction are shown in Figure

5(a) for H2O gas, while the role played by the bulk viscosity in the AW evolution is investigated

in Figure 5(b) for a RET model with 6 moments, and β = 14/5. We remark that no significant

differences can be observed in the Acr values if ET1
14,P is taken into account. On the other hand, a

very large value of the ratio µb/ν should indirectly influence such a critical value, interfering with

the bubble shrinkage. The numerical integrations were performed by Matlab and it was always

verified that the unperturbed solutions are compatible with the hyperbolicity region of ET1
14,P [53].

VII. CONCLUSIONS

The present work analyses the case of a contracting cylindrical bubble as an extension of some

previous results in spherical symmetry [36]. Cylindrical bubbles were studied in the literature
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(a) (b)

Fig. 4. A comparison between the Acr predicted by RET 6-moment and the 14 moment theories:
for different gases (a) and for different gas pressure pM prescribed when R = RM for a H2O gas
(b). Here β = 14/5.

by many researchers due to their possible applications in several fields, such as medicine and

engineering. For instance, it is known that a small spherical bubble expanding in a microchannel

or in a micro-tube shifts to a cylindrical shape and starts to contract under the action of the liquid

pressure or an oscillating acoustic signal.

To model AW propagation in this kind of bubbles, we refer here to RET theories, capa-

ble of describing phenomena far from equilibrium and of taking into account dissipation effects.

Moreover, such PDE systems are of hyperbolic type, as required by a correct prediction of shock

wave formation in AW theory [32, 36]. The comparison between ET6,P and ET1
14,P improves the

comprehension of the role played by dissipation in AW evolution. In fact, in cylindrical symmetry

the transformation of an AW into a shock is inhibited by the bubble dynamics, that turns out

to be much slower than the spherical one. To our knowledge no experiments have ever revealed

shock waves and what we present here is in complete agreement with these results. However, the

presence of dissipation terms connected to heat flux and stress tensor could play a supplemental

stabilizing effect, even under adiabatic assumptions. On the other hand, if the relaxation time
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(a) (b)

Fig. 5. A comparison between the Acr predicted by RET 6-moment and the 14-moment theories
for adiabatic (β = 14/5) and isothermal (β = 2) bubble contractions (a). In (b) the role of the
bulk viscosity for a CO2 gas modelled by RET 6-moment equations under adiabatic assumptions.

associated with the dynamic pressure (the unique relaxation time in ET6,P ) is very large (as it

could be in CO2), the RET model with 6 moments is able to predict very high values of Π, but

not to account for dissipative phenomena. Thus, it could be preferable to refer to the 14-moment

system in this framework. The influence exerted by different gas properties, initial pressure and

adiabatic/isothermal conditions are also investigated in the previous Sections.

In particular, it was possible to prove that in cylindrical geometry and in the presence of

a non-zero bubble wall speed Ṙ, both the dynamic pressure and the stress tensor do not vanish.

This in accordance with the Navier-Stokes approximation, but in contrast with Euler gas model.

As in [36], we stress that the dynamic pressure could reach very high values if the bulk viscosity

and Ṙ are particularly high. In these circumstances, the total gas pressure ought to be taken into

account in bubble radius evolution. Finally, we recall that in cylindrical geometry the stress tensor

is not entirely negligible either, in contrast with spherical systems.
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