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Abstract

We address the issue of regulating both polluting emissions through a generic tax and access

to a common resource pool in a dynamic oligopoly game. Our analysis shows that once industry

structure is regulated so as to induce the industry to harvest the resource in correspondence of

the maximum sustainable yield, social welfare is either independent or decreasing in the tax if

firms do not invest in abatement technologies, while, if they do, the policy maker may increase the

tax to foster both individual and aggregate green research and development to attain abatement

technologies, ideally up to the level at which emissions and the associated environmental damage

are nil. This also allows us to detect the arising of the win-win solution associated to the strong

form of the Porter hypothesis. We extend the analysis to encompass product differentiation and

monopolistic competition, to show that qualitatively analogous conclusions obtain.

Keywords: OR in environment and climate change; sustainability; differential games; green

research and development; Porter hypothesis

1 Introduction

The analysis of natural resource extraction is, most frequently, disjoint from the analysis of global

warming as a result of anthropic activities. Yet, there obviously exists an intimate connection be-

tween the two, irrespective of whether the resources at stake are renewable ones or not, as producing

∗We thank Rick van der Ploeg and Aart de Zeeuw for precious comments. The usual disclaimer applies.
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final consumption goods involves both, and production and consumption jointly contribute to the

accumulation of polluting emissions. Indeed, there exists a relatively small literature including a few

notable contributions which have proposed a joint analysis of renewable resource and pollution dy-

namics in optimal control models sometimes accomodating also endogenous growth (see Tahvonen,

1991; Tahvonen and Kuuluvainen, 1991, 1993; Ayong Le Kama, 2001; and Wirl, 2004). All of these

focus on the assumptions of (i) a representative consumer either autonomous or flanked by a policy

maker, and (ii) a perfectly competitive economic system

However, the global economy is supplied by industrial sectors populated by large firms endowed

with non-negligible degrees of market power. Hence, a dynamic game encompassing the dynamics

of pollution and that of natural resources facing the impact of firms exploiting them to supply the

global market should be part of the research agenda, and possibly at the top of it. On the basis of

these considerations, we propose a comprehensive view of the impact of an oligopolistic industry on a

renewable resource used to produce consumption goods implying polluting emissions, complemented

by a policy analysis.

To this purpose, we will illustrate a differential oligopoly game in which the linear dynamics

of polluting emissions1 combines with the logistic growth of a renewable resource as in the VLV

model (Verhulst, 1838; Lotka, 1925; Volterra, 1931). In this respect, it is worth adding that several

recent developments of the debate about the economic exploitation of renewables have relied on either

a piecewise linear (‘tent-shaped’) or simply a linear approximation of the logistic growth function

appearing in the VLV setup.2 These approaches, which have delivered a large spectrum of valuable

results, among which a detailed analysis of the continuum of feedback strategies and the arising of

voracity, either disregard the maximum sustainable yield altogether, because it does not exist if the

population dynamics is linear, or transform it in a non-differentiable point in the piecewise linear case.

This paper builds upon the extension of the VLV model investigated in Lambertini and Leitmann

(2019). There, it is illustrated that, the nonlinear dynamics of the renewable resource notwithstand-

ing, the differential oligopoly game of resource extraction yields a subgame perfect (or strongly time

consistent) equilibrium under open-loop information, in correspondence of which the policy maker

may regulate access to the common pool resource in such a way to induce the industry to locate itself

arbitrarily close to the maximum sustainable yield, ensuring thus a sustainable exploitation path in

the long run. In this reapect, our analysis is connected with the debate about the optimal number of

1This the same appearing, e.g., in Benchekroun and Long (1998) and uncountably many others. For an overview of

the related literature, see Lambertini (2013, ch. 8, and 2017, ch. 7).
2Models of the first type appear in Benchekroun (2003, 2008), Colombo and Labrecciosa (2013a, 2015) and

Benchekroun and Long (2016), while some of those belonging to the second can be found in Fujiwara (2008), Colombo

and Labrecciosa (2013b) and Lambertini and Mantovani (2014, 2016).
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firms in the commons (see, inter alia, Cornes et al., 1986; Mason et al., 1988; and Mason and Polasky,

1997). This result is also shown to hold in the perfectly competitive case, where the exogenous market

price delivered by an infinitely elastic demand becomes an additional regulatory tool in the hands of

the public authority in order to achieve the desired outcome.

Here, we expand the model to account for the environmental impact of production and/or consump-

tion of the related final good, and the analysis of the equilibrium welfare involving profits, consumer

surplus and the environmental balance consisting of the residual resource stock and the convex en-

vironmental damage caused by polluting emissions. To complete the picture, we admit the presence

of an emission tax and consider the possibility for firms to invest in green research and development

(R&D henceforth) efforts for emission abatement.

A few remarks are in order concerning the use of the emission tax by the regulator. As is well known,

under imperfect competition the efficient tax does not induce firms to exactly internalise the marginal

environmental damage, due to the presence of extraprofits and consumer surplus. That is, any demand

function less than perfectly elastic poses a serious problem to the authority because maximising welfare

is not equivalent to fully internalising the externality. Indeed, Buchanan (1969) and Barnett (1980)

have shown that the welfare-maximising tax falls short of the marginal environmental damage in

monopoly, and the same happens, in general, under oligopolistic behaviour (see Simpson, 1995; and

Katsoulacos and Xepapadeas, 1995), with few exceptions emerging under cost asymmetries across

firms and in correspondence of the limit properties of the free entry equilibrium. The fact is, in brief,

that using emission taxation to maximise welfare leads, more often than not, to a compromise driven

by the well known tradeoff between consumer and producer surplus on one side and the environmental

balance on the other.

Our approach offers a new perspective about this long standing issue, as, instead, we discover that

regulating entry to drive industry harvest in correspondence of the maximum sustainable yield partially

or completely sterilises tax policy (if firms only react through output) or allows the authority to use

the tax in order to increase (indeed, maximise) the greenness of technology (if firms implement R&D

project under the stimulus provided by the emission tax itself). The intuition behind this result is that

regulating access to the commons in order to achieve harvesting at the maximum sustainable yield

amounts to regulating individual and total output, thereby disconnecting the tax from the remaining

part of the environmental balance, namely, the damage caused by emissions. All of this is proved

keeping the model as general as possible, and specifying only the essential qualitative properties of the

building blocks, such as market demand, production costs, a convex damage function, and the system

of differential equations governing the renewable resource and firms’ emissions.

Then, we revert to a fully specified setup through which these results are generated by augmenting
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in several directions the basic model, which initially accounts for a Cournot industry supplying a ho-

mogeneous good produced at constant returns to scale through the extraction of a renewable resource.

The basic layout indeed implies that regulating access to attain harvesting at the maximum sustain-

able yield fully sterilises the emission tax, whose only effect is purely redistributive. As soon as one

admits the presence of (i) decreasing returns, (ii) product differentiation and (iii) R&D for emission

abatement, the scenario engendered by the model changes significantly. In particular, adding R&D

investments to the initial version of the model suffices to yield the most relevant insight this paper

offers, since in this case aggregate R&D efforts increase monotonically in the tax and the regulator

may use it to decrease both emissions and the resulting environmental damage. Furthermore, (i) there

exists a unique emission tax at which emissions and the damage are nil and still profits and consumer

surplus are strictly positive; and (ii) this tax rate exceeds the welfare-maximising tax.

The resulting tradeoff posed to the policy maker prompts a verification of the Porter hypothesis

(Porter, 1991; Porter and van der Linde, 1995)3 in its strong form, according to which firms subject

to environmental regulation react by going green, which delivers a win-win solution whereby industry

profits go up together with social welfare. Indeed, we prove this holds true by comparing the equi-

librium profit and welfare levels across the first two settings just mentioned. The tradeoff between

welfare and greenness disappears once R&D investments are just high enough to reduce emissions to

zero, because emission taxation disappears as well.

Analogous considerations also apply in correspondence of the equilibrium outcome of the differen-

tial game associated with the full model in which firms offer differentiated varieties and operate under

decreasing returns to scale, as well as in the alternative scenario in which, all else equal, we assume

the presence of monopolistic competition.

The remainder of the paper is structured as follows. Section 2 illustrates the layout of the model

in its general version, to derive the main results independently of specific assumptions concerning

demand, cost and damage functions, and also discusses the implications of the Ramsey rule, which

disappears as soon as one focusses upon the degenerate feedback solution under open-loop information.

The specialised oligopoly game with product homogeneity and constant returns to scale is in section 3,

while further extensions to decreasing returns, product differentiation and monopolistic competition

are in section 4. Section 5 contains a few concluding remarks and briefly indicates avenues for future

research.

3The stream of theoretical and empirical research on the Porter hypothesis is too large to be acccounted for compre-

hensively here (for exhaustive overviews, see Lanoie et al. 2011, Ambec et al., 2013, and Lambertini, 2017). To the best

of our knowledge, the only dynamic model in this vein is that of Xepapadeas and de Zeeuw (1999), where firms change

their capital stocks under the stimulus exerted by emission taxation.
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2 Resource extraction and polluting emissions

Consider a market existing over continuous time t ∈ [0,∞) , being supplied by n ≥ 1 identical firms

exploiting a renewable resource X (t) to produce a homogeneous final good sold to consumers. The

dynamics of the natural resource is as in the VLV model,

·
X (t) = δX (t) [1− βX (t)]− γQ (t) (1)

in which β, γ and δ are positive constants, and Q (t) =
∑n

i=1 qi (t) is the sum of the n firms’ indi-

vidual harvest at any time t. Through an appropriate choice of measure, qi (t) and Q (t) are also the

instantaneous individual and industry output levels.

Production and/or consumption are responsible of polluting emissions, whose total amount at any

instant is S (t) =
∑n

i=1 si (t) , si (t) being the emission level imputed to qi (t), in such a way that we

have n additional state equations of the following form:

·
si (t) = νqi (t)− ηsi (t) (2)

where ν and η are positive constants. Before proceeding any further, a few words are appropriate to

justify this choice, which excludes the double commons case. Indeed, we could have modelled the latter

by stipulating the existence of a single state S (t) being determined by the production/consumption

of industry output Q (t), in such a way that firms should account for a single state equation
·
S (t) =

ν
∑n

i=1 qi (t)− ηS (t). Accordingly, firms would then be subject to a taxation levied on S (t). Indeed,

this choice would replicate the qualitative nature of our main results, with a caveat related to the role

of green R&D, which would appear in the pollution dynamics as a public good, since the contribution

of any single firm in terms of emission abatement would alleviate the tax burden borne by all firms

alike. This would thus give rise to a scenario which would not be adherent to casual observation of

firms’ behaviour. A brief sketch of this alternative formulation of the problem, confined to the linear

Cournot model, is in the Appendix.

Back to our model, the first scenario envisages Cournot competition with homogeneous goods.

Accordingly, we assume that, at any t, firms face a single inverse demand function p (Q (t)), with

∂p (Q (t)) /∂Q (t) < 0 and ∂2p (Q (t)) /∂Q2 (t) ≥ 0 (the latter condition ensures concavity of instan-

taneous profits, see Dixit, 1986). Moreover, firms share the same technology summarised by a cost

function Ci (qi (t)), with ∂Ci (qi (t)) /∂qi (t) > 0 and ∂2Ci (qi (t)) /∂q2i (t) ≥ 0, i.e., marginal cost is

non-decreasing. Then, the regulator imposes a tax levied on each individual firm’s emissions, in such

a way that the instantaneous profit function of firm i is πi (t) = p (Q (t)) qi (t)− Ci (qi (t))− τsi (t).

Firm i has choose harvest qi (t) so as to maximise the discounted profit flow Πi (t) =
∫∞
0 πi (t) e−ρtdt

under the constraint posed by (1). The Hamiltonian function of firm i is therefore

Hi (t) = p (Q (t)) qi (t)− Ci (qi (t))− τsi (t) + λii (t) [νqi (t)− ηsi (t)] (3)
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+
∑
j 6=i

λij (t) [νqj (t)− ηsj (t)] + µi (t) [δX (t) (1− βX (t))− γQ (t)]

to be maximised w.r.t. qi (t) , the initial conditions being X0 = X (0) > 0 and si0 = si (0) ≥ 0 for all

i = 1, 2, ...n.

Suppose firms operate under open-loop information. The first order condition (FOC) taken w.r.t.

qi is (henceforth, we omit the explicit indication of the time argument):

∂Hi
∂qi

=
∂πi
∂qi

+ λiiν − µiγ = 0. (4)

To ease the exposition of the ensuing discussion, we may reformulate the profit function as πi = π̃i−τsi,

where π̃i = p (Q) qi−Ci (qi) is the instantaneous profit function in the absence of taxation. This allows

us to rewrite the above FOC as follows:

∂Hi
∂qi

=
∂π̃i
∂qi

+ λiiν − µiγ = 0 (5)

since only gross profits are involved in the choice of qi.

The associated system of the n+ 1 costate equations is

·
λii = (η + ρ)λii + τ (6)
·
λij = (η + ρ)λij , ∀ j 6= i (7)

·
µi = [δ (2βX − 1) + ρ]µi (8)

This implies that the costate dynamics associated with λij and µi is described by a differential equation

in separable variables, admitting the solutions λij = 0 and µi = 0 at all times. This is not true for λii

except in the special case in which τ = 0, i.e., if emission taxation is permanently absent. However,

the game is linear in the vector s = (s1, s2..., sn) of emissions, and state-redundant w.r.t. the resource

stock X. These two properties imply that the open-loop solution of the game is indeed subgame

perfect (or, strongly time consistent), although the structure of the game is not linear in one of the

state variables (cf. Dockner et al., 2000).4

Before proceeding with the discussion of the solution of the oligopoly game, it is useful to define

the welfare function, as follows:5

SW =

n∑
i=1

πi + CS + TI −D +X (9)

4This property of the VLV model was originally pointed out by Goh et al. (1974). See also Leitmann (1973).
5This definition of the welfare function accounts for the combination of industry profits, consumer surplus and the

environmental balance X −D. This formulation captures the nature of the problem posed to the policy maker, which

may face a tradeoff between the traditional components of welfare and the environmental ones. The expression in (9)

appears in too many contributions to list them all here, but see, inter alia, Lambertini (2013).
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in which CS =
∫ QCN

0 p (Q) dQ is consumer surplus, amounting to the integral of the demand function

up to the Cournot-Nash industry output QCN ; TI = τS = τ
∑n

i=1 si is the income generated by

emission taxation, which is redistributed to society (for example, in the form of infrastructures and

public services); and D = ζS2 is the environmental damage, convex in aggregate emissions. The

definition of SW in (9) applies at all times, as well as in steady state.

2.1 The Ramsey rule and its implications

We set out to solving the game supposing µi 6= 0. This case generates a Ramsey rule governing the

economic exploitation of the natural resource, as is well known since Gordon (1954), Smith (1969),

Clark (1975), Peterson and Fisher (1977), Berck and Perloff (1984), Clark (1990) and many others.

The main difference between these contributions and ours is that we specify the harvesting strategy

as a quantity while in the aforementioned references the harvest is defined as a production function in

terms of the stock and a labour input, which typically implies multiple equilibria at the intersection

between the resulting harvest curve and the concave locus defining the reproduction rate of the stock.6

To obtain the Ramsey rule, we may manipulate (4) and (6-8). From (4), we have

·
µi =

·
π
′
i

γ
(10)

where π′i = ∂πi/∂qi;
·
π
′
i = ∂π′i/∂t and µi = π′i + λiiν. Solving (6) we obtain λii = ντ/ (δ + ρ) , with

the integration constant set to zero. Then, noting that the r.h.s. of (8) and (10) must coincide, and

substituting λii with the above expression, delivers the following:

·
π
′
i =

[π′i (δ + ρ) + ντ ] [δ (2βX − 1) + ρ]

δ + ρ
(11)

which substitutes the usual control equation that would describe the dynamics of qi. The stationarity

condition
·
π
′
i = 0 is satisfied by the solutions of the system

π′i (δ + ρ) + ντ = 0

δ (2βX − 1) + ρ = 0
(12)

While the first equation yields the market-driven output level(s), the second yields the Ramsey solution

at XR = (δ − ρ) / (2βδ) which depends on discounting and the parameters characterising the VLV

equation. XR is the same as in Lambertini and Leitmann (2019, p. 2), and is admissible iff δ > ρ.

In such a case, the existence of this solution dictated by the Ramsey rule prevents the industry from

6An alternative but largely analogous approach underpins the poach-and-trade model in Damania and Bulte (2007),

where agents solve a static game delivering the optimal strategies which, unlike what happens in the present model, are

determined by a Schaefer production function.
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harvesting at the maximum sustainable yield (MSY ), XMSY = 1/ (2β), since XMSY > XR for all

ρ > 0.

Figure 1 The phase diagram under Cournot competition, δ > ρ
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The corresponding phase diagram in the space (X, q) is illustrated in Figure 1, which replicates

the analogous graph in Lambertini and Leitmann (2019, p. 3). The arrows identify the saddle path to

the stable steady state in E1, to the left of the Ramsey solution along the vertical line at XR. Hence,

we may turn our attention to the scenario in which, the Ramsey rule being absent, firms may indeed

play or be induced to play strategies achieving collective harvesting at the MSY .

2.2 The degenerate feedback solution

We are now in a position to outline the equilibrium of the game engendered by posing λij = 0 and

µi = 0 at all times and to infer a key property of the model. Recalling the main result in Lambertini

and Leitmann (2019), concerning the possibility for the authority to regulate access to the commons

to force the industry to harvest in correspondence of the MSY , we may conclude that (i) if indeed

the authority grants access to a specific number of firms, nMSY (τ) , accounting for the presence of the

emission tax, then the industry output QCNMSY (nMSY (τ)) is indeed ‘fixed’ to ensure the attainment

of the MSY at any time, as in Figure 2 (which corresponds to Figure 3 in Lambertini and Leitmann,

2019, p. 4), where the arrows illustrate the fact that the tangency solution at the MSY is semi-stable.

Figure 2 Harvesting at the MSY
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Firms solve (5) to find the optimal individual quantity and then also its control equation. Moreover,
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again from (5), we have the expression of the shadow value attached by firm i to its own emissions, λii =

1
ν
∂π̃i
∂qi

, which can be differentiated w.r.t. time to obtain
·
λii = dπ̃′/dt

ν , where dπ̃′/dt ≡ d (∂π̃i/∂qi) /dt.

The r.h.s. of the above expression must the equal to the r.h.s. of (6), and consequently the expression of

the optimal shadow value is λii = (dπ̃′/dt+ ντ) / [ν (η + ρ)] , which in turn implies that increasing the

tax pressure will decrease individual and industry optimal outputs, respectively defined as qCN (n, τ)

and QCN (n, τ) at any time, and of course in steady state.

Now the matter is that the regulator wants firms to harvest at the MSY at all times to preserve the

biological stock forever, and therefore we may plug X = 1/ (2β) into (1) and then impose n = nMSY (τ)

in such a way that QCNMSY = δ/ (4βγ) . Here it is worth noting that this number of firms will necessarily

be increasing in τ, i.e., ∂nMSY (τ) /∂τ > 0 in order to keep QCNMSY constant, since, as noted above,

qCN (n, τ) and QCN (n, τ) are necessarily decreasing in τ .

The discussion carried out thus far also implies that consumer surplus CCNMSY =
(
QCNMSY

)2
/2 and

the steady state amount of emissions SCNMSY = νQCNMSY /η are independent of the emission tax, and so

is the environmental damage DCN
MSY = δ2ν2ζ/

(
16β2γ2η2

)
as well.

The only component of welfare being affected by the tax is the aggregate profit of the industry,

because individual profits are πCNMSY = p
(
QCNMSY

)
· qCNMSY −C

(
qCNMSY

)
− τνqCNMSY /η and their aggregate

value is

ΠCN
MSY = nMSY (τ) · πCNMSY = p

(
QCNMSY

)
·QCNMSY − nMSY (τ) · C

(
qCNMSY

)
−
τνQCNMSY

η
(13)

Note that aggregate revenues are unaffected by τ, which appears only in the total cost function either

explicitly (in the tax burden) or implicitly (in nMSY (τ) and qCNMSY , which contains the latter). The

partial derivative of (13) is

∂ΠCN
MSY

∂τ
= −

η
[
Ci
(
qCNMSY

)
+ nMSY (τ) · C ′

(
qCNMSY

)]
n′MSY (τ) + νQCNMSY

η
(14)

where

C ′
(
qCNMSY

)
≡
∂C
(
qCNMSY

)
∂τ

=
∂C
(
qCN

)
∂q

· ∂q
CN

∂τ

∣∣∣∣∣
n=nMSY (τ)

< 0

n′MSY (τ) ≡ ∂nMSY (τ)

∂τ
> 0

(15)

Now, if production takes place at constant marginal cost, then nMSY (τ) · C
(
qCNMSY

)
= C

(
QCNMSY

)
,

whereby C ′
(
QCNMSY

)
= 0 because QCNMSY is independent of τ . On the other hand, social welfare will be

independent of τ because of the redistribution of the tax income to consumers. Hence, we may claim

Proposition 1 If firms sell a homogeneous good and productive technology is characterised by constant

returns to scale, provided access to the commons is regulated to ensure industry harvesting at the MSY ,

equilibrium welfare will be independent of the emission tax.

9



This also implies the following ancillary result:

Corollary 2 Under product homogeneity and regulated access to the commons at nMSY (τ), irrespec-

tive of the nature of returns to scale in production, the emission tax will have no impact on the size

of the environmental damage. Consequently, the public authority may modify tax pressure for purely

redistributive purposes.

This amounts to saying that once industry structure has been ”frozen” to guarantee the survival

of the biological resource in the long run, the primary effect of the emission tax, originally envisaged

to be an instrument to reduce the environmental impact of production and/or consumption, has been

entirely sterilised.

This remains largely true (although not 100% so) if we relax the admittedly restrictive assumption

concerning product homogeneity to adopt the more realistic view that each firm sells a differentiated

variety, in such a way that firm i faces a product-specific inverse demand function pi (qi, Qj) , in which

Qj =
∑

j 6=i qj . This assumption, in particular, implies that individual and industry equilibrium profits

will indeed depend on τ even under constant returns to scale, as can be ascertained using the well

known model in Ottaviano et al. (2002), which encompasses the earlier approach due to Singh and

Vives (1984).

The specific reason is that equilibrium prices will incorporate the n firms’ outputs in an asymmetric

way, due to the presence of even the smallest degree of product differentiation. However, it remains true

that fixing n and consequently Q to induce the industry to extract the resource from its natural habitat

in correspondence of the MSY opens up a novel and interesting perspective on the role of emission

taxation, showing that (i) it can be finely tuned to drive emissions and the related environmental

damage to zero, although (ii) the tax level achieving this result is systematically higher than that

maximising total welfare, precisely because under product differentiation - and irrespective of the

nature of the market regime - the environmental damage is affected by the tax, which partially restores

the traditional tradeoff between profits and consumer surplus on one side and the environmental

balance on the other (still, were product differentiation sufficiently small, this consequence would be

almost negligible).

A somewhat different story can be told if one admits the possibility for firms to react to emission

taxation by investing in abatement technologies, with the twofold objective of cleaning their technology

and softening the impact of the emission tax on their profits.

To investigate this scenario, it suffices to modify the above model to include investments in abate-

ment technologies. The simplest way to do so is to assume perfect patent protection, i.e., no spillovers

or information leakages across firms. Firm i’s profit function becomes πi (t) = p (Q (t)) qi (t) −

10



Ci (qi (t)) − τsi (t) − bk2i (t), in which bk2i (t) /2 is the instantaneous cost associated with an abate-

ment effort ki (t) > 0, this becoming the second control in the hands of each firm. This R&D effort

enters the state equation of individual emissions in the following way:

·
si (t) = νqi (t)− ηsi (t)− φki (t) (16)

where φ is a positive constant. In this respect, it is worth noting that we identify the present lay-

out of R&D as being for abatement technologies in the sense that it leaves unaltered parameter v,

which measures the number of CO2-equivalent molecules emitted by production/consumption. We

may label this technology as an end-of-pipe device designed to capture carbon before its release in

the atmosphere. Conversely, if ki (t) were to modify v, the above state equation would write as
·
si (t) = νi (t) qi (t) − ηsi (t) − φki (t) and it would be necessarily accompanied by an additional state

equation like
·
νi (t) = νi (t) [1− φki (t)] , so that as long as ki (t) < 1/φ, νi (t) increases, and conversely.

However, the multiplicative effect appearing in the latter equation would prevent the attainment of

a degenerate feedback equilibrium under open-loop information (for more on this modelling strategy

and its implications, see Dragone et al., 2013).

The remaining building blocks of the model are unmodified, so that the Hamiltonian of firm i is

Hi (t) = p (Q (t)) qi (t)− Ci (qi (t))− τsi (t)− bk2i (t) +

λii (t) [νqi (t)− ηsi (t)− φki (t)] +
∑
j 6=i

λij (t) [νqj (t)− ηsj (t)− φkj (t)]

+µi (t) [δX (t) (1− βX (t))− γQ (t)] (17)

Given the additive separability of the model w.r.t. controls, the FOC on qi (t) and the dynamics of

λii (t) are the same as above, while we have an additional FOC taken on ki (t) (once again, we omit

the time argument):
∂Hi
∂ki

= −2bki (t)− λiiφ = 0 (18)

Additionally, it remains true that the game is state-redundant and therefore λij = 0 and µi = 0 at all

times.

Since λii appears in both FOCs, we have λii = (dπ̃′/dt+ ντ) / [ν (η + ρ)]−2bki/φ. The first option

can be used to treat the dynamics of qi, while the second is useful to characterise the dynamics of

emission abatement:7

·
ki = −

·
λiiφ

b
=
b (η + ρ) kii − φτ

b
(19)

7As will become evident in the ensuing examples, the two control equations will not, in general, be linearly independent,

because of the presence of the adjoint variable in both FOCs. This is surely the case with a linear market demand for a

homogeneous good: in this case, the FOC w.r.t. qi (t) can be solved to find the optimal individual output.
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solving which at any time t we obtain the optimal symmetric abatement effort of the generic firm,

k∗ (τ) = φτ/ [2b (η + ρ)] + et(η+ρ)C, where the integration constraint C can be set equal to zero. Since

the above expression is independent of n, which - as we know from the above discussion - has been

in the meantime set equal to nMSY (τ) by the regulator, the industry-wide investment in abatement

technologies is K∗ (τ) = nMSY (τ) · k∗ (τ), and

∂K∗ (τ)

∂τ
=
∂nMSY (τ)

∂τ
· k∗ (τ) + nMSY (τ) · ∂k

∗ (τ)

∂τ
> 0 (20)

since ∂nMSY (τ) /∂τ > 0 and ∂k∗ (τ) /∂τ > 0.

All else equal, this very fact modifies the picture in one very relevant respect, namely, the regulator’s

attitude about the proper use of the tax. While in absence of R&D activities on the part of firms

the public authority could only think of the emission tax as a redistributive tool, now it sees this

environmental policy for what it should indeed be, namely, a tool for triggering and boosting green

R&D.

In particular, this exercise has shown the arising of an Arrovian result (Arrow, 1962),8 according

to which increasing the tax drives a monotone increase in the aggregate abatement effort carried out

by the entire industry:

Proposition 3 If firms react to emission taxation by implementing R&D projects for abatement tech-

nology under full patent protection, any tax increase causes individual and aggregate R&D to increase

monotonically since nMSY (τ) is itself increasing in the tax rate to guarantee the attainment of the

MSY .

Of course, the non-negativity of profits poses an upper bound to the tax increase and therefore

also to the expansion of R&D investments, but in line of principle the policy maker can push the tax

up to a level at which equilibrium individual profits are positive although arbitrarily small. Indeed,

the following example, based upon a linear market demand, will show that the public authority may

actually drive the whole industry to a green production pattern. In doing so, we will also assess the

relative size of such tax and that associated with welfare maximisation, to illustrate that a government

may systematically face a tradeoff between achieving the highest possible degree of greenness and

welfare maximisation, and nonetheless this conundrum can be solved through the arising of a win-win

8Arrow (1962) proposed the view, holding that increasing the intensity of competition (or industry fragmentation)

would bring to bear higher innovation incentives, in contrast with Schumpeter’s (1942) position according to which

innovation incentives would be monotonically increasing in market power and concentration. The lively debate discussing

these opposite views in the theory of industrial organization can be appreciated by reading Tirole (1988) and Reinganum

(1989), inter alia. An analogous discussion about green R&D exists in environmental economics as well (see, for example,

Feichtinger et al., 2016, and Lambertini et al., 2017).
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solution vindicating the Porter hypothesis. This happens because once technology is green, taxation

becomes ineffective and therefore the aforementioned tradeoff vanishes.

Moreover, given the additively separable structure of the model, the presence of product differenti-

ation and/or decreasing returns to scale in production do not affect the above claims. Hence, we have

found a perspective that allows a regulator to get two eggs in one basket: first appropriately define

n as a function of τ in such a way to preserve the renewable resource forever, and then exploit the

monotonicity of nMSY (τ) in τ to spur firms to clean up their technology.

To illustrate the above results, we may resort to different specialised models based on plausible

sets of specific functional forms of demand and cost functions, with and without R&D investments in

abatement technologies.

3 Linear demand and constant returns to scale

Let the n Cournot firms supply a homogeneous good whose market demand function is linear, p (t) =

a − Q (t) , where a is a positive constant. All firms use the same technology at constant returns

to scale, whereby the individual instantaneous cost function is Ci (qi (t)) = cqi (t) , where the time-

invariant marginal cost c ∈ (0, a) . To ease the ensuing exposition, we may define A ≡ a − c. Each

individual firm’s emissions si (t) are being taxed at all times at the rate τ > 0. Consequently, firm i’s

instantaneous profit function can be written as πi (t) = [A− qi (t)−Q−i (t)] qi (t) − τsi (t) , in which

Q−i (t) ≡
∑

j 6=i qj (t). We shall start by illustrating the game in which firms do not invest in abatement

technologies.

In absence of green R&D, the problem of firm i is

max
qi(t)

∫ ∞
0

e−ρtπi(t)dt,

·
si(t) = νqi(t)− ηsi(t), si(0) = si0, i = 1, 2, ...n (21)

·
X(t) = δX(t) [1− βX (t)]− γQ (t) , X(0) = X0.

which implies that firm i must choose it output level to maximise the following Hamiltonian:9

Hi = πi + λii (νqi − ηsi) +
∑
j 6=i

λij (νqj − ηsj) + µi [δX (1− βX)] (22)

in which {λii, λij , µii} is the vector of the n+1 costate variables. The differential game is solved under

open-loop information, with firms playing simultaneously and non-cooperatively at all times, which

amounts to saying that we are about to characterise the Cournot-Nash open-loop equilibrium and its

implications.

9Henceforth we shall omit the explicit indication of the time argument for the sake of brevity.
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The first order condition (FOC) on individual output is

A− 2qi −
∑
j 6=i

qj + λiiν − µiγ = 0 (23)

which yields

λii =
2qi +

∑
j 6=i qj + µiγ −A

ν
(24)

and it is accompanied by the following costate equations:

·
λii = (η + ρ)λii + τ
·
λij = (η + ρ)λij (25)

·
µi = [δ (2Xβ − 1) + ρ]µ

and the transversality conditions limt→∞ λiisi = 0, limt→∞ λijsj = 0 and limt→∞ µiXi = 0.

Now note that (25) imply that solutions λij = µi = 0 are admissible at all times. Using these

solutions and imposing symmetry across output levels and λii’s, the solution of (23) at a generic

instant is qCN = (A+ λν) / (n+ 1), which, in turn , delivers the control equation
·
q =

·
λν/ (n+ 1).

This, on the basis of (24-25), becomes

·
q =

(η + ρ) [(n+ 1)q −A] + τν

n+ 1
(26)

The steady state values of the n+ 1 states and the single control are

ŝ =
ν [A(η + ρ)− ντ ]

(n+ 1)η(η + ρ)
=
ν

η
q̂

X̂± =
(n+ 1)δ(η + ρ)±

√
Θ

2(n+ 1)βδ(η + ρ)
(27)

q̂ =
A(η + ρ)− ντ
(n+ 1)(η + ρ)

where Θ ≡ (n+ 1)2δ2(η+ρ)2 + 4(n+ 1)δ(η+ρ)nβγ [ντ −A(η + ρ)] , and q̂ > 0 implies X̂+ ≥ X̂− > 0.

Standard stability analysis (assuming λij = 0 and µi = 0 for all t) of the equilibrium implies two

strictly positive and one negative eigenvalue for both steady state values of X. The fourth eigenvalue

is negative for X̂+ and positive for X̂−. Both equilibria are saddle points but only X̂+ is a candidate

for an optimal solution.

Regulating access to the commons to ensure X̂+ = XMSY = 1/ (2β) requires imposing

n = nMSY ≡
δ(η + ρ)

4βγ [A(η + ρ)− ντ ]− δ(η + ρ)
(28)

This implies the following:
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Proposition 4 Harvesting at the MSY requires

n = nMSY ≡
δ(η + ρ)

4βγ [A(η + ρ)− ντ ]− δ(η + ρ)

with nMSY being positive and at least equal to one for all A ∈ (Amin, Amax) , where

Amin ≡ 4βγντ + δ(η + ρ)

4βγ(η + ρ)

Amax ≡ 2βγντ + δ(η + ρ)

2βγ(η + ρ)

From
∂nMSY

∂τ
=

4βδγν(η + ρ)

[4βγ (A(η + ρ)− ντ)− δ(η + ρ)]2
> 0 (29)

we see that increasing taxation must go along with expanding access to the commons in order for the

industry to keep harvesting the resource at the MSY, to compensate the negative effect of emission

taxation on the steady state value of production q̂:

∂q̂

δτ
= − ν

(n+ 1) (η + ρ)
(30)

Now we may look at the equilibrium level of the environmental damage, which, for a generic

industry structure, amounts to

D̂ (n) =
n2ν2ζ [A(η + ρ)− ντ ]2

(n+ 1)2 η2 (η + ρ)2
(31)

However, once n = nMSY , this simplifies as D̂ (nMSY ) = δ2ν2ζ/
(
16β2γ2η2

)
, i.e., it becomes indepen-

dent of the emission tax, and the same of course applies to the equilibrium level of aggregate emissions.

Moreover, the same holds for aggregate output, which corresponds to Q̂ (nMSY ) = δ/ (4βγ) , and con-

sequently also for consumer surplus, ĈS (nMSY ) = δ2/
(
32β2γ2

)
.

Therefore, we may claim:

Proposition 5 Once the policy maker pursues the attainment of harvesting at the MSY , the envi-

ronmental balance XMSY − D̂ (nMSY ) is independent of industry structure.

This of course is not true for profits, nMSY · π̂ (nMSY ) = δ [4βγη(A− τ)− δη] /
(
16β2γ2η

)
, due to

the presence of the emission tax. However, since the income generated by emission taxation is being

redistributed, the equilibrium level of social welfare is indeed independent of the tax:

ŜW (nMSY ) =
16βγ2η2 + δ

[
(8Aβγ − δ) η2 − 2δν2ζ

]
32β2γ2η2

(32)

Note that ŜW (nMSY ) may take a negative value. A sufficient condition for this not to happen is

A ≥ Â (nMSY ) ≡ δ
(
η2 + 2ν2ζ

)
/
(
8βγη2

)
. Hence, the detailed exposition of the model with linear

demand, product homogeneity and constant returns to scale confirms the contents of Proposition 1

and Corollary 2, whereby we may reformulate those conclusions as follows:
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Proposition 6 If firms sell a homogeneous good with a common technology characterised by a con-

stant marginal cost, limiting access at nMSY sterilises the emission tax, which has no impact on the

environmental damage and can be exclusively used to redistribute surplus between firms and consumers.

3.1 Abatement technology

We are now in a position to expand the above model in order for it to accommodate firms’ R&D

efforts in abatement technologies, spurred by emission taxation. In this setting, each firm controls two

variables, output and the R&D effort, the latter involving a convex instantaneous cost and entering

the kinematics of si, in such a way that the key elements of the model can be described as follows.

Instantaneous individual profits are πi (t) = [A−Q (t)] qi (t)− τsi (t)− bk2i (t), and the relevant state

equation of individual emissions becomes (16), which is based on the assumption that the individual

firm receives no spillover from any of the rivals.

Hence, firm i’s Hamiltonian is

Hi (t) = [A−Q (t)] qi (t)− τsi (t)− bk2i (t) + λii (t) [νqi (t)− ηsi (t)− φki (t)] +

∑
j 6=i

λij (t) [νqj (t)− ηsj (t)− φkj (t)] + µi (t) [δX (t) (1− βX (t))− γQ (t)] (33)

and therefore (23) and (25) still apply, accompanied by the FOC taken w.r.t. the abatement effort,

which is (18). Our purpose here is to illustrate the arising of Proposition 3.

After posing µi = 0 and λij = 0 for all j 6= i at all times, and imposing symmetry, we may

solve (18) to obtain k = −φλ/ (2b) and thus also
·
k = −φ

·
λ/ (2b), in such a way that the two control

equations are
·
k = −φ [λ (η + ρ) + τ ]

2b
;
·
q =

ν [λ (η + ρ) + τ ]

n+ 1
(34)

which are not linearly independent. Consequently, we shall use the FOC (23) to identify the Cournot

output, and (18) to identify the expression of the shadow price, λ = −2bk/φ. Doing so, we obtain the

following system:
·
k = k (η + ρ)− φτ

2b

A− (n+ 1) q − 2bνk

φ
= 0

·
s = νq − ηs− φk

·
X = δX (1− βX)− γ (n− 1) q

(35)

which, imposing stationarity, delivers

k̂ =
φτ

2b (η + ρ)
; q̂ =

A (η + ρ)− ντ
(n+ 1) (η + ρ)

ŝ =
νq̂ − φk̂

η
; X̂± =

δ ±
√

Ψ

2βδ

(36)
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where

Ψ ≡ δ [(η + ρ) (δ + n (δ − 4Aβγ)) + 4nβγντ ]

(n+ 1) (η + ρ)
(37)

At this point we may follow the same procedure as in the previous setting, by noting that the stable

solution for the resource stock is necessarily X̂+, and impose X̂+ = 1/ (2β) to find

nMSY (τ) =
δ (η + ρ)

(η + ρ) (4Aβγ − δ)− 4βγντ
(38)

which is positive and at least equal to one for all

A ∈
(
δ (η + ρ) + 4βγντ

4βγ (η + ρ)
,
δ (η + ρ) + 2βγντ

2βγ (η + ρ)

]
(39)

At n = nMSY (τ) , once again Q̂ (nMSY (τ)) = δ/ (4βγ) , and therefore consumer surplus ĈS (nMSY (τ)) =

δ2/
(
32β2γ2

)
.

The corresponding environmental damage is

D̂ (nMSY (τ)) =
ζ
[
bδν ((4Aβγ − δ) (η + ρ)− 4βγντ)− 2βγδφ2τ

]2
16b2β2γ2η2 [(4Aβγ − δ) (η + ρ)− 4βγντ ]2

(40)

and this expression becomes nil at

τ∗ =
bν (4Aβγ − δ) (η + ρ)

2βγ (2bν2 + φ2)
> 0 (41)

which obviously also solves ∂D̂ (nMSY (τ)) /∂τ = 0. Of course, the adoption of τ∗ also implies

ŝ (nMSY ) = 0. This proves the following:

Proposition 7 If firms undertake R&D projects for abatement technologies under full patent protec-

tion, and the regulator imposes n = nMSY (τ) , there exists a unique emission tax rate τ∗ at which

individual and aggregate emissions drop to zero.

As for aggregate R&D, K̂ (nMSY (τ)) = δφτ/ [2b ((4Aβγ − δ) (η + ρ)− 4βγντ)], we have that

∂K̂ (nMSY (τ)) /∂τ > 0 always, which proves the following

Corollary 8 If firms undertake R&D projects for abatement technologies under full patent protection,

and the regulator imposes n = nMSY (τ) , then aggregate R&D investment is monotonically increasing

in the emission tax rate.

Finally, simplifying the expressions of individual output, profits and social welfare, we obtain

q̂ (nMSY (τ) , τ∗) =
(4Aβγ − δ)φ2

4βγ (2bν2 + φ2)

π̂ (nMSY (τ) , τ∗) =
(4Aβγ − δ)2 φ2

(
bν2 + φ2

)
16β2γ2 (2bν2 + φ2)2

ŜW (nMSY (τ) , τ∗) =
8bβγν2 [(a− c) δ + 4γ] +

[
8βγ (Aδ + 2γ)− δ2

]
φ2

32β2γ2 (2bν2 + φ2)2

(42)
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where q̂ (nMSY (τ) , τ∗) and π̂ (nMSY (τ) , τ∗) are positive in view of the constraint ensuring the positiv-

ity of the output level at any instant. Consequently, in this setting the regulator need not take into ac-

count the non-negativity of either outputs or profits when looking for the tax rate driving the whole in-

dustry along a sustainable path. However, once again the equilibrium welfare level may take a negative

value. A sufficient condition for this not to happen is A ≥ Â (nMSY (τ) , τ∗) ≡
(
δ2 − 16βγ2

)
/ (8βγδ) ,

and it is easily checked that Â (nMSY (τ) , τ∗) < Â (nMSY ) always.

Additionally, we may briefly dwell upon the possibility for the public authority to implement the

welfare-maximising tax rate. In this respect, it is easily checked that, in correspondence of τ = τ∗,

the partial derivative of ŜW (nMSY (τ)) w.r.t. to τ simplifies to

∂ŜW (nMSY (τ))

∂τ

∣∣∣∣∣
τ=τ∗

= −
δν
(
bν2 + φ2

)
4βγ (η + ρ)φ2

< 0 (43)

which reveals that the welfare-maximising tax falls short of the tax rate ensuring the elimination of

polluting emissions. This, intuitively, is imputable to the presence of τ in the expression of equilibrium

profits, and is a potential source of conflicts inside a government. The same problem reproduces itself

in the remainder of the paper, with the equivalent of (43) holding systematically across market regimes.

Needless to say, the result spelled out in Proposition 7 should be considered with some caution,

as one cannot expect emissions to literally drop to zero. However, this setup says that there exists a

scenario in which regulating access and emissions may create a synergy that has remained overlooked

thus far, capable of creating a sustainable path accounting for two key dimensions, i.e., the preservation

of natural resources and a significant reduction of polluting emissions. This prompts for a check of

the Porter hypothesis in its strong form.

3.2 A validation of the Porter hypothesis

Now we are in a position to comparatively assess equilibrium profits and welfare levels engendered by

the two scenarios analysed thus far. This exercise is carried out by posing τ = τ∗ in π̂ (nMSY ) , so as

to verify whether the tax rate driving to zero emissions in the game including investment in abatement

technologies is conducive to the win-win solution. As for profits, we have

π̂ (nMSY (τ) , τ∗)− π̂ (nMSY ) =
b
(
4Aβγ − δ2

)
(η + 2ρ)φ2ν2

16β2γ2η (2bν2 − φ2)
> 0 (44)

always, while the comparison of welfare levels yields

ŜW (nMSY (τ) , τ∗)− ŜW (nMSY ) =

[(
b
(
η2 + 2ν2ζ

)
+ φ2ζ

)
δ − 4Abβγη2

]
δν2

16β2γ2η2 (2bν2 − φ2)
(45)

which is positive for all A ∈ (0, APH) , APH ≡
[
b
(
η2 + 2ν2ζ

)
+ φ2ζ

]
δ/
(
4bβγη2

)
. As a last step, it

is easily checked that APH > Â (nMSY ) > Â (nMSY (τ) , τ∗). Accordingly, we may formulate the

following
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Proposition 9 If A ∈
(
Â (nMSY ) , APH

)
, the adoption of τ∗ delivers the win-win solution.

It is worth stressing that this result is a consequence of the parallel policy regulating access to

the common pool, which sterilises the effects of emission taxation when firms react to it by modifying

outputs only. What at first sight may appear as a simple redistributive mechanism confined to a

special case turns out in fact to open the path to the vindication of the Porter hypothesis in its strong

form.

4 Extensions: decreasing returns, product differentiation and mo-

nopolistic competition

Here we extend the model to encompass convex production costs, the representative consumer’s pref-

erence for variety and monopolistically competitive behaviour on the part of firms, each of which is

supplying a single variety. The first variation entails that firm i’s instantaneous cost function becomes

Ci (qi (t)) = cqi (t)+dq2i (t) , with d being a positive constant. The second and third extensions require

a new definition of the demand structure engendered by consumers’ taste for variety, which makes it

possible to characterise both oligopolistic and monopolistically competitive equilibria. To this aim,

we adopt the same utility function as in Ottaviano et al. (2002) and the subsequent literature.10

The preferences of the representative consumer at any instant t are described by the following utility

function:

U = a
n∑
i=1

qi (t)− ξ − σ
2

n∑
i=1

q2i (t)− σ

2

(
n∑
i=1

qi (t)

)2

+ q0 (t) (46)

where q0 (t) is the numeraire good, while ξ and σ are constants, with ξ > 0 and σ ∈ [−ξ, ξ] , in such a

way that if σ < 0, consumers want to buy complements, if σ > 0, consumers want to buy substitutes,

and σ = 0 each good is sold on a different market (and each firm is a pure monopolist). Hence, any

σ ∈ (0, ξ) provides an inverse measure of substitutability between any two imperfectly substitutable

varieties. The homogeneous good case arises if σ = ξ.

The individual inverse demand function resulting from the constrained maximization of (46) is

pi (t) = a− (ξ − σ) qi (t)− σ
n∑
i=1

qi (t) (47)

if firms are Cournot oligopolists, and

pi (t) = a− (ξ − σ) qi (t)− σQ (t) (48)

10In particular, the detailed illustration of the monopolistically competitive equilibrium emerging from (46) can be

found in Cellini et al. (2004, 2020).
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if they are monopolistically competitive. In the above demand functions, the appearance of aggregate

output Q (t) indicates that under monopolistic competition each individual firm is unaware of its role

in the aggregate behaviour of the industry. Note that if σ = ζ = 1, we are back to the homogeneous

good case investigated initially.

In both scenarios, the instantaneous profit function of firm i is

πi (t) = [pi (t)− c− dqi (t)] qi (t)− τsi (t) (49)

if firms do not invest in emission abatement, and

πi (t) = [pi (t)− c− dqi (t)] qi (t)− τsi (t)− bk2i (t) (50)

if they do, and pi (t) must be replaced with the appropriate version of the inverse demand function

depending on the nature of market competition. As in section 3, to save upon notation we shall

define A ≡ a− c. We set out to illustrate the first case, under the assumption that firms are Cournot

oligopolists.

4.1 The oligopoly game

If Cournot firms only choose output levels, the relevant Hamiltonian of the generic firm is

Hi (t) =

[
a− (ξ − σ) qi (t)− σ

n∑
i=1

qi (t)− c− dqi (t)

]
qi (t)− τsi (t) +

λii (t) [νqi (t)− ηsi (t)− φki (t)] +
∑
j 6=i

λij (t) [νqj (t)− ηsj (t)− φkj (t)] +

µi (t) [δX (t) (1− βX (t))− γQ (t)] (51)

The FOC on qi is

A− 2 (d+ ξ) qi − σ
∑
j 6=i

qj + λiiν − µiγ = 0 (52)

which yields λii =
[
2 (d+ ξ) qi + σ

∑
j 6=i qj + µiγ −A

]
/ν, while costate equations are the same as

in (25); analogously, transversality conditions coincide with those appearing below (25). The game

preserves the characteristics outlined above, in particular it remains state-redundant w.r.t. X and,

being linear in polluting emissions, its open-loop solution is strongly time consistent. Hence, again

from the FOC, after imposing symmetry across controls and posing λij = µi = 0, we have

qCN =
A+ λν

2 (d+ ξ) + σ (n+ 1)
⇒ ·
q =

·
λν

2 (d+ ξ) + σ (n+ 1)
(53)

which can be explicitly written as follows:

·
q
CN

=
(η + ρ) [(2 (d+ ξ) + σ(n+ 1)) q −A] + τν

n+ 1
(54)
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which, together with the n + 1 state equations (1-2) forms the state-control system of the present

formulation of the game.

The coordinates of the steady state points are (stability can be verified by proceeding as in section

3)

ŝCN =
ν [A(η + ρ)− ντ ]

η(η + ρ) [2 (d+ ξ) + σ(n+ 1)]
=
ν

η
q̂

X̂CN
± =

δ(η + ρ) (2 (d+ ξ) + σ(n+ 1))±
√

Φ

2βδ(η + ρ) [2 (d+ ξ) + σ(n+ 1)]

q̂CN =
A(η + ρ)− ντ

(η + ρ) [2 (d+ ξ) + σ(n+ 1)]
(55)

where

Φ ≡ δ (η + ρ) [2 (d+ ξ) + σ(n+ 1)]×

[(η + ρ) (δ (2 (d+ ξ) + σ(n+ 1))− 4Anβγ) + 4nβγντ ]
(56)

which obviously coincide with Θ iff d = 0 and σ = ξ = 1. If this is not true, then imposing harvesting

at the MSY implies that the resulting expression identifying the number of firms being granted access

to the common pool will contain demand parameters (as well as τ , of course), and this will necessarily

affect the individual firm’s equilibrium price in such a way that the sum of the traditional components

of welfare (profits and consumer surplus) will not be independent of the emission tax. The number of

firms ensuring the industry harvest at the maximum sustainable yield is

nCNMSY =
δ (η + ρ) [2 (d+ ξ)− σ]

(η + ρ) (4Aβγ − δσ)− 4βγντ
(57)

which, just like (28), is monotonically increasing in the tax rate τ . Intuitively, it is also increasing

in d, as this parameter determines the slope of the convex component of production costs. It can be

easily checked that nCNMSY is positive and at least equal to one for all

A ∈
(
δ (η + ρ)σ + 4βγντ

4βγ (η + ρ)
,

(d+ ξ) δ (η + ρ) + 2βγντ

2βγ (η + ρ)

)
(58)

Now, if n = nCNMSY and therefore X̂ = 1/ (2β) , the remaining equilibrium expressions of the

relevant magnitudes look as follows:

Q̂CN (nMSY (τ)) =
δ

4βδ
; D̂CN (nMSY (τ)) =

δ2ν2ζ

16β2γ2η2
(59)

i.e., the same as in section 3, while11

nCNMSY π̂
CN (nMSY (τ)) + ĈS

CN
(nMSY (τ)) + nCNMSY τ ŝ

CN (nMSY (τ)) = (60)

δ [4Aβγ (η + ρ) (2d+ 3ξ − σ)− δξσ (η + ρ) + 4βγν (2d+ ξ − σ) τ ]

32β2γ2 (η + ρ) [2 (d+ ξ)− σ]

11In this case, due to the presence of imperfect product substitutability, consumer surplus is defined as CS =[∑n
i=1 (a− pi) qi

]
/2 (cf. Ottaviano et al., 2002; Cellini et al., 2004, inter alia).
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clearly illustrates that τ plays a purely redistributive role, and the traditional part of social welfare is

independent of emission taxation at equilibrium iff d = 0 and ξ = σ. All of this can be summarised in

the following:

Proposition 10 If the differential game takes place under product differentiation and decreasing re-

turns to scale in production, regulating access to the commons at nCNMSY makes environmental damage

independent of the emission tax. Hence, the latter has at most a purely redistributive effect on profits

and consumer surplus.

As a last remark, it is worth noting the expression in (60) can be obtained in two seemingly

different but substantively equivalent ways. The first consists in replacing individual output with

q̂CN
(
nCNMSY (τ)

)
=

(4Aβγ − δσ) (η + ρ)− 4βγντ

4βγ (η + ρ) [2 (d+ ξ)− σ]
(61)

while the second consists in writing ĈS
CN (

nCNMSY (τ)
)

=
(
Q̂CN

(
nCNMSY (τ)

))2
/2 and then writing the

equilibrium expression of individual profits and emissions as

π̂CN (nMSY (τ)) =

[
A−

(
ξ +

(
nCNMSY (τ)− 1

)
σ − d

)
Q̂CN

(
nCNMSY (τ)

)
nCNMSY (τ)

]
Q̂CN

(
nCNMSY (τ)

)
nCNMSY (τ)

−τ ŝ
(
nCNMSY (τ)

)
ŝCN

(
nCNMSY (τ)

)
=
νQ̂CN

(
nCNMSY (τ)

)
ηnCNMSY (τ)

(62)

Then it is easily checked that both procedures yield (60).

4.2 Abatement technology with product differentiation

As in section 3.1, the presence of investments in emission abatement implies that each firm has two

controls. The Hamiltonian function becomes

Hi (t) =

[
a− (ξ − σ) qi (t)− σ

n∑
i=1

qi (t)− c− dqi (t)

]
qi (t)− τsi (t)− bk2i (t) +

λii (t) [νqi (t)− ηsi (t)− φki (t)] +
∑
j 6=i

λij (t) [νqj (t)− ηsj (t)− φkj (t)]

+µi (t) [δX (t) (1− βX (t))− γQ (t)] (63)

and given additive separability, the FOCs taken w.r.t. ki (t) and qi (t) coincide with (18) and (52),

respectively. Once again the two control equations being not linearly independent, we must solve the

system
·
k = k (η + ρ)− φτ

2b

A− [2 (d+ ξ) + σ (n− 1)] q − 2bνk

φ
= 0

·
s = νq − ηs− φk

·
X = δX (1− βX)− γ (n− 1) q

(64)
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made up by the control equation of the abatement effort, the FOC on the output level, and the state

equations. Solving it, we obtain

k̂CN =
φτ

2b (η + ρ)
; q̂CN =

A (η + ρ)− ντ
(η + ρ) [2 (d+ ξ) + σ (n− 1)]

ŝCN =
νq̂CN − φk̂CN

η
; X̂CN
± =

δ ±
√

Λ

2βδ

(65)

where X̂CN
+ is stable, and

Λ ≡ δ
[
δ − 4nβγ (A (η + ρ)− ντ)

(η + ρ) [2 (d+ ξ) + σ (n− 1)]

]
(66)

which coincides with (37) iff d = 0 and ξ = σ = 1.

The industry structure at which harvest takes place in correspondence of the MSY is nCNMSY (τ),

i.e., the same as in (57). If n = nCNMSY (τ), the total abatement effort at the industry level is

K̂CN
(
nCNMSY (τ)

)
=

δφ [2 (d+ ξ)− σ] τ

2b [(4Aβγ − δσ) (η + ρ)− 4βγντ ]
(67)

which is monotonically increasing in τ in the admissible parameter range.

Moreover, as in section 3.1, once again, the equilibrium amount of the environmental damage is

not independent of the emission tax,

D̂CN (nMSY (τ)) =
ζ
[
bδν ((4Aβγ − δσ) (η + ρ)− 4βγντ)− 2βγδ (2 (d+ ξ)− σ)φ2τ

]2
16b2β2γ2η2 [(4Aβγ − δσ) (η + ρ)− 4βγντ ]2

(68)

which is equal to zero at

τCN =
bν (4Aβγ − δσ) (η + ρ)

2βγ [2bν2 + (2 (d+ ξ)− σ)φ2]
> 0 (69)

and of course the latter also solves ∂D̂CN
(
nCNMSY (τ)

)
/∂τ = 0. Intuitively, the above expression

coincides with (41) for d = 0 and ξ = σ = 1. There remains to stress that, if τ = τCN , the

expression of the aggregate abatement effort, K̂CN
(
nCNMSY

(
τCN

))
= δν/ (4βγφ) is independent of

product differentiation and the shape of production costs (and therefore it applies as well to the

simplified model exposed in section 3.1). To sum up:

Proposition 11 If the differential game takes place under product differentiation and decreasing re-

turns to scale in production, regulating access to the commons at nMSY allows the regulator to use the

tax to boosts firms’ abatement effort in order to minimise individual and aggregate emissions as well

as the resulting environmental damage.

4.3 Monopolistic competition

The last scenario we want to illustrate is that in which firms behave as monopolistically competitive

agents, and the relevant specification of the individual demand function is (48). To begin with, we
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look at the case in which firms control output levels only. Each firm i maximises its discounted flow

of profits, whose instantaneous expression is (49), under the set of constraints

·
si(t) = νqi(t)− ηsi(t), si(0) = si0, i = 1, 2, ...n
·
X(t) = δX(t) [1− βX (t)]− γQ (t) , X(0) = X0

(70)

and becomes aware of the fact that Q (t) = qi (t) +
∑

j 6=i qj (t) only after taking FOCs.

The relevant Hamiltonian is

Hi (t) = [A− (ξ − σ) qi (t)− σQ (t)− dqi (t)] qi (t)− τsi (t) +

λii (t) [νqi (t)− ηsi (t)− φki (t)] +
∑
j 6=i

λij (t) [νqj (t)− ηsj (t)− φkj (t)]

+µi (t) [δX (t) (1− βX (t))− γQ (t)] (71)

and therefore the FOC is

A− 2 (d+ ξ − σ) qi − σQ+ λiiν = 0 (72)

while costate equations are the same as above, and we may set λij = µi = 0 at all times, for all j 6= i.

Now, posing λii = λ, qi = q and Q = nq, from (72) we obtain qmc = (A+ λν) / [2 (d+ ξ) + σ (n− 2)],

where superscript mc mnemonics for monopolistic competition. Therefore, the control equation is

·
q
mc

=

·
λν

2 (d+ ξ) + σ (n− 2)
=

[λ (η + ρ) + τ ] ν

2 (d+ ξ) + σ (n− 2)
(73)

which, given that λ = [(2 (d+ ξ) + σ (n− 2)) q −A] /ν, can be rewritten in its final form as

·
q
mc

=
(η + ρ) [(2 (d+ ξ) + σ (n− 2)) q −A] + ντ

2 (d+ ξ) + σ (n− 2)
(74)

The stable steady state has the following coordinates:

ŝmc =
ν [A(η + ρ)− ντ ]

η(η + ρ) [2 (d+ ξ) + σ(n− 2)]
=
ν

η
q̂mc

X̂mc
+ =

δ(η + ρ) (2 (d+ ξ) + σ(n− 2)) +
√

Ξ

2βδ(η + ρ) [2 (d+ ξ) + σ(n− 2)]
(75)

q̂mc =
A(η + ρ)− ντ

(η + ρ) [2 (d+ ξ) + σ(n− 2)]

where

Ξ ≡ δ(η + ρ) [2 (d+ ξ) + σ(n− 2)]×

[δ(η + ρ) (2 (d+ ξ) + σ(n− 2))− 4nβγ (A (η + ρ)− ντ)]
(76)

and the number of firms ensuring that the harvest is carried out at the MSY is

nmcMSY (τ) =
2δ (η + ρ) (d+ ξ − σ)

(η + ρ) (4Aβγ − δσ)− 4βγντ
(77)

which, unsurprisingly, entails that the resulting environmental industry output and environmental

damage coincide with (59). This, together with the parallel result that X̂ = 1/ (2β), immediately

implies the following
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Proposition 12 As far as the environmental balance is concerned, once access to the commons is

regulated to ensure harvesting at the MSY , monopolistic competition is observationally equivalent to

the differentiated oligopoly, all else equal.

Of course the same does not hold when it comes to the output and price levels of each single

product variety. To see this, it is sufficient to compare the expression of the equilibrium individual

output under monopolistic competition,

q̂mc (nmcMSY (τ)) =
(4Aβγ − δσ) (η + ρ)− 4βγντ

8βγ (η + ρ) (d+ ξ − σ)
(78)

with (61), to verify that

q̂mc (nmcMSY (τ))− q̂CN
(
nCNMSY (τ)

)
=

σ [(4Aβγ − δσ) (η + ρ)− 4βγντ ]

8βγ (η + ρ) (d+ ξ − σ) [2 (d+ ξ)− σ]
(79)

is strictly positive in the parameter range wherein both q̂mc (nmcMSY (τ)) and q̂CN
(
nCNMSY (τ)

)
are posi-

tive. Then, necessarily, nmcMSY (τ) < nCNMSY (τ) , simply because, given Q̂cm (ncmMSY (τ)) = Q̂CN
(
nCNMSY (τ)

)
,

each monopolistically competitive firm produces more than its oligopolistic counterpart. The last re-

lated remark concerns the associated equilibrium prices, whose expressions can be calculated on the

basis of

p̂J
(
nJMSY (τ)

)
= a−

[
ξ + σ

(
nJMSY (τ)− 1

)]
q̂J
(
nJMSY (τ)

)
, J = CN,mc (80)

Their difference is

p̂CN
(
nJMSY (τ)

)
− p̂mc

(
nJMSY (τ)

)
=

(ξ − σ)σ [(4Aβγ − δσ) (η + ρ)− 4βγντ ]

8βγ (η + ρ) (d+ ξ − σ) [2 (d+ ξ)− σ]

= (ξ − σ)
[
q̂mc (nmcMSY (τ))− q̂CN

(
nCNMSY (τ)

)]
> 0,

(81)

and the reason can be found in the different interplay between individual output and the number of

firms being granted access to the commons in the two regimes, as it appears from (80): the ranking of

prices across regimes tells that the individual output restriction due to oligopolistic behaviour matters

more than the increase in the number of firms as compared to monopolistic competition.

It is also worth adding that, almost paradoxically, the fact that nmcMSY (τ) < nCNMSY (τ) implies

that consumers are offered a wider range of varieties in oligopoly than in monopolistic competition,

and at higher market prices - as opposed to the traditional wisdom we have inherited from Helpman

and Krugman (1985, 1989) and the subsequent literature - precisely because access to the commons

is regulated so as to spur the industry to harvest at the MSY .
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4.4 Abatement technology under monopolistic competition

Here the monopolistic competition model is modify to include R&D for emission abatement, in the

same form as in section 3.1. The Hamiltonian of firm i becomes

Hi (t) = [A− (ξ − σ) qi (t)− σQ (t)− dqi (t)] qi (t)− τsi (t)− bk2i (t) +

λii (t) [νqi (t)− ηsi (t)− φki (t)] +
∑
j 6=i

λij (t) [νqj (t)− ηsj (t)− φkj (t)]

+µi (t) [δX (t) (1− βX (t))− γQ (t)] (82)

accompanied by the usual set of initial and transversality conditions.

We may skip the detailed exposition of FOCs and costate equations, to focus our attention to the

essential elements. As in the oligopoly game with R&D for emission abatement, also here the control

equations are not linearly independent, which brings us to solve a system made up by three differential

equations and the FOC on output:

·
k = k (η + ρ)− φτ

2b

A− [2 (d+ ξ) + σ (n− 2)] q − 2bνk

φ
= 0

·
s = νq − ηs− φk

·
X = δX (1− βX)− γ (n− 1) q

(83)

which delivers the following stable steady state equilibrium:

ŝmc =
νq̂mc − φk̂mc

η
; X̂mc

+ =

δ +

√
δ

(
δ − 4nβγ [A (η + ρ)− ντ ]

(η + ρ) [2 (d+ ξ) + σ(n− 2)]

)
2βδ

q̂mc =
Aφ− 2bνk̂mc

φ [2 (d+ ξ) + σ(n− 2)]
; k̂mc =

φτ

2b (η + ρ)

(84)

Now note that

Remark 13 k̂mc = k̂CN if τ is given.

This of course (i) is due to the additive separability of the model, which imply that, all else equal,

the individual firm exerts exactly the same effort irrespective of the nature of market competition; but

(ii) as we are about to see, the equilibrium level of the emission tax, as well as the optimal industry

structure, cannot be invariant in the market regime.

The number of firms needed for the industry harvest to take place at the MSY is nmcMSY (τ), the

same as in (77), for any generic tax rate. Moreover, we also now that nCNMSY (τ) > nmcMSY (τ) , which

has a straightforward implication, namely, that Cournot firms, outnumbering they monopolistically

competitive counterparts, will outperform them as far as the aggregate R&D effort for abatement

technologies is concerned. This claim can be formulated as follows:
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Proposition 14 For any given tax rate τ , since nCNMSY (τ) > nmcMSY (τ) , then K̂CN
(
nCNMSY (τ)

)
>

K̂mc (nmcMSY (τ)).

To complete the picture, we may note that the claims contained in Propositions 10-11 can be

replicated for monopolistic competition as well. Moreover, Q = Q̂cm (ncmMSY (τ)) and the steady state

equilibrium level of the environmental damage

D̂cm (ncmMSY (τ)) =
ζ
[
bδν ((η + ρ) (4Aβγ − δρ)− 4βγντ) + 4βγδ (d+ ξ − σ)φ2τ

]2
16b2β2γ2η2 [(η + ρ) (4Aβγ − δρ)− 4βγντ ]2

(85)

takes its minimum (equal to zero) at

τmc =
bν (η + ρ) (4Aβγ − δρ)

4βγ [bν2 + (d+ ξ − σ)φ2]
> 0 (86)

and comparing (86) with (69) we obtain

τmc − τCN =
bν (η + ρ)σ (4Aβγ − δρ)φ2

4βγ [bν2 + (d+ ξ − σ)φ2] [2bν2 + (2 (d+ ξ)− σ)φ2]
> 0 (87)

which proves

Corollary 15 If n = nJMSY (τ) , J = CN, cm, then τmc > τCN in the whole parameter range in which

equilibrium magnitudes are positive in both market regimes.

Intuitively, this is due to the different number of firms supplying the market in the two cases. Once

K̂J
(
nJMSY (τ)

)
has been simplified by using the appropriate expression for τJ , we may draw the obvi-

ous that aggregate (but not individual) abatement efforts coincide across regimes at K̂CN
(
nCNMSY

(
τCN

))
=

K̂mc (nmcMSY (τ)) = δν/4βγφ, which allows us to formulate our last claim:

Corollary 16 If n = nJMSY (τ) and τ = τJ , J = CN, cm, then Cournot oligopoly and monopo-

listic competition are observationally equivalent in terms of aggregate R&D investment for emission

abatement.

5 Concluding remarks

Very often, and for a long time, resource exploitation and the environmental damage brought about

by polluting emissions have been treated separately. This is reasonable in view of the analytical

tractability of both issues when taken in isolation. However, it is intuitive that they are intimately

connected, as the global economic system extracts natural resources to supply markets around the

globe with consumption goods, and this involves a growing volume of CO2-equivalent emissions which

can be imputed to either production or consumption or, most commonly, both. This very fact prompts
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for comprehensive models investigating both sided of the coin together, and assessing the role and scope

of regulation in a full-fledged setup.

With this in mind, we have proposed a differential game in oligopoly or monopolistic competition

which, relying on the arising of a strongly time consistent equilibrium under open-loop rules, reveals

that regulating access to the commons so as to ensure the long-run sustainability of renewable resource

extraction implies that emission taxation may only determine a welfare-neutral surplus transfer be-

tween consumers and producers, or may be redirected to increase investments in green technologies as

much as possible. In line of principle, so much so that it might also reduce emissions and the related

environmental damage to zero. In this case, we have also found out a confirmation of the arising of a

win-win solution confirming the Porter hypothesis, under a plausible conditions on parameters.

Our analysis has left intentionally aside the identification of the welfare-maximising tax (which,

however, in the basic setup does not exist) and its relation with the marginal environmental damage,

precisely because it can be used to drive emissions very close to zero in terms of the theoretical model

and, more realistically, below a given threshold compatible with the objectives of the Paris Agreement

and the explicit indications by IPCC from COP24 onwards. Moreover, this first attempt at modelling

the dynamics of resource extraction and greenhouse gases together seems promising in terms of the

possibility of investigating the analogous problem related to the exploitation of non-renewables - in

particular, fossil fuels - and its cumulative impact on climate. In this respect, this contribution shares

several features with a parallel discussion taking place in the area of industrial organization, very well

accounted for in Asker (2020).

Appendix

The easiest way of approaching the double commons case consists in substituting the set of n state

equations (2) with
·
S (t) = ν

∑n
i=1 qi (t)− ηS (t) to reconstruct the analysis appearing in section 3, on

the basis of the Hamiltonian function of the single firm now being written as

Hi = πi + λi

(
ν

n∑
i=1

qi − ηS

)
+ µi [δX (1− βX)] (88)

with πi = (A− qi −Q−i) qi − τS. From the FOC

A− 2qi −
∑
j 6=i

qj + λiν − µiγ = 0 (89)

and the set of costate equations

·
λi = (η + ρ)λi + τ (90)

·
µi = [δ (2Xβ − 1) + ρ]µ
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we obtain qCN = (A+ λν) / (n+ 1) , λi =
[
(n+ 1) qCN −A

]
/ν and µi = 0 for all i = 1, 2, ...t at all

times. Then, the control equation
·
q =

·
λν/ (n+ 1) can be written explicitly to verify that it coincides

with (26). Hence, the coordinates of the steady state are

Ŝ =
nν [A(η + ρ)− ντ ]

(n+ 1)η(η + ρ)
=
nν

η
q̂ (91)

X̂± =
(n+ 1)δ(η + ρ)±

√
Υ

2(n+ 1)βδ(η + ρ)
; q̂ =

A(η + ρ)− ντ
(n+ 1)(η + ρ)

where Υ ≡ (n + 1)δ(η + ρ) [(n+ 1)δ(η + ρ)− 4nβγ (A (η + ρ)− τν)] . Again, q̂ > 0 implies X̂+ ≥

X̂− > 0. For obvious reasons, the number of firms nMSY delivering X̂+ = XMSY = 1/ (2β) is

(28), and once we substitute it into the relevant equilibrium magnitudes we obtain D̂ (nMSY ) =

δ2ν2ζ/
(
16β2γ2η2

)
, Q̂ (nMSY ) = δ/ (4βγ) and ĈS (nMSY ) = δ2/

(
32β2γ2

)
, while individual profits

differ from those appearing at the steady state of the model in section 3 because each firm is taxed

on the basis of industry-wide emissions.

Now, should firms activate R&D projects to abate polluting emissions, one ought to rewrite the

state equation as
·
S (t) = ν

∑n
i=1 qi (t) − ηS (t) − φ

∑n
i=1 ki (t), relying on the disputable assumption

that all of them do invest, but this would entail describing a situation in which any individual effort

would amount to delivering a public good and therefore could easily trigger a free-riding problem as

every single firm could internalise the benefits generated by any abatement effort carried out by rivals.
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