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Abstract—Crop biomass is an important parameter to be 

non-destructively monitored for the proper management of 

nitrogen (N) fertilization in vegetable cropping systems. The 

present paper aims at showing the development of an innovative 

vegetation index that integrates both reflectance measurements 

and growing degree days (GDDs) for biomass estimation in 

tomato under different N fertilization treatments. Along five 

growth stages of tomato plants, both the Green Vegetation Index 

(GVI) and the plant biomass were monitored. Then the 

cumulative area under the curve of the GVI of the crop across 

the GDDs (cIGVI) was calculated per each experimental plot 

and correlated with tomato biomass. Even though significant 

weak relationships between GVI and biomass were found at 

each growth stage, they cannot be used in intermediate periods 

since they are calibrated for a specific growth stage. The 

adoption of cIGVI significantly improved the biomass 

estimation in comparison to the simple GVI-biomass models, 

and the relationship with tomato biomass was found to follow a 

Gompertz function. These results suggest that cIGVI may be a 

promising index for estimating tomato biomass across the entire 

growing season under different N statuses, and including 

spectral data in agroclimatic model for estimating biomass can 

enhance the prediction performances. 

Keywords—precision nitrogen management, biomass 
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I. INTRODUCTION

Crop biomass is an essential parameter to be monitored for 
proper crop management in greenhouses and open field 
conditions. It is related to the general health status of the crop, 
and can also find application for the precise management of 
nitrogen (N). The critical N dilution curve is widely known 
among plant physiologists and agronomists: it relates the 
actual biomass of the crop with the critical N concentration 
(i.e., the minimal N concentration needed to maximize the 
actual biomass production) [1]. The simultaneous monitoring 
of both biomass and N concentration allows for the calculation 
of the Nitrogen Nutrition Index (NNI), where the supply of N 
should occur whenever the NNI falls below 1 [2]. NNI has 
been highly related to different vegetation indices (VIs) 
monitored by hand-held reflectance sensors for a diverse 
number of vegetable crops [3]. Although the relationship VIs-
NNI is useful for determining the optimal moment for N 

supply through fertigation, [4] highlighted that algorithms for 
optimal N rate adopting reflectance sensors are still lacking. 
By knowing the actual biomass of the crop and actual N 
concentration, the amount of N fertilizer to be applied to the 
crop can be easily calculated [2]. On the other hand, the direct 
measurement of both the biomass and N concentration in the 
crop is excessively time-consuming for the prompt application 
in N fertilization management, thus indirect estimates of both 
N and biomass are currently being explored by several 
authors. In greenhouse crop systems, actual biomass has been 
estimated by adopting several weather-based growth models. 
The Total Dry Matter (TDM) was estimated in cucumber by 
[5] through modeling the Leaf Area Index (LAI), the
intercepted Photosynthetically Active Radiation (PAR), and
the greenhouse CO2 concentration, although overestimation
occurred at the late developmental stage. In [6] a simple model
that simulates the TDM was developed using the Product of
normalized Thermal Time and PAR (PTTP) coupled with a
photosynthesis model. Again, [7] developed the VegSyst
model which simulates TDM, evapotranspiration, and N
uptake by crops, adopting easily obtainable weather data to
encourage its adoption on farms. These weather-based models
are assuming an optimal nutritional status [7], even though it
is notorious that N deficiency limits dry matter accumulation
[8]. Therefore, the suitability of the meteorological predictors
for estimating crop biomass when different N status occurs
remains questionable. Reflectance measurements are useful
for assessing both the N status [3] and estimating
morphological parameters in greenhouse conditions. For
instance, [9] used the reflectance at 460 nm for estimating the
PAR interception and the LAI in sweet pepper and argued that
the inclusion of reflectance into crop models could improve
their efficiency. The Normalized Difference Vegetation Index
(NDVI) was used by [10] to estimate rice biomass at panicle
initiation. However, although estimating biomass in growth
stages that are critical for N fertilization is of interest for
cereals crops, it is less suitable for vegetable crops, where N
can be virtually supplied at any moment of the growing cycle
via fertigation. Thus, reflectance-based models for estimating
biomass in vegetable crops should work at any moment of the
crop cycle. Moreover, when biomass is estimated through
traditional vegetation indices, the issue of saturation at a high
biomass level is often experienced [11]. Some authors



proposed the adoption of cumulative vegetation indices for 
improving the estimation of crop biomass [11, 12]. Also, the 
integral of vegetation indices across the day of the year (DOY) 
resulted to be highly correlated with crop yield and biomass 
[11]. However, the use of DOY for calculating the integral of 
vegetation indices to estimate crop growth may limit their 
applicability in different locations, given that plant 
development depends on climate factors (e.g., temperature), 
which are not accounted for by the merely temporal indicators 
[13]. Thus, combining spectral information with agroclimatic 
data is of interest for estimating crop biomass. From the 
previous work of [14], the Green Vegetation Index (GVI) 
resulted to be the most adequate for assessing the potential 
yield and N status in tomato. Therefore, the present paper aims 
at illustrating the development of an innovative vegetation 
index based on the integration of the GVI with the Growing 
Degree Days (GDDs) for biomass estimation of tomato crops 
across the entire growing season. 

II. MATERIALS AND METHODS

A. Experimental design

The experiment was set up in the summer of 2022 at the
University of Bologna experimental farm in Cadriano, Italy. 
Tomato (Solanum lycopersicum L.) was transplanted in open-
field in a single-row cropping system at 27,700 plants ha-1. 
Three N treatments were supplied with three replicates in a 
randomized block design, consisting of different percentages 
(0, 60, and 100%) of total crop N requirement (N0, N60, 
N100). The total N crop requirement was calculated through 
the balance sheet method [15] using the critical N uptake of 
2.24 kg N t-1 reported by [16]. Ammonium nitrate was 
supplied 6 times through fertigation, following the crop N 
uptake rate. During the growing season the N uptake rate was: 
6% of N total uptake up to 28 days after transplanting (DAT), 
78% from 29 to 77 DAT, and 16% from 78 to 105 DAT [17]. 
Crop water requirements were fulfilled with drip irrigation 
according to the water balance sheet method, maintaining the 
soil moisture at the field capacity [18]. The computation of 
ETc adopted the single Kc method, and the ET0 was estimated 
through the Hargreaves-Samani equation [19]. P2O5 was 
applied before transplanting at 85 kg ha-1, while a starter dose 
of 20 kg ha-1 of K2O was supplied through fertigation. The 
crop was transplanted on a loamy-clay soil with the following 
main characteristics: pH=7.1, Total lime (CaCO3) =18 g kg-1, 
Electrical conductivity=0.07 mS cm-1, Organic 
Matter=1.43%, Total N=0.9 g kg-1, Assimilable P=50 mg kg-

1, Exchangeable K=171 mg kg-1, Cation Exchange Capacity= 
10.8 cmol kg-1. Two plants per plot were sampled for total 
above-ground biomass determination in five growth stages at 
264, 386, 598, 859, and 1125 growing degree days °C 
(GDDs), henceforth shortened as T1, T2, T3, T4, and T5. 
GDDs were calculated according to [20], using 30 and 10 °C 
as Tmax and Tbasal, respectively.  

B. Description of the vegetation indices

Before sampling, the reflectance of each plant was
monitored with a portable multispectral passive radiometer 
(Spectrosense 2+, Skye, UK) in the band of green (560 nm), 
and Near Infrared (NIR) (810 nm), to enable the calculation of 
the GVI as the simple ratio between the NIR (R810) over the 
green (R560) reflectance as shown in (1): 

GVI = R810/R56 () 

Moreover, an innovative vegetation index is proposed in this 

manuscript, which has been developed by integrating the 

multitemporal monitoring of the GVI with the GDDs. The 

GVI monitored was plotted against the GDDs. The pattern of 

the GVI is strictly dependent on the N status, where a higher 

N supply implies a higher value of the GVI. Therefore, it is 

reasonable to consider the area under the curve to be 

dependent on the N status, and thus it could also be a predictor 

of the biomass. The area below the curve between two 

monitoring dates can be approximated to a trapezoid, 

represented as the shaded area in Fig. 1, henceforth named 

Integral GVI (IGVI), and can be calculated accordingly (2): 

IGVITn= (GVITn + GVITn-1)(GDDTn-GDDTn-1)/2 () 

The biomass accumulation is a cumulative function and 

depends on the global crop health status from the planting 

date [21]. Therefore, it can be linked to cumulative vegetation 

indices, such as the Cumulative IGVI (cIGVI) over the 

sampling time shown in (3).  

cIGVI =∑ IGVITn () 

Thus, the cIGVI has been calculated per each experimental 
plot for each sampling date, and it was then related to the 
monitored biomass. 

Fig. 1. Pattern of GVI across growing degrees days and representation of the 

IGVITn between two monitoring date 

C. Statistical analysis

ANOVA analysis was carried out with R studio software
(version 4.2.0) to assess the differences in biomass among N 
treatments at each sampling date. The assumption of 
normality and homoscedasticity was checked using the 
Shapiro-Wilk test and Levene test respectively. Linear 
regression analysis was used to find a correlation between 
GVI and plant biomass, while nonlinear regression analysis 
between cIGVI and biomass was carried out. The assumption 
of normality distribution and homoscedasticity of residuals 
was checked. In case such assumptions were not met the log-
log transformation was performed, by calculating the natural 
logarithm for both variables. The nonlinear model for fitting 
data was chosen using the software CurveExpert Basic 
(version 2.2). Performance assessment metrics, namely Root 



Mean Square Error (RMSE), Percentage RMSE (%RMSE), 
and R2, were computed.  

III. RESULTS

N treatments resulted in a significant difference in biomass 
production across GDDs, except at T4 where no significant 
differences were observed (Fig. 2). Plants grown under the full 
N rate (N100) exhibited a faster growth compared to N60 and 
N0, particularly at T1 and T2. However, at T3 and T5, only 
the differences between N100 and N0 were statistically 
significant. Consequently, it is not possible to utilize a single 
growth curve based on GDDs to estimate biomass accurately 
for different N statuses. Indeed, adopting a single model based 
on GDDs would overestimate biomass when N is deficient 
and could underestimate it when N requirements are fully met. 
The linear regression analysis between GVI and plant fresh 
biomass  proved to be significant at T1, T3, and T5, while it 
resulted not significant at T2 and T4 (Table 1). The 
determination coefficient (R2) was influenced by the growth 
stage, as well as the slope and intercept of the linear 
relationship. Consequently, different linear relationships were 
established to estimate tomato biomass. The RMSE values in 
Table 1 tended to increase with an increase in GDDs, whereas 
the Percentage RMSE (%RMSE) did not exhibit a 
corresponding variation. Notably, the global RMSE and 
global %RMSE values in Table 1 did not include the data from 
growth stages T2 and T4, as the relationships between GVI 
and biomass were not found to be significant. Additionally, 
the relationships between the cIGVI and plant fresh biomass 
was examined, resulting in a sigmoidal growth curve (Fig. 3). 
The dashed line in Fig. 3 represents the fitted model based on 
the Gompertz function, which comprises three highly 
significant coefficients (a, b, k) obtained from nonlinear 
regression analysis (p < 0.05). 

() 

Where e is the Euler number, a is a coefficient corresponding 

to the asymptote of the sigmoidal and is equal to 7507 g, b is 

the location parameter related to the intercept of the curve 

equal to 0.000519, and k is related to the growth rate of the 

curve, which is equal to 1.67. 

Table 1 Slope and intercept of linear models between GVI and plant biomass 
(g plant-1 FW) at different growth stages. Root mean square error (RMSE), 

%RMSE and R2 are also reported. Global RMSE and %RMSE are calculated 

considering the data of each growth stage, excluding T4 (n=18). 

T1 T2 T3 T4 T5 Global 

GDDs 264 386 598 859 1125 

slope 35 49.9 116 19.4 778 

intercept -39.3 70.1 244 2946 1143 

R2 0.52 0.18 0.52 0.001 0.37 

RMSE 10.4 50.6 171 865 1024 599 

%RMSE 28.8 26.6 22.1 27.9 29.8 27.1 

*** ns *** ns ** 

Fig. 2. Evolution of the plant fresh weight (FW) biomass across GDDs. 

The RMSE of the Gompertz model (Fig. 3) is lower in 

comparison to the global RMSE calculated for the linear 

relationships between GVI and plant biomass (Table 1), 

although the %RMSE is significantly higher. The model 

relating cIGVI and biomass enables the inclusion of all 

treatments in the fitting procedure, which was not feasible 

using interpolation with GDDs (Fig. 2). This is due to 

variations in the observed biomass as determined by the 

analysis of variance (ANOVA) for different nitrogen 

treatments. However, the residuals of the Gompertz models 

resulted to be non-normal according to the visual 

interpretation of the Q-Q plot. In addition, the residuals also 

tend to increase as the cIGVI increases, thus revealing a 

strong heteroscedasticity. To fulfill the assumptions of 

normality and homoscedasticity of residuals, a log-log 

transformation was applied. The transformed data were then 

fitted with a second-order polynomial curve (Fig. 4), which 

yielded highly significant results in the nonlinear regression 

analysis and satisfied the assumptions of normality and 

homoscedasticity of residuals. Even though the transformed 

model slightly increased the RMSE in comparison to the 

Gompertz model from 482 to 526 g plant-1, the %RMSE is 

significantly improved in the transformed model and it was 

reduced from 132% (Fig. 3) to 22.8% (Fig. 4). 

Fig. 3. Relationship between cIGVI and fresh plant biomass (FW). The 
dashed line represents the fitted model according to the Gompertz function 

(n=45). 



 

 Figure 4 Model for estimation of the natural logarithm of biomass according 
to the natural logarithm of cIGVI 

When the non-transformed model was utilized during the 

early stage of the growing season, an overestimation was 

observed. However, this overestimation was avoided when 

the log-transformed model was employed (Fig. 5). As the 

biomass level increased, the error of estimate for the non-

transformed model became comparable to that of the log-log 

transformed model. 

 

IV. DISCUSSION 

The estimation of crop biomass is of significant 

importance for precision N management. This estimation 

enables the virtual replication of the critical N dilution curve 

and facilitates the identification of the optimal timing and rate 

of N fertilizer application [2]. Biomass accumulation is a 

cumulative process that is strictly dependent on the N status. 

Thus, the attempt to estimate plant biomass according to 

GDDs will fail if N status is not considered (Fig. 2). Given 

GVI has been evaluated as the best vegetation index for 

assessing non-destructively the N status and forecasting the 

yield in processing tomato [14], its ability in estimating 

tomato biomass has been explored in this paper. GVI is 

linearly related to plant biomass at all growth stages (Table 

1), except at T2 and T4, probably determined by the lacking 

of significant differences in biomass among N treatments at 

the T4 stage (Fig. 2). Despite these correlations, linear models 

are calibrated for a specific growth stage, and they cannot be 

adopted in intermediate moments of the crop cycles thus 

limiting the applicability for vegetable farming, where N 

could be supplied in any moment of the growth cycle via 

fertigation. Moreover, the prediction accuracy of the linear 

relationships between GVI and plant biomass across GDDs is 

considered low for a prompt application in precision N 

strategies (harmonic mean of R2=0.45). An innovative 

vegetation index is here developed, that combines the spectral 

properties of the crop with GDDs. The cumulative Integral 

Green Vegetation Index (cIGVI), defined as the cumulative 

area under the GVI curve over GDDs (Fig. 1), exhibited a 

strong correlation with crop biomass. This relationship 

followed a Gompertz curve (Fig. 4). The Gompertz function 

has been widely adopted for describing growth phenomenon 

across time [22], including plant biomass [23]. The 

mathematical derivation of cIGVI allows us to recognize the 

added value of such an index. Indeed, the inclusion of GDDs 

into the formula of cIGVI permit estimating the plant biomass 

at any moment of the crop cycle. 

 
Figure 5 Distribution of Percentage Error of the two models (Gompertz, and 

log-log transformed) in relation to the measured biomass. 

Moreover, the simultaneous inclusion of GVI into the 

formula allows us to consider the crop N status in the 

estimation process, thus overcoming the limits imposed by 

the use of models based on solely GDDs. Although the 

cIGVI-biomass model reported a lower RMSE in comparison 

to the global RMSE of the linear relationships between GVI 

and biomass, the %RMSE heavily increased from 27.1% 

(Table 1) to 132% (Fig. 3). This is due to an overestimation 

of the biomass at the low value of cIGVI (Fig. 5). Hence, by 

applying the logarithmic transformation to the model, the 

Percentage RMSE (%RMSE) was reduced to 22.8%, 

effectively preventing any overestimation during the initial 

stage of the growing season. The proposed model for precise 

N management becomes of utmost importance in ensuring 

accurate biomass estimation during the initial stage of the 

growing season. This significance arises from the fact that 

tomato plants experience exponential growth (Fig. 3) during 

this critical period, leading to an increased requirement for N. 

The cIGVI has some similarities with other vegetation indices 

developed by previous authors. The cumulative Simple Ratio 

over time was related with crop yield and biomass by [12], 

improving the estimation performance in comparison to the 

same vegetation index in the non-cumulative form. Again, 

[11] demonstrated that the use of integral of VIs across time 

(day of the year) improves biomass estimation compared to 

simple VIs, overcoming the common issue related to the 

saturation effect at the highly-dense canopy. In accordance 

with the finding of this paper, [24] combined the crop optical 

properties (RGB) with agroclimatic data (GDDs) for crop 

biomass estimation, finding an improvement when GDDs 

were considered alone. This paper demonstrated that 

including the spectral information in agroclimatic data 

improved the biomass estimation, and can be of interest for 

greenhouse cropping systems where weather-based models 

are mainly adopted. However, despite the promising potential 

of cIGVI in estimating tomato biomass (Fig. 5), it should be 

noted that only a one-year experiment on a single location 

was considered. A second-year experiment is recommended 

(and currently underway) to validate the model and to test its 

adaptability to different cultivars. Different vegetation 

indices are recommended to be tested, as well as different 

nonlinear functions to assess whether the overestimation at 

the early stage of the growing season can be overcome. 

 
 



V. CONCLUSIONS

The estimation of crop biomass across the entire growing 
season is of interest for accurate N management in vegetable 
cropping systems. The findings of this study demonstrate that 
biomass estimation solely based on the traditional Growing 
Degree Days (GDDs) model is inadequate when different 
nitrogen (N) statuses are present. Therefore, to enhance 
biomass estimation, it is crucial to incorporate optical 
properties that are associated with specific nutritional 
conditions. The cIGVI is a hybrid vegetation index that 
combine the crop spectral properties (GVI) with agroclimatic 
data (GDDs) that resulted to be highly related to tomato 
biomass. The use of the cumulative cIGVI significantly 
enhanced the accuracy of biomass estimation compared to the 
traditional GDDs approach. This improvement was attributed 
to the capability of the cIGVI to incorporate all the nitrogen 
(N) treatments within a single model, which was not possible
with the GDDs-based model. Also, the model based on cIGVI
allows to estimate tomato biomass at any moment of the
growing season, which is otherwise not possible when specific
linear models based on simple vegetation index (GVI) are
adopted. However, to improve the biomass estimation,
especially at the early stage of the growing season, the
logarithmic transformation of the monitored cIGVI is needed.
A simple transformation does not imply any alterations to the
meaning of the equation found in this article. In fact, given
that we are dealing with a system, the plant, that grows
exponentially makes it necessary to undergo a logarithmic
transformation. Although further experiments should validate
the relationship between cIGVI and biomass, the index here
developed is promising for being adopted in vegetable
cropping systems. The integration of spectral information to
agroclimatic data enhanced the biomass estimation in open
field, and may be an opportunity for greenhouses cropping
systems.
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