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In this paper, we propose a general solution approach for a broad class of vehicle routing problems that

all use a single vehicle, composed of a truck and a detachable trailer, to serve a set of customers with

known demand and accessibility constraints. A more general problem, called the Extended Single Truck

and Trailer Routing Problem (XSTTRP), is used as a common baseline to describe and model this class

of problems. In particular, the XSTTRP contains, all together, a variety of vertex types previously only

considered separately: truck customers, vehicle customers with and without parking facilities, and parking-

only locations. To solve XSTTRP we developed a fast and effective hybrid metaheuristic, consisting of an

iterative core part, in which routes that define high-quality solutions are stored in a pool. Eventually, a

set-partitioning based post-optimization selects the best combination of routes that forms a feasible solution

from the pool. The algorithm is tested on extensively studied literature problems such as the Multiple Depot

Vehicle Routing Problem, the Location Routing Problem, the Single Truck and Trailer Routing Problem

with Satellite Depots, and the Single Truck and Trailer Routing Problem. Finally, computational results

and a thorough analysis of the main algorithm’s components on newly designed XSTTRP instances are

provided. The obtained results show that the proposed hybrid metaheuristic is highly competitive with

previous approaches designed to solve specific specialized problems, both in terms of computing time and

solution quality.

Key words : vehicle routing; truck and trailer; metaheuristics

1. Introduction

Truck and trailer routing problems constitute a very well-studied class of vehicle routing prob-

lems (VRPs) in which vehicle capacities may be augmented with trailers. This class of problems

was introduced by Chao (2002) as an extension of the basic VRPs to better model real-world

applications arising mainly in freight distribution and city logistics. The literature contains several

variations on the basic settings for these problems that add specific constraints modeling specific
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scenarios. In Section 2 we give a brief overview of the literature, and we refer the interested reader

to Cuda, Guastaroba, and Speranza (2015) for a general survey of related VRPs, including truck

and trailer problems.

In this paper, we study the Extended Single Truck and Trailer Routing Problem (XSTTRP) as

a more general variant which allows us to derive a unified solution approach for a class of single

truck and trailer routing problems. In particular, the XSTTRP contains, all together, a variety

of vertex types previously only considered separately, namely: truck customers, vehicle customers

with and without parking facilities, and parking-only locations. The XSTTRP calls for servicing a

set of customers with known demand using a single vehicle, composed of a capacitated truck and a

non-autonomous, detachable trailer, which is initially located at a (main) depot. In the following,

the term “truck” refers to the vehicle when the trailer is detached and parked at some parking

location, while “complete vehicle” denotes the vehicle when the trailer is attached to the truck.

The customers are partitioned into two different sets: truck customers and vehicle customers. The

accessibility constraints impose that truck customers must be visited by the truck only, while vehi-

cle customers can be visited either by the complete vehicle or by the truck. Vehicle customers are,

in turn, split into vehicle customers with parking facilities and vehicle customers without parking

facilities. The problem also contains a set of satellite depots (or just satellites), i.e., locations (which

are not customers) where the trailer may be parked whenever necessary.

An XSTTRP solution is made up of a main route, in the following referred to as main-route,

traveled by the complete vehicle, which starts from the main depot, visits a subset of vehicle

customers and satellites, and returns to the depot. When the vehicle visits a parking location (i.e.,

either a satellite depot or a vehicle customer with parking facilities) it can detach its trailer, serve a

subset of customers with the truck, and then return to pick up the trailer. We call this a sub-route,

and the place where the trailer has been decoupled is the root of the sub-route. The objective is to

find a solution which serves all customers while minimizing the total traveling cost and respecting

both the truck capacity along the sub-routes and the accessibility constraints.

We developed a comprehensive, yet effective, heuristic solution approach to the XSTTRP. The

resulting metaheuristic has been extensively tested on many instances, including special cases

involving well-known problems such as the Multiple Depot Vehicle Routing Problem (MDVRP; see

e.g., Cordeau, Gendreau, and Laporte (1997)), the Location Routing Problem (LRP; see Schneider

and Drexl (2017)), the Single Truck and Trailer Routing Problem with Satellite Depots (STTRPSD;

see Villegas et al. (2010)) and the Single Truck and Trailer Routing Problem (STTRP; see Bartolini

and Schneider (2018)). The results show that the proposed method is highly successful in tackling

the studied problems, producing good quality solutions in short computing time. The XSTTRP

was originally introduced in a preliminary work by Accorsi (2017).
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This paper is structured as follows. In Section 2 we review the literature relating to the XST-

TRP in more depth and discuss related problems. In Section 3 we describe the XSTTRP more

comprehensively and compare it with existing related problems. Section 4 describes the details

of our solution approach, and experimental results are provided in Section 5. Section 6 offers an

experimental analysis of the algorithm components. Finally, the paper ends with possible future

research directions and concluding remarks in Section 7.

2. Literature review

The first comprehensive reference for the class of truck and trailer problems is the work by Chao

(2002) who introduced the original Truck and Trailer Routing Problem (TTRP). Some earlier

papers, such as that written by Semet and Taillard (1993), introduced similar variants which will

be examined later in this section. The TTRP identifies a class of vehicle routing problems in which

a fleet of capacitated vehicles, each composed of a truck and possibly a trailer, is used to serve a set

of customers with a known demand. The objective is to minimize the total traveling cost without

violating the capacity and accessibility constraints. The customers are split into truck customers

and vehicle customers. Truck customers can only be visited by the truck without the trailer, so

prior to visiting them, the vehicle has to park its trailer at an appropriate vehicle customer. The

truck must then return to the same customer to pick up the trailer before continuing the journey.

Vehicle customers can instead be served either by the truck or by the complete vehicle. Chao (2002)

associated three possible types of route with each vehicle: a pure truck route which starts from the

depot with the truck only, visits a subset of customers and returns to the depot; a pure vehicle

route which starts from the depot with the complete vehicle, visits a subset of vehicle customers

and returns to the depot; and a complete vehicle route consisting of a pure vehicle route and a set

of pure truck routes starting from customer locations where the trailer could be parked. A feasible

solution for the TTRP is thus composed of a set of routes, at most one for each vehicle, satisfying

capacity constraints and belonging to one of the three types.

The current state-of-the-art algorithm for the TTRP is a matheuristic developed by Villegas et al.

(2013). They populated a pool of high-quality solutions using a GRASP × ILS method (a greedy

randomized adaptive search procedure combined with an iterated local search), and then they

selected the best combination of routes from the pool by solving a set-partitioning formulation. The

core of their approach was the construction of a giant tour that used a randomized nearest-neighbor

heuristic to visit all the customers; the tour was further optimized by the interleaved application

of a variable neighborhood descent (VND) and a perturbation phase. Each local optimum of the

VND phase is stored in the set-partitioning solutions pool that is used to provide the final solution.

The authors dealt with the standard TTRP as well as the Relaxed TTRP (see Lin, Yu, and Chou



Accorsi and Vigo: A Hybrid Metaheuristic for Single Truck and Trailer Routing Problems
4 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

(2010)) which has an unlimited fleet. A previous method based on a GRASP with evolutionary

path relinking was presented by Villegas et al. (2011).

Villegas et al. (2010) introduced the Single Truck and Trailer Routing Problem with Satellite

Depots (STTRPSD). In this problem, a set of truck customers is served by a single capacitated

vehicle composed of a truck and a trailer. The problem does not contain any vehicle customer;

instead, it contains a set of parking locations called satellite depots where the trailer can be parked.

Satellites do not have an associated demand and thus can be left unvisited if not needed. The

authors did not consider the depot to be a parking location.

The presence of satellites introduces an interesting variation to the problem, relating it to the

well-known class of Location Routing Problems (LRPs). For a comprehensive survey of LRPs refer

to Schneider and Drexl (2017). In fact, the STTRPSD generalizes the 2-echelon LRP with zero

opening costs, uncapacitated depots and capacitated vehicles (see e.g., Tuzun and Burke (1999)).

The authors proposed four heuristic methods for solving the STTRPSD, which they also tested

on the MDVRP (a special case of the LRP). The best-performing of the four was a multi-start

evolutionary local search.

Recently, Belenguer et al. (2016) proposed an exact branch-and-cut algorithm for the STTRPSD,

based on an arc-flow formulation, which was able to consistently handle instances with up to sixty

vertices.

A paper that is important for its work towards unifying the TTRP variants is the Generalized

Truck and Trailer Routing Problem (GTTRP) and its extension, the Vehicle Routing Problem with

Trailers and Transshipment (VRPTT) proposed by Drexl (2011, 2014). In the GTTRP, vehicles

can leave the trailer either at vehicle customers or at transshipment locations (similar to satellites

in STTRPSD); both may have associated time windows. The VRPTT extends the GTTRP by

dropping the fixed assignment of a truck to a trailer; that is, any trailer may be pulled by any

compatible truck for all or part of its itinerary. Moreover, the VRPTT adds the possibility that

trucks may transfer, all or part of their load to any trailer at any transshipment location (with load-

dependent transfer times). Note that, different vehicles may have different utilization (fixed and

distance-dependent) costs. Drexl (2011) addressed the GTTRP with a branch-and-price algorithm

and several heuristic variants, whereas in a different paper Drexl (2014) solved the VRPTT using

five different branch-and-cut algorithms.

As previously mentioned, real-world TTRP-like applications were documented long before the

actual problem was defined by Chao (2002). For example, in the Site-Dependent Vehicle Routing

Problem considered by Semet and Taillard (1993), a fleet of heterogeneous vehicles composed of

trucks and trailers serves a number of grocery stores in Switzerland cantons, taking into account

vehicle-location incompatibilities, time windows for deliveries and vehicle-dependent utilization
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Figure 1 Relations between vertex types.

costs. The Partial Accessibility Constraint Vehicle Routing Problem analyzed in Semet (1995)

consists of defining an appropriate number of trailers to increase the capacity of some trucks.

Gerdessen (1996) considered the Vehicle Routing Problem with Trailers, which has been used to

model two real-world scenarios: a Dutch dairy industry that has to serve customers located in

crowded cities, where maneuvering a complete vehicle is difficult or forbidden; and the distribution

of animal feed among farmers, some of whom are only reachable traversing narrow roads or small

bridges. In both cases the trailer is often parked in appropriate locations before the truck performs

the service. Further real-world TTRP applications include milk collection from farms (see Caramia

and Guerriero (2010)), fuel oil delivery to private households (see Drexl (2011)), postal delivery

(see Bodin and Levy (2000)) and container movement (see Tan, Chew, and Lee (2006)).

3. Problem description

The XSTTRP can be formulated by using an undirected graph G= (V,E), where V is the vertex

set and E is the edge set. The vertex set V is partitioned into V = {0} ∪ Vc ∪ Vd, where 0 is the

depot, Vc is the set of customers and Vd is the set of satellite depots. Vc is, in turn, decomposed into

Vc = V 1
c ∪V 2

c , where V 1
c represents the truck customers and V 2

c the vehicle customers. Finally, we

assume that a subset V 2
c ⊆ V 2

c of vehicle customers has parking facilities. From now on, V d = Vd∪V 2
c

denotes the parking locations where the vehicle is allowed to detach its trailer, namely the satellite

depots and the vehicle customers with parking facilities, and V
+

d = V d ∪ {0}. Figure 1 provides

a graphic summary of the vertex sets and their relations. A cost cij is associated with each edge

(i, j) ∈ E, and we assume that the cost matrix c satisfies the triangle inequality. Each customer

i ∈ Vc requires an integer quantity qi > 0 from the depot and we assume that qi = 0, i ∈ {0} ∪ Vd.

A vehicle with capacity Q=Q1 +Q2 is located at the depot, where Q1 is the truck capacity and

Q2 is the trailer capacity. We assume that the vehicle is able to serve all the customers; that is,∑
i∈Vc

qi ≤ Q. We further suppose that, at parking locations, the goods required to satisfy the
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Figure 2 An example of a feasible solution to an XSTTRP instance.

demand of the subsequent sub-routes are instantaneously transferred from the trailer to the truck.

Therefore, all customers can be served by just one vehicle. Truck customers i ∈ V 1
c can be visited

by the truck only, i.e., without the trailer, while vehicle customers i ∈ V 2
c can be visited either by

the truck or by the complete vehicle. A feasible solution requires that the trailer is detached (either

at an appropriate satellite depot k ∈ Vd or at a vehicle customer with parking facilities j ∈ V 2
c )

before visiting any truck customer i ∈ V 1
c and, possibly, some vehicle customer i ∈ V 2

c . Then, the

truck returns to the parking location where the trailer has been detached, to pick the trailer up

before moving to the next vehicle customer, satellite, or even to the main depot. In other words,

reminding that a Hamiltonian circuit is a closed cycle that visits a set of vertices exactly once, a

feasible XSTTRP solution is composed of:

• a Hamiltonian circuit, called main-route, that starts from the depot, visits a subset of vehicle

customers i∈ V 2
c and satellites k ∈ Vd and eventually returns to the depot;

• a number of Hamiltonian circuits, called sub-routes, each of which starts from a parking

location k ∈ V d visited by the main-route, visits one or more customers i∈ Vc and ends at the

starting parking location k. It is allowed to have more than one sub-route rooted at the same

parking location.

Each customer must be visited exactly once, while satellite depots may remain unvisited if not

necessary. Moreover, in order to be compatible with the STTRPSD definition, sub-routes directly

starting from the depot are not allowed. This limit can be easily overcome by creating a satellite

coincident with the main depot location. Figure 2 shows a possible solution for an XSTTRP

instance where the empty square denotes the main depot, the empty triangles represent satellite

depots, the empty circles denote truck customers, the full circles represent vehicle customers

without parking facilities and the full triangles are vehicle customers with parking facilities. The
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main-route is defined by a continuous line and the sub-routes by dashed lines.

3.1. Comparative analysis of related problems

The XSTTRP is inspired by the combination of STTRPSD and STTRP. Both problems are direct

specializations of the XSTTRP, and as such include just a subset of its vertex types. However, the

XSTTRP generalizes many other vehicle routing problem variants. To illustrate this, we focus on

the MDVRP (with capacitated vehicles) and the LRP (with uncapacitated depots and capacitated

vehicles), because both of these problems require two levels of decisions (assignment of customers

to depots and routing) so they naturally fit into the XSTTRP model. We note that the Capacitated

VRP (CVRP), being a special case of the MDVRP, is also generalized by the XSTTRP, which is

therefore NP-Hard in the strong sense. The MDVRP, LRP and CVRP could be directly encoded

as XSTTRP by: (i) mapping depots and customers to satellites and truck customers respectively,

(ii) adding an additional dummy main depot, (iii) setting to 0 all costs associated with the edges

between satellites and those between satellites and depot, and (iv) setting the truck capacity equal

to the original problem vehicle capacity and the trailer capacity equal to, at least, the sum of

customer demands. The MDVRP usually imposes a maximum on the number of vehicles available

in each depot, while the LRP defines a fixed cost associated with each vehicle and depot used.

Both features are not directly modeled by the XSTTRP; thus they must either be handled by the

solution procedure or indirectly encoded in the instance definition, e.g., by changing the cost of

some arcs.

Figure 3 shows a possible hierarchical structure where several related problem variants are linked

together by generalization/specialization relationships. From the figure we deduce that the natural

generalization of the XSTTRP is the Extended TTRP (XTTRP); several, possibly heterogeneous,

capacitated vehicles (possibly equipped with a trailer) are available to serve the customers. We

also note that the STTRPSD is in fact a special case of the 2 Echelon-VRP (2E-VRP). In the

latter, satellites are capacitated and might be visited multiple times by different vehicles. Finally,

the GTTRP defined by Drexl (2011) is a complex and interesting unified model for vehicle routing

problems with trailers. It generalizes the TTRP by including transshipment locations and several

complex side-constraints. The XSTTRP and the XTTRP are much more basic problems, including

just capacity and accessibility constraints. Moreover, the XSTTRP differs structurally from the

GTTRP because it includes vehicle customers without parking facilities. Table 1 classifies the

previously introduced problems according to the vertex types and the available number of vehicles

they contain. In our computational testing we focused on the variants, enclosed in the dashed line

of Figure 3, that preserve the multiple-depot structure of XSTTRP in which satellites are present.
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MDVRP

STTRP

XSTTRP

STTRPSD

LRP

2E-VRP TTRP

XTTRP GTTRP

CVRP

Figure 3 A possible topology (for a subset) of VRPs.

Note. The relation X→ Y means X is a generalization of Y . The problem variants studied in this paper are those

enclosed by the dashed line.

Table 1 A problem classification based on the vertex types and number of
vehicles #veh.

Depot Satellite Vehicle customer Truck customer

with p. f. without p. f.

Problem
rs ut u b bc #veh

CVRP 3 7 7 3 7 ≥ 1
MDVRP 3 7 7 3 7 ≥ 1
LRP 3 7 7 3 7 ≥ 1
2E-VRP 3 7 3 7 3 ≥ 1
STTRPSD 3 3 7 7 3 1
STTRP 3 7 3 7 3 1
TTRP 3 7 3 7 3 ≥ 1
XSTTRP 3 3 3 3 3 1
XTTRP 3 3 3 3 3 ≥ 1
GTTRP 3 3 3 7 3 ≥ 1

The symbol 3 means that the problem contains the vertex type and 7 that

it does not. The abbreviation p. f. stands for parking facilities.

4. Solution approach

In this section we describe our metaheuristic for the XSTTRP, resulting in the algorithm AVXS.

The algorithm consists of a core part followed by a post-optimization phase. The core part iterates

through the following three phases:

1. The assignment phase associates each vertex i ∈ V with an appropriate vertex j ∈ V , e.g.,

customers are assigned to parking locations or to the depot;

2. The construction phase builds an initial routing solution which is complete and feasible,

starting from the given assignment;

3. The improvement phase may further optimize the given solution.
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These phases are executed for a fixed number of iterations, called restarts, during which a limited

set of routes composing high-quality solutions are stored in a pool P. The set-partitioning model F ,

described in Section 4.4, is then populated with the routes from P. A concluding post-optimization

polishing phase then selects the best combination of routes as the final solution. Pseudo-code for

AVXS is given in Algorithm 1, while the following paragraphs provide a detailed description of the

four phases. Finally, the section ends with a discussion on how to handle some special requirements

arising in problem variants within AVXS, such as the MDVRP and the LRP.

Algorithm 1 AVXS algorithm

1: procedure AVXS(instance, seed)

2: R← randomEngine(seed) . Initialize the pseudo-random number generator

3: P ←∅ . Initialize the pool that will eventually contain high-quality routes

4: S∗← emptySolution(instance) . Initialize the best known solution

5: for r← 1 to ∆ do

6: S← emptySolution(instance) . Initialize the current restart best solution

7: A← assignment(instance,R)

8: S← construction(S,A)

9: S← improvement(S,P,R)

10: if cost(S)< cost(S∗) then S∗← S . Update the best known solution

11: end for

12: F ← buildModel(P) . Populate the set-partitioning model F using the routes in P

13: S∗← polishing(S∗, F )

14: return S∗

15: end procedure

4.1. Assignment

In this phase we gradually build a feasible assignment tree by iteratively assigning customers to

parking locations and the depot. To this end we define the assignment cost ĉij as the estimated

cost of serving vertex i ∈ V from vertex j ∈ V . In our implementation, we define the assignment

costs as

ĉij =

{
cij (i∈ V 1

c ∧ j ∈ V d)∨ (i∈ V 2
c ∧ j ∈ V

+

d \ {i})∨ (i∈ Vd ∧ j = 0)

+∞ otherwise

As an alternative, one could use a more sophisticated estimate, such as the reduced costs obtained

by a combinatorial optimization bound (see e.g., Toth and Vigo (2002)). However, our prelimi-

nary computational experiments showed that the additional effort of using reduced costs for the

assignments did not provide substantial improvement compared to the original costs.

We define a parking location k ∈ V d as open if it has at least one customer assigned to it, and

closed otherwise. The assignment phase performs the following steps in sequence:
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Figure 4 Construction of an assignment tree starting from the instance depicted in Figure 2. Each separate

picture represents the result of each step of the assignment phase.

(a) Truck customers and vehicle customers without parking facilities i∈ V 1
c ∪ (V 2

c \V 2
c ) are proba-

bilistically assigned to vertices ki ∈ V
+

d through a roulette-wheel selection using an assignment

fitness function f i. Once the step is completed some vehicle customers with parking facilities

will be open and others will be closed. See Figure 4(a) for an illustration.

(b) Closed vehicle customers with parking facilities i∈ V 2
c are assigned to open parking locations

and the depot j ∈ V d ∪ {0}, using the same strategy as in step (a). Open vehicle customers

with parking facilities k ∈ V 2
c are assigned to the depot, as depicted in Figure 4(b).

(c) Open satellites k ∈ Vd are assigned to the depot and the closed ones are ignored, as in Figure

4(c).

Observe that the assignment resulting from this phase will always respect the accessibility con-

straints defined by the XSTTRP whenever the instance is feasible. The definition of the assignment

fitness function f i for each vertex i ∈ V obviously influences the outcome of this phase. In our

implementation, we used the d-near assignment fitness function with d equal to 25. The d-near

is a restricted GRASP-based function defined as

f i(j) =

{
1 j ∈Hd

i (ĉ)

0 otherwise

where Hd
i (ĉ) denotes the d nearest vertices to i according to the assignment costs ĉ. For a com-

prehensive analysis of the behavior of the d-near function we refer to Section 6.1. Finally, the

probability pij of assigning vertex i∈ V to vertex j ∈ V is defined as pij = f i(j)/
∑

k∈V f
i(k). It is

worth noting that, due to the roulette-wheel selection procedure, subsequent calls of the assignment

phase might produce different assignment trees.

4.2. Construction

Given an assignment tree, an initial feasible solution to XSTTRP is defined as follows. First, the

main-route is determined by solving a Traveling Salesman Problem (TSP) visiting the depot, the

open parking locations, and any vehicle customer without parking facilities assigned to the depot.
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Then, for each open parking location k ∈ V d, the sub-routes are obtained by solving a specific

CVRP with the customers belonging to the sub-tree rooted in k. Note that there is no limit on the

number of sub-routes rooted in a given parking location. As extensively discussed in Section 6.1,

the quality of the initial solution is not crucial for the algorithm’s overall performance. Therefore,

we solved both the CVRP and the TSP using an adaptation of the well-known savings algorithm

by Clarke and Wright (1964).

4.3. Improvement

The initial solution defined in the construction phase is improved using a specific procedure based

on the Iterated Local Search paradigm (ILS, see Lourenço, Martin, and Stützle (2003)) in which

the local search is performed using a Randomized Variable Neighborhood Descent (RVND, see

e.g., Subramanian, Uchoa, and Ochi (2013)). In addition, to speed up the local search execution,

we adopted a granular approach (see, Toth and Vigo (2003) and Schneider, Schwahn, and Vigo

(2017)). Our ILS intensifies the search around the current best-known solution. The diversification

is naturally provided throughout the procedure itself, strengthened by a global restart mechanism

which provides a different starting assignment tree. The randomization in the RVND is used for

selecting the order of the neighborhoods and that of the moves within each neighborhood, the latter

are searched according to a first-improvement strategy. This improves the likelihood that different

search pathways are explored, thus diversifying while improving the solution. We considered the

following neighborhoods:

• 1-0 exchange (relocate) in which each customer is removed from its current position and

re-inserted in the position that minimizes the insertion cost in the current solution;

• 1-1 exchange (swap) in which a pair of customers is exchanged;

• intra-route & intra-park 2-opt (twopt) in which an intra-route 2-opt procedure is applied

to each route and an inter-route 2-opt procedure is applied to each VRP, defined by an open

parking location and the vertices assigned to it;

• sub-routes segments-swap (segswap) in which contiguous, possible empty, paths within sub-

routes including from two up to five vertices are swapped. segswap is a simple adaptation of

the CROSS-exchange operator introduced by Taillard et al. (1997). Note that, for efficiency

purposes, our definition of segswap works on already open satellites and sub-routes only.

Therefore, it does not include relocate or swap moves that can work on main- and sub-

routes. In fact, from our experience, swapping a contiguous path of vertices between the

main-route and a sub-route seldom results in a feasible exchange;

• sub-route root-refine (rootref) (see Chao (2002)), consists of replacing the root of a sub-

route with another one. We extend the operator by also considering the possibility of leaving
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Figure 5 A special case of the rootref move.

Note. In (a) we show the initial solution with the sub-route rooted in vertex k. In (b) the root is changed to s, and

k is removed from the main-route and inserted into the sub-route.

the original root, corresponding to a vehicle customer with parking facilities, in the sub-route

(as shown in Figure 5).

At this point, we have five local search operators, all but one of which, the twopt, can change the

initial assignment tree. As will be analyzed in Section 6.1, the local search step is capable of greatly

improving the quality of the solutions. In the RVND we examine each granular neighborhood

exhaustively before moving to the next one. If an improving move is found, we apply the move and

restart the search using the current neighborhood. The local search terminates once a complete

RVND is executed without finding an improving solution.

Once the local search is stopped at a local optimum, we apply a shake procedure to the solution

in a ruin-and-recreate style (see Schrimpf et al. (2000)). The shake is always applied to the best

known solution found during the current restart. More precisely, we designed three different removal

procedures to be used in the ruin step. The first one, called main-vertex-removal (mrem), operates

by removing, with probability η, each vehicle customer served by the main-route that is not an

open parking location (as discussed in Section 5.2, we used η= 0.5). The other removal procedures

work on sub-routes. The sub-routes-removal procedure (srem) aims to improve the assignment by

destroying a number of long routes from a set of randomly chosen, open parking locations. For each

selected parking location k, we remove the r longest sub-routes, where r is randomly chosen between

0 and the total number of sub-routes rooted in k. Note that if the parking location is a satellite,

then all the sub-routes rooted in that satellite are removed and the satellite is closed. We define

this special case as srem.1. On the other hand, the sub-routes unloading procedure (sunload),

which is intended to improve the routing solution, consists of removing random customers from

each sub-route until its load is less than a threshold ζ × loadavg, where ζ is a coefficient that is

uniformly randomly generated on the interval [0.3,0.9] (at each shake application) and loadavg is

the average load of all sub-routes. At each shake application we always execute mrem, and we
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alternate the executions of srem and sunload. The recreate step inserts each removed customer in

the position of the current solution that minimizes the insertion cost. The order in which customers

are considered affects the final result. Therefore, at every recreate step we examine the customers

according to an ordering randomly chosen among five possibilities: ascending or descending values

of their x or y coordinates, respectively, or a random permutation. Pseudo-code for the improvement

phase is provided in Algorithm 2.

Algorithm 2 Improvement phase

1: procedure IMPROVEMENT(S,P,R)

2: π← πbase . Initialize the sparsification factor

3: i← 0, g← 0 . Initialize ILS and granular counters

4: S′← S . Initialize the current restart best solution

5: while true do

6: S← rvnd(S,R) . Improve the current solution using the randomized VND

7: if cost(S)< cost(S′) then . Update the current restart best solution, if necessary

8: i← 0, g← 0, S′← S,π← πbase . Reset some variables

9: P ←P ∪routesOf(S) . Add routes to the route pool

10: end if

11: i← i+ 1, g← g+ 1 . Increment ILS and granular counters

12: if i≥ δ then break . Terminate the improvement phase

13: if g≥ φ · δ then π← λ ·π, g← 0 . Update the move generators set

14: S← S′

15: S← shake(S)

16: end while

17: return S′

18: end procedure

Finally, as to the algorithm’s efficiency, we observe that both relocate and rootref might

evaluate moves which require the opening of closed satellites. To identify the insertion position

for the satellite which minimizes the insertion cost in the main-route, we adopted a lazy caching

strategy. In particular, we use an additional cache data structure that for each closed satellite

stores its best insertion position. At the beginning, the cache is empty (or invalid). When a move

needs to evaluate the opening of a closed satellite, we check the cache for a valid result. If the result

is valid, we return the stored position, otherwise we scan the current main-route, find the current

best insertion position, and update the corresponding cached value. The whole cache is invalidated

each time the main-route is modified.
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4.3.1. Granular neighborhoods. Granular neighborhoods have been successfully applied to

several Vehicle Routing Problems to speed up local search procedures while preserving solution

quality compared to complete neighborhood exploration (see Toth and Vigo (2003)). Following

the guidelines presented by Toth and Vigo (2003) and Schneider, Schwahn, and Vigo (2017) a

granular neighborhood is completely defined by a set T ∈ E of appropriately chosen arcs, called

move generators. Each arc in T is used in the neighborhood search to generate a uniquely defined

single move, thus reducing the search time to O(|T |). Typically, the set T of move generators for

a specific neighborhood is defined according to problem-related criteria, often called sparsification

rules. For example, according to Toth and Vigo (2003), arcs are chosen if their cost is below a

given threshold, whereas Schneider, Schwahn, and Vigo (2017) used the reduced cost coming from

a simple relaxation for the same purpose. In our algorithm all the neighborhoods used in the RVND

are defined as granular and we adopted a simple cost-based sparsification rule.

The multi-level nature of a problem with a main-route and several sub-routes calls for additional

care in the definition of the set of move generators. More precisely, by examining Figure 6, which

reports a sub-optimal solution for instance 25 of Villegas et al. (2010), one may easily observe that

the arcs in the main-route are considerably longer than those of the sub-routes. Therefore, if we use

a relatively small cost threshold to define the sparsification rule, very few arcs between satellites are

likely to be inserted in T , possibly causing severe harm to the solution quality. As a consequence,

we used two different sparsification rules for the arcs of the main-route {(i, j) : i, j ∈ V 2
c ∪Vd∪{0}},

called main-route arcs, and for those of the sub-routes {(i, j) : i, j ∈ Vc ∪Vd}, called sub-route arcs.

Note that some arcs, e.g., those between vehicle customers, may belong to both sets because such

customers may be served either in the main-route or in the sub-routes. Given a sparsification factor

π, we define T as the union of two sets TM and TS corresponding to main- and sub-route arcs.

The set TM includes the π · (|V 2
c |+ |Vd|+ 1) shortest main-route arcs, while the set TS includes the

π · (|Vc|+ |Vd|) shortest sub-route arcs.

Finally, following Schneider, Schwahn, and Vigo (2017), we adopted a dynamic updating of the

sparsification level. We initially set π = πbase, and whenever φ · δ non-improving iterations are

performed, π = π · λ. The value of π is reset to πbase, however, whenever an improving solution is

found.

4.4. Polishing

We store every route that constitutes an improving solution produced by the RVND procedure in

a pool P of high-quality routes (see line 9 of Algorithm 2). Note that we only store local minima

which are improving with respect to the current restart best solution and not all the generated

ones. We found that this allows us to limit the size of the pool without a significant worsening of
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Figure 6 A solution for instance 25 by Villegas et al. (2010), a clustered instance with 200 truck customers

and ten satellite depots. The main-route is clearly sub-optimal.

the solution quality. In storing the routes we discard duplicates and, possibly, update the existing

ones with improved versions. We effectively handle routes retrieval by using an additional hash-

table data structure that, given a set of nodes, is able to efficiently check whether a route passing

through the given set of nodes exists or not. Moreover, routes in P are stored as set of vertices

with an associated cost label which depends on the sequence of visits of the vertices. Given two

routes passing through the same set of vertices we only maintain the one with the lowest cost label.

The final result of our algorithm is the best solution found by a set-partitioning post-optimization

performed on the routes from P.

More precisely, let M be the subset of all the main-routes in P starting from the depot 0 and

passing through a subset of vehicle customers V 2
c and, possibly, through one or more satellites in

Vd. Let Mk ⊂M be the subset of main-routes passing through k ∈ V 2
c ∪ Vd. Note that Mk = ∅

for each truck customer k ∈ V 1
c . Given a main-route r ∈M, we denote by gr its cost and by Rr

the subset of vehicle customers and satellite depots visited by r. Let Rk be the subset of all the

sub-routes in P rooted in parking location k ∈ V d. We denote by Rki ⊂Rk the subset of sub-routes

rooted in k ∈ V d that pass through customer i ∈ Vc. Let ` ∈ Rk be a sub-route rooted in k; we

denote by dk` its cost and by Rk
` the subset of customers visited by ` and we assume that k /∈Rk

` .

Let yr be a binary variable that is equal to 1 if and only if the main-route r ∈M is in the solution,

and 0 otherwise. Furthermore, let xk` be a binary variable that is equal to 1 if and only if the
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sub-route `∈Rk, k ∈ V d is in the solution, and 0 otherwise. The XSTTRP route-based formulation

F is defined as follows.

(F ) min
∑
k∈V d

∑
`∈Rk

dk`xk` +
∑
r∈M

gryr (1)

s.t.
∑
k∈V d

∑
`∈Rki

xk` = 1, i∈ V 1
c (2)

∑
k∈V d

∑
`∈Rki

xk` +
∑
r∈Mi

yr = 1, i∈ V 2
c (3)

∑
`∈Rki

xk`−
∑

r∈Mk

yr ≤ 0, k ∈ V d, i∈ Vc \ {k} (4)∑
r∈M

yr = 1 (5)

xk` ∈ {0,1}, `∈Rk, k ∈ V d (6)

yr ∈ {0,1}, r ∈M (7)

where the objective function (1) imposes the selection of the best combination of main-route and

sub-routes. Equations (2) and (3) require that each customer i ∈ Vc be visited exactly once by

a compatible route. Inequalities (4) specify that a customer i ∈ Vc can be visited by a sub-route

rooted in a parking location k ∈ V d only if that location is visited by the main-route. Constraint (5)

dictates that just one main-route must be in the solution. Finally, constraints (6) and (7) define the

variables as binary. The mathematical formulation was introduced in a preliminary work by Accorsi

(2017). The polishing phase brings together the otherwise unrelated restart results. Similar methods

have proved effective in other vehicle routing algorithms (see e.g., the works by Subramanian,

Uchoa, and Ochi (2013) and Villegas et al. (2013)). In doing the post-optimization, we supply the

best found solution as a warm start; we stop the model resolution after a predetermined computer-

independent number of ticks, see Section 5.1.

4.5. Extensions to handle specific sub-problems

The conversion from MDVRP and LRP instances to XSTTRP ones is straightforward, although

both problems include special requirements not directly definable in XSTTRP terms. In particular,

the MDVRP imposes a maximum on the number of vehicles available in each depot and the LRP

defines a fixed cost on the use of vehicles and on the opening of depots. As discussed in Section 3.1,

these problems are encoded as XSTTRP by: (i) mapping depots and customers to satellites and

truck customers respectively, (ii) adding an additional dummy main depot, (iii) setting to 0 all

costs associated with the edges between satellites and those between satellites and depot, and (iv)

setting the truck capacity equal to the original problem vehicle capacity and the trailer capacity

equal to, at least, the sum of customer demands.
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In the MDVRP, we build a zero-cost main-route through the main depot and all the satellites

(that is, we assume all satellites have been visited). Next, in order to handle a maximum number

of available vehicles (say nv) in each satellite, we simply introduce a penalty; the solution cost is

incremented by a very large value for each additional vehicle used in the solution. Although this

alone does not guarantee the discovery of feasible solutions, it has been proved effective experimen-

tally in solving the instances we consider. Furthermore, this same constraint must be considered

in model F by adding ∑
`∈Rk

xk` ≤ nv, k ∈ Vd

Finally, we relax the shaking procedure srem by discarding the special case srem.1 defined in

Section 4.3, which removes all routes rooted in a satellite chosen by the srem shaking procedure.

Since the main-route does not contribute to the objective function in the MDVRP, any empty

visited satellite can remain open. Thus, instead of removing all sub-routes from a satellite, we

remove a random number of them.

To handle the LRP, we simply incorporate the fixed costs of using a vehicle Fv and opening an

LRP depot Fd into the cost matrix as follows.

c′ij =



Fd

2
(i∈ Vd ∧ j = 0)∨ (i= 0∧ j ∈ Vd)

Fd i∈ Vd ∧ j ∈ Vd ∧ i 6= j
Fv

2
(i∈ Vc ∧ j ∈ Vd)∨ (i∈ Vd ∧ j ∈ Vc)

cij otherwise

We use this new cost matrix c′ to execute the optimization. It is important to note that, when

opening a satellite has high fixed cost, we cannot rely on a probabilistic assignment phase, because

a wrong initial assignment is very difficult to modify when the fixed cost is greater than the routing

contribution. In other words, the attractiveness of already open satellites might be very high with

respect to the opening of closed ones. In particular, our local search procedures do not contain any

specialized technique which is able to completely move several routes from one satellite to another

one in a single evaluation. The srem ruin procedure might cause a satellite to be completely closed

but, again, if opening a satellite has high fixed cost compared to the routing cost, the recreate step

will prefer to insert the removed customers in routes of already open satellites instead of opening

new ones. Hence, in this situation, a meaningful selection of initial satellites during the assignment

phase can be very important. To handle this, we use the d-near assignment fitness function with

d equal to 1, which deterministically assigns a vertex i∈ V to its nearest neighbor j ∈ V according

to the assignment cost ĉ.
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5. Computational results

The computational testing had two objectives. First of all we wanted to assess the success of AVXS.

To this end, we used the algorithm to solve instances of four special cases of the XSTTRP which

are extensively studied in the literature, namely the MDVRP, the LRP, the STTRPSD and the

STTRP. We also performed a preliminary testing on the CVRP instances of the X benchmark by

Uchoa et al. (2017). Unfortunately, our results with the algorithm’s parameters tuned as described

in Section 5.2 were not state-of-the-art on those large scale instances, therefore we do not describe

them in this section. The second objective was to analyze the impact of the algorithm’s main

components on its performance in detail, by testing AVXS on new instances of the XSTTRP which

have not been previously studied in the literature.

5.1. Implementation and experimental environment

The proposed algorithm was implemented in C++ and compiled using g++ 6.3.0. To solve the set-

partitioning model F we used CPLEX 12.8 (CPLEX (2017), C callable library) with default settings

and a prefixed number of ticks as a computer-independent measure to prematurely terminate the

model resolution. In particular, assuming our machine performs an average number of 1900 ticks

per second, we assigned CPLEX a maximum of 60 · 1900 = 114000 ticks. The experiments were

performed on a 64-bit desktop computer with an Intel Core i7-8700K CPU, running at 3.7 GHz

with 32 GB of RAM on a GNU/Linux Debian operating system. Both the algorithm and CPLEX

were executed using a single thread. All the instances used in our testing with the corresponding

graphic solutions, as well as the source code, could be downloaded from https://acco93.github.

io/avxs/. Detailed instructions are given as an aid to others wishing to accurately reproduce our

results. Because our algorithm contains randomized elements, for every experiment we performed

a set of ten runs for each instance and we defined the seed of the pseudo-random engine, the

Mersenne Twister (Matsumoto and Nishimura (1998)), equal to the run counter minus one. To

facilitate comparisons with other algorithms run on computers with different CPUs, we used the

single-thread rating defined by PassMark Software (2018), which assigns a score of 2704 to our

CPU. Moreover, to mitigate the impact of small time-variations due to overhead of the operating

system we intentionally used a clock function that reports running times with a precision set to

one second as the minimum recordable time. Therefore, when the algorithm took less than one

second, we considered the elapsed time to be one. Finally, if not stated otherwise, we assume that

the arc costs cij were computed as cij =Euc(i, j) =
√

(xi−xj)2 + (yi− yj)2, where xi, xj, yi and yj

represent the x and y coordinates of vertices i, j ∈ V , respectively.

https://acco93.github.io/avxs/
https://acco93.github.io/avxs/
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5.2. Parameter definitions

Algorithm AVXS requires that initial values be defined for a number of parameters. We set these

values during preliminary testing, performed on a training which included the XSTTRP instances

with 200 total vertices. The resulting parameter values, which were used on all problem classes,

are the following:

• number of restarts, ∆ = 100;

• maximum number of non-improving ILS iterations, δ= 100;

• probability of removing a customer from the main-route in the mrem procedure, η= 0.5 ;

• unloading range used in the sunload procedure, ζ = [0.3,0.9];

• initial sparsification value used to define the granular neighborhood, πbase = 1.25;

• factor, φ= 0.2, used to define the fraction of non-improving iterations to be performed before

incrementing the sparsification parameter π;

• factor, λ= 2, used to increment the value of π when φ · δ non-improving iterations are per-

formed.

The parameters tuning followed a simple sequential strategy. At the beginning, we identified initial

reasonable values for all the parameters by performing a preliminary limited trial-and-error testing.

Then, we assessed the performance of the algorithm when changing the value of one parameter at a

time. We kept a new value when it allowed good quality solutions while keeping the computational

time low.

In particular, we noted that few iterations in the improvement phase are typically sufficient to

converge to good local optima and few restarts are generally able to produce a moderate-sized and

diversified pool of high-quality routes. In fact, the results obtained by setting δ= 1000 or ∆ = 1000

were, on average, at most 0.2% better while requiring computing times up to 10 times larger.

Moreover, we noticed that the algorithm is not very sensitive to reasonable values of η and ζ.

Indeed, whenever values of those parameters that cause extremely disruptive effects or no changes

at all are discarded, the algorithm is able to produce comparable results in similar computing time.

On the contrary, πbase, φ and λ heavily affects the algorithm performance. The value of πbase was

set following the guidelines defined in Toth and Vigo (2003) who reported that the best results

are typically obtained with a sparsification factor between 1.0 and 2.5 and used a sparsification

value equal to 1.25. From our experience, starting with a very aggressive sparsification level and

reducing it relatively often resulted to be the most effective and efficient strategy.

5.3. Testing on MDVRP instances

We tested our algorithm on the subset of MDVRP instances with capacitated vehicles proposed by

Cordeau, Gendreau, and Laporte (1997). The set contains 11 instances with 50 to 360 customers
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Table 2 Computations on MDVRP instances.

HGSADC AVXS

Id |V 1
c | |Vd| Q1 Type BKS Avg t10 Best Avg Worst t10 t̂10

p01 50 4 80 rd 576.87 0.00 138 0.00 0.00 0.00 10 39.47
p02 50 4 160 rd 473.53 0.00 126 0.00 0.00 0.00 10 39.47
p03 75 2 140 rd 641.19 0.00 258 0.00 0.00 0.00 20 78.95
p04 100 2 100 rd 1001.04 0.02 1164 0.00 0.15 0.31 178 702.65
p05 100 2 200 rd 750.03 0.00 636 0.00 0.00 0.00 56 221.06
p06 100 3 100 rd 876.50 0.00 684 0.00 0.00 0.00 75 296.06
p07 100 4 100 rd 881.97 0.28 930 0.00 0.06 0.30 86 339.48
p12 80 2 60 g 1318.95 0.00 312 0.00 0.00 0.00 10 39.47
p15 160 4 60 g 2505.42 0.00 1152 0.00 0.00 0.00 89 351.32
p18 240 6 60 g 3702.85 0.00 2712 0.00 0.00 0.00 273 1077.65
p21 360 9 60 g 5474.84 0.03 6000 0.00 0.00 0.00 774 3055.32

Mean 0.03 1282.91 0.00 0.02 0.06 143.73 567.35

Optimality has been proved for the solutions in boldface by Baldacci and Mingozzi (2008).

and up to nine depots. The first seven instances have randomly distributed customers, while in the

last four they are arranged in geometrical patterns. We compared AVXS with the HGSADC (Hybrid

Genetic Search with Advanced Diversity Control) algorithm proposed by Vidal et al. (2012), which

is currently one of the most effective MDVRP solution approaches capable of handling the complete

MDVRP instance set and several other VRP variants. In our computations, we omitted MDVRP

instances with constraints on route length. Table 2 summarizes the computational results, organized

in the following columns: the instance identifier (Id), the number of truck customers (|V 1
c |), the

number of satellites (|Vd|), the truck capacity (Q1), the instance type (Type) (equal to “rd” for

randomly distributed and “g” for geometrical instances), and the best known solution value (BKS )

reported in Vidal et al. (2012). For each algorithm we report (when available) the best (Best), the

worst (Worst) and the average (Avg) gap of the solution found by the algorithm with respect to

BKS, the computational time in seconds for 10 runs (t10) and the corresponding scaled time (t̂10)

computed as t̂10 = t10(PA/PB) where PA is our CPU single-thread rating and PB is the CPU rating

of the competing method. The gap is computed as 100 · (z−BKS)/BKS, where z is the solution

value.

Because Vidal et al. (2012) reported only the average computing time of a single run, the values

of t10 for HGSADC from the original paper have been multiplied by ten. Vidal et al. (2012) tested

their algorithm on an AMD Opteron 250 CPU at 2.4 GHz. We were not able to find the exact

CPU values in PassMark Software (2018) so we found a similar model, the AMD Opteron 275 at

2.2 GHz, which has a single-thread rating of 685; thus our CPU is roughly 3.95 times faster. As

can be seen from the table, our algorithm was able to find a solution with the same value of the

best known solution for all instances, and the average solution quality was comparable with that of
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HGSADC. Moreover, as our computing times, scaled to be comparable with those of the competing

method, were much shorter, we can conclude that AVXS was able to reach state-of-the-art results

on MDVRP instances within a very limited amount of time.

5.4. Testing on LRP instances

We tested AVXS on the set of 36 LRP instances proposed by Tuzun and Burke (1999), which

are characterized by capacitated vehicles, uncapacitated depots, and fixed costs for using vehicles

and depots. Each instance has between 100 and 200 customers, and between 10 and 20 candidate

depots. Customers are uniformly randomly distributed or arranged in either three or five clusters.

The vehicle capacity is 150. Table 3 shows the details of our computational results; the columns

are the same as for Table 2. Type “c (h)” denotes clustered instances with h clusters. We observe

that AVXS is able to find solutions close to the best known ones in relatively short computing

times and even detected a new best solution for instance P123222. A general comparison of our

method with other state-of-the-art methods is reported in Table 4, where the details of previous

methods are obtained from the recent literature survey by Schneider and Drexl (2017). The table

contains the following columns: the algorithm acronym (Algorithm), the best (Best) and, when

available, the average (Avg) percentage gap with respect to the best known solution, the average

raw run-time of a single run solving the considered LRP instances in seconds (t), the PassMark

Software (2018) score as reported in the survey paper (Pscore), and the scaled running time defined

as the normalized single run-time × the number of conducted runs (t̂). Run-times are normalized

according to the processor used by Lopes, Ferreira, and Santos (2016). Finally, a graphic comparison

of the algorithm performance is given in Figure 7.

We conclude that our AVXS favourably compares with the best existing methods, achieving an

excellent compromise between solution quality and running time, as shown by its presence on the

Pareto frontier of Figure 7.

5.5. Testing on STTRPSD instances

The STTRPSD instances were proposed by Villegas et al. (2010); they are a set of 32 randomly

generated Euclidean instances defined in a square grid of 100 × 100 units. The set contains ran-

domly distributed and clustered instances including only truck customers and satellite depots. The

size of the instances vary from 25 to 200 truck customers and from 5 to 20 satellites. The truck

capacity is either 1000 or 2000, and the customer demand is uniformly distributed in the interval

[1, 200]. The algorithm of Villegas et al. (2010) was implemented in Java. The experiments were

run on a computer equipped with an Intel Pentium D 945 processor running at 3.4 GHz with 1024

MB of RAM. We were not able to find the exact CPU in PassMark Software (2018), so we referred

to a similar model, namely the Intel Pentium D 940 working at 3.20 GHz, which has a single-thread
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Table 3 Computations on LRP instances.

Id |V 1
c | |Vd| Type BKS Best Avg Worst t10

P111112 100 10 rd 1467.68 0.00 0.00 0.04 110
P111122 100 10 rd 1448.37 0.00 0.03 0.06 183
P111212 100 10 rd 1394.80 0.00 0.00 0.01 100
P111222 100 10 rd 1432.29 0.00 0.21 2.08 198
P112112 100 10 c (3) 1167.16 0.00 0.12 0.33 588
P112122 100 10 c (3) 1102.24 0.00 0.00 0.01 584
P112212 100 10 c (3) 791.66 0.00 0.01 0.15 124
P112222 100 10 c (3) 728.30 0.00 0.00 0.00 131
P113112 100 10 c (5) 1238.24 0.02 0.05 0.15 542
P113122 100 10 c (5) 1245.30 0.00 0.00 0.01 438
P113212 100 10 c (5) 902.26 0.00 0.00 0.00 433
P113222 100 10 c (5) 1018.29 0.00 0.00 0.00 499
P131112 150 10 rd 1892.17 0.56 1.08 2.08 704
P131122 150 10 rd 1819.68 0.25 1.06 2.14 770
P131212 150 10 rd 1960.02 0.24 0.27 0.38 420
P131222 150 10 rd 1792.77 0.00 0.26 0.82 688
P132112 150 10 c (3) 1443.32 0.00 0.22 0.31 808
P132122 150 10 c (3) 1429.30 0.86 1.24 1.50 875
P132212 150 10 c (3) 1204.42 0.10 0.20 0.46 699
P132222 150 10 c (3) 924.68 0.70 0.79 0.89 751
P133112 150 10 c (5) 1694.18 0.08 0.58 1.52 705
P133122 150 10 c (5) 1392.01 0.37 0.60 0.79 840
P133212 150 10 c (5) 1197.95 0.00 0.01 0.02 420
P133222 150 10 c (5) 1151.37 0.07 0.15 0.25 725
P121112 200 10 rd 2237.73 0.03 0.66 1.18 863
P121122 200 10 rd 2137.45 0.15 1.02 3.66 855
P121212 200 10 rd 2195.17 0.00 0.66 1.33 883
P121222 200 10 rd 2214.86 0.51 1.44 2.43 981
P122112 200 10 c (3) 2070.43 0.61 1.31 1.94 939
P122122 200 10 c (3) 1685.52 0.86 1.76 2.90 1039
P122212 200 10 c (3) 1449.93 1.20 1.44 1.56 936
P122222 200 10 c (3) 1082.46 0.02 0.07 0.25 937
P123112 200 10 c (5) 1942.23 1.38 1.64 1.76 965
P123122 200 10 c (5) 1910.08 0.09 0.53 1.79 1064
P123212 200 10 c (5) 1761.11 0.34 0.73 1.21 1081
P123222 200 10 c (5) 1390.86 -0.01 0.01 0.04 736

Mean 0.23 0.50 0.95 655.94

Optimality has been proved for the solutions in boldface by Baldacci, Mingozzi, and
Wolfler Calvo (2011).
New best solutions (instance identifier, value): (P123222, 1390.74)

rating of 758. Our CPU is thus 3.57 times faster. The authors presented four metaheuristics with

various characteristics and levels of performance. In Table 5 we compare our algorithm with the

algorithm MS-ILS of Villegas et al. (2010), which is the best-performing one with respect to the

objective function (and just slightly more time-consuming than the second-best).

Table 5 includes several columns similar to those of previous result tables. Since Villegas et al.

(2010) reported only the average computing time needed to perform a single run of their algorithm,
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Table 4 Comparison with state-of-the-art LRP algorithms.

Algorithm Best Avg t Pscore t̂

DLPP 1.40a 606.64 1200 317.55 × 5
YLLT 1.59a 826.47 1135 409.62 × 1
HCC (500K) 0.53 0.99 165.93 685 49.63 × 5
HCC (5000K) 0.39 0.60 1620.60 685 484.76 × 5
CCG 0.27 0.66 2589.53 1219 1378.44 × 10
ELT 1.24 1.24 392.33 776 132.94 × 1
TC 1.33a 202.08 546 48.18 × 10
ELBT 0.86 0.86 201.22 776 68.19 × 1
SL (speed) 0.31 0.57 65.75 1652 47.43 × 5
SL (quality) 0.04 0.15 1004.65 1652 724.75 × 5
LFS 0.96 1.55 86.02 2290 70.02 × 10
LFS+ 0.80 1.19 363.61 2290 256.66 × 10
A&S 0.30 0.30 171.93 1878 141.00 × 1
AVXS 0.23 0.50 65.59 2704 77.45 × 10

aData on average gaps not available.

The algorithm acronyms are: DLPP (Duhamel et al. (2010)), YLLT
(Yu et al. (2010)), HCC (Hemmelmayr, Cordeau, and Crainic (2012)),

CCG (Contardo, Cordeau, and Gendron (2014)), ELT (Escobar, Linfati,

and Toth (2013)), TC (Ting and Chen (2013)), ELBT (Escobar et al.
(2014)), SL (Schneider and Lffler (2019)), LFS (Lopes, Ferreira, and

Santos (2016)), A&S (Florian (2018))
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Figure 7 LRP algorithm performance comparison over the instances of Tuzun and Burke (1999). We excluded

algorithms DLPP, YLLT and TC for which the average gaps are not available.

to obtain the values of t10 we multiplied their times by ten. As can be seen from Table 5, AVXS was

able to find seven new best solutions for the largest instances. Moreover, we note that instances 1-

18, 21 and 22 have already been proved to be optimal by Belenguer et al. (2016); thus we improved
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Table 5 Computations on STTRPSD instances.

MS-ILS AVXS

Id |V 1
c | |Vd| Q1 Type BKS Best Avg Worst t10 Best Avg Worst t10 t̂10

1 25 5 1000 c 405.46 0.00 0.00 0.00 114 0.00 0.00 0.00 10 35.67
2 25 5 2000 c 374.79 0.00 0.00 0.00 114 0.00 0.00 0.00 10 35.67
3 25 5 1000 rd 584.03 0.00 0.00 0.00 126 0.00 0.00 0.00 10 35.67
4 25 5 2000 rd 508.48 0.00 0.00 0.00 102 0.00 0.00 0.00 10 35.67
5 25 10 1000 c 386.45 0.00 0.00 0.00 132 0.00 0.00 0.00 10 35.67
6 25 10 2000 c 380.86 0.00 0.00 0.00 126 0.00 0.00 0.00 10 35.67
7 25 10 1000 rd 573.96 0.00 0.00 0.00 138 0.00 0.00 0.00 10 35.67
8 25 10 2000 rd 506.37 0.00 0.00 0.00 126 0.00 0.00 0.00 10 35.67
9 50 5 1000 c 583.07 0.00 0.00 0.00 708 0.00 0.00 0.00 10 35.67
10 50 5 2000 c 516.98 0.00 0.00 0.00 570 0.00 0.00 0.00 10 35.67
11 50 5 1000 rd 870.51 0.00 0.00 0.00 612 0.00 0.00 0.00 10 35.67
12 50 5 2000 rd 766.03 0.00 0.00 0.00 588 0.00 0.00 0.00 10 35.67
13 50 10 1000 c 387.83 0.00 0.00 0.00 822 0.00 0.00 0.00 10 35.67
14 50 10 2000 c 367.01 0.00 0.00 0.00 750 0.00 0.00 0.00 10 35.67
15 50 10 1000 rd 811.28 0.00 0.00 0.00 720 0.00 0.00 0.00 10 35.67
16 50 10 2000 rd 731.53 0.00 0.00 0.00 630 0.00 0.00 0.00 10 35.67
17 100 10 1000 c 614.02 0.00 0.06 0.21 3480 0.00 0.00 0.00 58 206.90
18 100 10 2000 c 547.44 0.00 0.02 0.12 3894 0.00 0.00 0.00 30 107.02
19 100 10 1000 rd 1275.76 0.33 0.55 0.81 2976 -0.31 -0.31 -0.31 72 256.84
20 100 10 2000 rd 1097.28 0.00 0.06 0.56 2604 0.00 0.00 0.00 52 185.5
21 100 20 1000 c 642.61 0.00 0.00 0.00 2892 0.00 0.00 0.00 65 231.87
22 100 20 2000 c 581.56 0.00 0.11 0.37 3600 0.00 0.00 0.00 40 142.69
23 100 20 1000 rd 1143.10 0.00 0.31 0.63 3012 0.00 0.00 0.00 58 206.9
24 100 20 2000 rd 1060.75 0.00 0.20 0.40 2946 0.01 0.24 0.27 91 324.62
25 200 10 1000 c 822.52 0.00 0.71 1.52 11544 -0.31 -0.31 -0.31 311 1109.42
26 200 10 2000 c 714.33 0.00 0.79 1.63 11682 -0.51 -0.44 -0.29 284 1013.11
27 200 10 1000 rd 1761.10 0.12 1.26 2.53 10314 -0.32 -0.32 -0.32 418 1491.12
28 200 10 2000 rd 1445.94 0.00 0.84 1.71 9288 0.00 0.00 0.00 255 909.66
29 200 20 1000 c 909.46 0.00 0.45 1.51 13746 -0.25 -0.25 -0.25 319 1137.96
30 200 20 2000 c 815.51 0.63 0.82 1.14 14646 -0.13 -0.13 -0.09 227 809.77
31 200 20 1000 rd 1614.18 0.00 1.08 2.16 12282 -0.22 -0.22 -0.22 341 1216.44
32 200 20 2000 rd 1413.32 0.00 0.81 1.81 12084 0.00 0.00 0.00 307 1095.16

Mean 0.03 0.25 0.54 3980.25 -0.06 -0.05 -0.05 96.50 344.24

Optimality has been proved for the solutions in boldface by Belenguer et al. (2016).
New best solutions (instance identifier, value): (19, 1271.78) (25, 819.96) (26, 710.70) (27, 1755.44) (29, 907.17) (30, 814.42) (31, 1610.62)

7 out of 12 of the remaining ones. The computational results show the effectiveness of our method,

in terms of both solution quality and processing time (which is more than ten times shorter than

the competing algorithm).

5.6. Testing on STTRP instances

In order to assess the performances of AVXS on the STTRP, we first solved the small-scale instances

proposed by Bartolini and Schneider (2018) and used in a branch-and-cut algorithm. They had

selected subsets of customers with sizes of 30 and 40 from the TTRP instances proposed by Chao

(2002) and Lin, Yu, and Chou (2010), deriving the set of 36 instances that we used for initial
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testing. Moreover, to comply with the multiple-vehicle versions of the original TTRP in which each

vehicle can perform at most one route type among the ones defined by Chao (2002) (see Section

2), Bartolini and Schneider (2018) imposed the constraint of not having any sub-route directly

starting from the depot even in the single-vehicle version. Since the XSTTRP does not allow sub-

routes directly starting from the depot, we could capture the STTRP considered by Bartolini and

Schneider (2018) as a special case of our problem. Table 6 contains the computational results of

those instances. We computed the arc costs cij = (b10000 ·Euc(i, j)c)/10000 as in the the original

paper. By analyzing the computational results of the set of instances shown in Table 6, we can

conclude that AVXS is able to solve small-scaled instances of this XSTTRP sub-problem effectively.

In particular, the algorithm improved five best known solutions.

After successfully solving the small-sized STTRP instances, we derived larger test instances from

the TTRP ones proposed by Chao (2002) by setting the trailer capacity Q2 equal to the sum of

customer demands and adding a dummy satellite at the same location as the main depot, to allow

an unlimited number of sub-routes starting from the depot location. These new instances have

either randomly distributed or clustered customers, who number between 50 and 200, and the

capacity of the truck Q1 is either 100 or 150. Table 7 shows our computational results with columns

similar to previous tables. The number of vehicle customers with parking facilities is denoted as

|V 2
c |, and BKS identifies the best known solution value found during the experiments.

From the table we note that AVXS provides results with very small differences between the best

and the worst average gap, and the computing times to perform ten runs never exceed 13 minutes

for the largest instances and are, on average, less than three minutes.

5.7. Testing on XSTTRP instances

We derived a set of XSTTRP instances from the TTRP ones proposed by Chao (2002) as follows.

For each TTRP instance, for nc the number of TTRP customers, we turned ns randomly chosen

customers into satellites. From the remaining n′
c = nc−ns customers, we randomly chose t ·n′

c to

turn into vehicle customers without parking facilities. The possible values for ns depend on the

original TTRP instance size: ns = 5 if nc ≤ 99, ns ∈ {5,10} when 100≤ nc ≤ 199 and ns ∈ {5,10,20}
if 200 ≤ nc. The values for t are t ∈ {0.2,0.8}. Moreover, every instance contains an additional

satellite placed at the depot location.

Table 8 shows our computational results; in addition to the columns already defined for previous

sub-problems we include a column for the number of vehicle customers without parking facilities

(|V 2
c \V 2

c |).
The results show that, as for the STTRP instances, the average difference between the best and

the worst average gap remains small. This experimentally indicates that AVXS is able to provide

stable results for XSTTRP instances. Moreover, the average computing time to perform a single

run is always less than 80 seconds and on average slightly more that 19 seconds.
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Table 6 Computations on STTRP instances proposed by Bartolini and Schneider
(2018).

Id |V 1
c | |V 2

c | Q1 Type BKS Best Avg Worst t10

chao1.30 7 23 150 rd 350.6 0.00 0.00 0.00 10
chao2.30 15 15 150 rd 371.6 0.00 0.00 0.00 10
chao3.30 23 7 150 rd 383.6 0.00 0.00 0.00 10
chao4.30 7 23 150 rd 351.7 0.00 0.00 0.00 10
chao5.30 15 15 150 rd 383.8 0.00 0.00 0.00 10
chao6.30 22 8 150 rd 435.8 0.00 0.00 0.00 10
chao7.30 8 22 200 rd 365.1 0.00 0.00 0.00 10
chao8.30 15 15 100 rd 419.5 0.00 0.00 0.00 10
chao9.30 22 8 200 rd 408.0 0.00 0.00 0.00 10
chao10.30 8 22 100 rd 411.5 0.00 0.00 0.00 10
chao11.30 15 15 100 rd 398.8 0.00 0.00 0.00 10
chao12.30 22 8 100 rd 471.8 0.00 0.00 0.00 10
tai1 7 23 750 c 508.9 0.02 0.02 0.02 10
tai2 15 15 750 c 711.3 0.00 0.00 0.00 10
tai3 22 8 750 c 757.4 0.00 0.00 0.00 10
tai4 7 23 850 c 310.6 0.00 0.00 0.00 10
tai5 15 15 850 c 333.9 0.00 0.00 0.00 10
tai6 22 8 850 c 359.1 0.00 0.00 0.00 10
tai7 7 23 600 c 491.1 0.00 0.00 0.00 10
tai8 15 15 600 c 538.5 0.00 0.00 0.00 10
tai9 23 7 600 c 585.4 0.00 0.00 0.00 10
tai10 7 23 850 c 608.8 0.00 0.00 0.00 10
tai11 15 15 850 c 667.6 0.00 0.00 0.00 10
tai12 23 7 850 c 719.1 0.00 0.00 0.00 10
chao1.40 10 30 150 rd 399.2 0.03 0.03 0.03 10
chao2.40 20 20 150 rd 452.5 -2.48 -2.48 -2.48 10
chao3.40 30 10 150 rd 472.3 0.00 0.00 0.00 10
chao4.40 10 30 150 rd 415.2 -0.17 -0.17 -0.17 10
chao5.40 20 20 150 rd 455.5 0.00 0.00 0.00 10
chao6.40 30 10 150 rd 501.0 0.00 0.00 0.00 10
chao7.40 10 30 200 rd 423.1 -0.21 -0.21 -0.21 10
chao8.40 20 20 100 rd 461.5 0.00 0.00 0.00 10
chao9.40 30 10 200 rd 449.0 0.00 0.00 0.00 10
chao10.40 10 30 100 rd 502.2 -3.33 -3.33 -3.33 10
chao11.40 20 20 100 rd 500.7 0.00 0.00 0.00 10
chao12.40 30 10 100 rd 576.6 -0.36 -0.36 -0.36 10

Mean -0.18 -0.18 -0.18 10

Optimality has been proved for the solutions in boldface by Bartolini and Schneider
(2018), for the remaining ones BKS reports the upper-bound provided by Bartolini and

Schneider (2018).

New best solutions (instance identifier, value): (chao2.40, 441.3) (chao4.40, 414.5)
(chao7.40, 422.2) (chao10.40, 485.5) (chao12.40, 574.5)

The objective values from which we computed the above gaps were rounded to the first
decimal place as in the original paper.

6. Algorithm components analysis

This section examines the most relevant design choices by providing a detailed analysis of the

different components of AVXS, namely: (i) the construction procedure to build an initial feasible
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Table 7 Computations on STTRP instances.

Id |V 1
c | |V 2

c | Q1 Type BKS Best Avg Worst t10

1 12 38 100 rd 486.07 0.00 0.00 0.00 19
2 25 25 100 rd 548.14 0.00 0.00 0.00 20
3 37 13 100 rd 583.32 0.00 0.00 0.00 10
4 18 57 100 rd 617.13 0.00 0.01 0.09 41
5 37 38 100 rd 676.42 0.00 0.00 0.00 44
6 56 19 100 rd 769.88 0.00 0.00 0.00 30
7 25 75 100 rd 687.64 0.00 0.16 0.28 92
8 50 50 150 rd 745.19 0.00 0.00 0.00 102
9 75 25 150 rd 821.31 0.00 0.17 0.36 78
10 37 113 150 rd 790.54 0.00 0.13 0.23 377
11 75 75 150 rd 857.27 0.00 0.02 0.16 285
12 112 38 150 rd 936.00 0.06 0.21 0.39 249
13 49 150 150 rd 875.85 0.15 0.34 0.71 769
14 99 100 150 rd 950.80 0.19 0.63 1.15 620
15 149 50 150 rd 1049.97 0.18 0.26 0.43 476
16 30 90 150 c 579.29 0.00 0.08 0.18 140
17 60 60 150 c 611.30 0.00 0.00 0.00 136
18 90 30 150 c 698.57 0.00 0.00 0.00 73
19 25 75 150 c 541.87 0.00 0.00 0.00 65
20 50 50 150 c 582.62 0.00 0.00 0.00 75
21 75 25 150 c 676.13 0.00 0.00 0.00 61

Mean 0.03 0.10 0.19 179.14

solution, (ii) the different neighborhoods explored in the RVND and (iii) the shaking procedures

used in the improvement phase, (iv) the granular speedup strategy, and (v) the set-partitioning-

based post-optimization phase. The results presented here refer primarily to the XSTTRP variant,

the most general of those we studied. However, similar conclusions apply to the other variants

considered in this paper.

Table 8 Computations on XSTTRP instances

Id |V 1
c | |V 2

c \V 2
c | |V 2

c | |Vd| Q1 Type BKS Best Avg Worst t10

1 73 17 5 6 150 c 753.43 0.00 0.00 0.00 61
2 66 4 20 11 150 c 602.99 0.00 0.00 0.00 40
3 67 18 5 11 150 c 696.03 0.00 0.00 0.00 50
4 22 4 19 6 100 rd 505.23 0.00 0.00 0.00 10
5 21 19 5 6 100 rd 517.86 0.00 0.00 0.00 10
6 18 10 42 6 100 rd 586.87 0.00 0.00 0.00 40
7 18 41 11 6 100 rd 624.39 0.00 0.00 0.00 30
8 23 14 58 6 150 c 538.40 0.00 0.00 0.00 60
9 25 56 14 6 150 c 582.27 0.00 0.00 0.00 40
10 21 13 56 11 150 c 522.54 0.00 0.00 0.00 61
11 22 54 14 11 150 c 556.61 0.00 0.00 0.00 43
12 108 7 30 6 150 rd 916.39 0.00 0.10 0.19 224
13 108 29 8 6 150 rd 935.35 0.00 0.00 0.00 184
14 106 6 28 11 150 rd 906.58 0.02 0.12 0.29 365
15 103 29 8 11 150 rd 896.46 0.02 0.26 0.50 196
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Table 8 Computations on XSTTRP instances

Id |V 1
c | |V 2

c \V 2
c | |V 2

c | |Vd| Q1 Type BKS Best Avg Worst t10

16 36 21 88 6 150 rd 776.73 0.00 0.12 0.36 315
17 35 88 22 6 150 rd 792.22 0.00 0.27 0.77 207
18 36 20 84 11 150 rd 766.28 0.03 0.12 0.31 308
19 35 84 21 11 150 rd 773.97 0.00 0.03 0.09 181
20 48 9 38 6 150 rd 735.26 0.00 0.00 0.01 90
21 48 37 10 6 150 rd 743.71 0.00 0.00 0.00 73
22 45 9 36 11 150 rd 700.54 0.00 0.00 0.00 95
23 45 36 9 11 150 rd 715.08 0.00 0.01 0.10 81
24 52 3 15 6 100 rd 716.31 0.00 0.00 0.00 30
25 52 14 4 6 100 rd 802.23 0.00 0.00 0.00 40
26 34 7 29 6 100 rd 652.27 0.00 0.00 0.00 41
27 34 28 8 6 100 rd 661.35 0.00 0.00 0.00 30
28 71 14 60 6 150 rd 849.31 0.05 0.16 0.40 290
29 73 57 15 6 150 rd 887.13 0.00 0.23 0.43 229
30 73 13 54 11 150 rd 820.05 0.02 0.13 0.24 264
31 71 55 14 11 150 rd 858.46 0.01 0.10 0.41 207
32 25 14 56 6 150 rd 667.99 0.00 0.03 0.05 80
33 24 56 15 6 150 rd 671.63 0.00 0.04 0.19 56
34 22 13 55 11 150 rd 627.53 0.00 0.01 0.04 90
35 23 53 14 11 150 rd 651.17 0.04 0.09 0.12 62
36 98 19 77 6 150 rd 948.90 0.43 0.54 0.89 582
37 98 76 20 6 150 rd 980.57 0.10 0.23 0.47 418
38 95 18 76 11 150 rd 931.48 0.00 0.24 0.60 566
39 93 76 20 11 150 rd 963.67 0.48 0.75 1.06 439
40 92 17 70 21 150 rd 900.43 0.02 0.21 0.39 525
41 88 72 19 21 150 rd 929.58 0.34 0.72 1.42 454
42 71 4 20 6 150 rd 787.71 0.00 0.03 0.27 90
43 72 18 5 6 150 rd 784.69 0.00 0.26 0.51 61
44 68 4 18 11 150 rd 758.79 0.01 0.05 0.12 92
45 67 18 5 11 150 rd 773.22 0.00 0.00 0.00 72
46 144 10 40 6 150 rd 1040.68 0.00 0.03 0.12 509
47 145 39 10 6 150 rd 1085.86 0.17 0.29 0.50 460
48 140 9 40 11 150 rd 1009.72 0.02 0.05 0.07 403
49 143 36 10 11 150 rd 1069.28 0.06 0.31 0.67 576
50 132 9 38 21 150 rd 971.67 0.05 0.28 0.70 477
51 135 35 9 21 150 rd 997.43 0.00 0.12 0.35 371
52 57 11 47 6 150 c 603.08 0.00 0.00 0.00 90
53 58 45 12 6 150 c 666.36 0.00 0.00 0.00 73
54 53 11 46 11 150 c 589.21 0.00 0.00 0.03 111
55 54 44 12 11 150 c 607.69 0.00 0.02 0.05 80
56 29 17 69 6 150 c 570.53 0.00 0.01 0.13 121
57 29 68 18 6 150 c 580.00 0.00 0.00 0.00 79
58 26 16 68 11 150 c 561.61 0.08 0.14 0.27 122
59 28 65 17 11 150 c 560.75 0.00 0.12 0.41 70
60 87 5 23 6 150 c 645.86 0.00 0.00 0.00 74
61 86 23 6 6 150 c 777.00 0.00 0.00 0.00 91
62 84 5 21 11 150 c 642.40 0.00 0.00 0.00 68
63 83 21 6 11 150 c 717.47 0.00 0.01 0.11 69
64 33 2 10 6 100 rd 557.56 0.00 0.00 0.00 10
65 34 8 3 6 100 rd 553.54 0.00 0.00 0.00 10
66 49 29 116 6 150 rd 869.02 0.12 0.24 0.35 622
67 47 117 30 6 150 rd 897.21 0.16 0.52 0.90 433
68 44 29 116 11 150 rd 858.61 0.03 0.39 0.65 726
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Table 8 Computations on XSTTRP instances

Id |V 1
c | |V 2

c \V 2
c | |V 2

c | |Vd| Q1 Type BKS Best Avg Worst t10

69 48 112 29 11 150 rd 878.07 0.04 0.51 0.91 388
70 43 27 109 21 150 rd 825.73 0.16 0.63 0.85 725
71 45 107 27 21 150 rd 860.21 0.41 0.71 1.12 416
72 11 6 28 6 100 rd 456.01 0.00 0.00 0.00 18
73 12 26 7 6 100 rd 485.42 0.00 0.00 0.00 10
74 49 9 37 6 150 c 573.69 0.00 0.00 0.00 66
75 47 38 10 6 150 c 660.97 0.00 0.00 0.00 51
76 44 9 37 11 150 c 567.98 0.00 0.00 0.00 68
77 47 34 9 11 150 c 594.29 0.00 0.00 0.00 40

Mean 0.04 0.12 0.24 193.62

6.1. Assignment fitness functions

The quality of the initial solution is tightly linked to the definition of what we called the assignment

fitness function, see Section 4.1. Due to the highly complex interactions between heuristic algorithm

components, good starting points do not guarantee a final solution of superior quality. In this

paragraph we experimentally analyze the effect of using different assignment fitness functions on the

quality of the initial and final solutions, as well as on the search diversification achieved. To this end,

we compared two general approaches to defining the function, using a range of different parameters.

The first approach was the restricted GRASP-based function d-near that we defined in Section 4.1.

In contrast, the second was a rank-based function b-rank, defined as f i(j) = 1+(|V +

d |−rj)b, where

rj is the position for j in a list including all k ∈ V and sorted according to the assignment costs ĉ; b

is the scaling factor. The b-rank function can be classified as an empirical bias function. We refer

the interested reader to the work by Grasas et al. (2017) for a general survey on biased randomized

procedures with theoretical or empirical bias functions. More precisely, we ran algorithm AVXS for

ten executions on all instances of the XSTTRP data set, and Table 9 shows, for each assignment

function (Function), the average gap of the starting solutions obtained after the construction phase

averaged over the ∆ restarts (Start), the best, average and worst final gap (Best, Avg, Worst)

averaged over all instances, the average total computing time for the ten runs in seconds (t10),

the average percentage improvement provided by the polishing phase (sp), the percentage of time

to perform the polishing phase with reference to the total time of the algorithm (%tsp), and the

number of routes used in the set-partitioning model F (|P|). From the table it is clear that neither

the final solution gap nor the computing time depend on the initial gap, but the differences in

computing time are strongly correlated with the post-optimization polishing phase. In fact, the

standard deviation of the computing time among the different approaches without considering the

set-partitioning resolution is less than five seconds. Moreover, some randomization on the initial
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Table 9 Computations on XSTTRP instances with different assignment fitness
functions.

Function Start Best Avg Worst t10 sp %tsp |P|

1-rank 341.25 0.05 0.13 0.26 202.57 0.05 32.85 6862.04
2-rank 281.65 0.04 0.12 0.24 196.01 0.05 30.60 6564.64
3-rank 243.35 0.04 0.13 0.24 190.97 0.05 29.12 6328.70
4-rank 217.20 0.04 0.13 0.24 186.70 0.05 28.56 6142.69
5-rank 196.56 0.04 0.13 0.25 185.74 0.05 27.31 5986.62
1-near 36.22 0.09 0.23 0.35 134.19 0.04 9.31 2591.15
2-near 52.13 0.05 0.15 0.27 145.42 0.05 14.69 3764.73
5-near 109.16 0.05 0.13 0.25 160.36 0.04 19.77 4973.16
10-near 184.40 0.05 0.13 0.23 175.64 0.05 26.11 5859.38
25-near 311.53 0.04 0.12 0.24 193.62 0.04 31.76 6738.41

assignment was beneficial compared to the deterministic assignment of the 1-near function. In

fact, all considered approaches (except the 1-near) behaved in a similar way. Among the best

performing functions we note that the 25-near was the one that obtained good results while being

conceptually simpler than the empirical bias functions of the b-rank family. As an additional

note, we report that using the 3-rank we were able to find an additional best known solution for

instance 28 of the STTRPSD with an objective value of 1445.05 (0.06% better than the current

one). Other problem variants produced very similar results, with the exception of LRP in which

the deterministic 1-near turned out to be preferable, because of the strong influence of the fixed

costs in the solution process (as was discussed in Section 4.5).

6.2. Local search

As extensively described in Section 4, our local search engine is based on an RVND scheme that

searches five different neighborhoods in random order according to a randomized first-improvement

strategy. In this section, we analyze the impact of the various neighborhoods we used. First of all, we

observed that all the neighborhoods contributed significantly to the effectiveness of the local search

step. More precisely, let N be the set of all the neighborhoods we considered, for each neighborhood

N ∈N we stored the total improvement value D(N ) it produced and the number I(N ) of times

a complete application of N resulted in an improvement. Then, for each neighborhood N , we

computed a Relative Neighborhood Effectiveness Index or rnei(N ), which defines the effectiveness

of N with respect to the other neighborhoods. In particular, rnei(N ) is computed as rnei(N )

=D(N )IΣ/DΣI(N ) where DΣ =
∑

N ′∈N T (N ′) and IΣ =
∑

N ′∈N I(N ′). In other words, rnei(N )

measures the successful improvement that any application of N would produce on an XSTTRP

solution compared to the application of any other neighborhood in the set.

Figure 8 shows an aggregate measure, averaged over ten runs, for all the XSTTRP instances, for

each neighborhood N computed as 100 · rnei(N )/
∑

N ′∈N rnei(N ′). The values (X,Y ) reported
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Figure 8 The percentage Relative Neighborhood Effectiveness Index for the XSTTRP instances.

beside each neighborhoodN name are X = 100 ·D(N )/DΣ and Y = 100 ·I(N )/IΣ. For example, the

values reported for segswap show that its application was less frequently successful with respect

to other neighborhoods (11%) but the average improvement that it had produced (16%) during

those applications made it the most effective operator, with an rnei percentage score equal to

32%. However, Figure 8 clearly shows that all neighborhoods made a positive contribution to the

overall local search effectiveness. We also note that because we used an RVND approach, the rnei

measure is not affected by the order in which the neighborhoods are examined.

Next, we compared our implemented scheme to a classical VND with fixed operators and moves

ordering. In particular, we examined a naive reasonable order given by relocate, swap, twopt,

segswap, and rootref and a best-rnei order defined as segswap, relocate, swap, twopt,

and rootref. We executed ten runs of AVXS on all XSTTRP instances with both approaches.

The results with the RVND were slightly better than those with the VND. In particular, the

final gap obtained by the RVND over all instances was about 0.03%, resp. 0.01%, smaller when

compared to the VND with naive, resp. best-rnei, ordering. The computing time was similar for

all the three approaches. Moreover, the solutions produced by the RVND appeared to be more

diversified, because the set-partitioning polishing phase obtained better final results with less effort

when fed with the RVND solutions rather than with those of the VND. Thus, we can conclude

that the adoption of randomization in the selection of the next neighborhood (and of the next

move within the neighborhood) may play an important role in improving the final solution quality

without lengthening the computational time.

In addition, we evaluated what happens if a certain operator is removed entirely. The results

are shown in Figure 9. On the one hand, none of the operators seems mandatory to obtain high

quality final solutions. On the other hand, all of them play a role in determining the best possible

result.
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Figure 9 Computations on XSTTRP instances with the complete approach (AVXS) and disabling one local search

operator at a time (¬OPERATOR). For each configuration, the left box-plot represents the results before

the polishing phase and the right one, the results after the polishing phase. The median value is shown

on the left of each box-plot.

Finally, we analyzed the impact of the two shake operators we described in Section 4.3. We

experimentally observed that both operators proved to be effective in inducing improvements in the

solutions. In particular, over all XSTTRP instances, the percentage improvement associated with

a local search step following a sunload shaking was equal to 39% of the total improvement, while

that associated with srem was 61%. Similar results were obtained with the other problem classes;

therefore we can conclude that both shaking operators are required for maximum effectiveness.

6.3. Granular neighborhoods adoption

We studied the effect of granular neighborhoods by comparing the average solution quality and

the computing time needed to run AVXS, using either the granular or the complete neighbor-

hood exploration. The results confirmed that use of granular neighborhoods is an effective speedup

technique, greatly improving computing time while only slightly decreasing solution quality. In par-

ticular, we observed that the average running time to execute ten runs over all XSTTRP instances

with complete neighborhoods exploration was 904.87 seconds and the average best gap was 0.02%.

In contrast, using granular neighborhoods, as reported in Table 8, the average computing time

was only 193.62 seconds and the average best gap was 0.04%. We can conclude that the adoption

of granular neighborhoods make it possible to reach high-quality solutions with a very limited

running time (almost five times shorter than that of an improvement phase considering complete

neighborhoods).

6.4. Set-partitioning post-optimization

The polishing phase glues together the different restarts, making the overall algorithm more robust

and stable. The bar diagram in Figure 10 shows the average polishing phase improvement, the
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Figure 10 Polishing phase contribution

average percent processing time with reference to that of the complete algorithm, and the average

size of the pool P for the different problem variants we considered. The figure shows that for all

variants, the polishing phase was effective. Moreover, with the exception of LRP (which had a

considerably larger solution pool), the phase’s computing time was always less than 35% of the total.

As one can expect, the improvement is much more relevant for problems that required additional

care to be modeled as XSTTRP. In fact, both the MDVRP and the LRP have additional constraints

which are not explicitly considered by the XSTTRP model and the local search procedures. On the

other hand, the core part of AVXS is alone able to generate high quality solutions for the STTRPSD

and the STTRP which are straightforward XSTTRP special cases. However, by observing Figure

9, one can still see the beneficial effects of the polishing phase on the XSTTRP instances, in terms

of improvement and stabilization of the results.

7. Conclusions

In this paper we presented AVXS, an effective hybrid metaheuristic for a general variant of single-

vehicle truck and trailer routing problems called the Extended Single Truck and Trailer Routing

Problem (XSTTRP). The AVXS algorithm is based on a four-phase solution approach in which

the main improvement phase consists of an iterated local search (ILS) incorporating two shaking

procedures and a randomized variable neighborhood descent with granular speedup. A set of high-

quality solutions generated during the ILS is stored in a pool, which is used for a final polishing

phase based on the solution of a restricted mathematical formulation of the problem. Therefore,

AVXS can also be classified as a matheuristic (see Maniezzo, Stützle, and Voß (2010)).

The AVXS algorithm was used to solve, with very short computing times, a large set of instances

for several variants of the problem and proved able to reach state-of-the-art results for those variants

already studied in the literature. In particular, AVXS was able to detect one new best solution

for the extensively studied Location Routing Problem and seven new best solutions for the Single

Truck and Trailer Routing Problem with Satellite Depots.

The study of the XSTTRP variant opens different research possibilities that could enrich the

problem’s definition such as, for example, considering time windows and extending it to multiple
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vehicles. Furthermore, the development of exact methods, which are seldom studied in the truck

and trailer literature, might be a difficult but extremely interesting research direction.
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