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Abstract

In this paper, the sensitivity analysis of a single scale model is employed in order to reduce the
input dimensionality of the related multiscale model, in this way, improving the efficiency of its
uncertainty estimation. The approach is illustrated with two examples: a reaction model and the
standard Ornstein-Uhlenbeck process. Additionally, a counterexample shows that an uncertain input
should not be excluded from uncertainty quantification without estimating the response sensitivity
to this parameter. In particular, an analysis of the function defining the relation between single scale
components is required to understand whether single scale sensitivity analysis can be used to reduce
the dimensionality of the overall multiscale model input space.

1 Introduction

Results of computational models should be supported by uncertainty estimates whenever precise values
of their inputs are not available [1–3]. This is usually the case since measurements of inputs rarely can
be made exactly, or inputs may include aleatory uncertainty [4, 5]. Uncertainty Quantification (UQ) of
a complex model usually requires powerful computational resources. Moreover, the cost of some UQ
methods increases exponentially with the number of uncertain inputs.

Sensitivity analysis (SA) identifies the effects of uncertainty in a model input or group of inputs to the
model response. In 1990, Sobol introduced sensitivity indices to measure the effect of input uncertainty
on the model output variance [6,7]. In [8,9], Sobol employs SA in order to fix uncertain parameters with
low total sensitivity indices and reduce the model dimensionality.

Here such application of SA to multiscale models is considered. A multiscale model is defined as a
collection of single scale models that are coupled using scale bridging methods. The approach proposed
here consists in examining the type of function coupling the single scale components, followed by esti-
mating the sensitivity of the response of a single scale model. This paper demonstrates that estimates
of the single scale model sensitivity can be used to assess the sensitivity of the overall multiscale model
response for some classes of multiscale model functions. However, this is not always possible, as will be
shown by a counterexample.

Sobol’s variance based approach is the preferred method to measure model output sensitivity [10–13].
Even though it is important to note that variance is not always the most representative measure of
model response uncertainty [14,15], it is assumed to be so in this work. The proposed approach is based
on exploring the coupled structure of multiscale models, allowing to analyse independently the single
scale models. Therefore, the second assumption is that SA can be performed on the multiscale model
components. Additionally, it is assumed that the multiscale model parameters are uncorrelated.

In Section 2, a brief description of multiscale models is given. Section 3 is devoted to SA, and its
application to dimensionality reduction of a multiscale model is discussed in subsection 3.1. Together
with some examples of the sensitivity analysis for multiscale models (subsections 3.1.1 and 3.1.2), a
counterexample is considered in subsection 3.1.3 in order to illustrate that, even though it is tempting
to employ the SA result of single scale models to the response of the overall multiscale model, this is not
always allowed. Section 4 summarizes the results and includes a note on the application of the proposed
approaches to some real-world models. Some other cases of multiscale models for which the proposed
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Figure 1: Scale separation map. The functions G(f, ·) and h are the macro and micro models with inputs
x and ξ, respectively. The function G(f(x), h(ξ)) defines the relation between the response of the micro
model and the rest of the macro model parameters denoted by f . The final multiscale model output
z = g(x, ξ) = G(f(x), h(ξ)) is produced by the macro model.

method on dimension reduction can be applied are in the Appendix. In particular, in the D an upper
bound for the sensitivity of model output for a general class of coupling function is obtained.

2 Multiscale model

Following the concept introduced in the Multiscale Modelling and Simulation Framework (MMSF) [16–
18], multiscale models are considered as a set of single scale models coupled using scale bridging methods.
The single scale models represent processes that operate on well defined spatio-temporal scales. In
MMSF, the single scale models are placed on a scale separation map (SSM), where axes indicate the
spatial-temporal scales. An example of SSM with a multiscale model that consists of two single scale
components is shown in Figure 1. The directed edges between the single scale components indicate
their interactions. In general, cyclic and acyclic coupling topologies are recognised: the cyclic one, as
in Figure 1, assumes a feedback loop between the components, and in the acyclic one, no feedback is
present. Here we rely on the assumptions of a component-based structure of the multiscale models as
well as on a drastic difference in the computational cost of the single scale components.

The overall multiscale model is denoted by a function g(x, ξ) = z such that

g : Rn+m → Rq

with n,m, q ∈ N and E[|g|2] < ∞, which produces the Quantity of Interest (QoI) z. We introduce a
function G : Rs+p → Rq, with s, p ∈ N, as a representation of g, which underlines the relationship
between the micro model response and the remaining variables inside the macro model, denoted by the
function f :

g(x, ξ) = G(f(x), h(ξ)).

Therefore, the function G(f(x), ·) represents the macro model for some f : Rn → Rs which depends on
parameters x = (x1, . . . , xn). It is assumed that f can be executed in a relatively short computational
time, that it has a finite non-zero variance, i.e. E[|f |2] <∞ and f is not constant, and that it is possible
to obtain its output sensitivity.

The micro scale component is defined by a function h : Rm → Rp which satisfies E[|h|2] < ∞. The
sets of variables on which the function h depends1 are of the form ξ = (ξ1, . . . , ξm).

Without loss of generality, later in the text it is assumed that the uncertain inputs x and ξ follow
uniform distributions U([0, 1]n) and U([0, 1]m), respectively.

3 Sensitivity analysis

Sensitivity analysis identifies the effect of uncertainty in the model input parameters on the model
response [19]. The Sobol sensitivity indices [6,10] (SIs) are widely used to measure the response sensitivity.

1Additionally, h may depend on the macro model response. When this is the case, the micro model function is denoted
by h(x, ξ) or h(x), meaning that it depends on the same uncertain inputs as the macro model function f . This is a relevant
feature of the method presented here.
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The total SI of an input xi for the results of the multiscale model function g(x, ξ) = z is given by

SgTxi
=

Var(z)−Varx∼i,ξ (Exi [z|x∼i, ξ])
Var(z)

=

∫
|g(x, ξ)|2dxdξ −

∫
|
∫
g(x, ξ)dxi|2dx∼idξ∫

|g(x, ξ)|2dxdξ − |g0|2
,

(3.1)

where g0 = E[g(x, ξ)], and the notation x∼i = (x1, . . . , xi−1, xi+1, . . . , xn) is employed [20]. In [6, 9],
the total SIs were employed to identifying the effective dimensions of a model function and to fixing
unessential variables. In particular, it was shown that, when fixing xi to a value x0i in [0, 1], the error
defined by

δ(x0i ) =

∫ ∣∣g(x, ξ)− g(x∼i, x
0
i , ξ)

∣∣2 dxdξ
Var(z)

satisfies

P

(
δ(x0i ) <

(
1 +

1

ε

)
SgTxi

)
> 1− ε (3.2)

for any ε > 0. This result is applied in this work, meaning that we expect with high confidence that fixing
an input with a low total sensitivity index does not produce a large error in the estimates of uncertainty.
Then, this fact can be employed to reduce input dimensionality, so that UQ can be performed more
efficiently. However, sensitivity indices are usually not given in advance and their estimation can be a
computationally expensive task as well.

3.1 Sensitivity analysis of multiscale models

In this work, it is proposed to evaluate the response sensitivity of the computationally cheap single scale
model f to estimate an upper bound of the sensitivity of the multiscale model output z. This approach
can be highly computationally efficient; however, the method does not work in general.

In order to fix uncertain inputs according to single scale model SA, it should be proved that the total
sensitivity for an input xi remains small also for the output of the model g(x, ξ), i.e. SgTxi

� 1 given

that SfTxi
� 1. This cannot be assumed in general, and it depends on the form of the model function G.

The first step of the proposed approach is to analyse the multiscale model function G, as it is shown in
the following sections. In the cases, in which our method applies, the next step is to estimate numerically
SfTxi

for i = 1, . . . , n by a black box method, for instance from [9]. Then, if it is found that SfTxi
� 1, it

shall follow automatically that SgTxi
� 1. Hence, according to (3.2), uncertainty can be estimated with

fixed xi without producing a large error.
While the results stated below hold also for vector valued functions, using the definition of total SI

given in (3.1), we shall work mainly with scalar functions, in order to avoid a heavy notation.

3.1.1 Case 1

We start by considering the homogeneous case: G : R2 → R, given by G(u, v) = uv.

Theorem 3.1. Let g : (0, 1)m+n → R be a function in L2((0, 1)m+n) such that

g(x, ξ) = f(x)h(ξ),

for some f : (0, 1)n → R and h : (0, 1)m → R satisfying f ∈ L2((0, 1)n) and h ∈ L2((0, 1)m). Then, we
have

SgTxi
= λf,hS

f
Txi
, (3.3)

where

λf,h =

∫
f(x)2 dx− f20∫

f2(x)dx− f2
0h

2
0∫

h2(ξ)dξ

.

In particular,
SgTxi

≤ SfTxi , (3.4)

and

SgTxi
≥
(

1− f20∫
f2(x)dx

)
SfTxi

. (3.5)
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Proof. The total SI of the input xi for the results of the model g(x, ξ) is equal to

SgTxi
=

∫ ∫
f2(x)h2(ξ)dxdξ −

∫ ∫
(
∫
f(x)h(ξ)dxi)

2dx∼idξ∫ ∫
f2(x)h2(ξ)dxdξ − (f0h0)2

=

∫
f2(x)dx−

∫
(
∫
f(x)dxi)

2dx∼i∫
f2(x)dx− f2

0h
2
0∫

h2(ξ)dξ

=

∫
f(x)2 dx− f20∫

f2(x)dx− f2
0h

2
0∫

h2(ξ)dξ

∫
f2(x)dx−

∫
(
∫
f(x)dxi)

2dx∼i∫
f2(x)dx− f20

=

∫
f(x)2 dx− f20∫

f2(x)dx− f2
0h

2
0∫

h2(ξ)dξ

SfTxi
,

from which (3.3) follows.
By the Cauchy-Schwarz inequality,

h20 ≤
∫
h2(ξ)dξ.

Therefore, λf,h ≤ 1, and (3.4) is obtained. In addition, again by Cauchy-Schwarz inequality, we get

λf,h ≥
∫
f(x)2 dx− f20∫
f2(x)dx

= 1− f20∫
f2(x)dx

> 0

for any h ∈ L2((0, 1)m). Hence, (3.5) is obtained.

Therefore, if a low sensitivity to the parameter xi is identified by computing SfTxi
, this parameter

can be excluded from UQ of the whole multiscale model. On the other hand, inequality (3.5) means
that we have a lower bound for the total SI of the input xi for the model g(x, ξ) = f(x)h(ξ), which is
independent from the choice of the function h(ξ). In particular, if xi is an important variable for the
model f(x), then (3.5) implies that it cannot loose dramatically its importance in the model given by g.

Example 3.2 (Reaction equation). An example of Case 1 can be a reaction equation presented by an
acyclic model [21] with initial conditions provided by some function f(x):

∂z(t, x, ξ)

∂t
= −ψ(ξ)z(t, x, ξ),

z(0, x, ξ) = f(x),

where x and ξ are uncertain model inputs. The analytical solution of the equation is

z(t, x, ξ) = f(x)e−tψ(ξ).

Therefore, if we define ht(ξ) = e−tψ(ξ), we get

z(t, x, ξ) = f(x)ht(ξ),

and Theorem 3.1 can be applied.
Since the proposed approach is applicable to multiscale models regardless of the complexity of f and

h, in the example, these model components are represented by the following equations:

ψ(ξ) = ξ21 − ξ2,
f(x) = x21 + x1x2x3 + x33 − x1x3,

where uncertain parameters x have uniform distribution U(0.9, 1.1), ξ1 is uniformly distributed on
[0.07, 0.09], and ξ2 on [0.05, 0.09].

Sensitivity analysis of the function f results in:

SfTx1
≈ 2.9 · 10−1,

SfTx2
≈ 7.2 · 10−2,

SfTx3
≈ 6.5 · 10−1,

4



Figure 2: (a) Comparison of the estimated mean and standard deviation of the model response zt using
the original sample and the sample with the unimportant parameter x2 equal to its mean value (reduced);
(b) and (d) Comparison of the probability density functions and the cumulative distribution functions
at the final simulation time Tend = 100; (c) Relative error in the estimated mean and standard deviation
using the samples with the reduced number of uncertain input.

suggesting that the parameter x2 does not significantly affect the output of the function f . Therefore,
by Theorem 3.1, the value of this parameter can be equated to its mean when estimating uncertainty of
the overall model response z.

Figure 2 (a) illustrates a satisfactory match between the mean values and standard deviations obtained
by sampling the results varying all the uncertain inputs and keeping the input x2 equal to its mean value.
Figure 2 (c) shows that the relative error in the standard deviation does not exceed 3.5% at any simulation
time. Moreover, the resulting p-value of Levene’s test [22] is about 0.84. Therefore, the null hypothesis
that the samples are obtained from distributions with equal variances cannot be rejected.

Figures 2 (b) and (d) show the probability density functions (PDFs) and the cumulative distribution
functions (CDFs) of the uncertain model output z at the final simulation time obtained using these two
samples. There is a good match in the PDFs and CDFs with KolmogorovSmirnov (K-S) two sample test
shows the K-S distance nearly 3.6 · 10−4 and p-value larger than 0.5, therefore, the hypothesis that the
two samples are drawn from the same distributions cannot be rejected2.

3.1.2 Case 2

We consider the linear case, where the sampling function G : R2 → R is given by G(u, v) = u+ v.

Theorem 3.3. Let g : (0, 1)n+m → R be a function in L2((0, 1)n+m) such that

g(x, ξ) = f(x) + h(ξ),

2This conclusion also applies to the other simulation times (data not shown).
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for some f : (0, 1)n → R and h : (0, 1)m → R satisfying f ∈ L2((0, 1)n) and h ∈ L2((0, 1)m). Then, we
have

SgTxi
= µf,hS

f
Txi
, (3.6)

where

µf,h :=
1

1 + Var(h)
Var(f)

.

In particular, SgTxi
≤ SfTxi .

Proof. The total SI of the input xi for the results of the model g is equal to

SgTxi
=

∫
(f(x) + h(ξ))2dxdξ −

∫
(
∫
f(x) + h(ξ)dxi)

2dx∼idξ∫
(f(x) + h(ξ))2dxdξ − (f0 + h0)2

=

∫
f2(x)dx−

∫
(
∫
f(x)dxi)

2dx∼i∫
f2(x)dx− f20 +

∫
h2(ξ)dξ − h20

,

from which we get (3.6) by dividing by Var(f) numerator and denominator.

Clearly, µf,h ∈ (0, 1], and so we conclude that SgTxi
≤ SfTxi .

Therefore, if the parameter xi is unimportant for f , it can be equated to its mean value in the
uncertainty estimation of the model g.

Example 3.4 (Standard Ornstein-Uhlenbeck process). An example of Case 2 can be a multiscale model
whose micro scale dynamics does not depend on the macro scale response. Let us consider the system
(Figure 3 (a)) [23,24]:

∂z

∂t
= v + f(x),

∂v

∂t
= −1

ε
v +

1√
ε
Ẇt,

f(x) = −x1 + (x22 x3 + x4),

where z simulates the slow processes with z(t = 0) = 1, v is the fast process with v(t = 0) = 1, ε = 10−2,
Ẇt is a white noise with unite variance. The fast dynamics is the standard Ornstein-Uhlenbeck process.
At any simulation time t, Ẇt plays the role of ξ in Theorem 3.3. The macro model uncertain parameters
x = (x1, x2, x3, x4) follow normal distribution, such that x1 ∼ N (0, 10−4), x2 ∼ N (0, 2.5 · 10−4), x3 ∼
N (0, 2.5 · 10−6), x4 ∼ N (0, 2.5 · 10−6). The system is simulated using the forward Euler method with
the macro time step ∆tM = 1 and the micro time step ∆tµ = 10−2.

Sensitivity analysis of the function f(x) yields

SfTx1
≈ 7.7 · 10−1,

SfTx2
≈ 2.6 · 10−4,

SfTx3
≈ 3.9 · 10−4,

SfTx4
≈ 2.0 · 10−1.

At any simulation time, the inputs x2 and x3 do not influence significantly the output of the function
f . Therefore, they can be equated to their mean values without a substantial loss of accuracy of the
uncertainty estimate as a consequence of Theorem 3.3.

The uncertainty estimation results of z are presented in Figure 3 (b). As it is proven analytically,
the estimates obtained by sampling the model results with uncertain parameters x2 and x3 equal to
their mean values are close to those resulting from samples where all the uncertain inputs vary. At any
simulation time, the relative error between these estimates of the standard deviation does not exceed
1.1% (Figure 3 (d)). Additionally, Levene’s test shows p-value about 0.66, therefore, we cannot reject
the hypothesis that the two samples are drawn from distributions with the same variance.

The PDFs and CDFs for the model result at the final time point obtained from these two samples are
in Figure 3 (c) and (e). There is a good match of the PDFs and CDFs obtained from these two samples,
and K-S test produces the distance about 0.01 and p-value about 0.47, therefore, the hypothesis that the
two samples are drawn from the same distributions cannot be rejected.
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Figure 3: (a) Standard Ornstein-Uhlenbeck process; (b) Comparison of UQ result using the original
sample and the sample obtained with values of the unimportant parameters x2 and x3 equal to their
mean (reduced); (c) and (e) Comparison of the PDF and CDF at the final time step; (d) Relative error
in the estimation of the mean and standard deviation.
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Some additional cases of the function G for which the method of eliminating unimportant parameters
to reduce the input dimensionality is valid are presented in the Appendix.

3.1.3 Counterexample

In this section, the importance of the examination of properties of the function G is demonstrated. The
counterexample illustrates that low sensitivity to a parameter of the response of a function f does not
necessarily imply low sensitivity to this parameter of a response of the function g.

Example 3.5 (Total sensitivity indices of composite functions). Let n = 2,m = 1 and i = 2,

∂z

∂x1
= − 1

4 4
√
β
|x1 + x2 + ξ|− 5

4 , (3.7)

for (x1, x2, ξ) ∈ (0, 1)3, with z(0, x2, ξ) = 1
4
√
β|x2+ξ|

and β > 0 some fixed parameter. The solution to

equation (3.7) can be represented using the following system

u = f(x) = x1 + βx2,

v = h(x1, ξ) = (1− β)x1 − βξ,

G(u, v) =
1

4
√
|u− v|

,

so that

z(x, ξ) = g(x, ξ) =
1
4
√
β

1
4
√
x1 + x2 + ξ

.

Let us now directly obtain sensitivity indices of the function f(x) for the parameter x2:

SfTx2
=

1
3 + β2

3 + β
2 −

(
1
3 + β2

4 + β
2

)
1
3 + β2

3 + β
2 −

(
β+1
2

)2 =
β2

12
β2+1
12

=
β2

1 + β2
.

Note that SfTx2
can be made arbitrarily small as β → 0: for instance, by choosing β ∈

(
0, 1

10

)
, we get

SfTx2
<

1

100
,

so that x2 becomes an unimportant input for f .
On the other hand, sensitivity of the function g(x, ξ) does not depend on β:

SgTx2
=

1√
β

∫
(0,1)3

1√
x1+x2+ξ

dx1dx2dξ − 1√
β

∫
(0,1)2

(∫
(0,1)

1
4
√
x1+x2+ξ

dx2

)2
dx1dξ

1√
β

∫
(0,1)3

1√
x1+x2+ξ

dx1dx2dξ − 1√
β

(∫
(0,1)3

1
4
√
x1+x2+ξ

dx1dx2dξ
)2

=

∫
(0,1)3

1√
x1+x2+ξ

dx1dx2dξ −
∫
(0,1)2

(∫
(0,1)

1
4
√
x1+x2+ξ

dx2

)2
dx1dξ∫

(0,1)3
1√

x1+x2+ξ
dx1dx2dξ −

(∫
(0,1)3

1
4
√
x1+x2+ξ

dx1dx2dξ
)2 .

In addition, since g is symmetrical,
SgTx2

= SgTx1
= SgTξ .

Hence, this proves that x2 is not an unimportant input for the function g, since it must be as relevant
as x1 and ξ. Therefore, in general, it is wrong to eliminate an uncertain input from UQ only based
on sensitivity analysis of a single scale model without verifying that SgTxi

≤ λSfTxi
holds for some finite

λ ≥ 0 as in Theorem 3.1 and Theorem 3.3.
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4 Concluding remarks

An application of sensitivity analysis to reduce dimensionality of multiscale models in order to improve
the performance of their uncertainty estimation is discussed in this paper. It has been shown that for
some multiscale models, the estimates of Sobol sensitivity indices of a single scale output can be used
as an estimate of the upper bound for the sensitivity of the output of the whole multiscale model. In
other words, knowledge on the importance of inputs from single scale models can be used to find the
effective dimensionality of the overall multiscale model. Two classes of coupling function G (multiplica-
tive, additive) were considered, where the approach was demonstrated to work, based on Theorems 3.1
and 3.3, and two examples. However, a counterexample was also constructed, showing that the success
of the method strongly depends on the properties of the coupling function G. Obviously, this analysis
only covers a very small portion of possible coupling functions, and a more systematic or case by case
investigation would be warranted.

The next step is to apply the proposed approach to real-world multiscale applications, for instance,
to a multiscale fusion model [25] and to a coupled human heart model [26]. Uncertainty quantification
applied to these models is computationally expensive due to the high dimension of the model parameters.
Therefore, the SA analysis on single scale models to reduce the dimensionality of the overall multiscale
model input can be one of the possible ways to improve the efficiency of the model uncertainty quantifi-
cation.
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Appendices

In this Appendix, additional cases of the function G are considered. In particular, relations between the
function f and two or more functions representing the micro model are investigated, in this way allowing
for vector valued functions h. Overall, our goal here is to show that the method presented in this work
can be applied to different types of functions of the multiscale model components.

A Case 3

Consider the affine linear case: G : R3 → R given by G(u, v1, v2) = uv1 + v2.

Theorem A1. Let g : (0, 1)m+n+k → R be a function in L2((0, 1)m+n+k) such that

g(x, ξ, η) = f(x)h1(ξ) + h2(x∼i, η),

for some f : (0, 1)n → R, h1 : (0, 1)m → R and h2 : (0, 1)k+n−1 → R satisfying f ∈ L2((0, 1)n),
h1 ∈ L2((0, 1)m), and h2 ∈ L2((0, 1)k+n−1). Then,

SgTxi
= γf,h1,h2

SfTxi
, (A.1)

where

γf,h1,h2 :=

∫
f2(x)dx− f20∫

f2(x)dx− f2
0 (h1)20∫
h2
1(ξ)dξ

+
∫ ∫

h2
2(x∼i,η)dx∼idη−(h2)20∫

h2
1(ξ)dξ

+ 2(h1)0
(fh2)0−f0(h2)0∫

h2
1(ξ)dξ

.

If, additionally, it is assumed that

(h1)0(fh2)0 ≥ f0(h1)0(h2)0, (A.2)

9



then
SgTxi

≤ SfTxi .

Proof. We compute

Var(g)Txi =

∫ ∫
f2(x)h21(ξ)dxdξ +

∫ ∫
h22(x∼i, η)dx∼idη + 2(h1)0(fh2)0+

−
∫ ∫ (∫

f(x)h1(ξ)dxi

)2

dx∼idξ+

−
∫ ∫

h22(x∼i, η)dx∼idη − 2(h1)0(fh2)0,

Var(g) =

∫ ∫
f2(x)h21(ξ)dxdξ +

∫ ∫
h22(x∼i, η)dx∼idη + 2(h1)0(fh2)0+

− h20f20 − (h2)20 − 2f0(h1)0(h2)0.

Thus, the total SI of the input xi for the results of the model g(x, ξ, η) is equal to

SgTxi
=

Var(g)Txi
Var(g)

=

∫
f2(x)dx−

∫
(
∫
f(x)dxi)

2dx∼i∫
f2(x)dx− f2

0 (h1)20∫
h2
1(ξ)dξ

+
∫ ∫

h2
2(x∼i,η)dx∼idη−(h2)20∫

h2
1(ξ)dξ

+ 2(h1)0
(fh2)0−f0(h2)0∫

h2
1(ξ)dξ

,

from which (A.1) follows. By Cauchy-Schwarz inequality, we have

(h1)20 ≤
∫
h21(ξ)dξ,

(h2)20 ≤
∫ ∫

h22(x∼i, η)dx∼idη,

which imply

γf,h1,h2
≤ Var(f)

Var(f) + 2(h1)0
(fh2)0−f0(h2)0∫

h2
1(ξ)dξ

.

To estimate the last term at the denominator, (A.2) is employed, yielding

γf,h1,h2
≤ 1,

and the result follows.

Note that, in the previous theorem, h2 can be independent of more than one input xj , however, it
is crucial to assume the independence from the unimportant parameters which we want to exclude from
uncertainty quantification.

Remark A2. It is noticed that condition (A.2) is equivalent to assume that E(h1)Cov(f, h2) ≥ 0, since
Cov(f, h2) = (fh2)0 − f0(h2)0. Under the same assumption, one can get the following lower bound on
γf,h1,h2

:

γf,h1,h2
≥

∫
f2(x)dx− f20∫

f2(x)dx+
∫ ∫

h2
2(x∼i,η)dx∼idη−(h2)20∫

h2
1(ξ)dξ

+ 2(h1)0
(fh2)0−f0(h2)0∫

h2
1(ξ)dξ

.

On the other hand, if E(h1)Cov(f, h2) ≤ 0; that is, (h1)0(fh2)0 ≤ f0(h1)0(h2)0, then

γf,h1,h2
≥

∫
f2(x)dx− f20∫

f2(x)dx+
∫ ∫

h2
2(x∼i,η)dx∼idη−(h2)20∫

h2
1(ξ)dξ

.

In addition, if it is assumed that (h1)0(fh2)0 ≤ f0(h1)0(h2)0 and that

Var(f) +
Var(h2)∫
h21(ξ)dξ

+ Cov(f, h2) ≥ 0,

we obtain the following upper bound for γf,h1,h2
:

γf,h1,h2
≤ 1

1 +
∫ ∫

h2
2(x∼i,η)dx∼idη−(h2)20
Var(f)

∫
h2
1(ξ)dξ

+ 2(h1)0
(fh2)0−f0(h2)0
Var(f)

∫
h2
1(ξ)dξ

.
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B Case 4

A variant of the linear case G(u, v) = u+ v is considered. The difference with Case 2 of Theorem 3.3 is
that now the functions f and h depend on the same set of variables.

Theorem B1. Let g : (0, 1)n → R be a function in L2((0, 1)n) such that

g(x) = f(x) + h(x),

for some f, h : (0, 1)n → R, f, h ∈ L2((0, 1)n). Then, if

Cov(f, h) = (fh)0 − f0h0 ≥ 0,

we have

SgTxi
≤

(√
SfTxi

Var(f) +
√
ShTxi

Var(h)
)2

Var(f) + Var(h)
, (B.1)

and so
SgTxi

≤ 2 max{SfTxi , S
h
Txi
}, (B.2)

where the factor 2 is sharp.

Proof. By a simple computation, it follows that

SgTxi
=

∫
(f + h)2dx−

∫
(
∫

(f + h)dxi)
2dx∼i∫

(f + h)2dx− (f0 + h0)2

=
Var(f)Txi + Var(h)Txi + 2

∫
fhdx− 2

∫
(
∫
fdxi)(

∫
hdxi)dx∼i

Var(f) + Var(h) + 2Cov(f, h)
,

where Var(f)Txi =
∫
f2(x) dx −

∫
(
∫
f(x) dxi)

2 dx∼i, and Var(h)Txi is defined analogously. Then, by

applying the Cauchy-Schwarz inequality to the functions f(x)−
∫
f(x) dxi and h(x)−

∫
h(x) dxi, we get∣∣∣∣∫ fhdx−

∫ (∫
fdxi

)(∫
hdxi

)
dx∼i

∣∣∣∣ ≤√Var(f)TxiVar(h)Txi . (B.3)

Thus, if Cov(f, h) ≥ 0, by (B.3) we obtain

SgTxi
≤
SfTxi

Var(f) + ShTxi
Var(h) + 2

√
SfTxi

Var(f)ShTxi
Var(h)

Var(f) + Var(h)
,

from which (B.1) immediately follows. Finally, we show that

(
√
ay +

√
bz)2

a+ b
≤ 2 max{y, z} (B.4)

for any a, b, y, z > 0. Indeed, without loss of generality, let y > z, and recall that 2
√
ab ≤ a+ b: then,

(
√
ay +

√
bz)2

a+ b
≤ y (

√
a+
√
b)2

a+ b
= y

a+ b+ 2
√
ab

a+ b
≤ 2y.

Moreover, the factor 2 is sharp: if y = z and a = b,

(
√
ay +

√
bz)2

a+ b
= y

4a

2a
= 2y = 2 max{y, z}.

Therefore, inequality (B.4) shows that (B.1) implies (B.2).

The bound given by (B.1) means that the total sensitivity index SgTxi
for the function g of the input

xi is controlled by SfTxi
and ShTxi

. It is clear that this result can be applied also to a function g of the

form
g(x) = f(x) + h1(x) + h2(x) + · · ·+ hk(x),

11



for any k ≥ 1. Indeed, it is enough to proceed by iteration: at first, we let

h(x) = h1(x) + h2(x) + · · ·+ hk(x),

then (B.1) is applied to ShTxi
, by seeing h as

h(x) = h1(x) + h̃2(x),

where
h̃2(x) = h2(x) + · · ·+ hk(x).

By applying this procedure k times, the desired result is obtained. However, since the factor 2 in (B.2)
is sharp, in general we cannot hope to obtain a better control than

SgTxi
≤ 2k max{SfTxi , S

h1

Txi
, Sh2

Txi
, . . . , ShkTxi

},

where the factor 2k is again sharp.

C Case 5

A variant of Case 3 (Theorem A1), G(u, v1, v2) = uv1+v2 is considered. This time, we assume dependence
of h2 also on the input xi.

Theorem C1. Let g : (0, 1)n+m+k → R be a function in L2((0, 1)n+m+k) such that

g(x, ξ, η) = f(x)h1(ξ) + h2(x, η)

for some f ∈ L2((0, 1)n), h1 ∈ L2((0, 1)m) and h2 ∈ L2((0, 1)n+k). Then, if E(h1)Cov(f, h2) ≥ 0,

SgTxi
≤
SfTxi

(
∫
h21(ξ) dξ)Var(f) + Sh2

Txi
Var(h2) + 2(h1)0

√
SfTxi

Var(f)Sh2

Txi
Var(h2)

(
∫
h21(ξ) dξ)Var(f) + f20 Var(h1) + Var(h2)

. (C.1)

Proof. It is enough to evaluate SgTxi
. We have

∫
g2(x, ξ, η) dx dξ dη −

∫ (∫
g(x, ξ, η) dxi

)2

dx∼i dξ dη

=

∫ ∫
(f(x)h1(ξ) + h2(x, η))2 dx dξ dη+

−
∫ ∫ (∫

(f(x)h1(ξ) + h2(x, η)) dxi

)2

dx∼i dξ dη

=

(∫
h21(ξ) dξ

)
Var(f)Txi + Var(h2)Txi+

+ 2(h1)0

(∫
f(x)h2(x, η) dx dη − 2

∫ (∫
f(x) dxi

)(∫
h2(x, η) dxi

)
dx∼i dη

)
≤
(∫

h21(ξ) dξ

)
Var(f)Txi + Var(h2)Txi + 2(h1)0

√
Var(f)TxiVar(h2)Txi ,

by (B.3). On the other hand, we get∫ ∫
g2(x, ξ, η) dx dξ dη − g20 =

∫ ∫
(f(x)h1(ξ) + h(x, η))2 dx dξ dη − (fh1 + h2)20

=

(∫
h21 dξ

)
Var(f) + f20 Var(h1) + Var(h2)+

+ 2(h1)0Cov(f, h2).

≥
(∫

h21 dξ

)
Var(f) + f20 Var(h1) + Var(h2),
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since (h1)0Cov(f, h2) ≥ 0. Then, it follows that

SgTxi
≤

(∫
h21(ξ) dξ

)
Var(f)Txi + Var(h2)Txi + 2(h1)0

√
Var(f)TxiVar(h2)Txi(∫

h21 dξ
)

Var(f) + f20 Var(h1) + Var(h2)

=
SfTxi

(
∫
h21 dξ)Var(f) + Sh2

Txi
Var(h2) + 2(h1)0

√
SfTxi

Var(f)Sh2

Txi
Var(h2)

(
∫
h21 dξ)Var(f) + f20 Var(h1) + Var(h2)

,

which is (C.1).

If h1 ≡ 1 and k = 0, there is no dependence on ξ and η, and Theorem C1 implies Theorem B1 for
the functions f and h2.

D An estimate on a general class of model functions

Let G : R2 → R be such that there exist L ≥ c > 0 satisfying

|G(u, v)−G(u0, v)| ≤ L|u− u0|, (D.1)

|G(u, v)| ≥ c
√
u2 + v2 (D.2)

for any u, u0, v ∈ R, which means that G is Lipschitz in u, uniformly in v, and that it is a coercive
function.

Theorem D1. Let g : (0, 1)n+m → R be a function in L2((0, 1)n+m) such that g0 = 0 and

g(x, ξ) = G(f(x), h(x∼i, ξ)) (D.3)

for some functions f : (0, 1)n → R and h : (0, 1)n+m−1 → R satisfying f ∈ L2((0, 1)n) and h ∈
L2((0, 1)n+m−1). Then,

SgTxi
≤ 2

L2

c2
Var(f)

Var(f) + Var(h)
SfTxi

. (D.4)

Proof. By (D.1) and (D.3), it follows that g(x, ξ) ∈ L2((0, 1)n+m). Since g0 = 0, (D.2) implies

Var(g) =

∫
(0,1)n+m

g2(x, ξ) dx dξ

≥ c2
(∫

(0,1)n
f2(x) dx+

∫
(0,1)n+m−1

h2(x∼i, ξ) dx∼i dξ

)
≥ c2 (Var(f) + Var(h)) .

We further notice that, by Jensen inequality combined with (D.1) and (D.3), we get∫
(0,1)n+m

(
g(xi, x∼i, ξ)−

∫ 1

0

g(x̃i, x∼i, ξ) dx̃i

)2

dxi dx∼i dξ

≤
∫
(0,1)n+m

∫ 1

0

|g(xi, x∼i, ξ)− g(x̃i, x∼i, ξ)|2 dx̃i dxi dx∼i dξ

=

∫
(0,1)n+m+1

|G(f(xi, x∼i), h(x∼i, ξ))−G(f(x̃i, x∼i), h(x∼i, ξ))|2 dx̃i dxi dx∼i dξ

≤ L2

∫
(0,1)n−1

∫ 1

0

∫ 1

0

|f(xi, x∼i)− f(x̃i, x∼i)|2 dx̃i dxi dx∼i

= 2L2

(∫
(0,1)n

f2(x) dx−
∫
(0,1)n−1

(∫ 1

0

f(xi, x∼i) dxi

)2

dx∼i

)
.

Therefore, combining these two inequalities, (D.4) is obtained.

We notice that we can replace the assumption g0 = 0 in Theorem D1 with a weaker one.
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Corollary D2. Let g : (0, 1)m+n → R be a function in L2((0, 1)m+n) as in (D.3), with f ∈ L2((0, 1)n),
h ∈ L2((0, 1)n+m−1). Then, if

c2(Var(f) + Var(h))− g20 ≥ 0,

we have

SgTxi
≤ 2

L2Var(f)

c2(Var(f) + Var(h))− g20
SfTxi

.

Proof. The proof is the same of Theorem D1, one needs just to subtract the term g20 at the denominator.

Remark D3. It is not difficult to see that we could restate Theorem D1 and Corollary D2 for a function
G : R × Rl → R; that is, allowing v to be a vector (v1, v2, . . . , vl) in Rl. The Lipschitz condition would
not change, while the coercivity condition (D.2) would become

|G(u, v)| ≥ c
√
u2 + |v|2 = c

√
u2 + v21 + v22 + · · ·+ v2l .

This would allow to have not only one function h, but a family of l different functions h1, h2, . . . , hl,
which could be seen as a vector valued function

h = (h1, h2, . . . , hl) : (0, 1)n+m−1 → Rl,

satisfying
Var(h) = Var(h1) + Var(h2) + · · ·+ Var(hl).

The next example illustrates that the admissible function G for Theorem D1 and Corollary D2 can
be very nonlinear.

Example D4. Let

G(u, v) = a|u|+ b|v|+ arctan

(
|u|+ |v|
1 + v2

)
,

for some a, b > 0. Then, G is Lipschitz in u uniformly in v, since

∂G(u, v)

∂u
=

(
a+

(1 + v2)

(1 + v2)2 + u2 + v2 + 2|u||v|

)
sgn(u),

which is a bounded function. Thus, G satisfies condition (D.1), with

L = sup
u,v

∣∣∣∣∂G(u, v)

∂u

∣∣∣∣ .
As for the coercivity condition (D.2), it is easy to see that G(u, v) ≥ 0 and

G(u, v) ≥ min{a, b}(|u|+ |v|) ≥ min{a, b}
√
u2 + v2,

so that we have c = min{a, b}. It is clear that, since G(u, v) ≥ 0, any g(x, ξ) = G(f(x), h(x∼i, ξ)) cannot
satisfy g0 = 0, unless f = h = 0. Hence, in general, we can apply Corollary D2 only if we ensure that

min{a, b}2(Var(f) + Var(h)) ≥ g20 .
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