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A  Proofs

Proof of Proposition 1
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Proof of Proposition 2

Throughout the proof we take the symmetric matrix root.! Note that we have
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where for the second equality we used Assumption 1 so that ¢(f) =€ - (1 — p?/€e?) and then defined
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By Assumption 2, we look at the model as a Data Generating Process (DGP), that is, YijiL, st
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DGP as

.My, so that we can rewrite the score-driven transition equation of Proposition 1 under the
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1Other roots can be taken as well, but typically indicate smaller stationarity regions; compare Blasques et al. (2018).
Note that the Bougerol (1993) condition only provides a sufficient condition, such that we are free to take the matrix
root that results in the widest region.



Note that for given f; jr,, .+ all moments of w’ tnmt and thus of the rewritten score s , exist
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due to its uniform boundedness in 7,. As a result, for a fixed initialization f; jz,, .1 we directly obtam
E(log™ | fijiL,:t41] | < 00. To use Theorem 3.1 of Bougerol (1993), we therefore only need to prove

that the recursion is contracting on average. To do this, we note
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Define e; = Wi 6o and ey = sw! t’nt 1, — 1, then we note that we can rewrite the previous
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equation as
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for hip) = e- (1 —p%/e?)/(1 — p?), and h(p) = 2(¢2 — 1)p(1 — p?/€2) /(1 — p?)2. This is clearly satisfied
through Assumption 3. Theorem 3.1 of Bougerol (1993) now implies that each initialized f; iz,
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converges (e.a.s.) to a unique stationary and ergodic limit sequence.

As the mappings p;jiL,;;¢ = 9(fijiz,;;¢) are all continuously differentiable with sup; g(f) = €, we
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convergence of p; jr...¢ follows directly from that of fi,ﬂ Lijit-

The e.a.s. convergence of R, follows similarly by combining the e.a.s. convergence of p; jir,. ¢, the
properties of the mapping from p; 1, ¢ into Ry, and the fact that under Assumption 1 the correlation
matrices R; and their filtered equivalents fi’rt are never singular.

To numerically compute the supremum within the integral in Eq. (A.1), we note that the first

order condition with respect to p boils down to solving for the roots of a 7th-degree polynomial:
eap’ — 3eap” +er(€ — 1)p* + ex(6 — 4e® + €')p® — 3ei (2 — 1)20° + exe®(3€ — 4)p — e1€%(e* — 1) = 0.

Together with the boundary values p = +e, this gives at most 9 candidate points for the supremum.
The polynomial roots can easily be found in standard numerical packages by supplying the coeffi-
cients of the polynomial to, for instance, polyroot() in R, polynomial.polynomial.polyroots()
in Python, or roots() in Matlab. In practice, many of the roots are complex, such that the number

of points to check for the supremum is typically even smaller. n

Proof of Proposition 3

Under the maintained assumptions, we can apply Proposition 2 to conclude that {y, };cz is stationary

and ergodic. Using Assumption 1 and thus g(f;z,;;:) = € - arctan(fi L, ;¢), we have
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as a perturbed bivariate data sequence, with V;;.,(8) = 1 — Ri,Lij;t(O) R} Li(0) - RLii,i;t(G). The
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perturbation is due to the initialization of the filter sequences. We can write the initialized filter



recursions
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Also, we note that the contraction condition in equation (15) of Assumption 4 entails the following

derivative
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evaluated at some fixed point f; jiz,;;«(0) = f.

€.a.S.

We first assume that suppee |97, 1,,+(0) — YL, 0,,4(0)] — 0, i.e., that g7, .,(0) converges
uniformly e.a.s. to a unique stationary and ergodic limit y7, Liﬁt(e), and then prove the e.a.s. con-
vergence of fi,jl Li;;1(0) to fijiL,¢(0) and the existence of a log moment. The complete result then

follows by induction after starting the recursion at + — j = 1 and noting that
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where 97, ,.,(6) is obviously stationary and ergodic due to the stationarity of y, ; ;-
. ~ €.a.s.
For the remainder of the proof, we thus assume supgee |97, 1,,+(0) — Y1,,.1,,:(0)] — 0. If we

consider the filter recursion in (A.2) using the uninitialized stationary and ergodic y; L .,(6) rather

than the perturbed y; Ly .(8), we can easily see that a log moment exists for a fixed fZ JIL:
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where the K; denote finite positive constants, and where we have used the uniform boundedness of the

filtered |p; jir,;;:(0)] < € via Assumption 1, as well as the uniform boundedness of the score expression
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si7j|Li].;t(fi,ﬂLij;t(O),y;ﬂLij;t(O); 0) in yZﬂLiﬁt(O) due to the analytical form of the filtered weights
Wiging it (figing 5¢(0), Y5 1., ,4(6);0).

Additionally, by similar arguments, we have that
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The e.a.s. convergence of the filter that takes y} ilLy .,(0) as input to a unique stationary and ergodic
limit then follows by Theorem 3.1 of Bougerol (1993) if we can prove that the filtering equation is

contracting on average. This, however, follows immediately from Assumption 4.



The last part of the proof consists in showing that the perturbed filter recursions converge to the
same limits as their unperturbed counterparts. Following Theorem 2.10 of Straumann and Mikosch

(2006), this follows by showing
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To prove (A.6), note that
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where K < oo according to technical Lemma 1. Since K < oo and thus E[log™ K] < oo, the desired

convergence on the left hand side in (A.6) follows as an application of Lemma 2.1 of Straumann and
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Mikosch (2006) and the assumed e.a.s. convergence of supgee |9; 1,
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To prove (A.7), we note that
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where K < oo according to technical Lemma 1. Similar as for (A.6), the result then follows as an
application of Lemma 2.1 of Straumann and Mikosch (2006).

We can now conclude that supgee \f,ﬂL” 1(0) — fijin,;¢(0)] === 0 for all ¢ = 2,...,N and
j=1,...i—1

To conclude the e.a.s. convergence of p; jr,; .+(0) to its limiting process, note that
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where the inequality follows by taking a first order Taylor series expansion.
To conclude the e.a.s. convergence of p; ;.+(0) to its limiting process, note that for i = j + 1 we

have p;;.¢(0) = pijL,,:+(6), such that the result follows directly from the e.a.s. convergence of the



partial correlation. For i > j 4 1, the result then follows by induction. Note that from (4) we have
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where RLW L;;;t 1s never singular due to Assumption 1 and e < 1. This mapping is a series of products
and sums of elements of Ry, ... and R; 1, ., each term of which converges e.a.s. to its limiting
process by a direct application of Lemma 2.1 of Straumann and Mikosch (2006) and Lemma TA.16
of Blasques et al. (2022). for i > j + 1. ]

Proof of Theorem 1

By the triangle inequality, we have
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and then note that by the Cesaro mean, the first term on the right hand side of inequality (A.9)
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where the inequality follows from Theorem 11.27 in Magnus and Neudecker (2019), Lemma A.1 of
Bollerslev and Wooldridge (1992) and the standard log-inequality log(1 + z) < 2 Vz > —1. Due to
Assumption 1 with € < 1 and the mapping between partial and Pearson correlations, we automatically

have
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for some 0 < K < o0
For any N x N matrix A it holds that tr A < N - ||A]|. We also have v > 2 by Assumption 2,

while from Proposition 3, we obtain
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for some K, c¢ > 0 by following similar arguments as in Hafner and Preminger (2009). Since v;; > 1

and E[||ly,||*] < oo, we obtain the desired almost sure convergence

as T — 00, by a straightforward application of the Markov’s inequality and the Borel-Cantelli Lemma.

To prove the almost sure convergence of the second term on the right hand side of inequality
(A.9), we only need to show that E[supgcg |¢:(0)]] < oo such that we can apply the uniform law
of large numbers for stationary and ergodic processes of Rao (1962). Using the expression for the

log-likelihood function from equation (10), we have
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where the last inequality follows as a consequence of Assumptions 2 - 4, the uniform boundedness of
R,(0) (being a correlation matrix), the uniform lower bound from equation A.11, and the existence
of second moments of y,. As a result, we obtain

a.s.

sup |~ Lr(8) — E[6,(8)]| = 0,
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as T' — oo.

To conclude the proof, we establish identifiability: E[(;(6y)] > E[(;(0)] VO, # 0. The proof is by
contradiction. Assume there is a 8 # 6, with E[(,(0)] = E[(,(0,)], where E[(;(0,)] < oo by equation
(A.12). By Gibb’s inequality, this implies that v = vy and R;(0) = R:(6,) almost surely for this
specific @ # 6. This, however, leads to a contradiction. We note that there is a one-to-one relationship

between the components of the lower (or upper) triangular part of the conditional correlation matrix



R;(0), and the partial conditional correlations coefficients p; ji,,.+(6) fori =2,... . N, j =1,...,i—1.
Therefore R;(0) = R;(0o) (a.s.) implies p; iz, ;:(0) = pijiL,,;:(6o) (a.s.). This, however, cannot hold
for @ # 6y, because the equality R;(0) = R;(6y) entails that
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almost surely. We thus have

. — n — ). .
(O‘O7Z7J|Lij am|Lij)8i,j\Lij ¢ = ViglLij;t

where v; jir,; ;¢ is an Fi-measurable random variable. It follows that since the conditional distribution

of v;jiz,,;;¢|Ft is not degenerate, it must be that g jz,, = o jjz,;» which yields
0= woijiry; = Wigiey + (Bousizy = Bijiny) fisie +(00)-

This in turn implies wo iz, = Wiz, and Bogjir,, = Bijir,, by the fact that f;jz,..+(6o) has a non-

degenerate distribution given the non-degenerate distribution of s s and Assumptions 3 and 4.

ij;t
This contradicts the initial premise 8 # 6y and thus proves the theorem.
The strong consistency of the the MLE O is then guaranteed by the compactness of the parameter

space © and noting that all the conditions of Theorem 3.4 in White (1994) are satisfied. ]

Proof of Theorem 2

By the strong consistency established in Theorem 1 combined with Assumption 5, we have that the
MLE 67 lies inside an arbitrarily small neighbourhood of 8, for sufficiently large T. Using the first

order condition for the MLE from (11) and Lemma 5, we obtain

th BT + 0p(1>

Z Vi, (07) =

IIMH

where we note the difference between the log-likelihood functions ,(67) and £,(07), the former using

the initialized filter, and the latter using its stationary and ergodic limit.
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Taking a Taylor expansion, we get
T

0y(1 \/—ZV% (6r) = i o D VL0V T(0r — 6y).

t=1

where 0% lies between 6 and the true 6,. For sufficiently large T" we then obtain that

IIMH

0,(80) + 0,(1) = —= Z VP 0,(05)VT (07 — 8,). (A.13)

In Lemma 4, we prove that T-/23""_ 'V9¢,(8,) obeys the central limit theorem for martingales of
Billingsley (1961) and satisfies the Fisher’s information matrix equality. Moreover, Lemma 6 ensures
that the average —T~' Y, V?9£,(6%) converges to the positive definite Fisher’s information matrix
Z(6y), almost surely. Hence, as T" — oo, by solving equation (A.13), we obtain by the Slutsky’s
Theorem (see Vaart (1998)) that

VT (07 — 6,) = A (0,Z7(8))).
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B Technical Lemmas

6 _ 0 60 _ _ 92 .
Define the operators V® = 55 and V* = =~ where 0 contains v, wjjr,;, ®ijiL,;, BijL,;, for
t=1,...,N—1and j =4+ 1,...,N. To avoid ambiguous notations, we also define V¥ = a%,

v = 2L We use ¢(x) = 2 logI'(z) to denote the usual digamma function.
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Lemma 1. Consider the score expression and its derivative with respect to f;jiz,,;:(0)
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and
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(wg;lLij %ty;ﬂl/ij ;t(e)TijlLij +(0) + 2wijir, %tyzjlbij %t(e))
+ <wz{§'l\L,-j ;tyZﬂLij ?t(e)TyZﬂLij ;t(e) + 2wid’|Lij ?tyZﬂLij ;t(0)> )

O Wi Ly ;1 (fz‘,leij (0), Y7 511,,.4(0); 9>

wﬁ/\;m;t - afoyr
yi7j‘Lij;t(0)
_ 8V6C<Ri7j|Lij;t(9)>T ' —4(vigiL, +2)
B OfilLi; st

2
-1
(ViJILu Y 0,0 R (0)y ;t(9)>

R;jlle‘j ;t(o)yZﬂLij ;t(e) <R531|Lij ;t(e) ® Ri_,jl\Lz‘j ;t<0)> (yzj\Lij it ® y:ﬂLi]’ ;t)
Vivj‘Lij + 2

2
<Vivj‘Lij + y1,*73|LU ;t(e)TR;;lLij ,t(e)yZ]‘Lu ,t(0>>

(RijjllLij ;t(e) ® Rijjl\Lij ;t(0)> <(12 ® yzleij ;t(e)) + (yzj\Lij ;t(e) ® IQ)) :

_|_

By exploiting the analytical forms of the weights w; jir,; ¢, wf;| Lijsst and w'¥ , and the parameteri-

04| Laj 5t
zation given in Assumption 1, we can show that the uniform bounds in equations (B.1) and (B.2) are
easily satisfied.

In fact, one only needs to note that there exists general positive constants K; and K5, such that

aSi,j|Lij;t (fi,j\Lij;t(9> s y:ﬂLv,.t(O) ; 0) 1
e — < 1—e(l—¢)) (K; +2K>)) < oo,
Oeg ay;:ﬂLij;t(e) —1—¢2 << E( E)) ( 1 2))

and also that

623i,j|Lij§t <fi,j\Lij;t(6> ) ijle'ﬁt(o) ; 0> <
sup x B
0cO afi,ﬂLij;t(o)ayiyﬂl’i]’;t(a)
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2¢2
1— €2

((1 —e(l—¢) (K, +2K2)> +e- ((1 + ((2e=1)(1 - e))) (K, +2K2)> < 00,

[
Lemma 2. Under the Assumptions 1-4:
0co |9 Fosiry 1 (0) = V0 fii, (0)|| <250, (B.3)
ast — oo.
Furthermore, under the additional Assumption 6, we have
E |sup Hvefi,leij;t(a)H ] < 00, (B.4)
6co

for any integer m > 2.

Proof. As in the proof of Proposition 3, to prove the uniform exponentially fast convergence in (B.3),

we can show that the conditions S.1-S.3 of Theorem 2.10 in Straumann and Mikosch (2006) hold true

for the first derivative processes

vefi,ﬂLij ;t+1 (0) - - wi,j|L¢j ;t(e) + X’i,j|Lij ;t(e)vefi,j‘lzij ;t(e)’ (B5)

where

X 0)= 4 f 0 0SijlLi; st (fi,j'Lij;t(0)7y:’j‘Lij;t(e); 9)
L :1(0) = BijiLy + gLy Sw|Lz;,t( ) = BijLy; + QL OfijiLi; ;(0)

(B.6)

afi,j|Lij t4+1(0)
8‘“1‘,,7‘\L1-j

OfijiL; ;¢+1(0)
LTI

Wi j|Ly; ;t(o) - 3fi,j|Lijl;i:-Jl(9) ’
9Bi 1L

OfijiL;;++1(0)

v

14



such that

OfijiLy:t+1(0)

awivﬂLij

OfijiLyt+1(0)

=1
aai,j\sz

= Sij|Ls; ;t(0>7

)

OfijiL,t+1(0)
OBijLi;

OfijiLi;;e+1(0)

Vi j|L;

= fivﬂLij ;t(e)a

o v
= Qij|Li;Si | Ly ;t(0)7

where the term s

Z,j‘Lij ;t(e) = S’ZﬂLij 3t <fi7j|Lij §t<0>7 yZJ|LU ,t(e)’ 0) is glven by

V Osiitsyet (fualne, 1(0), ¥10,,,4(6):6)
St 1L, 1(0) = By (B.7)
=J (Pz‘,ﬂLij;t(e)) : (
(14 Pt 1 (02) (w10 i (O30, 1(0))
) (00 O W, 0)) )

) Ow; 1 ;¢ (fz‘,j\Lij (0), Y7 511,,.4(0); 9)
wi,lei]‘ 3t = 8V (BS)
y;j\Lij ;t(O)TRi_,jl\Lij ;t(g)yZﬂLz‘j ;t(e) -2

3
<Vi’j|Lij T ijle‘j ;t(e)TRilelLij ;t(e)ij\Lij ;t(0)>

We start by verify conditions S.1 and S.2 in Theorem 2.10 of Straumann and Mikosch (2006), which

are directly implied if the following uniform bounds

E{sup ‘Xi7j|Lij;t(0)H < 00, E
0cO

g, 001 <=
0coO

However, we first note that, by Proposition 3, it holds that E |:Sup9€® ‘Xi,j\Lij ;t(O)” < K3 < 00, and

furthermore

E[sup Hwi’jL“;tw)M <1+ E[sup
0cO 0cO

Si,j]Lij it (9) H —+ E |: sup
0cO

E [ sup
0cO

which is again implied by Proposition 3, the compactness of the parameter space, and the fact that

fivleij ;t(e) H

ai,j\Lij < 00,

SZJ'ILZ']' it (0)’

+ sup
0cO

K1€

1 —¢€2

sup
0cO

< Ky < 0.

SZﬂLij?t (0>’ = zlelg Siy,j\Lij it (fivﬂLij%t(e)? yZﬂLi]’;t(o); 9) ’ < (1 - ¢ (1 - 6))
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Then, conditions S.1 and S.2 in Theorem 2.10 of Straumann and Mikosch (2006) are directly satisfied.
Now, in the present case, proving that condition S.3 in Theorem 2.10 of Straumann and Mikosch

(2006) is equivalent of proving that

~

XijiLy;;1(0) — XijiL, ;t(e)‘

e.a.s.
— 0, sup
0cO

€.a.s.

— 0.

50 [11,1(6) = w151,.6)|

By Proposition 3, Lemma 1 and invoking again the mean value theorem, it is immediate to infer that,

for a sufficiently large t, we obtain that

y’L]lL

’Lj7 137

H<K><sup

Sup HwZ,J|L2]7 (0) wl,]‘L (0) le'LZ]’ (0)‘ ’ €.a.s. O’

where K < 0o, by an application with Lemma 2.1 of Straumann and Mikosch (2006). Analogously

€.a.8

,.”0,

sup
6cO

yz JILq (0) yz,j|L” it (9>

zgy

XivﬂLij ;t(o) - Xz‘,j|Lij ;t(o)H < K x zup

We then conclude that S.3 is satisfied and (B.3) holds true.
Finally, we prove the existence of the integer m > 1 in (B.4), i.e., the arbitrary large number of
bounded moments of the derivative processes. We remark again that we give details for the derivatives

n (i). The fact that {V®f; 1., .+(0)}+ez and are stationary and ergodic implies that they admit the

1]7

following almost sure representations
oo P
0
VO figiny se+1(0) = wigip,, (0) + Z (HXi,leij ;tq) WijiL,;i—p(0),
p=1 q=1

Now, by Assumption 4, the compactness of the parameter space @, and the uniformly boundedness

of the score function (and its derivative), it holds that

SelépHv fz,mj,m(é')H < K, +;7”'L supruwm y p(O)H
where K, > suppee w1 (0)])

Thus, the result in (B.4) can be established by repeated applications of the Minkowski and Hélder
inequalities. This result follows because E[supgeg | fi iz, :¢(€)]™] < oo with m > 1 as implied by
Proposition 3, together with Proposition TA.3 of Blasques et al. (2022) to the unperturbed derivative
processes {V?f; iir..;1(0)}ez. In fact, we only need to note that their conditions (iii) and (iv) are

directly implied by the uniform bound of the score equations together with Assumption 4. [
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Lemma 3. Under the Assumptions 1-6:

f)lelg vae‘ﬂ’ju’ij ?t(a) - Veefi,ﬂLij ,t(e)’ % 07 (Bg)
ast — 00.
Furthermore, we also have
E | sup ‘Vggfi,ﬂLij §t(0)H ] < 00, (B.10)
00co

for any integer m > 1.

Proof. To prove this Lemma, we can show again that the conditions S.1-S.3 in Theorem 2.10 of
Straumann and Mikosch (2006) for the second derivative processes hold true for the second derivative

processes

Ve fiini t41(0) V9 fiin,041(8) VP fiin,041(8) V" fijiL, se1(0)

00 * vaafi,ﬂLij%t-l-l(e) vaﬂfi,ﬂLi]’%H‘l(e) Vayfi,leth(e)
YV fijins s e+1(0) = BB B

* * \Y fi,j‘Lijit+1(9) \Y Vfi,jILij;tH(a)

N " * VY fiilLi; :t+1(0)

:Wi:ju/ij ;t(e) + Xi,j\Lij ;t(e)vgefi7j|lzij ;t(0)7

with Xjjiz,;;+(0) as defined in equation (B.6) and

O fijin,10)  Ofigin, 0 0fisn,0) 92, (6)

6wij|Lij 8wi,j\Lijao‘z‘,j\Lij 8wi,j\Lij55i,j\Lij 6wi,j|LijaVi,j\Lij

* a2fi,j\2Lij;t(0) ani,j\Lij;t(O) 82fi,j\Lij;t(0)

daz . . 0oy 1108 5L, 00 .. OV 4L .

Wi,j|Lij§t(0) = 1L Bl O i B lLig e L

% % 82fi,j\Lij ;t(o) 82fi,j\Lij ;t(o) ’
,2. 861L81/2L
4,31 L4 I L5 OV ,51 Ly 4
62fi,j\LZ~j . t+1(0)
ov?

* * *
such that

P fijiny 1(0)  Pfijr,+(0)  Pfijin,.(0)  0fijin,.4(0)

— — — -0
2 )
Wy 1L, OwijiL, 0 gL, OwijiL, 0B i, OWijiL, OVijiL,
0 fijiLy;;0(0)
JI1Lig s _f ff 2
D2 - =Sij|Ls; ;t(e)vafi,j\Lij ;t(g) + Qi jILi; S5 )Ly, ;t(e)vafi,leij ;t(e)

1,5 Lij
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azfivj‘Lij ;t(e)

2 =2V fijins () + @iy sl 00V fiin,41(0)°
2,75
an]‘Lt(e)
2,7 Lij ; o %% ff v 2
aV'Qj\JL =Qi5|Li; (‘Si,j\Lij;t(e) + Si,j\Lij;t<0)v fi,jILm;tw) ) )
2, (%)

and moreover, we have

O fi gL, :1(0) ff
1, YR — . JJ ﬁ C T afo .
80éiJ|Lijaﬁi,j|Lij (1 + Qi §|Ls; Swle‘j ;t(e)v fm|LzJ ,t(0)> \Y% fW\Lu ,t(0>

a2fi7j|Lij§t(0) v 0 fv 0\ 0V 0
v, OV =SijLe:0(0) F Qg i, (O)V figiny 1(0)VE fiji,; ()
1,5|Li; UY9,5| Ly

82fi,j‘Lij ;t(0>
OBijiLi;OVijiL;

:Vyfi,j\Lij ;t(e) + a@jS{,]V'\Lij ;t(a)vyfl}ﬂlzij ;t(e)vﬁfLﬂLz‘j ;t(0)7
where

825i7j|Lij it (fivj‘Lij ;t(0>7 ij\Lij ;t(e); 0)

If —

Si,j|Lij ;t(e) o afi,ﬂLi]- ;t(0)2 ,
v 82Si,j|Lij it (fi,j\Lij 1(0), yz‘*,j\Lu’ ;t(e); 9)
Sz7j|L”,t(0 - 8y2‘L t ’

,71Lij 5
fv azsi,ﬂLij it (fi,j\Lij ;t(0>’ ij\Lm ?t<0); 0)
si,j|Lij ;t(e) =

afi,j|Li]- ;t(O)(?y

From this formulas and Proposition 3.4 of Blasques et al. (2022) it is obvious that the same arguments

discussed in Lemma 2 apply sequentially, yielding the desired results in (B.9) and (B.10). [

Lemma 4. Under Assumption 1-6, the process {V°(;(0¢)}icz is a square integrable martingale dif-
ference, that is, E[V90,(00)|F;—1] = 0 and E[(V®,(00))(V?:(0,))"] < .

Moreover, we have that

% S V6(00) = A (0.E[(VL(00)(V£(00) ).

Proof. To show the zero mean property of the score vector, we take term-wise derivatives of the log-
likelihood function ¢;(@) in (10) for each couple of indices (i, j), in order to obtain the following score

vector:

\IAC))

Vo, (0) = Nt ,
D ic1 Zj:i+1v fi7j|Lij;t(g>Si,j|Lij;t(0)

)
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voian L[ (V+N v N  y/R(0)y, y/ R (0)y,
0 (75) 5 (2) -y T 1)

v+ N
v—2+y/ R '(0)y,

Wy =Wy (Rt(e) » Y s 9) =

and with s; iz, ¢ (0) = SijjL; ;¢ <fi,j‘Lij;t(9) T 0> as defined in equation (A.3), respec-
tively.

Now, by a straightforward application of the conditional expectation we obtain

Ve, (0 0
E |V94,(600)|F- 1] = (o) Fia| = 7

Z Z] =i+1 v fl ]‘L” (go)si,j‘Lij ;t (00) O

where the last equality follow because the derivatives V? JigiL; .+(0p) are F;_j-measurable, whereas
the conditional expectations of V"(y(6y), and s; i, ;¢(fijiL,;¢(60) » Y71, ..(60) i o) are obviously
zero almost surely, since, by Assumption 2, they are the terms of the conditional score vector of the
multivariate Student ¢ density function evaluated at the true parameter vector 8. On the other hand,
to show that V9¢,(0,) is square integrable, it suffices to prove that the derivatives of the log-likelihood

have a uniformly bounded second moment, that is

zlégHV 0(0 H ] < 00. (B.11)

An application of the Cauchy-Schwartz inequality, we can show that

[ 2
E |sup |vee(0)] (V0,0 + 3 Z supHv Fisizy:(0)sisin, 1 (0)]
_069 6co i=1 j=
i} _ , e 07\ 1/2
€
<E [sup |V76,(0))*| + 2 E |sup |v¥e (6 E |su Hvz H( 1)
Geg’ ! } ( _Geg‘ 4 121];1 p fiirs;:+(6) 1—¢2
2 K1€
—|— E |su Hv",i,.e ( ) ,

where the last inequality follows by the arguments discussed in Proposition 3 since the uniform

boundedness of the score s; L, :¢(0) = SijiL,;;¢(fijiL,;¢(0), y;leij ;t(e); 0) implies the existence of an
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arbitrary large number of bounded moments. Hence

E

sttt (Futni0(0) i, 4(0) : 6)

2
< Q.

Now, by the compactness of the parameter space ©, we can also show that

sup

sup SZJ|LZJ H

06co

2 Kie 2
< [ — < 0.

Moreover, from Lemma 2 it also holds that

IV fisiy 1 (6)

sup
0co

E |sup }V%(e) ‘2

6co
v+ N v N  y/R ')y,
¢( )‘w(‘)‘u—z‘ w22

+ sup
0co

T -1 0
log <1+yt R, ( )yt)‘

v—2
TR} 1<0> i
log <1 Y, yt)‘ ’

Tp-1
log (1 I y, R, (g)yt)
v—2

ly 1
<3 [|K K1|]+5 K, — K1| - E |sup
0co

1
+ -E |sup

4 |oco -2

where the second inequality holds because from the compactness of the parameter space ® with
2 <v<oo, 3K, > ¢ (AY) + ¢ (%) + A5, together with the the analytical form of the weights w,
which implies that 3K; > 0 such that

yIRt_l (e)yt

< K < o0.
(v —2)2 = 2=

E [sup
6co

t

Moreover, it is obvious that from the second moment bound El||y,||?] < oo and the lower bound in

(A.11) we also have that 3K, > 0 such that

E |sup
6co

2
T -1 0

by virtue of the inequality log(1 + =) < x Vax > —1. By collecting all the results obtained above, we
conclude that (B.11) holds true.
Finally, we simply note that the Fisher’s information equality E[(V?4,(00))(V94,(00))"] = Z(8,)
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follows by standard arguments since by Assumption 2 the £,(6y) is the true conditional log-density of

the Student’s ¢ distribution. This concludes the proof.

]
Lemma 5. Under Assumptions 1-4,
]_ 2] o 1 2] a.s.
sup [| =V Lr(0) — =V Lr(0)|| — 0, (B.12)
oco || T T

asT — 0.

Proof. An application of the triangle inequality yields

with

and

T

T
1, 1 1 X 1
—VOLr(0)— =VL;(0)] < = 90,(0) — V90,(0)| <= I+1II
aup | F9°L110) - 79°1200)| < 3wy V700 - )| < 3 (1-417),
N-1 N
I:= Z sup ||V fijin, :¢(0)siiL., 5 (fi,j|Lij;t(0) s Ui, 1(0) 5 9)
i—1 j—it19€©

- vgfi,lei]‘;t(e)si,ﬂLi]‘;t <f7;,j‘Lij;t<0) ’ yz*,le”,t(o) 3 0) H7

I :=sup
0cO

VY 0,(0) — VV(,(0) H

As a first step, we focus on I. We recognize that each term of

VeﬁvﬂLij%t(O)SivﬂLij%t (-ﬂ,j‘Lij;t<0) ) @ZﬂLij;t(e) ; 0)

is a continuous function of f; ;L. .+(0) and its derivatives. In contrast, the terms in

vefivﬂLij§t(0>si7j|Lij§t (fi,j\Lij;t<0) ) yzﬂLij;t(e) ; 0)

are continuous functions of the stationary counterparts, i.e. fi;z,,;:(6) and its derivatives. Therefore,

by means of elementary decomposition, we can write

N-1 N
1< Z Z (sup
i=1

Vefiy]'\Lij ;t(e) - Vefi7]'|Lij 7t(0)H =+ sup
0cO

‘Vefi,jLij;t(O)H> (B.13)
j=it1 \9€®
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ittt (Fisteoy20) s B, 00) 5 0) = sigivyse (Fiatr (0 . Yiye,,.(0) : 0) '

N-1 N
Z Zsup
i=1 j=it+1

6coO

X sup
6¢c

veﬁ,j‘Lij;t(e) - vofi:j‘Lij§t(0)

sup s, (A (6) 920,400 6) |
0c®

Now, we note that in view of Proposition 3 and Lemma 2, we can easily show that both the first and
the second addends of the inequality (B.13) vanish e.a.s. as t — oo, as implied by Lemma 2.1 in
Straumann and Mikosch (2006).

Therefore, there exists some finite constant K; > 0 such that

N-1 N
I<Kr) > %)

i=1 j=i+1

and since for ”yzfjt < 1Vt eN, we obtain that 7 =<*%5 0, as t — oco.

As concerns 11, we have that

v y L[y ROy,  y/R 'Oy,
VI (0) = VI(0) = 5 [th - th

TAfle T 710
+ log (1 + L(Q)yt) — log (1 + L(Q)yt)} (B.14)
v— v—

We can then combine the facts that: (i) 0 < v < oo by Assumption 2, (ii) the lower bound obtained in
(A.11) and (iii) the uniform bound supgeg |wy| < 1, in order to see that for the first added in squared
brackets of the right hand side of equation (B.14), it holds that

y/R'O)y, . y/ R (0)y

_ t < T/p-1 _ p-1
sup B B BB < oy (] (R 6) - B (6))
~ G sup tr(ytyt R;(0)(R(6) - Rt<e>>R;1<0>)\
0cO®
0c®
< i sup | Ru(0) - Rt<o>HuytH2-
0c®

Moreover, since logz < z — 1 Vz > 1, the same result holds for the second added in squared brackets

of the right hand side of equation (B.14), in fact

T -1 T -1
I%O+&&£%Q_MG+&&%%§pr

v—2 0cO

y/ R 'Oy, y R 'Oy,
v—2 v—2

R,(0) — R/(0)

sup
6c®

<c¢, K sup Iy, 1%,

6coO
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for some K,c, > 0. We can now recall that the conditional correlation matrix li?,t(ﬁ) is a contin-
uous function of each ﬁ-,ﬂ L;;;t(0), whereas R,(0) is a continuous function of each of the stationary

counterpart f;;z,. ;+(@). Therefore, by Proposition 3 it holds that

N—1 N
1< 26Kyl S Y i,

i=1 j=i+1

and since 7,/ < 1, V¢ € N and E[||y,[|*] < oo we obtain that /T === 0, as t — co.

In conclusion, the uniform convergence in (B.12) holds true. [

Lemma 6. Under Assumptions 1-6,
1 — )
— > VP(07) < —E[VP0(8,)] = (), (B.15)
t=1

where Z(0y) is positive definite.

Proof. First, we establish the almost sure convergence in (B.15), by proving that the second derivatives

of the log-likelihood function has a uniformly bounded moment, that is

E

sup vaeft(ﬂ)H] < 00. (B.16)
0c®
Then, analogously to the Proof of Thoerem 1, we apply again the uniform law of large numbers for
stationary and ergodic processes of Rao (1962).

Taking term-wise second derivatives of the log-likelihood function £;(8) in (10) for each couple of

indices (7, j), we obtain the following Hessian matrix:

v%,(0)

ngt(e) ZZ\SI Z;'V:Hl SZ]‘\L” ;t<9)vefz‘,j|Lij ;t(e)
* POAITED DA (Slf,j‘Lij OV fijin (OOl () + 8iiny,(0)V fijin., .+(0))

Y

where

T -1
V() = Hw(” * N) - W(Z) = 2N Ayl ROy,

2 2 v —2)? (v —2)3
2Ny;—Rt_1(0)yt W — 2(v + N)y;rRt_l(O)ytw
(v—2B3@w+N)2 ! v—2 N
with w; as defined in Lemma 4, 7, . (6), S{,leij +(0) and 7, ., (6), are as defined in equations
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(A.3), (A.4) and (B.7), respectively. Now, by elementary calculations, we note that

sup”Vegé H <E supHV””Et )| +22 Z E sup St Ly (0 )Vefi,leij;t(O)H]
66 =1 j=i+1

+Z Z E s [0, ()9 o, 1OV Fn, <0>+sz-,ﬂLl,-;t<0>v*"’fz-,j|w<e>1]].
=1 j=i+1

In view of the the uniform boundedness properties of the score expression and the results obtained
in Proposition 3, and Lemmas 2 and 3 it is clear that all the elements of the Hessian matrix are still
polynomials of uniformly bounded random variables, with an arbitrary large number of finite moments.
Thus, repeated applications of the Cauchy-Schwartz inequality and the Minkowski inequality, and
some straightforward calculations, allow us to conclude that also the Hessian matrix is uniformly
bounded, and hence (B.16) holds true. Therefore, a straightforward application of the uniform law
of large number for stationary and ergodic sequences of Rao (1962) give us the desired almost sure
convergence in (B.15).

Second, we show that Z(6,) is positive definite. To do so, we note that the strong consistency of
the MLE 07 established in Theorem 1, implies that as T — 0o, 67 <2 6, and hence 07 € V(o)
almost surely, where V' (6y) denotes a neighbourhood of 6.

We thus have that

T
1 ~
HfE 'V0,(61) — E[V1,(6,)]
t=1

’_H Zv"% (60) — E[V?°4,(60)]

T
1 1
o Z v90,(0) — - > v%(6o)
t=1 t=1

+ sup
0V (6o)

However, since {V9%/,(0)}:cz is stationary and ergodic, it follows that
L I
n > V%(6) 2 E[V(60)] = Z(6,).

and therefore, by the uniform law of large numbers of Rao (1962), 30 > 0 such that

! S0 (02) — B[V (80)

t=1

lim
T—o0

<

As the constant 6 > 0 can be chosen as small as we want, we conclude that the almost sure convergence
n (B.15) holds true.
In conclusion, it remains to be shown that Z(6y) is invertible. As argued by Darolles et al. (2018)
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in their proof of Theorem 4.3, if Z(6,) were not invertible, then there would exists some vector
X € R? where d denotes the dimension of the compact parameter space 0, such that X' T (@)X =0
with A £ 0. We recall that in our setting of a correctly specified model the usual Bartlett identities
hold and the Fisher information matrix equals the covariance matrix of the score vector: Z(8y) =
—E[V1,(80)] = E[(V?0:(80))(V®,(0,))T]. If IX # 0 such that X Z(B;)\ = 0, it must then also
hold that the same X makes the covariance matrix of the likelihood scores singular. Given that the
score has expectation zero, it must then hold that for this linear combination }\TV"&(HO) = 0, or,

more precisely, that

N-1 N
ATVO0(00) = ATV 4(00) + AT D "D T VY fijin, (001,11 (80) = 0
i=1 j=i+1
almost surely, which given the non-off-setting expressions for the log-likelihood derivatives implies
that each of the terms must be zero almost surely. As both AT V”¢,(0,) and the score Sij|Li, ¢ (00) are
non-degenerate random variables and the derivatives V? JijlLs; .+(0) also converge to a non-degenerate
stochastic process, the log-likelihood derivative )\TV"&(GO) is a non-degenerate random variable, such
that the above equality can only hold if A = 0. This provides a contradiction and thus proves the

result.
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C Additional empirical results
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Figure C.1: Daily returns on the three main risk factors and the twelve industry portfolios

Note: The period is 03 January 1980 to 31 December 2021. The vertical lines indicate the 4th of January 2010, i.e. the

first trading day of 2010 and the start of the out-of-sample period.
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Figure C.2: Comparison of the mean of the Monte Carlo simulation of the filtered conditional cor-
relation coefficients provided by the PCorrmodel with different distributional assumption, Gaussian
and Student’s ¢, and with Student’s t DGP with v = 7.
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Figure C.3: Parameter estimates of all correlation models across industries

Note: the top-left panel for a; ; has 12 vertical areas, each corresponding to an industry. The red left six lines in
each band provide the parameter estimates (as a point) and their confidence intervals (as a line) for the PCorr model
in the order of our decomposition L;j, ie., (3,j) = (SMB,HML),( MKT,SMB),IND,MKT),(MKT,HML |
SMB),(IND,SMB | MKT),(IND,HML | MKT, SM B) which indexes along each lower sub-diagonal of R;, starting
from the first sub-diagonal. The next 4 blue lines indicate the estimates and confidence intervals for the t-cDCC model,
followed by the estimates of of the ¢-GAS model (in the same order as for the PCorr model). The estimates for the 5;
in the t-cDCC appear slightly lower than for the other models, but one should measure persistence for the ¢-cDCC using
a composite of a; ; and B; ; rather than §; ; alone as in the PCorr and t-GAS model. Adding «;; and §; ; together, the
estimates for persistence are again close across all models.
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Figure C.4: Comparison of the box-plots of the block-bootstrap Monte Carlo simulation of the filtered
conditional correlation coefficients with Student’s ¢t DGP with v = 7.
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Table C.1: Descriptive statistics of the daily returns of the three main risk factors and the twelve US
industry portfolios over the full data period, 03 January 1980 to 31 December 2021.

Series Mean Max Min Std Skewness Kurtosis
Mkt-RF 0.0349 15.7600 -12.0100 1.1536  0.2017 19.7633
SMB 0.0023 8.1800 -7.2700 0.6542 -0.5691 = 23.3088
HML 0.0157 9.0400 -6.0200 0.6796  1.0057 20.7701
NoDur 0.0341 13.9700 -9.2500 0.8607  0.2158 25.0626
Durl 0.0583 27.0600 -16.7000 1.7385  0.6772 19.3277
Manuf 0.0434 23.4000 -11.4900 1.4425  0.6376 23.1950
Enrgy 0.0420 17.2900 -9.6100 1.2444  0.4425 15.5661
Chems  0.0493 18.5000 -19.1100 1.2864  0.0229 25.6146
BusEq 0.0528 22.3900 -16.7500 1.6460  0.3410 18.1912
Telem 0.0369 15.9800 -12.8800 0.9383  0.6995 29.5993
Utils 0.0377 17.9200 -15.2600 1.3417  0.3484 21.1585
Shops 0.0386 17.8600 -11.7900 1.1285  0.2282 21.2056
Health 0.0442 12.6200 -14.4000 1.1300 -0.1520  24.8621
Money 0.0381 19.7100 -17.2300 1.3972  0.3297 26.2926
Other 0.0331 17.5800 -11.1600 1.3642  0.3269 16.9240
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Table C.2: MSE and MAFE simulation results

Note: the labels PCorr, t--GAS and t-DCC indicate the new score-driven partial correlation model discussed in Section
2, the Student’s ¢ GAS model of Creal et al. (2011) with hypersphere parameterization, and the t-cDCC model of Engle
(2002) with a multivariate Student’s ¢ log-likelihood, respectively. Results are based on 300 Monte Carlo experiments
with sample size T = 1000 and N = 4. True correlation paths used in the data generating process are given from
100-day rolling window estimates of empirical correlation matrices of the series (HML, SMB, Mkt - RF, BusEq).

PCorr t-GAS ¢-DCC SCC PCorr t-GAS t-DCC SCC

Gaussian Student t;

P1,2;¢

MSE  0.0203 0.0281 0.0310 0.0276 0.0231 0.0292 0.0367 0.0319

MAE 0.1143 0.1245 0.1355 0.1210 0.1244 0.1256 0.1450 0.1358
P1,3;¢

MSE 0.0236 0.0305 0.0309 0.0321 0.0260 0.0291 0.0376 0.0325

MAFE 0.1232 0.1337 0.1361 0.1351 0.1283 0.1253 0.1472 0.1326
P14t

MSE 0.0067 0.0154 0.0170 0.0163 0.0080 0.0160 0.0205 0.0213

MAE 0.0640 0.0787 0.0858 0.0836 0.0725 0.0803 0.0957 0.1023
P23t

MSE 0.0186 0.0261 0.0296 0.0288 0.0195 0.0259  0.0508 0.0286

MAFE 0.1072 0.1193 0.1309 0.1291 0.1116 0.1146 0.1729 0.1237
P2.4:t

MSE 0.0163 0.0221 0.0267 0.0466 0.0186 0.0226 0.0304 0.0285

MAE 0.1058 0.1069 0.1227 0.1792 0.1142 0.1142 0.1267 0.1217
P3,4;t

MSE 0.0186 0.0267 0.0270 0.0393 0.0197 0.0257 0.0332 0.0325

MAE 0.1072 0.1210 0.1229 0.1547 0.1125 0.1138 0.1342 0.1316

MSE 0.0174 0.0248 0.0270 0.0318 0.0192 0.0247 0.0349 0.0292
MAE 0.1106 0.1140 0.1223 0.1338 0.1106 0.1123 0.1370 0.1246
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Table C.3: MSE and MAF for a block-bootstrap simulation

Note: we take the rolling window estimated correlation paths from Table C.2 and block-bootstrapping (block length
50) these paths. For each of the 300 bootstraps, we generate return data obeying the bootstrapped correlation path.
Then we estimate 8 models and filter the correlations, computing time averages of MSE and MAE, and the quartiles
across bootstraps.

PCorr t-GAS ¢-DCC SCC PCorr t-GAS ¢-DCC SCC

Gaussian Student t;

P1,2:
BM-MSE  0.0511 0.0535 0.0550 0.0539 0.0440 0.0480 0.0475 0.0491
BQI1-MSE 0.0496 0.0517 0.0532 0.0520 0.0423 0.0460 0.0456 0.0468
BQ3-MSE 0.0526 0.0547 0.0562 0.0561 0.0454 0.0491 0.0484 0.0513
BM-MAE 0.1955 0.2029 0.2014 0.1991 0.1853 0.1916 0.1895 0.1973
BQ1-MAE 0.1918 0.1986 0.1974 0.1950 0.1803 0.1871 0.1853 0.1930
BQ2-MAE 0.1976 0.2057 0.2030 0.2015 0.1883 0.1951 0.1937 0.2012
P13t
BM-MSE  0.0638 0.06567 0.0673 0.0663 0.0487 0.0523 0.0534 0.0521
BQ1-MSE 0.0616 0.0636 0.0651 0.0641 0.0427 0.0465 0.0473 0.0459
BQ3-MSE 0.0665 0.0687 0.0702 0.0684 0.0556 0.0597 0.0603 0.0593
BM-MAFE 0.2055 0.2121 0.2100 0.2085 0.1740 0.1787 0.1826 0.1796
BQ1-MAE 0.2001 0.2065 0.2047 0.2036 0.1574 0.1618 0.1670 0.1640
BQ2-MAE 0.2124 0.2167 0.2155 0.2137 0.1921 0.1990 0.2022 0.1994
P14t
BM-MSE  0.0229 0.0255 0.0270 0.0256 0.0218 0.0261 0.0255 0.0303
BQ1-MSE 0.0224 0.0250 0.0265 0.0249 0.0210 0.0252 0.0248 0.0286
BQ3-MSE 0.0236 0.0262 0.0277 0.0264 0.0232 0.0271 0.0262 0.0321
BM-MAE 0.1254 0.1323 0.1317 0.1293 0.1236 0.1298 0.1273 0.1456
BQI1-MAE 0.1236 0.1298 0.1295 0.1271 0.1203 0.1265 0.1246 0.1398
BQ2-MAE 0.1278 0.1350 0.1342 0.1313 0.1281 0.1344 0.1293 0.1511
£2,3:¢
BM-MSE  0.0537 0.0546 0.0561 0.0554 0.0476 0.0512 0.0520 0.0510
BQI1-MSE 0.0492 0.0504 0.0519 0.0517 0.0460 0.0499 0.0506 0.0494
BQ3-MSE  0.0570 0.0587 0.0602 0.0589 0.0492 0.0524 0.0534 0.0520
BM-MAE 0.1956 0.2019 0.2003 0.1992 0.1772 0.1820 0.1866 0.1857
BQI-MAE 0.1852 0.1918 0.1899 0.1873 0.1735 0.1787 0.1828 0.1814
BQ2-MAE 0.2060 0.2122 0.2098 0.2094 0.1807 0.1847 0.1913 0.1902
P24t
BM-MSE  0.0330 0.0353 0.0368 0.0498 0.0476 0.0512 0.0520 0.0510
BQ1-MSE 0.0311 0.0337 0.0352 0.0447 0.0460 0.0499 0.0506 0.0494
BQ3-MSE 0.0353 0.0370 0.0385 0.0534 0.0492 0.0524 0.0534 0.0520
BM-MAFE 0.1557 0.1631 0.1614 0.1826 0.1772 0.1820 0.1866 0.1857
BQ1-MAE 0.1505 0.1588 0.1571 0.1759 0.1735 0.1787 0.1828 0.1814
BQ2-MAE 0.1609 0.1683 0.1670 0.1899 0.1807 0.1847 0.1913 0.1902
P34t
BM-MSE  0.0318 0.0339 0.0354 0.0369 0.0424 0.0464 0.0471 0.0499
BQ1-MSE 0.0306 0.0327 0.0342 0.0345 0.0394 0.0439 0.0449 0.0452
BQ3-MSE 0.0330 0.0350 0.0365 0.0385 0.0447 0.0489 0.0490 0.0524
BM-MAE 0.1420 0.1491 0.1475 0.1442 0.1704 0.1762 0.1810 0.1815
BQ1-MAE 0.1363 0.1443 0.1420 0.1390 0.1663 0.1721 0.1772 0.1752
BQ2-MAE 0.1480 0.1534 0.1528 0.1502 0.1755 0.1810 0.1854 0.1880
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Table C.4: Out-of-sample results of the four correlation models

This table contains the estimates of a}/°? for Mod € {PCorr,t — GAS,t — cDCCY} in the regression model
rip = aé\/[ od 4 al! od . f%"d + i, where f%Od is obtained (recursively) using one-year-ahead estimates of Ry
and YarTt, YSMB,t, and YEarr as in (18). A %, sk, or * * * indicates rejection of Hy : ag/fad =0, a{VIOd =1,
at the 10%, 5%, and 1% significance level, respectively. The MCS column indicates whether the model lies
in the 95% model confidence set of Hansen et al. (2011) based on tracking error MSE. Results are similar for

the 99% MCS.

PCorr t-GAS t-cDCC SCC
apeer Mcs WY Mcs o aftePee mes afec MCS
NoDur 1.013 v 0.987 0.966 *** 0.985 **
(0.013) (0.013) (0.013) (0.013)
Durbl  1.018 v 0.956 ** 0.984 0.962 ***
(0.013) (0.013) (0.012) (0.013)
Manuf  1.012 v 1.001 0.975 *** 0.998
(0.007) (0.007) (0.007) (0.007)
Enrgy 1053 %  / 1.005 0.967 *** 0.974 ***
(0.023) (0.015) (0.013) (0.014)
Chems  1.002 v 0.981 0.965 *** 0.966 ***
(0.011) (0.012) (0.011) (0.011)
BusEq 0913 ¥/ 0.886 *** 0.861 *** 0.874 ***
(0.006) (0.007) (0.006) (0.007)
Telem  1.000 v 0.975 0.945 0.959 ***
(0.014) (0.014) (0.013) (0.014)
Utils ~ 1.050 v 0.957 0.990 v 0.959 **
(0.032) (0.023) (0.020) (0.023)
Shops ~ 0.987 v 0.983 0.946 *** 0.969 *
(0.009) (0.009) (0.009) (0.009)
Health  1.009 v 0.996 * 0.958 *** 0.990 *
(0.011) (0.012) (0.010) (0.011)
Money  0.986 * v 0.982 ** v/ 0.928 *** 0.965 *+*
(0.006) (0.006) (0.007) (0.007)
Other  1.011 v 1.010 * 0.974 ¥k 1.004
(0.006) (0.006) (0.006) (0.006)

33



Table C.5: In-sample performance in 23-dimensional application

In the top-part of the table, we report the Diebold-Mariano statistics and MCS based on the predictive
log-likelihood for the full 23-variate system. In the bottom part of the table, we report the asset pricing
implications for each of the individual stocks based on the tracking errors. Here, the Diebold-Mariano
t statistics are reported based on the tracking error MSE and MAE from equations (17) — (18). The
MCS columns indicate whether the model is selected for the 95% model confidence set based on
MSE. The PCorr, t-cDCC, and SCC model contain 760/47/1265 parameters, respectively, and take
2116/1019/2309 seconds to estimate. The sample is 1992-2022.

PCorr-Full vs PCorr-Full vs PCorr-Full vs MCS
PCorr-EbE t-cDCC SCC -
2R E A
g g 8 A
2 Z
= o
DMprr, DMprr, DMprr,
ALL 10.48%** 5.97 *Hk 53.22%** v
DMuyse DMaag DMuysg DMyag DMuysg DMaag

APPL  -4.43%%*%  _3.72%%* -3.00%*F 3, 35%H* -3.92%¥Kk 3 61HH* v

AXP -1.51% -0.80 -1.58%* -1.32%* -2.63%FF  _3.64%** 7/

BA 0.23 1.68 ** -2.02%*F*  _0.38 S2.21 %% ] 68*F 7/

CAT 0.04 1.22 S3.T3RRR 4 ATk -4.06%*F -4 82%K* v 7/

cSCoO -1.17 0.45 -3.007%F*  _3.04%** -3.30%F% 3 11k  /

DOW  0.49 -1.15 -2.20%HK 9 1 HHHK S2.45%HK D ZYHHk /7

HD S2.T9¥FE 1. 84%* -1.11 -3.46%** S1.82%F 4. Q8%* v

IBM -0.82 -0.03 S4.12%FF 4 33K S3.91FkF 4 31k 7/

INTC -0.59 0.78 -5.9THRRE 6. 15Kk S3ATHRE 4 QTR /7

JNJ 0.52 0.55 -1.94%%  _1.92%* S3.5THRE 3. TERHK  /

JPM -1.05 -1.25 -1.72%F J1.49* -0.07 -0.40 v / v

KO -1.65%%  -1.20 -1.27* -2.16%** -2.30%¥Kk D TQHAk /7

MCD -0.37 -0.64 -0.94 -0.64 -1.39%* -1.24* 7/

MMM -1.32%* -0.43 S1.78%K LD hgkR -3.10%F%F 365K /7

MRK  -0.46 0.29 S3.TARRR L4 9kH S4.207HF 4 T4k v /

PFFE -1.43* -1.23* -1.91%F  _2.35%K* -1.45%* -2.409%** Ve

PG -2.30%**F  _1.56* -0.40 -0.84 S3.26%HK 4 18%K* v

UurTx -1.89%*% D 2%k -1.88%** D 3K -0.76 -0.44 e v

Vv 1.01 -1.37 -3.49%kK 3 THHK -1.31%* -2.18%%*  / v

WMT 0.51 0.86 -0.62 -1.16 -1.01 -1.25 v v vV /
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D Additional simulation results

Table D.1: MSE and MAFE simulation results

Note: the labels PCorr, t-GAS and t-DCC indicate the new score-driven partial correlation model discussed in Section
2, the Student’s ¢ GAS model of Creal et al. (2011) with hypersphere parameterization, and the t-cDCC model of Engle
(2002) with a multivariate Student’s ¢ log-likelihood, respectively. Results are based on 300 Monte Carlo (top panel)
or bootstrap (bottom panel) experiments with sample size T' = 2000 and N = 4. The true correlation path used in
the data generating process is given by a high constant equicorrelation matrix regime with p = 0.9 that shifts to a
lower constant equicorrelation regime with p = 0.4. Results are averaged over time, replications, and across pairs (i, j),
1<i<j<A4

PCorr t-GAS ¢-DCC SCC PCorr t-GAS t-DCC SCC

Gaussian Student ¢,

Regime switching constant equicorrelation path
MSE 0.0048 0.0053 0.0074 0.0140 0.0074 0.0085 0.0093 0.0132
MAE 0.0411 0.0428 0.0555 0.0850 0.0633 0.0670 0.0685 0.0865
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