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HIGHLIGHTS 

 A parsimonious and interpretable convolutional NN is proposed for EEG decoding. 

 Sinc- and depthwise convolutions are used for temporal and spatial filtering. 

 A gradient-based technique is designed to interpret the learned features. 

 The network outperforms a traditional machine learning algorithm and other CNNs. 
 The learned spectral-spatial features match well-known EEG motor-related activity. 
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ABSTRACT (max 250) 1 

Convolutional neural networks (CNNs) are emerging as powerful tools for EEG decoding: these 2 

techniques, by automatically learning relevant features for class discrimination, improve EEG 3 

decoding performances without relying on handcrafted features. Nevertheless, the learned features 4 

are difficult to interpret and most of the existing CNNs introduce many trainable parameters. Here, 5 

we propose a lightweight and interpretable shallow CNN (Sinc-ShallowNet), by stacking a temporal 6 

sinc-convolutional layer (designed to learn band-pass filters, each having only the two cut-off 7 

frequencies as trainable parameters), a spatial depthwise convolutional layer (reducing channel 8 

connectivity and learning spatial filters tied to each band-pass filter), and a fully-connected layer 9 

finalizing the classification. This convolutional module limits the number of trainable parameters and 10 

allows direct interpretation of the learned spectral-spatial features via simple kernel visualizations. 11 

Furthermore, we designed a post-hoc gradient-based technique to enhance interpretation by 12 

identifying the more relevant and more class-specific features. Sinc-ShallowNet was evaluated on 13 

benchmark motor-execution and motor-imagery datasets and against different design choices and 14 

training strategies. Results show that (i) Sinc-ShallowNet outperformed a traditional machine 15 

learning algorithm and other CNNs for EEG decoding; (ii) The learned spectral-spatial features 16 

matched well-known EEG motor-related activity; (iii) The proposed architecture performed better 17 

with a larger number of temporal kernels still maintaining a good compromise between accuracy and 18 

parsimony, and with a trialwise rather than a cropped training strategy. In perspective, the proposed 19 

approach, with its interpretative capacity, can be exploited to investigate cognitive/motor aspects 20 

whose EEG correlates are yet scarcely known, potentially characterizing their relevant features.  21 

 22 

Keywords: Electroencephalography; Convolutional neural network; Sinc-convolutional layer; 23 

Feature learning; Interpretability 24 
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1. INTRODUCTION 1 

Approaches based on machine learning algorithms provide powerful tools to analyse and decode 2 

brain activity from electroencephalographic (EEG) data, both in research and application areas. In 3 

particular, machine learning techniques have been exploited in many EEG-based Brain-Computer 4 

Interfaces (BCIs). In these systems, a feature extraction stage (McFarland et al., 2006) extracts the 5 

meaningful characteristics of the pre-processed (Bashashati et al., 2007) EEG signals and a 6 

downstream classification stage (Lotte et al., 2018) makes a decision based on the extracted 7 

characteristics, to provide the appropriate feedback to the user (Mak & Wolpaw, 2009). One popular 8 

and performing feature extraction algorithm is the filter bank common spatial pattern (FBCSP) (Ang, 9 

Chin, Zhang, & Guan, 2008) that applies a bank of bandpass filters (selected a priori) and extracts 10 

features for each frequency band based on the spatial filtering method. FBCSP has been widely used 11 

as EEG feature extraction method and won several competitions, such as BCI competition IV datasets 12 

2a and 2b (Ang et al., 2012) related to EEG decoding of imagined movements. 13 

However, the traditional machine learning pipeline described above performs feature extraction 14 

and classification in separate steps. Furthermore, it strongly relies on a priori knowledge in the design 15 

of the feature extraction stage (e.g. the filters’ cut-off frequencies in the FBCSP) and prevents that 16 

other potentially relevant (but unknown) features are extracted and used for decoding. For this reason, 17 

this approach may also have negative impact on decoding accuracy. Recently, machine learning 18 

innovations, proposed in the computer vision field and represented by convolutional neural networks 19 

(CNNs), have been transposed to EEG decoding tasks (Roy et al., 2019), mitigating the need for 20 

manual feature extraction. CNNs automatically learn features in a hierarchical structure from the 21 

input data in an end-to-end fashion, i.e. without separating the feature extraction, selection and 22 

classification steps. Thus, in the field of EEG decoding, CNNs can be trained by feeding EEG signals 23 

as input to the neural network, obtaining as output the corresponding predicted label. Accordingly, 24 

CNNs do not need any a priori knowledge about the meaningful characteristics of the signals for the 25 
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specific decoding task and have the potentiality to discover the relevant features (even so-far 1 

unknown) by using all input information. 2 

An efficient way to provide EEG signals as input to CNNs is to design a 2D input representation 3 

with the electrodes along one dimension and time steps along the other (Borra et al., 2020a, 2020b; 4 

Cecotti & Graser, 2011; Farahat et al., 2019; Lawhern et al., 2018; Leeuwen et al., 2019; Manor & 5 

Geva, 2015; Schirrmeister et al., 2017; Shamwell et al., 2016; Tang et al., 2017; Zeng et al., 2019; 6 

Zhao et al., 2019), preserving the original EEG representation i.e. non-transformed representation. 7 

Other input representations, e.g. transformed representations such as time-frequency decomposition 8 

(Bashivan et al., 2015; Sakhavi et al., 2015; Tabar & Halici, 2016), generally increase data 9 

dimensionality requiring more training data and/or regularization to learn meaningful features. CNNs 10 

with a non-transformed representation are typically designed by stacking individual temporal and 11 

spatial convolutional layers or a single spatio-temporal convolutional layer, and eventually deeper 12 

convolutional layers that learn patterns on the spatially filtered activations. CNNs based on these 13 

architectures have been successfully applied to several EEG decoding tasks, such as P300 detection 14 

tasks (Borra et al., 2020a; Cecotti & Graser, 2011; Farahat et al., 2019; Lawhern et al., 2018; Manor 15 

& Geva, 2015; Shamwell et al., 2016), motor imagery and execution decoding tasks (Schirrmeister 16 

et al., 2017; Lawhern et al., 2018; Tang et al., 2017; Zhao et al., 2019; Borra et al., 2020b), anomaly 17 

detection tasks (Leeuwen et al., 2019), emotion classification (Zeng et al., 2019), and they have been 18 

generally proved to outperform traditional machine learning approaches. Despite these effective 19 

applications of CNNs in EEG decoding, there are still a number of critical issues that require further 20 

investigation. Indeed, CNNs introduce a large number of trainable parameters requiring large training 21 

datasets to obtain a good fit, have a longer training time compared to simpler models, introduce many 22 

hyper-parameters (e.g. number of kernels, kernel sizes, number of layers, type of activation functions, 23 

etc.), and the automatically learned features are difficult to be interpreted. In particular, techniques 24 

that increase the interpretability of the learned features are receiving growing interest as key 25 

ingredients to achieve more robust validation when using CNNs (Montavon et al., 2018). In the field 26 
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of CNN-based EEG decoding, increasing the interpretability may be particularly relevant for 1 

neuroscientists as to the following aspects: (i) check the correct learning by verifying that the models 2 

do not rely on artefactual sources but on neurophysiological features; (ii) enable the understanding of 3 

which EEG features better discriminate the investigated classes; (iii) potentially characterize new 4 

features exploited by the network for the classification, and thus increase the insight into the neural 5 

correlates underlying the classified behaviours. 6 

Several efforts have been made to increase CNN interpretability via post-hoc interpretation 7 

techniques (i.e. techniques that analyse the trained model). These techniques include temporal and 8 

spatial kernel visualizations (Cecotti & Graser, 2011; Lawhern et al., 2018), kernel ablation tests (i.e. 9 

selective removal of single kernels) (Lawhern et al., 2018), saliency maps (i.e. maps showing the 10 

gradient of CNN prediction with respect to its input example) (Farahat et al., 2019), gradient-11 

weighted class activation mapping (Jonas et al., 2019), correlation maps between input features and 12 

outputs of given layers (Schirrmeister et al., 2017). Some of these works face the interpretability issue 13 

together with other key issues previously cited, such as model complexity (in terms of number of 14 

layers and numbers of trainable parameters) and the size of the training dataset. Schirrmeister et al. 15 

(2017) tested both a deeper CNN (DeepConvNet, with 5 convolutional layers and one fully-connected 16 

layer, ) and a shallower CNN (ShallowConvNet, with 2 convolutional layers and one fully-connected 17 

layer) for decoding movement execution and motor imagery, analysed the effect of increasing the 18 

amount of training examples (via cropped training), and used correlation maps to interpret the CNN 19 

learned features. Lawhern et al. (2018) designed a shallow and lightweight CNN (EEGNet, with 3 20 

convolutional layers and one fully-connected layer) by introducing depthwise and separable 21 

convolutions that reduced the number of parameters to fit, tested a range of EEG decoding tasks with 22 

various training sizes, and interpreted the learned features via kernel visualization and ablation.  23 

Besides post-hoc techniques, network interpretability may be increased by introducing directly 24 

interpretable layers within the network architecture; importantly, these layers may intrinsically reduce 25 

the number of trainable parameters too, promoting more interpretable and, at the same time, 26 
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lightweight CNNs. Very recently, few studies have explored this approach in CNNs for EEG 1 

decoding. Zhao et al. (2019) introduced a time-frequency convolutional layer in an architecture 2 

inspired by ShallowConvNet (Schirrmeister et al., 2017) to learn time-frequency filters designed by 3 

real-valued Morlet wavelets. In a previous preliminary work (Borra et al., 2020b), for the first time 4 

we used a temporal sinc-convolutional layer (Ravanelli & Bengio, 2018) for EEG decoding, included 5 

in an architecture based on DeepConvNet (Schirrmeister et al., 2017), to learn temporal filters defined 6 

by parametrized sinc-functions that implement band-pass filters. Instead of learning all the kernel 7 

values as in a traditional convolutional layer, both in the wavelet- and sinc-convolutional layer only 8 

2 parameters for each kernel need to be learned and they are directly interpretable: the bandwidth of 9 

the Gaussian and the wavelet central frequency in one case (Zhao et al., 2019), and the two cutoff 10 

frequencies of the band-pass filters in the other case (Borra et al., 2020b). While this approach appears 11 

promising, its use in EEG decoding is still limited and the so-far proposed CNNs (Borra et al., 2020b; 12 

Zhao et al., 2019) have some limitations. Indeed, except for a single directly interpretable 13 

convolutional layer, the rest of these CNNs uses traditional less interpretable convolutional layers. 14 

This aspect, not only may hinder the overall interpretability of the learned features, but also requires 15 

a large number of trainable parameters leading to models more prone to overfitting and this is 16 

especially true in case of the deep CNN we previously proposed (Borra et al., 2020b). Furthermore, 17 

each of these CNNs has been tested only on a single decoding task (movement imagination (Zhao et 18 

al., 2019), and movement execution (Borra et al., 2020b)), and the ability of each network to 19 

generalize across motor paradigms has not been verified. 20 

The purpose of this work is to contribute to the recent developments of CNN-based EEG 21 

decoding by designing and analysing a novel CNN that includes interpretable and optimized layers, 22 

able to increase the overall interpretability of the network, reduce the number of trainable parameters 23 

and, at the same time, ensure good performances compared to existing state-of-the art (SOA) 24 

algorithms. The CNN proposed here is a lightweight shallow CNN, named Sinc-ShallowNet, 25 

obtained by stacking two convolutional layers that extract spectral and spatial EEG features 26 
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respectively, followed by a fully-connected layer finalizing the classification. The two convolutional 1 

layers are specifically devised to increase interpretability and decrease the number of trainable 2 

parameters and consist of a temporal sinc-convolutional layer and a spatial depthwise convolutional 3 

layer. The spatial depthwise convolutional layer ties spatial filters to each particular band-pass filter 4 

learned by the temporal sinc-convolutional layer, enabling the learning of spatial features related to 5 

specific frequency ranges. The proposed architecture was applied to decode sensorimotor rhythms 6 

both during motor execution (ME) and motor imagery (MI) using public benchmark datasets. 7 

Moreover, an extensive analysis of Sinc-ShallowNet was performed including the following aspects:  8 

i. Comparison of the decoding performance of Sinc-ShallowNet with SOA decoding algorithms, 9 

including one traditional machine learning pipeline based on FBCSP coupled with regularized 10 

Linear Discriminant Analysis (rLDA) and other three CNNs (ShallowConvNet and 11 

DeepConvNet (Schirrmeister et al., 2017), EEGNet (Lawhern et al., 2018)).  12 

ii. Assessment of some design choices on Sinc-ShallowNet performance in a post-hoc hyper-13 

parameter evaluation procedure inspired by Schirrmeister et al. (2017). The evaluated design 14 

choices concern: the number of the temporal band-pass filters, the number of spatial filters for 15 

each temporal filter, the introduction of an optional recombination of the spatial activations, and 16 

the size of activation aggregation (average pooling) before the fully-connected layer.  17 

iii. Evaluation of the effect of increasing the training data size via cropped training compared to 18 

trialwise training. Indeed, the effect of cropped training on different CNN architectures is still 19 

unclear. Schirrmeister et al. (2017) found that cropped training significantly increased the 20 

performance of deep architectures (DeepConvNet), while no significant effect was obtained with 21 

shallow architectures (ShallowConvNet). Despite this, other shallow architectures (Zhao et al., 22 

2019) were trained with a cropped strategy. Therefore, we evaluated the effect of the training 23 

strategy on the performance of Sinc-ShallowNet and of the re-implemented SOA CNNs.  24 

iv. Feature interpretation. Since the trainable parameters of the temporal sinc-convolutional layer 25 

are the cutoff frequencies of the learned band-pass filters, the learned spectral features can be 26 
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directly visualized and interpreted once the training ends. Furthermore, inspired from the saliency 1 

maps (Simonyan et al., 2013), we designed a post-hoc interpretation technique named “temporal 2 

sensitivity analysis” (as it acts on the kernels of the temporal sinc-convolutional layer). This 3 

technique enables the identification of the more relevant and more class-specific band-pass filters 4 

and the spatial features (as learned in the depthwise convolutional layer) related to these band-5 

pass filters can be visualized.  6 

2. METHODS 7 

This section is devoted to the description of the proposed CNN for EEG motor decoding. At first, 8 

we define the problem of EEG decoding into the framework of supervised classification learning via 9 

CNNs and provide notations useful for the following description. Subsequently, we illustrate the 10 

benchmark datasets used to train and test the CNNs (the proposed one and the SOA CNNs), the 11 

architecture of the proposed CNN, the training procedure, and finally the post-hoc interpretation 12 

technique. The CNNs were developed in PyTorch (Paszke et al., 2017) and trained from scratch using 13 

a workstation equipped with an AMD Threadripper 1900X, NVIDIA TITAN V and 32 GB of RAM.  14 

2.1. Problem definition and notations  15 

Let us assume to have an EEG dataset collected from each subject. Each dataset consists of 16 

separated trials (e.g. obtained by epoching the original continuous EEG recording), with each trial 17 

belonging to one of several classes (let’s say 𝑁𝑐 classes). By indicating with 𝑀(𝑠) the total number of 18 

trials for s-th subject, the corresponding dataset can be denoted by 𝐷(𝑠) =19 

{(𝑋0
(𝑠)

, 𝑦0
(𝑠)

), (𝑋2
(𝑠)

, 𝑦2
(𝑠)

), … , (𝑋
𝑀(𝑠)−1

(𝑠)
, 𝑦

𝑀(𝑠)−1

(𝑠)
)}. 𝑋𝑖

(𝑠)
∈ ℝ𝐶×𝑇 contains the pre-processed EEG 20 

signals of the i-th trial (0 ≤ 𝑖 ≤ 𝑀(𝑠) − 1), collected at 𝐶 electrodes and 𝑇 time samples; 𝑦𝑖
(𝑠)

 is the 21 

class label of the i-th trial and assumes one value among the 𝑁𝑐 possible values, i.e. ∀ 𝑖, 𝑦𝑖
(𝑠)

∈ 𝐿 =22 

{𝑙0, 𝑙2, … , 𝑙𝑁𝑐−1}. The two public EEG datasets used here were EEG signals collected while the 23 

subjects executed (High-Gamma dataset, see Section 2.2.1) or imagined (BCI-IV2a dataset, see 24 
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Section 2.2.2) movements of different body parts. Thus, the classes discriminate among the specific 1 

body part moved (or imagined to be moved) during each trial (e.g. 𝑙0 = “Right Hand”, 𝑙1 = “Left 2 

Hand” etc.). 3 

The problem at hand is to train a classifier 𝑓 so that it learns, from a training set of EEG trials, to 4 

assign the correct label to previously unseen EEG trials. Specifically, the parametric classifier is 5 

𝑓(𝑋𝑖
(𝑠)

; 𝜃(𝑠)) ∶  ℝ𝐶×𝑇 → 𝐿, parametrized by parameters 𝜃(𝑠), which assigns a label 𝑦𝑖
(𝑠)

 to the trial 6 

𝑋𝑖
(𝑠)

, i.e. 𝑦𝑖
(𝑠)

= 𝑓(𝑋𝑖
(𝑠)

; 𝜃(𝑠)). The classifier 𝑓(𝑋𝑖
(𝑠)

; 𝜃(𝑠)) can be formally interpreted as the 7 

composition of two functions: (i) a first function 𝜙 that extracts a (vector-valued) feature 8 

representation 𝜙 (𝑋𝑖
(𝑠)

; 𝜃𝜙
(𝑠)

): ℝ𝐶×𝑇 → ℝ𝑁𝜙 (𝑁𝜙 denoting the number of extracted features) having 9 

parameters 𝜃𝜙
(𝑠)

; (ii) a second function 𝑔(𝜙(𝑠); 𝜃𝑔
(𝑠)

): ℝ𝑁𝜙 → 𝐿 with parameters 𝜃𝑔
(𝑠)

 that exploits the 10 

extracted features to finalize the classification, that is 𝑓(𝑋𝑖
(𝑠)

; 𝜃(𝑠)) = 𝑔 (𝜙 (𝑋𝑖
(𝑠)

; 𝜃𝜙
(𝑠)

) ; 𝜃𝑔
(𝑠)

). When 11 

the decoder 𝑓 is implemented by a CNN, the two stages (feature extraction and final classification) 12 

are learned jointly with all parameters 𝜃(𝑠) optimized simultaneously. By keeping superscript 𝑠 in the 13 

classifier parameters, we emphasize that the parameters are optimized separately per subject, as here 14 

a within-subject training procedure (see Section 2.4) was adopted. The overall set of trials 𝐷(𝑠) of 15 

each subject is divided into a training set, used to optimize the parameters 𝜃(𝑠) for the specific subject, 16 

and a test set used to evaluate the performance of the learned subject-specific decoder.  17 

Of course, besides the trainable parameters 𝜃(𝑠), the network hyper-parameters (i.e. parameters 18 

that define the functional form of decoder 𝑓 not adapted by the learning itself, such as the number of 19 

layers, number and size of convolutional kernels, type of activation function, etc.) may affect the 20 

decoding accuracy. 21 

In the following, we assume that the generic trial 𝑋𝑖
(𝑠)

∈ ℝ𝐶×𝑇 is given in input to the CNNs as a 22 

2D matrix of shape (𝐶, 𝑇), having the time steps along the width and the electrodes along the height. 23 

2.2. Datasets 24 
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The datasets used in this study are two common benchmark MI- and ME-EEG datasets for 1 

sensorimotor rhythm decoding. It is known that the α, β and γ bands are associated with movement-2 

related spectral power modulations and thus provide class-discriminative information (Ball et al., 3 

2008; Crone et al., 1998; G. Pfurtscheller, 1981; G. Pfurtscheller et al., 2006; G. Pfurtscheller & 4 

Aranibar, 1977; G. Pfurtscheller & Berghold, 1989; G. Pfurtscheller & Silva, 1999; Gert Pfurtscheller 5 

et al., 1994). In the following, these datasets are described together with the light pre-processing 6 

applied to obtain the trials 𝑋𝑖
(𝑠)

 used to train and test the CNNs.  7 

2.2.1. Motor execution: High-Gamma dataset  8 

High-Gamma dataset is a 128-channel ME-EEG dataset acquired from 14 healthy subjects (age 9 

27.2±3.6, 6 female, 2 left-handed) by Schirrmeister et al. (2017) and made freely available 10 

(https://web.gin.g-node.org/robintibor/high-gamma-dataset). Each subject performed roughly 1000 11 

(963.1±150.9 mean ± standard deviation (std) across participants) four-second trials of movement 12 

execution (three different movements) and of rest. The three movements were repetitive right- and 13 

left-hand sequential finger tapping, and repetitive toes clenching. Therefore, the decoding problem is 14 

a 4-way classification task. This dataset is well-suited for extracting information from the high γ band 15 

(> 50Hz) since it was acquired in a laboratory optimized for the recording of high-frequency EEG 16 

components (Schirrmeister et al., 2017).  17 

EEG signals were downsampled from 500 to 250 Hz, the same sample frequency as the other 18 

analysed dataset (see Section 2.2.2), so that the CNN hyper-parameters related to the temporal 19 

dimension (i.e. temporal kernel and pooling sizes) were kept the same. The 44 signals relative to the 20 

electrodes covering the motor cortex were selected (Figure 1a) as done in (Schirrmeister et al., 2017) 21 

and a high-pass 3rd order Butterworth filter was applied with a cutoff frequency of 4 Hz. Then, each 22 

electrode signal was standardized by applying an exponential moving average window with a decay 23 

factor of 0.999 as done in (Schirrmeister et al., 2017). Each signal was epoched between -0.5 and 4.0 24 

s relative to the movement onset, so that each trial contains EEG values at 𝐶 = 44 electrodes and at 25 
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𝑇 = 1125 time samples organized in a single input feature map (𝐾 = 1, denoting with 𝐾 the number 1 

of the input feature maps). Finally, the resulting trials were cleaned from high-amplitude artefacts by 2 

removing those with at least one electrode signal with absolute value > 800𝜇𝑉. Based on the previous 3 

description, the CNN input (corresponding to a single trial) had shape (𝐾, 𝐶, 𝑇) = (1,44,1125) in 4 

this case.  5 

For the sake of reproducibility of the results, the trial set 𝐷(𝑠) of the s-th subject was split as in 6 

the original paper (Schirrmeister et al., 2017) for training and testing: for each subject, 160 trials (40 7 

for each class) were used as test set and the remaining as training set. In addition, the training set was 8 

further split into a validation set (20% of the training set) in order to perform early stopping during 9 

the first step of the optimization process (see Section 2.4).  10 

2.2.2. Motor imagery: BCI-IV2a dataset  11 

BCI-IV2a dataset is a 22-channel MI-EEG dataset collected for the BCI Competition IV 12 

(Tangermann et al., 2012). This set comprises four classes of imagined movements of left and right 13 

hands, feet and tongue, acquired from 9 participants and made freely available 14 

(http://www.bbci.de/competition/iv/). Therefore, the decoding problem is a 4-way classification task. 15 

The organizers of the challenge provided the dataset sampled at 250 Hz and band-pass filtered 16 

between 0.5 and 100 Hz. All 22 signals were used, and the montage is shown in Figure 1b.  17 

The EEG signals were band-pass filtered between 4 and 38 Hz with a 3rd order Butterworth filter 18 

and each electrode signal was standardized by applying an exponential moving average window with 19 

a decay factor of 0.999 (Schirrmeister et al., 2017). Then, the signals were epoched between 0.5 and 20 

2.5 s relative to the movement onset of movement imagination, as done in previous studies (Lawhern 21 

et al., 2018; Lotte, 2015; Sakhavi et al., 2015). In this case, the CNN input (i.e. the single trial) had 22 

shape (1,22,500).  23 

Here we used the same training set (288 trials per subject, balanced between the classes) and test 24 

set (288 trials per subject, balanced between the classes) provided by the organizers of the 25 
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competition. The training set was further split into a validation set (20% of the training set) in order 1 

to perform early stopping during the first step of the optimization process (see Section 2.4).  2 

[Figure 1 about here.] 3 

2.3. Sinc-ShallowNet  4 

The proposed architecture is designed with three fundamental blocks, each of them composed by 5 

a few layers. The blocks of the proposed architecture and their fundamental layers are shown in Figure 6 

2; a detailed description of the architecture (including the name, output shape and number of trainable 7 

parameters of each layer) is reported in Table 1. Block 1 has the function to extract spectral and spatial 8 

features from the input data, via temporal and spatial convolutional layers, respectively. The 9 

performed convolutions are designed to reduce the number of trainable parameters while increasing 10 

their interpretability. As to the temporal convolution, this is achieved via a sinc-convolutional layer 11 

(see Section 2.3.1), while for the spatial convolution, this is achieved via a depthwise convolutional 12 

layer (Chollet, 2016). Block 2 is devoted to perform a temporal aggregation (via a pooling layer) of 13 

the first block feature maps. Block 3 is designed to finalize the classification including a single fully-14 

connected layer. The term “sinc” of Sinc-ShallowNet is related to the inclusion of the temporal sinc-15 

convolutional layer within the first block; the term “shallownet” refers to the relative low number of 16 

trainable layers.  17 

[Figure 2 about here.] 18 

[Table 1 about here.] 19 

In the first two blocks, the output of each layer can be interpreted as a collection of spatio-20 

temporal feature maps. Thus, its shape can be described by a tuple of 3 integers, with the first integer 21 

indicating the number of feature maps provided by the layer, the second and third integers the number 22 

of spatial and temporal samples within each map, respectively. Each convolutional layer in these 23 

blocks is characterized by the number of convolutional kernels (𝐾), kernel size (𝐹), stride size (𝑆), 24 

and padding size (𝑃). In addition, depthwise convolution introduces also a depth multiplier (𝐷), that 25 



 13 

specifies the number of kernels to learn for each input feature map. Since Sinc-ShallowNet has two 1 

convolutional layers, the previous symbols are provided with subscript (“1”, “2”). The pooling layer 2 

in block 2 is described by the pool size (𝐹𝑝) and pool stride (𝑆𝑝). Since the adopted convolutions and 3 

pooling are 2D, the hyper-parameters 𝐹𝑖, 𝑆𝑖, 𝑃𝑖 (𝑖 = 1, 2), 𝐹𝑝, 𝑆𝑝 are tuples of two elements: the first 4 

element refers to the spatial dimension, while the second to the temporal dimension. 5 

Block 1 and block 2 stacked together can be seen as implementing the function 6 

𝜙 (𝑋𝑖
(𝑠)

; 𝜃𝜙
(𝑠)

): ℝ𝐶×𝑇 → ℝ𝑁𝜙 (described in Section 2.1), where 𝑁𝜙 is the overall number of units 7 

provided as output by block 2. Block 3 receives this flattened feature map and finalizes the 8 

classification, implementing a dense softmax classification. Thus, this block realizes the function 9 

𝑔(𝜙(𝑠); 𝜃𝑔
(𝑠)

): ℝ𝑁𝜙 → 𝐿 (described in Section 2.1). Of course, all parameters of the three blocks are 10 

optimized simultaneously during the training, without any separation between the feature extraction 11 

and classification stages. 12 

In the following, we will first describe the mathematical aspects of the temporal sinc-13 

convolutional layer and the motivation for its inclusion. Then, the structure and function of each block 14 

will be detailed. 15 

2.3.1. Sinc-convolutional layer  16 

Recently, Ravanelli and Bengio (2018) designed a CNN for speaker recognition (SincNet) 17 

including a “sinc-convolutional layer”, that forces each kernel to describe a band-pass filter. In a 18 

traditional convolutional layer, each value of a kernel is learned during the optimization. In a sinc-19 

convolutional layer, each value of a kernel is defined by a parametrized function, forcing the kernel 20 

description to belong to a specific subset of temporal filters (here only band-pass filters) and at the 21 

same time reducing the number of trainable parameters. This implementation promotes the learning 22 

of more meaningful and well-defined temporal filters.  23 

Considering the i-th electrode signal 𝑥𝑖 (here, for simplicity the superscript 𝑠 referring to a specific 24 

subject is omitted), the 1D convolution between this signal and the j-th kernel 𝑘𝑗 is (Equation 1): 25 



 14 

𝑜𝑖,𝑗[𝑛] = 𝑥𝑖[𝑛] ∗ 𝑘𝑗[𝑛] = ∑ 𝑥𝑖[𝑛 − 𝑙] ∙ 𝑘𝑗[𝑙],𝐹−1
𝑙=0  (1) 1 

where 𝑖 ∈ [0, 𝐶 − 1] with 𝐶 representing the number of EEG electrodes, 𝑗 ∈ [0, 𝐾 − 1] with 𝐾 2 

representing the number of temporal kernels, and 𝐹 is the kernel size. Since, for brevity, we are 3 

describing a 1D convolution, here 𝐹 is 1D (i.e. 𝐹 represents the length of the filter along the temporal 4 

dimension). For instance, let’s say 𝐹 = 65 for capturing frequencies at ∼ 4 Hz and above in case of 5 

data at 250 Hz sampling rate (Lawhern et al., 2018).  6 

The kernel values of a sinc-convolutional layer can be obtained by evaluating the parametrized 7 

function 𝑘𝑗
′[𝑛; 𝜃𝑗] with a specific set of trainable parameters 𝜃𝑗  defining the j-th band-pass filter. To 8 

describe band-pass filters in the frequency domain, the amplitude 𝐾𝑗
′ can be expressed as (Equation 9 

2):  10 

𝐾𝑗
′[𝑓; 𝑓1,𝑗, 𝑓2,𝑗] = 𝑟𝑒𝑐𝑡 (

𝑓

2𝑓2,𝑗
) − 𝑟𝑒𝑐𝑡 (

𝑓

2𝑓1,𝑗
),  (2) 11 

where 𝜃𝑗 = {𝑓1,𝑗 , 𝑓2,𝑗} is the set of the trainable parameters of the j-th kernel. This set includes only 12 

the inferior (𝑓1,𝑗) and the superior (𝑓2,𝑗) cutoff frequencies of the j-th band-pass filter, reducing the 13 

number of trainable parameters of the temporal convolutional layer from 𝐹 =  65 to 2 for each 14 

temporal kernel. In the temporal domain, 𝑘𝑗
′
 can be expressed as (Equation 3):  15 

𝑘𝑗
′[𝑛; 𝑓1,𝑗, 𝑓2,𝑗] = 2𝑓2,𝑗𝑠𝑖𝑛𝑐(2𝜋𝑓2,𝑗𝑛) − 2𝑓1,𝑗𝑠𝑖𝑛𝑐(2𝜋𝑓1,𝑗𝑛). (3) 16 

To alleviate the effects of the inevitable truncation of 𝑘𝑗
′
 on the characteristics of the filters (e.g. 17 

passband ripples, reduced stopband attenuation), the function is multiplied by a Hamming window 18 

(Equation 4) (Ravanelli & Bengio, 2018): 19 

{
𝑘𝑤,𝑗

′[𝑛; 𝑓1,𝑗, 𝑓2,𝑗] = 𝑘𝑗
′[𝑛; 𝑓1,𝑗, 𝑓2,𝑗] ∙ 𝑤[𝑛]

𝑤[𝑛] = 0.54 − 0.46 cos (
2𝜋𝑛

𝐹−1
)

. (4) 20 

The so-defined convolutional layer can be integrated into a traditional CNN to learn band-pass 21 

filters in the first layer, with only the two cutoff frequencies as trainable parameters. In this study, 22 

these frequencies were randomly initialized from a uniform distribution in the frequency range of 23 
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interest: (4,125] Hz and (4,38] Hz for ME- and MI-EEG signals, respectively. During the 1 

optimization, these frequencies were updated in the range of interest by keeping 𝑓2,𝑗 > 𝑓1,𝑗.  2 

2.3.2. Block 1: Spectral and spatial feature extraction  3 

The first block (see Figure 2 and Table 1) performed a separate spectral and spatial feature 4 

learning. The first layer of this block was a 2D temporal sinc-convolutional layer that learned 𝐾1 =5 

32 band-pass temporal filters with a low number of learnable parameters. The filter size 𝐹1 was set 6 

to (1,65) to extract information at 4 Hz and above, since the CNN input data were high-pass filtered 7 

at 4 Hz in the pre-processing stage (see Section 2.2). Following this layer, batch normalization (see 8 

Section 2.5) (Ioffe & Szegedy, 2015) was introduced along the feature map dimension. Then, a 2D 9 

spatial depthwise convolutional layer was introduced to learn 𝐷2 = 2 spatial filters of size (𝐶, 1) for 10 

each temporal feature map, with a total number of 𝐾2 = 𝐾1 · 𝐷2 spatial filters. The depthwise 11 

convolution is not fully-connected with the previous temporal feature maps (see Figure 2), reducing 12 

the number of trainable parameters. Moreover, it allows a straightforward extraction of the spatial 13 

distribution of each band-pass filter, making the interpretation of the learned CNN features easier. In 14 

this layer, kernel maximum norm constraint was used.  15 

2.3.3. Block 2: Aggregation  16 

The second block (see Figure 2 and Table 1) was designed to perform a temporal aggregation of 17 

the first block output. First, batch normalization (see Section 2.5) (Ioffe & Szegedy, 2015) along the 18 

feature map dimension was applied to the neurons of the spatial depthwise convolutional layer, 19 

followed by a non-linear activation function. In this study, Exponential Linear Units (ELUs) were 20 

adopted with activation function 𝑓(𝑥) = 𝑥, 𝑥 > 0 and 𝑓(𝑥) = 𝛼 · (𝑒𝑥𝑝(𝑥) − 1), 𝑥 ≤ 0, as this non-21 

linearity allows faster and more noise-robust learning than other non-linearities (Clevert et al., 2015). 22 

Furthermore, Schirrmeister et al. (2017) reported better performance for shallow and deep CNNs 23 

applied to EEG motor decoding when using ELUs compared to other activation functions. The 𝛼 24 

parameter is the ELU hyper-parameter that controls the saturation value for negative inputs and 𝛼 =25 
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1 was set for the proposed architecture. Then, an average pooling layer was introduced to reduce the 1 

number of trainable parameters in the transition from the block 2 and the subsequent fully-connected 2 

layer in block 3, i.e. the convolutional-to-dense connections. A pool size of 𝐹𝑝 = (1, 109) and pool 3 

stride of 𝑆𝑝 = (1, 23) were used. These hyper-parameters allow the extraction of averaged spatial 4 

activations of ∼ 500 ms with a stride of ∼ 100 ms. Lastly, a dropout layer (Srivastava et al., 2014) 5 

was introduced (see Section 2.5).  6 

2.3.4. Block 3: Classification  7 

After the second block, a flatten layer was introduced to unroll the second block output values, 8 

resulting in a 1D array of features extracted by the previous layers. These values are densely 9 

connected with a single fully-connected layer containing 𝑁𝑐 = 4 neurons.  10 

Accordingly, the entire CNN maps the input data of the i-th trial 𝑋𝑖
(𝑠)

 to one real number per 11 

class, i.e. ℎ(𝑋𝑖
(𝑠)

; 𝜃(𝑠)): ℝ𝐶 × 𝑇 ⟶ ℝ𝑁𝑐 . These 𝑁𝑐 outputs are transformed via a softmax activation 12 

function to obtain the conditional probabilities of the labels 𝑙𝑘 ∀𝑘 ∈ 𝐿 = {𝑙0, 𝑙1, … , 𝑙𝑁𝑐−1}: 13 

𝑝(𝑙𝑘|𝑋𝑖
(𝑠)

, 𝜃(𝑠)) =
exp ℎ𝑘(𝑋𝑖

(𝑠)
;𝜃(𝑠))

∑ ℎ𝑗(𝑋𝑖
(𝑠)

;𝜃(𝑠))
𝑁𝑐−1
𝑗=0

. Since the training strategy adopted was a within-subject training 14 

(see Section 2.4), the softmax provides subject-specific conditional distribution over the 𝑁𝑐 classes 15 

for each example. The final classification is performed by assigning the label with the maximum 16 

conditional probability to the trial 𝑋𝑖
(𝑠)

, i.e. 𝑦𝑖
(𝑠)

= 𝑓(𝑋𝑖
(𝑠)

; 𝜃(𝑠)) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑙𝑘

𝑝 (𝑙𝑘|𝑋𝑖
(𝑠)

, 𝜃(𝑠)). 17 

Based on the number of trainable parameters within each layer (see Table 1), Sinc-ShallowNet 18 

introduced a total number of trainable parameters of 13828 and 5508, for ME- and MI-EEG signals, 19 

respectively.  20 

2.3.5. Design choices 21 

In the following, the Sinc-ShallowNet described as in the previous sections (with the 22 

corresponding hyper-parameters, see Table 1) will be denoted as the “basal” Sinc-ShallowNet. In 23 



 17 

order to evaluate the influence of specific hyper-parameters of interest on the performance metric, a 1 

post-hoc hyper-parameter evaluation was performed by testing some variants compared to the basal 2 

architecture. The investigated hyper-parameters were: (i) the number of the temporal filters in block 3 

1 (𝐾1); (ii) the number of the spatial filters per temporal filter in block 1 (𝐷2); (iii) the pooling size 4 

𝐹𝑝 and stride 𝑆𝑝 of the average pooling in block 2; (iv) the recombination of the spatial activations. 5 

In the condition (iv), a pointwise convolution was included as the first layer in block 2 (fed by the 6 

outputs of the spatial depthwise convolution), followed by the other layers of block 2 (i.e. batch 7 

normalization, non-linear activation, average pooling, dropout).  8 

These alternative design choices were evaluated through an extensive experimentation as 9 

described and motivated in Table 2.  10 

[Table 2 about here.] 11 

From the specifications reported in Table 2, five variants of Sinc-ShallowNet were designed by 12 

changing one specific hyper-parameter at a time while keeping all other hyper-parameters fixed, as 13 

previously done in Schirrmeister et al. (2017) and Farahat et al. (2019), and were trained as specified 14 

in Section 2.4.1.  15 

2.4. Training 16 

2.4.1. Trialwise training strategy  17 

For each subject, the entire trial was used as input and the corresponding trial label as target to 18 

optimize one CNN per subject (within-subject training). Weights were randomly initialized adopting 19 

a Xavier uniform initialization scheme (Glorot & Bengio, 2010) and biases were initialized to zero. 20 

The cutoff frequencies of the temporal sinc-convolutional layer were initialized as described 21 

previously (see Section 2.3.1). The trainable parameters 𝜃(𝑠) were optimized such that the parametric 22 

classifier assigned high probabilities to the correct labels by minimizing the sum of the per-example 23 

losses computed on the 𝑁 training examples, converging to an optimal trainable parameter set 𝜃(𝑠)∗ 24 

(Equation 5):  25 
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𝜃(𝑠)∗ = arg min
𝜃(𝑠)

∑ 𝑙𝑜𝑠𝑠 (𝑦𝑖
(𝑠)

, 𝑝(𝑙𝑘|𝑋𝑖
(𝑠)

, 𝜃(𝑠)))𝑁−1
𝑖=0 , (5) 1 

where 2 

𝑙𝑜𝑠𝑠 (𝑦𝑖
(𝑠)

, 𝑝(𝑙𝑘|𝑋𝑖
(𝑠)

, 𝜃(𝑠))) = ∑ −log (𝑝(𝑙𝑘|𝑋𝑖
(𝑠)

, 𝜃(𝑠))) ∙ 𝛿(𝑦𝑖 = 𝑙𝑘)𝑁𝑐−1
𝑘=0  (6) 3 

is the negative log likelihood of the labels. The minimization of the negative log likelihood is 4 

equivalent to the minimization of the cross entropy between the empirical probability distribution 5 

defined by the training labels and the probability distribution defined by the model. The parameters 6 

were optimized via mini-batch stochastic gradient descent, using gradients computed via 7 

backpropagation. Adaptive moment estimation (Adam) (Kingma & Ba, 2014), a commonly used 8 

adaptive learning rate optimization algorithm, was used as optimizer with a learning rate of 1e-3 and 9 

a mini-batch size of 64 trials.  10 

The training phase was divided into two steps (Goodfellow et al., 2013). During the first training 11 

step (800 maximum number of epochs), the CNN was trained until the validation loss reached its 12 

minimum, performing early stopping. The training loss recorded at the first run minimum became the 13 

target threshold for the second run. During the second training step (800 maximum number of 14 

epochs), the validation set was included in the training set and the optimization continued until the 15 

validation loss reached the threshold loss.  16 

This trialwise training strategy was applied to the basal Sinc-ShallowNet (Table 1), and all its 17 

variants (Table 2) on both ME- and MI-EEG dataset, to test the effect of different design choices on 18 

the decoding accuracy (see Section 2.3.5). Moreover, this strategy was applied to the three re-19 

implemented SOA CNNs on both datasets, for a comparison with Sinc-ShallowNet performance (see 20 

Section 2.6), as well as to evaluate how the two training strategies affect different CNN architectures 21 

(see Sections 2.4.2 and 2.6).  22 

2.4.2. Cropped training strategy  23 

Schirrmeister et al. (2017) introduced a cropped training strategy for EEG decoding: they used 24 

crops of trials (i.e. sliding time windows within the trial) as input for the CNNs instead of the entire 25 
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trial and set the target label of each crop equal to the label of the trial the crop belonged to. This leads 1 

to an augmented dataset that could increase the performance on the test set (i.e. additional regularizer 2 

effect). Actually, Schirrmeister et al. (2017) reported a statistically significant improvement of 3 

cropped training only for deep architectures. Here, cropped training was applied to Sinc-ShallowNet 4 

(in its basal version), as well as to the re-implemented SOA CNNs, to compare trialwise training with 5 

cropped training for each network, in order to further study the effect of cropped training depending 6 

on the CNN architecture. To perform cropped training and allow a strict comparison with results of 7 

Schirrmeister et al. (2017), the pre-processing of the MI dataset had to be modified by epoching 8 

signals between 0.5-4.0 s to keep the same epoching procedure as in (Schirrmeister et al., 2017) (i.e. 9 

an epoching procedure that allows the extraction of a few overlapped crops of 2 s), resulting in EEG 10 

patterns of shape (1,22,875) as input. This is at variance with the 0.5-2.5 s epoching of the MI dataset 11 

adopted here for the other analyses (since such epoching was in agreement with other studies 12 

(Lawhern et al., 2018; Lotte, 2015; Sakhavi et al., 2015), see also Section 2.2.2). Therefore, for each 13 

CNN, the trialwise training on the MI dataset had to be performed also with the 0.5-4 s epoching to 14 

evaluate the effect of cropped training against trialwise training. Crops of 2 s (corresponding to 500 15 

time samples) with a stride of 0.5 s (corresponding to 125 time samples) were extracted for each trial 16 

and these crops represented the CNN inputs. For each subject, this cropping procedure resulted in 6 17 

crops (1,44,500) per trial for the ME-EEG signals and 4 crops (1,22,500) per trial for the MI-EEG 18 

signals, augmenting the available dataset. Adopting this training strategy, the CNNs output one 19 

prediction for each crop and thus several crop predictions belong to the same trial. To further 20 

regularize CNNs trained with cropped training, the same loss function designed by Schirrmeister et 21 

al. (2017), named “tied sample loss function” (Equation 7) was employed. In particular, the cross-22 

entropy of two neighbouring crop predictions is added to the usual negative log likelihood of the 23 

labels to drive the optimization towards more stable features across crops. Let us denote with 𝑡𝑐 the 24 

start frame of the c-th crop, with 𝑇 the crop size (i.e. number of crop temporal samples) and with 25 

𝑋𝑖,𝑐
(𝑠)

= 𝑋𝑖
(𝑠)

[: , : , 𝑡𝑐: 𝑡𝑐 + 𝑇] the c-th crop (0 ≤ 𝑐 ≤ 5 and 0 ≤ 𝑐 ≤ 3 for the ME- and MI-EEG signals, 26 
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respectively) belonging to the i-th trial of the s-th subject. Hence, the loss was modified to depend 1 

also on the prediction for the next crop 𝑐 + 1:  2 

𝑙𝑜𝑠𝑠 (𝑦𝑖
(𝑠)

, 𝑝(𝑙𝑘|𝑋𝑖,𝑐
(𝑠)

, 𝜃(𝑠))) = ∑ − log (𝑝(𝑙𝑘|𝑋𝑖,𝑐
(𝑠)

, 𝜃(𝑠))) ∙ 𝛿(𝑦𝑖 = 𝑙𝑘)𝑁𝑐−1
𝑘=0 +3 

                                                         ∑ − log (𝑝(𝑙𝑘|𝑋𝑖,𝑐
(𝑠)

, 𝜃(𝑠))) ∙ 𝑝(𝑙𝑘|𝑋𝑖,𝑐+1
(𝑠)

, 𝜃(𝑠))
𝑁𝑐−1
𝑘=0 . (7) 4 

Except for the loss function, cropped training follows the setting adopted for the trialwise 5 

training, sharing the same hyper-parameters (e.g. same optimizer, regularizers, learning rate, mini-6 

batch size, etc.) and the same two-runs training procedure. Cropped training was applied to Sinc-7 

ShallowNet (its basal version, see Table 1) and to the other three re-implemented CNNs. 8 

2.5. Regularization  9 

In addition to early stopping and cropped training which act as regularizers, other regularizing 10 

techniques were used and implicitly integrated in Sinc-ShallowNet, as specified in its description (see 11 

Sections 2.3.2, 2.3.3, 2.3.4). These are highlighted here:  12 

i. Dropout (Srivastava et al., 2014). This technique randomly sets the outputs of the previous layer 13 

to zero with a probability p, during each training update. This helps to prevent co-adaptation (i.e. 14 

that some neurons are highly dependent to others) which could lead to overfitting. In the proposed 15 

network, dropout with 𝑝 = 0.5 was introduced in block 2 immediately after the average pooling 16 

layer.  17 

ii. Batch normalization (Ioffe & Szegedy, 2015). This technique mitigates a phenomenon named 18 

“internal covariate shift”, i.e. the change in the distribution of the layers’ activation due to the 19 

change of the trainable parameters during training (Ioffe & Szegedy, 2015). This phenomenon 20 

hinders the learning since the layers continuously need to adapt to the changed distribution while 21 

training and is particularly severe in deep neural networks. Batch normalization reduces the 22 

internal covariate shift, and consequently accelerates the training, by normalizing the output 23 

feature maps of intermediate layers to zero mean and unit variance across each training mini-24 
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batch. This technique introduces two trainable parameters since the normalization is followed by 1 

a channelwise affine transformation (that serves to maintain the expressive power of the 2 

network), whose parameters of scaling and shift are learned during training. Batch normalization 3 

enables higher learning rates without the risk of divergence, reduces the influence of a specific 4 

initialization scheme on the training, and also regularizes the model (Ioffe & Szegedy, 2015). 5 

While this technique is commonly used in deep neural networks, also shallow neural networks 6 

adopting batch normalization have been proposed in the literature. In particular, shallow CNNs 7 

including batch normalization have been recently applied to EEG signals for ME and MI 8 

decoding tasks (Lawhern et al., 2018; Schirrmeister et al., 2017), and for P300 detection (Liu et 9 

al., 2018). Importantly, Schirrmeister et al. (2017) reported an improved performance both in 10 

their shallow and deeper neural networks when using batch normalization compared to omitting 11 

it. Motivated by these previous results, we adopted this technique in our shallow CNN (blocks 12 

1, 2) too, by applying it to the output of the convolutional layer immediately before the non-13 

linearity, as recommended in the original paper (Ioffe & Szegedy, 2015), with a momentum term 14 

of 𝑚 = 0.99 and with 𝜀 = 1𝑒 − 3 for numerical stability.  15 

iii. Kernel max-norm regularization. This technique constraints the norm of the trainable parameters 16 

to be upper bounded by a fixed constant c. Typically, it improves the performance of mini-batch 17 

stochastic gradient descent training and it was found to be especially useful with dropout 18 

(Srivastava et al., 2014). This technique was applied to the spatial depthwise convolutional (block 19 

1) and to the fully-connected (block 3) layers similarly to (Lawhern et al., 2018), using 𝑐 = 1 20 

and 𝑐 = 0.5, respectively.  21 

These regularization techniques were also used in the other re-implemented CNNs, as proposed in 22 

their original formulation.  23 

2.6. Classification performance and comparison with state-of-the-art approaches  24 
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The performance of Sinc-ShallowNet in its basal form (Table 1) was compared to the five 1 

variants (Table 2) and to the re-implemented SOA algorithms. The latter comprise three CNNs 2 

(EEGNet (Lawhern et al., 2018), DeepConvNet and ShallowNet (Schirrmeister et al., 2017)) and one 3 

traditional machine learning approach (FBCSP (Ang et al., 2008)+rLDA).  4 

The three SOA CNNs (more details in Appendix A) include different convolutional modules, 5 

while keeping a single fully-connected layer in the classification module. EEGNet consists of three 6 

convolutional layers (one of them depthwise and one separable), DeepConvNet of five convolutional 7 

layers, and ShallowConvNet of two convolutional layers. The first two CNNs are general-purpose 8 

architectures; the last CNN is designed specifically for oscillatory signal classification, learning 9 

features related to log band-power by the introduction of a squaring nonlinearity, an average pooling 10 

layer and a log nonlinearity after the convolutional module. As EEGNet was designed for 128 Hz 11 

EEG signals (Lawhern et al., 2018), we multiplied the lengths of its temporal kernels and pooling 12 

sizes by a scaling factor of 2 to learn features coherently with the sampling frequency used here (a 13 

similar procedure was adopted in (Lawhern et al., 2018) when previous CNNs were re-implemented 14 

for comparison with EEGNet). Then, as explained in Sections 2.4.1 and 2.4.2, these CNNs were 15 

trained as Sinc-ShallowNet, with trialwise and cropped training strategies. Compared to Sinc-16 

ShallowNet (in its basal form having 13828 and 5508 trainable parameters in case of ME- and MI-17 

EEG signals, respectively), the other three CNNs (EEGNet, ShallowConvNet and DeepConvNet) 18 

have a total number of trainable parameters of 2604, 82564, 298229 in case of ME-EEG signals, and 19 

of 1932, 40644, 278079 in case of MI-EEG signals, respectively. EEGNet and ShallowConvNet are 20 

both shallow architectures, the first one having an extremely low number of trainable parameters due 21 

to the low number of temporal kernels adopted in the first layer (𝐾1 = 8) and the use of depthwise 22 

and separable convolutions. These two architectures were chosen as reference shallow architectures 23 

(both general-purpose and specific for sensorimotor rhythm classification) to be compared with Sinc-24 

ShallowNet. DeepConvNet was chosen as reference deep architecture (general-purpose) to be 25 

compared with Sinc-ShallowNet.  26 
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The traditional decoding pipeline adopted included FBCSP – a commonly used algorithm in EEG 1 

decoding and the winner of the BCI competition IV datasets 2a and 2b – coupled with rLDA. More 2 

details about the implementation of FBCSP+rLDA can be found in Appendix B. This algorithm was 3 

used as the best-performing traditional approach in movement-related EEG decoding to be compared 4 

with Sinc-ShallowNet. 5 

We adopted the decoding accuracy as performance metric of the classifiers; furthermore, for 6 

completeness, the confusion matrices of basal Sinc-ShallowNet and the benchmark traditional 7 

approach FBCSP+rLDA were computed. Wilcoxon signed-rank test was used to check for a 8 

statistically significant difference between the contrasted conditions. To correct for multiple tests, a 9 

false discovery rate correction at 𝛼 = 0.05 using the Benjamini-Hochberg procedure (Benjamini & 10 

Hochberg, 1995) was applied.  11 

2.7. Interpretation  12 

Post-hoc interpretation techniques were applied to Sinc-ShallowNet (in its basal version) at the 13 

end of the optimization. These include temporal and spatial kernel visualizations and an additional 14 

gradient-based technique, denoted as “temporal sensitivity analysis” (since it is applied to the features 15 

learned by the temporal sinc-convolutional layer).  16 

2.7.1. Temporal and spatial kernels visualization  17 

The visualization of the learned kernels of the first block allows the interpretation of the temporal 18 

and spatial convolutional layers. The temporal sinc-convolutional layer introduced in the Sinc-19 

ShallowNet architecture allows a direct interpretation of the learned parameters, which are the lower 20 

and upper cutoff frequencies 𝑓1,𝑗 and 𝑓2,𝑗 of the 𝐾1 band-pass filters. Hence, for each subject, the 21 

distribution of the learned temporal kernels can be visualized by displaying how their passbands are 22 

distributed within the frequency range of the input signals (i.e. (4,125] Hz for ME- and (4,38] Hz for 23 

MI-EEG signals), and the preferred EEG rhythm (e.g. α, β, etc.) can be immediately derived. In 24 

particular, the following EEG bands 𝑏 were considered: θ = (4,8] Hz, α = (8,12] Hz, β = (12,30] Hz, 25 
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low γ = (30,50] Hz, high γ = (50, 125] Hz. A temporal filter was considered belonging to a specific 1 

band 𝑏 if its central frequency fell within that band (actually, in most cases the band-pass filters had 2 

narrow passbands totally falling within a specific band range, see also Section 3.3 in Results).  3 

Moreover, since the spatial depthwise convolution applies separate spatial kernels to each 4 

temporally-filtered version of the input, the learned spatial kernels can be interpreted as the spatial 5 

features associated to a specific band-pass filter and can be visualized as scalp maps. Since we were 6 

interested in the evaluation of the discriminant power at the level of single electrode, here the absolute 7 

spatial kernel values were considered, as done by (Cecotti & Graser, 2011). This visualization was 8 

limited to the spatial filters related to the more relevant and more class-specific band-pass filters 9 

(selected as described in Section 2.7.2).  10 

2.7.2. Temporal sensitivity analysis  11 

The visualization of the learned band-pass filters (see Section 2.7.1) provides information about 12 

their frequency-range preference but does not provide any information about their importance for the 13 

classification task. Hence, in order to quantify the relevance of the band-pass filters for the 14 

classification task, we designed the temporal sensitivity analysis inspired by the saliency maps 15 

(Simonyan et al., 2013). This analysis allows the quantification of the importance of the different 16 

temporal kernels based on the gradient values, as described in the following (for simplicity, here we 17 

omit the superscript s referring to the specific subject).  18 

1. Gradient computation. Given a class k of interest and the i-th test trial of the s-th subject 𝑋𝑖 ∈ ℝ𝐶×𝑇 19 

as input, let 𝑌𝑗 ∈ ℝ𝐶×𝑇1 (𝑌𝑖,𝑗when 𝑋𝑖 is fed as input) be the output of the j-th temporal kernel (i.e. the 20 

j-th feature map) of the sinc-convolutional layer and 𝑧𝑘 = ℎ𝑘(𝑋; 𝜃) ∈ ℝ𝑁𝑐 (𝑧𝑖,𝑘 when 𝑋𝑖 is fed as 21 

input) be the class score (i.e. output of the block 3 fully-connected layer, immediately before the 22 

softmax activation function). The class score 𝑧𝑘 is a highly non-linear function of 𝑌𝑗; given the input 23 

test trial 𝑋𝑖, this function can be approximated by a linear function in the neighbourhood of 𝑌𝑖,𝑗 by 24 

computing the first-order Taylor expansion (Simonyan et al., 2013) (Equation 8):  25 
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{

𝑧𝑘 = 𝑧𝑘(𝑌𝑗) ≈ 𝐺𝑖,𝑗,𝑘
∗𝑇 ∙ 𝑌𝑗

∗ + 𝑏𝑖,𝑗,𝑘

𝐺𝑖,𝑗,𝑘
∗ =

𝜕𝑧𝑘

𝜕𝑌𝑗
|

𝑌𝑖,𝑗
∗

. (8) 1 

In the Equation 8, the superscript ∗ denotes a vectorized form (column vector), superscript 𝑇 2 

represents the transposition of the vector, and 𝑏𝑖,𝑗,𝑘 a bias term. In this linearized expression, the 3 

magnitude of each element of 𝐺𝑖,𝑗,𝑘
∗

 quantifies how much the corresponding spatio-temporal sample 4 

within the j-th feature map (i.e. the j-th temporally filtered version of the input trial) affects the score 5 

for the k-th class 𝑧𝑘 when presenting the input 𝑋𝑖. In other words, this quantifies how the value of an 6 

output category (e.g. output of the neuron related to class “Right Hand”) changes with respect to a 7 

small change in the temporally filtered EEG signals.  8 

2. Gradient processing  9 

a) For each 𝐺𝑖,𝑗,𝑘 (i.e. ∀ 𝑖, 𝑗, 𝑘), the absolute value |𝐺𝑖,𝑗,𝑘| was computed and averaged across 10 

the spatial and temporal dimension to obtain a scalar value |𝐺𝑖,𝑗,𝑘|̅̅ ̅̅ ̅̅ ̅̅ .  11 

b) Quantities |𝐺𝑖,𝑗,𝑘|̅̅ ̅̅ ̅̅ ̅̅  related to trials belonging to each specific class were averaged together, 12 

resulting in the absolute gradient value 𝑔𝑗,𝑘 (scalar value):  13 

𝑔𝑗,𝑘 =
1

𝑀𝑘
∑ |𝐺𝑖,𝑗,𝑘|̅̅ ̅̅ ̅̅ ̅̅

𝑖 . (9) 14 

In Equation 9, the sum runs over the 𝑀𝑘 trials belonging to the class 𝑘, i.e. {𝑖 ∶  𝑦𝑖 = 𝑘}. 15 

Hence, 𝑔𝑗,𝑘 quantifies how much, on average, the j-th temporal filter affects the score of the 16 

class 𝑘.  17 

c) The gradients 𝑔𝑗,𝑘 (Equation 9) were normalized dividing by the maximum across the classes 18 

and kernels (Equation 10):  19 

�̂�𝑗,𝑘 =
𝑔𝑗,𝑘

max
𝑗,𝑘

𝑔𝑗,𝑘
 . (10) 20 

This was done in order to facilitate the comparison across kernels and classes.  21 
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Then, the normalized gradients �̂�𝑗,𝑘 from Equation 10 were further processed in two ways 1 

for different purposes (d.1 and d.2). 2 

d.1) Temporal sensitivity analysis at the level of EEG bands – For each considered EEG band 𝑏, 3 

�̂�𝑗,𝑘 were averaged across the band-pass filters belonging to a specific EEG band 𝑏 (see 4 

Section 2.7.1). The resulting score �̂�𝑏,𝑘 (Equation 11) quantifies the overall importance of 5 

the specific band 𝑏 for the classification of the specific class 𝑘: 6 

�̂�𝑏,𝑘 =
1

𝐾1,𝑏
∑ �̂�𝑗,𝑘𝑗 . (11) 7 

In Equation 11, the sum runs over the 𝐾1,𝑏 band-pass filters belonging to the 𝑏 band, i.e. 8 

{𝑗 ∶  𝑓𝑐,𝑗 =
𝑓1,𝑗+𝑓2,𝑗

2
∈ (𝑓1,𝑏 , 𝑓2,𝑏]}, where (𝑓1,𝑏, 𝑓2,𝑏] denotes the frequency range of the band.  9 

d.2) Temporal sensitivity analysis at the level of single band-pass filter – This step was 10 

introduced to select the more relevant and more class-specific band-pass filters (i.e. the 11 

filters that are relatively more discriminative for a specific class than for the other classes) 12 

and to limit the visualizations of the learned spatial features to these selected temporal filters. 13 

Indeed, the normalized gradients �̂�𝑗,𝑘 (Equation 10) corresponding to a specific temporal 14 

filter, can assume large values across all classes, indicating a large importance in the use of 15 

that temporal filter shared across the classes. To emphasize the specificity of each filter for 16 

a single class or a subset of classes, the gradient �̂�𝑗,𝑘 was rescaled. The rescaling (Equation 17 

12) was designed so that a gradient resulting higher (or lower) for a specific class than for 18 

the other classes on average, was scaled more (or less). This way, the differences of the filter 19 

relevance across the classes were emphasized: 20 

{
�̂�𝑗,𝑘

′ = 𝛾𝑗,𝑘 ∙ �̂�𝑗,𝑘,

𝛾𝑗,𝑘 =
3∙�̂�𝑗,𝑘

∑ �̂�𝑗,𝑚
3
𝑚=0,𝑚≠𝑘

. (12) 21 

Based on this scaling, the quantity �̂�𝑗,𝑘
′  assumes larger values (𝛾𝑗,𝑘 > 1) when the impact of 22 

j-th temporal filter on the score of the specific class k is higher than its average impact on 23 
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the other three classes; vice versa it assumes lower values (𝛾𝑗,𝑘 < 1) when the j-th temporal 1 

filter impacts on average more on the other three classes than on the considered k class. 2 

Therefore, given a class 𝑘, filters having �̂�𝑗,𝑘
′ > �̂�𝑗,𝑘 (i.e. with 𝛾𝑗,𝑘 > 1) represent the filters 3 

having a discriminative power relatively heavier for that class than for the other classes on 4 

average. Thus, considering a class 𝑘, the more relevant and more class-specific temporal 5 

band-pass filters can be identified as the filters with 𝛾𝑗,𝑘 > 1 and that scored higher �̂�𝑗,𝑘
′  6 

values. Lastly, the spatial kernels associated with the so selected band-pass filters can be 7 

visualized as described in Section 2.7.1.  8 

3. RESULTS  9 

3.1. Classification performance and comparison with state-of-the-art approaches  10 

In this section, the performances of the basal Sinc-ShallowNet (trained via trialwise strategy) are 11 

compared with the traditional machine learning algorithm and with the three re-implemented CNNs 12 

(trained via trialwise strategy).  13 

Figure 3 reports the confusion matrices obtained with the proposed architecture and with the 14 

machine learning algorithm FBCSP+rLDA, with ME- and MI-EEG signals. Each of these matrices 15 

represents the confusion matrix across the subject-specific classifiers. Denoting with i and j the i-th 16 

row and j-th column, the entry in the (i,j) location represents the total number of test trials across 17 

subjects predicted as class i when the true class is j (together with the % ratio between this number 18 

and the total number of trials for each class j). For each (i,j) location (16 in total), a Wilcoxon signed-19 

rank test was performed between the entries of the subject-specific confusion matrices obtained with 20 

FBCSP+rLDA and with Sinc-ShallowNet, separately for the two datasets; that is, for each (i,j) 21 

location, we compared two samples of 14 values in case of the ME dataset and two samples of 9 22 

values in case of the MI dataset. In order to correct for multiple comparisons (16 in total within each 23 

dataset), the Benjamini-Hochberg procedure was applied. The corrected p-value resulting from each 24 
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comparison is displayed inside the corresponding cell of the matrices reporting Sinc-ShallowNet 1 

results (matrices on the right in Figure 3). 2 

[Figure 3 about here.] 3 

The confusion matrices were similar between the approaches, with only 4 entries significantly 4 

different (𝑃 < 0.05) in case of ME-EEG signals. In particular, Sinc-ShallowNet classified 5 

significantly better “Left Hand” and “Feet” classes (𝑃 = 0.036) and produced a significantly lower 6 

number of misclassifications between “Right Hand” and “Rest” classes. In both algorithms, the 7 

majority of the misclassifications were associated with a wrong discrimination between “Right 8 

Hand”-“Left Hand” classes (110 misclassified trials for FBCSP+rLDA and 90 for Sinc-ShallowNet) 9 

in case of ME-EEG signals, and between “Right Hand”-“Left Hand” classes (196 misclassified trials 10 

for FBCSP+rLDA and 179 for Sinc-ShallowNet) and “Feet”-“Tongue” classes (181 misclassified 11 

trials for FBCSP+rLDA and 160 for Sinc-ShallowNet) in case of MI-EEG signals.  12 

Tables 3 and 4 show the accuracies obtained with Sinc-ShallowNet, the three SOA CNNs, and 13 

the algorithm FBCSP+rLDA on ME- and MI-EEG signals, respectively. Results of the statistical 14 

analyses are reported too.  15 

[Table 3 about here.] 16 

[Table 4 about here.] 17 

The proposed architecture scored an accuracy across subjects (mean ± std) of 91.2±9.1 % (inferior 18 

only to ShallowConvNet) and of 72.8±12.9 % (best overall) on ME- and MI-EEG signals, 19 

respectively. Compared to the baseline FBCSP+rLDA algorithm, ShallowConvNet and Sinc-20 

ShallowNet performed significantly better on both ME- (𝑃 = 0.024, 𝑃 = 0.024, respectively) and 21 

MI-EEG signals (𝑃 = 0.046, 𝑃 = 0.031, respectively). Sinc-ShallowNet significantly outperformed 22 

DeepConvNet (𝑃 = 0.026) on ME-EEG signals, and both EEGNet (𝑃 = 0.027) and DeepConvNet 23 

(𝑃 = 0.027) on MI-EEG signals. Lastly, ShallowConvNet significantly outperformed Sinc-24 

ShallowNet (𝑃 = 0.040) on ME-EEG signals; however, regarding this point, further considerations 25 
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can be drawn from the results of the post-hoc hyper-parameter evaluation (see Section 4.2 in the 1 

Discussion).  2 

3.2. Post-hoc hyper-parameter evaluation and training strategy evaluation  3 

The performance obtained with the basal Sinc-ShallowNet with ME- and MI-EEG signals was 4 

compared to the Sinc-ShallowNet variants, obtained by changing the hyper-parameters 𝐾1, 𝐷2, 𝐹𝑝, 𝑆𝑝 5 

and by introducing an additional pointwise convolutional layer as first layer in block 2 (see Section 6 

2.3.5). Specifically, each variant was obtained by changing one hyper-parameter at a time while 7 

keeping the other hyper-parameters unchanged (see Table 2). In this comparison, both the basal Sinc-8 

ShallowNet and each variant were trained adopting the trialwise training strategy (see Section 2.4.1). 9 

The overall effect of each hyper-parameter change was quantified jointly on ME- and MI-EEG signals 10 

by computing the difference in accuracy between the tested (variant) and basal configurations ∆𝑎𝑐𝑐=11 

𝑎𝑐𝑐𝑡𝑒𝑠𝑡𝑒𝑑 − 𝑎𝑐𝑐𝑟𝑒𝑓 (e.g. ∆𝑎𝑐𝑐= 𝑎𝑐𝑐𝐾1=8 − 𝑎𝑐𝑐𝐾1=32 for the comparison “𝐾1 = 8−𝐾1 = 32”, 12 

contrasting the configuration with 𝐾1 = 8 temporal filters and the basal configuration having 𝐾1 =13 

32 filters). The results are shown in Figure 4a: a significant worsening of the performance occurred 14 

when 𝐾1 decreased (𝑃 = 0.005 and 𝑃 = 0.010 when comparing 𝐾1 = 8 vs 𝐾1 = 32 and 𝐾1 = 8 vs 15 

𝐾1 = 16, respectively), while no significant effect was induced by the other hyper-parameter 16 

changes.  17 

We evaluated the impact of cropped training compared to trialwise training on Sinc-ShallowNet 18 

(in its basal configuration) and on each re-implemented SOA CNNs. As detailed in Section 2.4.2, the 19 

trialwise training strategy adopted for this analysis was designed with a different epoching of the MI-20 

EEG signals (0.5-4 s rather than 0.5-2.5 s as adopted in the rest of the presented results) in order to 21 

follow the procedure used in (Schirrmeister et al., 2017). Nevertheless, we verified that no statistically 22 

significant difference in performance emerged between the trialwise training implemented with the 23 

different epoching of MI-EEG signals (𝑃 = 0.441, 𝑃 = 0.345, 𝑃 = 0.347, 𝑃 = 0.346, respectively 24 

for DeepConvNet, ShallowConvNet, Sinc-ShallowNet and EEGNet.). The overall effect of cropped 25 
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training on each CNN was quantified jointly on ME- and MI-EEG signals by computing the 1 

difference in accuracy between the cropped and the trialwise training strategies ∆𝑎𝑐𝑐= 𝑎𝑐𝑐𝑐𝑟𝑜𝑝𝑝𝑒𝑑 −2 

𝑎𝑐𝑐𝑡𝑟𝑖𝑎𝑙𝑤𝑖𝑠𝑒. The corresponding results are shown in Figure 4b. Only the deep architecture 3 

DeepConvNet significantly benefited from the cropped training strategy (𝑃 = 0.002), while 4 

shallower architectures such as Sinc-ShallowNet and EEGNet performed significantly worse when 5 

trained with the cropped strategy (𝑃 = 0.008 and 𝑃 = 0.009).  6 

[Figure 4 about here.] 7 

3.3. Interpretation  8 

In order to illustrate feature interpretability and feature relevance evaluation enabled by the 9 

proposed approach, we provide the results of the interpretation techniques for one representative 10 

subject for each dataset (ME- and MI-EEG signals). These results refer to the basal Sinc-ShallowNet 11 

trained with the trialwise training strategy. 12 

Figures 5a and 6a display the distribution of the temporal filters learned by the network for a 13 

specific subject in case of the ME- and MI-EEG signals, respectively. Most of the temporal band-14 

pass filters belonged to specific EEG bands (a filter is considered belonging to an EEG band based 15 

on its central frequency, see Section 2.7.1). The learned band-pass filters mainly belonged to the β, 16 

low γ and high γ bands in case of ME-EEG signals (Figure 5a) and to the α, β and low γ bands in case 17 

of the MI-EEG signals (Figure 6a). The corresponding gradients �̂�𝑏,𝑘 (see Equation 11 in Section 18 

2.7.2) obtained from the temporal sensitivity analysis at the level of EEG bands are displayed in 19 

Figures 5b and 6b. These visualizations suggest that the classification tasks rely differently on the 20 

EEG bands depending on the class. The high γ band resulted the most important EEG band for each 21 

class of ME-EEG signals (Figure 5b) in addition to the β band – for the “Right Hand” and “Left 22 

Hand” classes – and low γ band for the “Rest” and “Feet” classes. The β band resulted relevant for 23 

each class of MI-EEG signals (Figure 6b) in addition to the α band – in particular for the “Left Hand” 24 
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but also for the “Right Hand” classes – and low γ in particular for “Tongue” and also for “Feet” 1 

classes.  2 

[Figure 5 about here.] 3 

[Figure 6 about here.] 4 

Figures 7 and 8 report the results of the temporal sensitivity analysis performed at the level of 5 

the single band-pass filter for each decoded class, as to the same exemplary cases of Figures 5 and 6 6 

(ME- and MI-EEG signals, respectively). In each panel (bar plot), both the normalized gradient �̂�𝑗,𝑘 7 

(Equation 10, length of the black line) and the rescaled gradient �̂�𝑗,𝑘
′  (Equation 12, length of the 8 

coloured bar), are displayed for each learned filter, together with the indication (colour-coded) of the 9 

band the filter belong to. By looking at �̂�𝑗,𝑘, the filters belonging to each band assumed different 10 

importance depending on the class, in agreement with Figures 5b and 6b. For example, as to Figure 11 

7, filters in the low γ band had on average larger values of �̂�𝑗,𝑘 for the “Rest” and “Feet” classes than 12 

for the “Hand” classes. Moreover, within each class, filters in the high γ band had on average larger 13 

values of �̂�𝑗,𝑘 compared to filters in the other bands, especially for the “Rest” and “Feet”. However, 14 

by looking at the single filters, some of them had very similar gradient values �̂�𝑗,𝑘 across all classes 15 

(for example filters #26, #28, #30 in Figure 7a, and filters #1, #7 in Figure 8b). The rescaled gradient 16 

�̂�𝑗,𝑘
′  allows the identification of the more relevant and more class-specific band-pass filters, as 17 

described in Section 2.7.2. Specifically, for each of the two more discriminative EEG bands (as 18 

obtained via the temporal sensitivity analysis at the level of EEG bands, Figures 5b and 6b), the two 19 

more relevant band-pass filters were selected as the two filters (belonging to that band) that scored 20 

the two highest values of �̂�𝑗,𝑘
′  with �̂�𝑗,𝑘

′ > �̂�𝑗,𝑘. For the so-selected temporal filters, the 𝐷2 = 2 21 

learned spatial filters were displayed as to their absolute values (insets within each panel of Figures 22 

7 and 8). The blue regions correspond to weights that are around 0 indicating electrode locations with 23 

a low discriminant power, and vice versa for the red regions. Thus, spatial filters extremely focalized 24 

to specific subsets of electrodes were learned for both the decoding tasks. In particular, a clear contra-25 
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laterality in the scalp weight distributions can be observed in case of the hand movements (both 1 

executed and imagined) compared to the other classes.  2 

[Figure 7 about here.] 3 

[Figure 8 about here.] 4 

4. DISCUSSION  5 

In this study Sinc-ShallowNet, a novel lightweight and interpretable CNN for EEG decoding, 6 

was designed and applied to motor execution and imagery tasks. The use of a band-pass filtering 7 

specialized convolutional layer (sinc-convolutional layer) and a spatial filtering with a reduced CNN 8 

channel connectivity (depthwise convolutional layer) enables the learning of band-pass filters and 9 

directly associated spatial filters. Thus, the proposed CNN is fully-interpretable and optimized in its 10 

convolutional module (i.e. feature extractor). In particular, the following points of strength can be 11 

emphasized:  12 

i. Easy interpretation of both spectral and spatial features. The trainable parameters of the sinc-13 

convolutional layer are directly interpretable (cutoff frequencies instead of mere kernel values 14 

as in a traditional convolutional layer) and the spatial filters are directly tied to specific band-15 

pass filters.  16 

ii. High optimization in terms of number of trainable parameters. The adopted sinc-convolution 17 

trains only 2 cutoff frequencies for each temporal filter and the depthwise convolution reduces 18 

the connections across the CNN channels.  19 

iii. Computational efficiency. Due to the symmetry of the parametrized function adopted in the 20 

sinc-convolution, only half of the kernel values need to be computed.  21 

In addition, the interpretation of the learned spectral and spatial features was further enriched 22 

thanks to the temporal sensitivity analysis; this analysis allows the identification of the more 23 

discriminative EEG bands (temporal sensitivity analysis at the level of EEG bands), and the more 24 
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relevant and more class-specific band-pass filters (temporal sensitivity analysis at the level of single 1 

band-pass filter) together with their spatial distribution.  2 

4.1. Classification performance and comparison with state-of-the-art approaches  3 

The results on the ME and MI decoding tasks suggest that Sinc-ShallowNet significantly 4 

outperformed the traditional FBCSP+rLDA decoding pipeline. Among the re-implemented SOA 5 

CNNs, only ShallowConvNet (but not DeepConvNet and EEGNet) performed significantly better 6 

than the traditional machine learning approach, in agreement with results by Schirrmeister et al. 7 

(2017).  8 

By comparing Sinc-ShallowNet with the re-implemented CNNs, the following considerations 9 

can be drawn. First, ShallowConvNet significantly outperformed Sinc-ShallowNet on ME- but not 10 

on MI- EEG signals (see Table 3). This is the only case in which Sinc-ShallowNet performed worse 11 

compared to the other considered CNNs. Nevertheless, it is worth noticing that Sinc-ShallowNet 12 

introduces 13828 and 5508 trainable parameters, that corresponds only to the 16.7% and 13.6% of 13 

those introduced by ShallowConvNet in case of ME- and MI-EEG signals (82564 and 40644), 14 

respectively. Therefore, the proposed architecture finalized the classification tasks in a more 15 

computationally efficient way, by introducing a lower number of trainable parameters. Furthermore, 16 

ShallowConvNet architecture was developed specifically for sensorimotor rhythm classification 17 

forcing the extraction of log band-power features (task-specific CNN), while Sinc-ShallowNet was 18 

not restricted to specific feature learning. Second, in the comparison with a general-purpose shallow 19 

architecture (EEGNet), Sinc-ShallowNet performed significantly better on MI-EEG signals, while 20 

performed comparably on ME-EEG signals. The lower performance of EEGNet may derive from the 21 

extremely lightweight architecture that used only 𝐾1 = 8 temporal filters. Accordingly, the decoding 22 

of MI-EEG signals may benefit from a higher number of temporal filters (e.g. 32 as in the architecture 23 

proposed here). The introduction of the temporal sinc-convolutional layer that reduces the number of 24 

trainable parameters (i.e. only the two cutoff frequencies for each temporal filter) may be particularly 25 

beneficial for the decoding of MI-EEG dataset. Indeed, this dataset is characterized by a low number 26 
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of training examples that requires the number of trainable parameters to be carefully maintained 1 

limited in order to avoid overfitting and achieve a good fit. Furthermore, when comparing Sinc-2 

ShallowNet with DeepConvNet, the first provided significantly higher decoding accuracy on both 3 

ME- and MI-EEG signals. This may be attributable to the higher number of trainable parameters 4 

introduced by DeepConvNet (298229 and 278079 in case of ME- and MI-EEG signals, respectively), 5 

leading to an architecture more prone to overfitting especially in case of small datasets as for the 6 

adopted MI dataset.  7 

4.2. Design choices of Sinc-ShallowNet  8 

The post-hoc hyper-parameter evaluation (Figure 4a), revealed a significant negative effect of 9 

lowering 𝐾1 on Sinc-ShallowNet performance, with an average ∆𝑎𝑐𝑐= −4% and ∆𝑎𝑐𝑐= −2%, when 10 

using 8 and 16 band-pass filters compared to 32 filters, respectively. Thus, Sinc-ShallowNet benefits 11 

from an increased set of band-pass filters that enrich the temporally filtered representation of the 12 

input. Furthermore, Sinc-ShallowNet performance on both datasets when using 𝐾1 = 8 was not 13 

different from EEGNet that uses this number of temporal filters.  14 

The analysis on 𝐷2 and on the optional recombination deserves some comments. Increasing 𝐷2 15 

did not lead to significant increase in the performance. However, it is interesting to note that when 16 

the effect of 𝐷2 was disaggregated between the two datasets (ME-EEG and MI-EEG dataset), an 17 

opposite behaviour tends to appear, with an average ∆𝑎𝑐𝑐= +0.4% and ∆𝑎𝑐𝑐= −0.2% on ME- and 18 

MI-EEG signals respectively (although not statistical significance was reached in either dataset). This 19 

different behaviour might be explained considering that when a CNN is trained with EEG signals 20 

containing a lower number of frequency components (such as MI-EEG signals), the band-pass 21 

temporal filters lie into a narrower frequency range and thus the probability that two different 22 

temporal filters have similar cutoff frequencies is higher. In this scenario, a lower number of spatial 23 

filters (𝐷2) for each temporal filter could be sufficient to retain enough capacity of the CNN, because 24 

close temporal filters could compensate for the lower 𝐷2. Indeed, different spatial filters could be 25 

learned for similar temporal filters obtaining a cumulative set (across similar temporal filters) of band-26 
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specific spatial filters. Conversely, ME-EEG signals having wider frequency content can benefit from 1 

a larger number 𝐷2 of spatial filters. Recombining the spatial activations via an additional pointwise 2 

convolutional layer did not improve accuracy. However, in this case too, by disaggregating the effect 3 

on the two datasets, an opposite behaviour tends to appear with an average ∆𝑎𝑐𝑐= +0.5% and ∆𝑎𝑐𝑐=4 

−2.6% in case of ME- and MI-EEG signals respectively (although not statistical significance was 5 

reached in either dataset). This may be due to the learning of a useful recombination of frequency-6 

specific spatial features learned across a wide frequency range, in case of signals with broad 7 

frequency content as ME-EEG signals. Finally, it is worth noticing that both increasing 𝐷2 and 8 

including a pointwise convolutional layer lead to an increase in the number of trainable parameters 9 

that might be critical in applications involving small datasets (e.g. the adopted MI dataset). Overall, 10 

these considerations remain quite speculative and further experiments are required, for example 11 

testing Sinc-ShallowNet and its different design choices on other datasets having larger and smaller 12 

size than those used here and having various frequency contents. However, it is interesting to note 13 

that the small accuracy increase (∆𝑎𝑐𝑐= +0.5%) in case of ME-EEG signals obtained introducing the 14 

pointwise convolutional layer led to a significant better performance of Sinc-ShallowNet compared 15 

to EEGNet (𝑃 = 0.046) and to comparable performance with ShallowConvNet (𝑃 = 0.090); at the 16 

same time, the accuracy decrease in case of MI-EEG signals (∆𝑎𝑐𝑐= −2.6%) did not change the 17 

statistical significance (𝑃 = 0.049 vs. EEGNet and DeepConvnet, 𝑃 = 0.340 vs. ShallowConvNet). 18 

Thus, the proposed Sinc-ShallowNet architecture integrated with the recombination of the spatial 19 

activations led to a CNN that performs better than or at least as well as the SOA CNNs on both 20 

datasets, at the expense of the number of trainable parameters (17924 and 9604 in case of ME and 21 

MI datasets respectively).  22 

Lastly, changing the average pooling strategy by using larger pool and stride sizes did not affect 23 

the performance.  24 
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In conclusion, this analysis suggests that the proposed Sinc-ShallowNet in its basal version (see 1 

Table 1) resulted in a good compromise between performance and parsimony with enough capacity 2 

to solve both the decoding tasks. 3 

4.3. Training strategies  4 

The overall effect of the training strategy on the performance metric (Figure 4b) resulted in a 5 

significantly increase of the decoding accuracy for a deeper architecture as DeepConvNet (on average 6 

∆𝑎𝑐𝑐= +4.6%), while a significant worsening of the performance was observed as the CNN 7 

architecture becomes shallower and more lightweight (no significant effect on ShallowConvNet, 8 

∆𝑎𝑐𝑐= −2.9% for Sinc-ShallowNet and ∆𝑎𝑐𝑐= −4.7% for EEGNet on average ). This different 9 

behaviour of cropped training on shallow and deep architectures is in line with the results reported 10 

by Schirrmeister et al. (2017) when examining ShallowConvNet and DeepConvNet, i.e. no 11 

improvements for ShallowConvNet and significant improvement for DeepConvNet. The present 12 

study further confirmed those previous results and extended them to other shallow architectures (i.e. 13 

EEGNet and Sinc-ShallowNet). Thus, a data-intensive CNN (e.g. DeepConvNet) improved its 14 

performance with cropped training – which acts as a data augmentation procedure – while lightweight 15 

CNNs did not. In contrast to deeper network, shallow CNNs like EEGNet and Sinc-ShallowNet 16 

performed well in both the decoding tasks without the need of any data augmentation procedure that, 17 

conversely, worsened their performance.  18 

4.4. Interpretation  19 

The band-pass filters mainly belonged to the β, low γ and high γ EEG bands when the network 20 

was trained with ME-EEG signals (Figure 5a), and to the α, β and low γ EEG bands when the network 21 

was trained with MI-EEG signals (Figure 6a). The latter result agreed with that obtained by Lawhern 22 

et al. (2018) using EEGNet on the same decoded subject. In particular, Lawhern et al. (2018) 23 

estimated each band-pass filter learned by the temporal convolutional layer simply by counting the 24 

number of cycles of the specific temporal kernel in the corresponding temporal window. In Sinc-25 
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ShallowNet, each band-pass filter is implicitly defined by the temporal sinc-convolutional layer that 1 

directly provides the two cutoff frequencies. 2 

When the CNN was trained on ME-EEG signals, the temporal sensitivity analysis at the level of 3 

EEG bands (Figure 5b) indicates that the most relevant bands were β, high γ for the “Right Hand” 4 

and “Left Hand” classes, and low γ, high γ for the “Feet” and “Rest” classes. In addition, the high γ 5 

band emerged as more important than the β and low γ bands for each decoded class, confirming the 6 

relevance not only of the β but also of the high γ band in the decoding task as previously evidenced 7 

by Schirrmeister et al. (2017). Ball et al. (2008) found an increase in the high γ activity within the 60-8 

90 Hz range, in addition to lower frequencies activity (α, β), in human sensorimotor cortex during 9 

ME. Interestingly, in the exemplary case shown in Figure 5, most of the band-pass kernels belonging 10 

to the high γ band fell within this range (7 out of 10).  11 

When the CNN was trained on MI-EEG signals, the temporal sensitivity analysis at the level of 12 

EEG bands (Figure 6b) indicates that the most relevant bands were α, β for the “Left Hand” and 13 

“Right Hand” classes, and β, low γ for the “Feet” and “Tongue” classes. These results are in line with 14 

previous studies showing that also the low γ band, together with the α and β bands, provides 15 

information on MI (Crone et al., 1998). This was further confirmed by (Mirnaziri et al., 2013), where 16 

adding low γ features to α and β features led to better performance using the same MI dataset.  17 

Thanks to the use of spatial depthwise convolution, the proposed architecture ties spatial kernels 18 

to each band-pass filter and thus, the relevance, as quantified by the temporal sensitivity analysis, can 19 

be propagated from each band-pass filter to the associated spatial filters. In particular, the more 20 

relevant and more class-specific spatial filters can be identified – as those associated to the band-pass 21 

filters scored by the highest rescaled gradients �̂�𝑗,𝑘
′ , (i.e. temporal sensitivity analysis at the level of 22 

single band-pass filter) – and visualized. These spatial filters show a highly localized distributions in 23 

the scalp maps (Figures 7a-7d and 8a-8d, respectively for ME- and MI-EEG signals). Among the 24 

spatial filters specific for the hand movements, some filters have the most discriminative electrodes 25 

located in the contralateral hemisphere to the executed and imagined hand movement, approximately 26 
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above the primary sensorimotor hand representation areas (i.e. around C3 and C4). Regarding the 1 

executed and imagined feet movements, some filters have the most discriminative electrodes located 2 

more centrally, approximately above the primary motor foot area (i.e. around CPz, Cz and FCz). 3 

Finally, regarding the imagined tongue movement, the most discriminative electrodes are placed not 4 

only around C3 and C4, but also approximately above the somatosensory cortex (i.e. area below Cz), 5 

representing the brain region triggered by the imagination of tongue movements (Zhao et al., 2019).  6 

Therefore, by interpreting the features exploited by the network for the classification task, it turns 7 

out that Sinc-ShallowNet was capable of learning features related to known neurophysiological 8 

phenomena without relying on artefact or noise sources in the EEG signals.  9 

As underlined previously, the interpretation capabilities of the network are provided by coupling 10 

an interpretable layer (sinc-convolutional layer) with an optimized layer (depthwise convolutional 11 

layer), and by using a post-hoc gradient-based technique alongside with spatial and temporal filter 12 

visualizations. Therefore, interpretation capabilities of Sinc-ShallowNet are intrinsically linked to 13 

some specific design choices and specifically implemented post-hoc analyses. However, other more 14 

general-purpose techniques adopted in our network (e.g. batch normalization or dropout), that 15 

introduce a regularization effect, contribute to increase the neurophysiological reliability of feature 16 

interpretation by improving the performance on unseen examples. For example, we verified that when 17 

training Sinc-ShallowNet by removing the batch normalization layers in the blocks 1, 2 (and leaving 18 

all the other hyper-parameters unchanged), a significant decrease of the decoding accuracies 19 

occurred: ∆𝑎𝑐𝑐= −4.8% (𝑃 = 0.002, Wilcoxon signed-rank test), ∆𝑎𝑐𝑐= −14.8% (𝑃 = 0.008, 20 

Wilcoxon signed-rank test) respectively for ME- and MI-EEG signals, where ∆𝑎𝑐𝑐= 𝑎𝑐𝑐𝑤/𝑜 𝐵𝑁 −21 

𝑎𝑐𝑐𝑤/ 𝐵𝑁. These simulations confirmed the important regularization introduced by batch 22 

normalization that significantly increased network accuracy on unseen examples. Accordingly, 23 

although batch normalization does not contribute directly to the interpretation capabilities of the 24 

network (omitting it the inner interpretation capabilities of the network are not altered), its inclusion 25 



 39 

increases the neurophysiological significance of the interpreted features via accuracy improvement. 1 

Indeed, the band-pass filters and spatial filters learned by the batch-normalized Sinc-ShallowNet turn 2 

out to be more class-discriminative (as they provide higher accuracies). Therefore, the learned 3 

spectral and spatial features are more likely to reflect neurophysiological aspects (in terms of more 4 

relevant EEG bands and electrodes) linked to the investigated tasks (i.e. motor execution and motor 5 

imagery decoding). 6 

Finally, we would like to provide some comments on other CNNs in the literature that adopt a 7 

non-traditional convolutional layer designed to perform a specific input transformation (here the sinc-8 

convolutional layer forcing band-pass filtering). First, it is worth noticing that, at best of our 9 

knowledge, only two previous (and very recent) studies (Zeng et al., 2019; Zhao et al., 2019) include 10 

a similar layer within a CNN architecture, indicating that this represents an innovative and emerging 11 

approach in the field of EEG decoding. Zhao et al. (2019) proposed a CNN for MI classification 12 

including a time-frequency convolutional layer based on wavelets and interpreted the learned 13 

features. Differently from the architecture proposed here, they adopted a traditional spatial 14 

convolutional layer and tested the network only on MI decoding tasks. Comparing the decoding 15 

accuracy reported in the original paper (Zhao et al., 2019) with Sinc-ShallowNet accuracy on the 16 

same MI-EEG signals, Sinc-ShallowNet scored an average accuracy +5.8% with respect to the 17 

architecture proposed by Zhao et al. (2019), although without reaching statistical significance (𝑃 =18 

0.086, Wilcoxon signed ranked test). However, the network by Zhao et al. (2019), due to the adoption 19 

of a standard spatial convolutional layer (that by itself involves 13775 trainable parameters, including 20 

bias), has a larger number of trainable parameters compared to Sinc-ShallowNet (1408 for MI-EEG 21 

signals). In an even more recent paper, Zeng et al. (2019) included a sinc-convolutional layer into a 22 

deep 1D CNN (3 convolutional layers and 4 fully-connected layers) for EEG emotion classification. 23 

The proposed solution appears more robust and more performing than other classifiers (and thus 24 

possibly confirming the potentiality of this kind of layer). However, the network by Zeng et al. (2019) 25 
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introduced a large number of trainable parameters, especially due to the use of 3 hidden fully-1 

connected layers having thousands of neurons. Moreover, the authors did not face the interpretation 2 

of the learned features; in particular, the adoption of a reshaped input representation (2D-to-1D 3 

reshaping) and of traditional convolutions hinder the interpretability of the CNN. In future, it will be 4 

interesting to test Sinc-ShallowNet on the same decoding task tackled by Zeng et al. (2019). 5 

5. CONCLUSIONS  6 

In conclusion, we proposed a novel CNN named Sinc-ShallowNet, characterized by an 7 

interpretable and efficient (in terms of number of trainable parameters) convolutional module. This 8 

module includes a temporal sinc-convolutional layer, forcing the learning of band-pass filters with 9 

only two trainable parameters per filter, and a spatial depthwise convolution that learns spatial 10 

features tied to each band-pass filter. The proposed design provides direct interpretability of the 11 

learned spectral-spatial features, at the same time limiting the number of trainable parameters. 12 

Furthermore, a gradient-based technique (temporal sensitivity analysis) was introduced in order to 13 

identify the more relevant and more class-specific features. Overall, the proposed CNN, tested on 14 

motor execution and motor imagery EEG signals, outperformed other state-of-the-art CNNs and a 15 

traditional machine learning algorithm. The analyses on the design choices and training strategies 16 

confirmed that the proposed architecture is a good compromise between decoding performance and 17 

an efficient use of trainable parameters. The post-hoc interpretation techniques suggest that the 18 

features learned by the convolutional module matched well-known EEG motor-related activity, both 19 

in the frequency and spatial domains. While Sinc-ShallowNet was applied only to motor-related EEG 20 

decoding, it was not specifically tailored to decoding sensorimotor rhythm and may be used also in 21 

other EEG decoding tasks (e.g. P300 detection or other ERP classification tasks). Furthermore, if a 22 

specific decoding task benefits from deeper architectures, the interpretable and optimized 23 

convolutional module proposed in Sinc-ShallowNet could be easily employed to design deeper CNNs 24 

by stacking more convolutional layers on it. In particular, due to its augmented interpretability, Sinc-25 

ShallowNet or a deeper CNN based on it, may be applied to investigate cognitive and/or motor aspects 26 
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for which the distinctive EEG correlates are less known (e.g. attention, emotion, creativity, movement 1 

trajectory/kinematics etc.).   2 
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APPENDIX A: State-of-the-art CNNs  1 

The SOA CNN architectures considered for the comparison with Sinc-ShallowNet are reported 2 

in Tables A.1, A.2 and A.3, respectively for EEGNet (Lawhern et al., 2018), DeepConvNet and 3 

ShallowNet (Schirrmeister et al., 2017).  4 

[Table A.1 about here.] 5 

[Table A.2 about here.] 6 

[Table A.3 about here.] 7 

APPENDIX B: FBCSP+rLDA  8 

As traditional machine learning decoding algorithm, we used a pipeline previously validated and 9 

adopted in Schirrmeister et al. (2017). Two different overlapped filter banks were designed for ME 10 

and MI-EEG signals. Starting from a frequency value of 4 Hz, frequency bands were selected with 6 11 

Hz width and overlap factor of 3 Hz up to 16 Hz, and frequency bands with 8 Hz width and overlap 12 

factor of 4 Hz for frequencies above 13 Hz (up to 121 Hz and 37 Hz for ME- and MI-EEG signals, 13 

respectively). Thus, 29 and 8 band-pass filters were computed for ME- and MI-EEG signals. For each 14 

of these manually designed filters, EEG signals were band-pass filtered. Two CSP filter pairs (four 15 

filters total) for each filter bank were computed on the training data. Since a few spatial filters 16 

computed often are enough to reach good decoding performance while using all the spatial filters 17 

may lead to overfitting (Blankertz et al., 2008; Chin et al., 2009), we included the feature selection 18 

procedure adopted in (Schirrmeister et al., 2017). 19 

As the decoding task is multi-class, the problem was transformed into several binary 20 

classification tasks via a one-vs-one reduction (OVO), where binary classifiers learned to 21 

discriminate each pair of classes. Then, a majority weighted voting was applied at prediction time. 22 

To do so, we trained a rLDA classifier with shrinkage regularization (Ledoit & Wolf, 2004), widely 23 

used in EEG decoding (Lotte et al., 2018) for each pair of classes, summed up the classifier outputs 24 

and the class with higher sum was decoded as the predicted one (Chin et al., 2009).  25 
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Comparing FBCSP+rLDA results – obtained by re-implementing the steps adopted in (Schirrmeister 1 

et al., 2017) – with another study (Sakhavi et al., 2015) that used the same MI dataset, no significant 2 

difference was observed (𝑃 = 0.441 Wilcoxon signed-ranked test, average accuracy across subjects: 3 

67.5 vs. 67.0 % (Sakhavi et al., 2015)). This validated the FBCSP+rLDA re-implementation adopted 4 

in this study.  5 

  6 
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LEGENDS TO FIGURES 1 

Figure 1 – Electrode locations for the two examined datasets. (a) ME-EEG dataset. (b) MI-EEG 2 

dataset.  3 

Figure 2 – Architecture of Sinc-ShallowNet. For simplicity, the figure shows only the more 4 

significant layers within each of the three blocks (see also Sections 2.3.2, 2.3.3, 2.3.4 and Table 1).  5 

Figure 3 – Confusion matrices of FBCSP+rLDA ((a) and (c)) and of Sinc-ShallowNet ((b) and (d)). 6 

Sinc-ShallowNet was trained with trialwise strategy (see Section 2.4.1). Matrices (a) and (b) were 7 

computed across subject-specific classifiers on ME-EEG signals belonging to the test set, while (c) 8 

and (d) were computed on MI-EEG signals belonging to the test set. Each cell contains the total 9 

number of trials across subjects given a specific prediction and target label, and the ratio between this 10 

number and the total number of trials for each target label. For each (i,j) location (16 in total) of the 11 

confusion matrix (predicted class i, true class j), a Wilcoxon signed-rank test was performed between 12 

the entries of the subject-specific confusion matrices obtained with FBCSP+rLDA and with Sinc-13 

ShallowNet, separately for the two datasets. Correction for multiple comparisons was obtained via 14 

the Benjamini-Hochberg procedure. The corrected p-value resulting from each comparison is 15 

displayed inside the corresponding cell of the matrices reporting Sinc-ShallowNet results.  16 

Figure 4 – Results of the analyses on Sinc-ShallowNet design choices and on training strategies. (a) 17 

Effect of the changes in the hyper-parameters of Sinc-ShallowNet (see Table 2) on the performance 18 

metric. The changes in accuracy (∆𝑎𝑐𝑐) were computed as the difference between the tested and the 19 

reference (i.e. basal) configuration (∆𝑎𝑐𝑐= 𝑎𝑐𝑐𝑡𝑒𝑠𝑡𝑒𝑑 − 𝑎𝑐𝑐𝑟𝑒𝑓 , e.g. 𝑎𝑐𝑐𝐾1=8 − 𝑎𝑐𝑐𝐾1=32). (b) Effect 20 

of the two different training strategies applied to each SOA CNN and to Sinc-ShallowNet on the 21 

performance metric. The changes in accuracy (∆𝑎𝑐𝑐) were computed as the difference between the 22 

cropped and trialwise training strategies (∆𝑎𝑐𝑐= 𝑎𝑐𝑐𝑐𝑟𝑜𝑝𝑝𝑒𝑑 − 𝑎𝑐𝑐𝑡𝑟𝑖𝑎𝑙𝑤𝑖𝑠𝑒). For this comparison, MI-23 

EEG signals were epoched between 0.5 and 4 s (see Section 2.4.2). In both panels, ∆𝑎𝑐𝑐 obtained with 24 
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ME-EEG signals (◦) and with MI-EEG signals (+) were grouped together. The corrected P values are 1 

reported (Sinc-ShallowNet vs. each variant, trialwise vs. cropped training). 2 

Figure 5 – Visualization and interpretation of the features learned by the temporal sinc-convolutional 3 

layer of Sinc-ShallowNet in case of ME-EEG signals of subject 12 (decoding accuracy 95.6%). (a) 4 

Visualization of the passband learned by each of the 32 filters. Each passband is displayed as a black 5 

line, with the end points representing 𝑓1,𝑗 and 𝑓2,𝑗 of the j-th learned filter. The colour-code used is: 6 

gray-θ, green-α, yellow-β, red-low γ, blue-high γ. (b) Results of the temporal sensitivity analysis at 7 

the level of EEG bands: the normalized gradient averaged across the band-pass filters belonging to a 8 

specific EEG band (�̂�𝑏,𝑘) is displayed (colour-coded) for each class and each EEG band.  9 

Figure 6 – Visualization and interpretation of the features learned by the temporal sinc-convolutional 10 

layer of Sinc-ShallowNet in case of MI-EEG signals of subject 3 (decoding accuracy 86.1%). (a) 11 

Visualization of the passband learned by each of the 32 filters. Each passband is displayed as a black 12 

line, with the end points representing 𝑓1,𝑗 and 𝑓2,𝑗 of the j-th learned filter. The colour-code used is: 13 

gray-θ, green-α, yellow-β, red-low γ. (b) Results of the temporal sensitivity analysis at the level of 14 

EEG bands: the normalized gradient averaged across the band-pass filters belonging to a specific 15 

EEG band (�̂�𝑏,𝑘) is displayed (colour-coded) for each class and each EEG band. 16 

Figure 7 – Spatial distribution of the more relevant and more class-specific band-pass filters learned 17 

by Sinc-ShallowNet in case of ME-EEG signals of subject 12 (the same as in Figure 5). Each panel 18 

refers to a specific class (a-d for “Right Hand”, “Left Hand”, “Rest”, and “Feet”, respectively) and 19 

shows the results of the temporal sensitivity analysis at the level of each single band-pass filter by 20 

displaying both the normalized gradient (�̂�𝑗,𝑘) and rescaled (�̂�𝑗,𝑘
′ ) gradient of the single filters for that 21 

specific class. The coloured bars denote the rescaled gradients (the colour indicates the EEG band the 22 

filter belongs to, i.e. gray-θ, green-α, yellow-β, red-low γ, blue-high γ), while the black lines denote 23 

the normalized gradients. The latter are reported in order to identify an increase in the rescaled 24 

gradients. For each class, the two more important band-pass filters within each of the two more 25 
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important EEG bands (according to Figure 5b) are selected depending on the value of the increased 1 

rescaled gradients. For the so-selected band-pass filters, the spatial distribution is displayed by 2 

drawing the absolute values of the corresponding two spatial filters. In case of the “Right Hand” class, 3 

only one band-pass filter (#26) within the high γ band was selected for this visualization since it was 4 

the only one having �̂�𝑗,𝑘
′ > �̂�𝑗,𝑘.  5 

Figure 8 – Spatial distribution of the more relevant and more class-specific band-pass filters learned 6 

by Sinc-ShallowNet in case of MI-EEG signals of subject 3 (the same as in Figure 6). Each panel 7 

refers to a specific class (a-d for “Left Hand”, “Right Hand”, “Feet”, and “Tongue”, respectively) and 8 

shows the results of the temporal sensitivity analysis at the level of each single band-pass filter by 9 

displaying both the normalized gradient (�̂�𝑗,𝑘) and rescaled gradient (�̂�𝑗,𝑘
′ ) of the single filters for that 10 

specific class. The coloured bars denote the rescaled gradients (the colour indicates the EEG band the 11 

filter belongs to, i.e., gray-θ, green-α, yellow-β, red-low γ), while the black lines denote the 12 

normalized gradients. The latter are reported in order to identify an increase in the rescaled gradients. 13 

For each class, the two more important band-pass filters within each of the two more important EEG 14 

bands (according to Figure 6b) are selected depending on the value of the increased rescaled 15 

gradients. For the so-selected band-pass filters, the spatial distribution is displayed by drawing the 16 

absolute values of the corresponding two spatial filters. In case of the “Right Hand” class, the band-17 

pass filters within the α band (#1 and #7) were not selected for the visualization since �̂�𝑗,𝑘
′ < �̂�𝑗,𝑘 for 18 

these filters. 19 

  20 
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Table 1 – Architecture details of Sinc-ShallowNet. The architecture corresponding the hyper-1 
parameters reported here is denoted as “basal” Sinc-ShallowNet (variants of this basal architecture 2 
are also tested, see Table 2). Each layer is provided with its name, main hyper-parameters, output 3 
shape and number of trainable parameters and adopted activation function. 𝐶 and 𝑇 represent the 4 
number of electrodes and time samples of the network input, respectively. 𝑁𝑐 is the number of the 5 
classes. See Section 2.3 for the meaning of the other symbols. The output shapes of the layers within 6 
the first and second blocks are described by tuples of three integers (in brackets) denoting the number 7 
of feature maps (CNN channel dimension) and the number of spatial and temporal samples within 8 
each map, respectively. The input layer provides an output of shape (1, 𝐶, 𝑇) since it is assumed to 9 
just replicate the original input matrix with shape (𝐶, 𝑇), providing a single feature map as output 10 
(coincident with its input). The output shapes in the third block are 1D, thus described by a single 11 
number. *Kernel maximum norm constraint was used, enforcing an absolute upper bound on the 12 
magnitude of the weights. 13 

Block Layer name Hyper-

parameters 

Output shape Number of 

parameters 

Activation 

1 Input  (1, 𝐶, 𝑇) 0  

Sinc-Conv2D 𝐾1 = 32 (𝐾1, 𝐶, 𝑇1) 2 ∙ 𝐾1 Linear 

 𝐹1 = (1,65)    

 𝑆1 = (1,1)    

 𝑃1 = (0,0)    

BatchNorm2D 𝑚 = 0.99 (𝐾1, 𝐶, 𝑇1) 2 ∙ 𝐾1  

DW-Conv2D* 𝐾2 = 𝐾1 ∙ 𝐷2 (𝐾2, 1, 𝑇1) 𝐹2[0] ∙ 𝐾2 Linear 

 𝐹2 = (𝐶, 1)    

 𝐷2 = 2    

 𝑆2 = (1,1)    

 𝑃2 = (0,0)    

2 BatchNorm2D 𝑚 = 0.99 (𝐾2, 1, 𝑇1) 2 ∙ 𝐾2  

Activation 𝛼 = 1 (𝐾2, 1, 𝑇1) 0 ELU 

AvgPool2D 𝐹𝑝 = (1,109) (𝐾2, 1, 𝑇𝑝) 0  

 𝑆𝑝 = (1,23)    

Dropout 𝑝 = 0.5 (𝐾2, 1, 𝑇𝑝) 0  

3 Flatten  (𝐾2 ∙ 𝑇𝑝) 0  

Fully-Connected* 𝑁𝑐 = 4 (𝑁𝑐) 𝑁𝑐 ∙ 𝑇𝑝 ∙ 𝐾2 + 𝑁𝑐  

Activation  (𝑁𝑐) 0 Softmax 

  14 
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Table 2 – Investigated design choices.  1 

Architectural 

aspect 

Basal Variants Motivation 

Number of 

temporal filters 

𝐾1 of block 1 

𝐾1 = 32 𝐾1 = 8 
𝐾1 = 16 

We wanted to test if lowering the number of the temporal 

kernels worsened the performance, i.e. to check if all the 32 

temporal filters were needed or some of them were redundant. 

Furthermore, since there is a consistent variability in the 

number of temporal kernels within CNNs for EEG decoding 

(e.g. 8 in EEGNet, 25 in DeepConvNet, 40 in 

ShallowConvNet), this test on Sinc-ShallowNet may gain 

insights about the effect of this hyper-parameter on the 

decoding performance. Of course, a larger number of the band-

pass filters implied a larger number of trainable parameters but 

this effect was limited since the sinc-convolutional layer learns 

only 2 parameters for each temporal filter. 

Number of spatial 

filters per 

temporal filter 𝐷2 

of block 1 

𝐷2 = 2 𝐷2 = 4 We wanted to test if increasing the number of the spatial filters 

for each band-pass filter increased the performance. We 

expected that a higher 𝐷2 was more beneficial for those 

applications in which the band-pass kernels were more 

dispersed across a large frequency range, i.e. in case the signals 

contained more frequency components, such as the investigated 

ME-EEG signals. In case of less dispersed band-pass filters, 

there is high probability that neighbor band-pass kernels are 

learned; the neighbor band-pass kernels can compensate for the 

reduction in 𝐷2 as they may be tied with different spatial filters 

learned during training, actually providing an augmented set of 

spatial filters for a given band-pass filtering. The drawback of 

an increase of 𝐷2 was an increased number of trainable 

parameters. 
Pooling size 𝐹𝑝 

and stride 𝑆𝑝 of 

block 2 

𝐹𝑝 = (1,109) 

𝑆𝑝 = (1,23) 

𝐹𝑝 = (1,71) 

𝑆𝑝 = (1,15) 

We wanted to evaluate the impact of a shorter average pooling 

on the performance. The modified values of these hyper-

parameters corresponded to the extraction of averaged spatial 

activations of 325 ms with a stride of 70 ms (similarly as done 

in (Schirrmeister et al., 2017; Zhao et al., 2019)). This variant 

resulted in an increased number of trainable parameters due to 

a convolutional-to-dense transition involving more units. 

Recombination of 

the spatial 

activations via an 

additional 

pointwise 

convolution in 

block 2 

No recomb. Recomb. We wanted to evaluate the impact of the recombination of the 

spatial activations on the performance. A pointwise 

convolutional layer was introduced immediately after the 

spatial depthwise convolutional layer, in order to recombine the 

learned spatial activations across the feature map dimension. 

The hyper-parameters of this layer were 𝐾3 = 𝐾2 = 𝐾1 ∙ 𝐷2, 
𝐹3 = (1,1), 𝑆3 = (1,1), 𝑃3 = (0,0). The combination of a 

depthwise and a pointwise convolution is called separable 

convolution (Chollet, 2016). The introduction of pointwise 

convolution increase the number of trainable parameters by 

(𝐾2)2 and the resulting architecture may need a large training 

set. Thus, this modification could be more beneficial in case of 

the investigated ME-EEG signals. 

  2 
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Table 3 – Accuracies (mean ± std across subjects) of the basal Sinc-ShallowNet and SOA algorithms, 1 
obtained with ME-EEG signals belonging to the test set. Here, the trialwise training was adopted. For 2 
each CNN, the total number of trainable parameters is reported in brackets. The corrected P values 3 
are reported (𝑃1 for each CNN vs. FBCSP+rLDA, 𝑃2 for Sinc-ShallowNet vs. each SOA CNN).  4 

Algorithm Accuracy (%) 𝑃1 𝑃2 

FBCSP+rLDA 86.09.0   

EEGNet (2604) 88.511.0 0.158 0.158 

DeepConvNet (298229) 88.48.8 0.158 0.026 

ShallowConvNet (82564) 93.99.3 0.024 0.040 

Sinc-ShallowNet (13828) 91.29.1 0.024  

  5 
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Table 4 – Accuracies (mean ± std across subjects) of the basal Sinc-ShallowNet and SOA algorithms, 1 
obtained with MI-EEG signals belonging to the test set. Here, the trialwise training was adopted 2 
(signal epoching 0.5-2.5 s). For each CNN, the total number of trainable parameters is reported in 3 
brackets. The corrected P values are reported (𝑃1 for each CNN vs. FBCSP+rLDA, 𝑃2 for Sinc-4 
ShallowNet vs. each SOA CNN).  5 

Algorithm Accuracy (%) 𝑃1 𝑃2 

FBCSP+rLDA 67.513.9   

EEGNet (1932) 66.013.1 0.575 0.027 

DeepConvNet (278079) 50.519.6 0.031 0.027 

ShallowConvNet (40644) 71.614.2 0.046 0.302 

Sinc-ShallowNet (5508) 72.812.9 0.031  

  6 
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Table A.1 – Architecture details of EEGNet. Each layer is provided with its name, main hyper-1 
parameters, number of trainable parameters and activation function. See Section 2.3 for the meaning 2 
of the symbols. *Kernel maximum norm constraint at 1 and 0.25, respectively for the depthwise 3 
convolutional and fully-connected layers. 4 

Layer name Hyper-

parameters 

Number of parameters Activation 

Input  0  

Conv2D 𝐾1 = 8 𝐹1[1] ∙ 𝐾1 Linear 

 𝐹1 = (1,65)   

 𝑆1 = (1,1)   

 𝑃1 = (0,32)   

BatchNorm2D 𝑚 = 0.99 2 ∙ 𝐾1  

DW-Conv2D* 𝐾2 = 𝐾1 ∙ 𝐷2 𝐹2[0] ∙ 𝐾2 Linear 

 𝐹2 = (𝐶, 1)   

 𝐷2 = 2   

 𝑆2 = (1,1)   

 𝑃2 = (0,0)   

BatchNorm2D 𝑚 = 0.99 2 ∙ 𝐾2  

Activation 𝛼 = 1 0 ELU 

AvgPool2D 𝐹𝑝1 = (1,8) 0  

 𝑆𝑝1 = (1,8)   

Dropout 𝑝 = 0.5 0  

Sep-Conv2D 𝐾3 = 𝐾2 ∙ 𝐷3 𝐹3[1] · 𝐾3 + (𝐾3)2
 
 Linear 

 𝐹3 = (1,33)   

 𝐷3 = 1   

 𝑆3 = (1,1)   

 𝑃3 = (0,16)   

BatchNorm2D 𝑚 = 0.99 2 ∙ 𝐾3  

Activation 𝛼 = 1 0 ELU 

AvgPool2D 𝐹𝑝2 = (1,16) 0  

 𝑆𝑝2 = (1,16)   

Dropout 𝑝 = 0.5 0  

Flatten  0  

Fully-Connected* 𝑁𝑐 = 4 𝑁𝑐 ∙ 𝑇𝑝2 ∙ 𝐾3 + 𝑁𝑐  

Activation  0 Softmax 

 5 

  6 
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Table A.2 – Architecture details of DeepConvNet. Each layer is provided with its name, main hyper-1 
parameters, number of trainable parameters and activation function. See Section 2.3 for the meaning 2 
of the symbols. *Kernel maximum norm constraint at 2 and 0.5, respectively for the convolutional 3 
and fully-connected layers. For numerical stability, batch normalization 𝜀 parameter was set to 1e-5.  4 

Layer name Hyper-

parameters 

Number of parameters Activation 

Input  0  

Conv2D* 𝐾1 = 25 𝐹1[1] ∙ 𝐾1 + 𝐾1 Linear 

 𝐹1 = (1,10)   

 𝑆1 = (1,1)   

 𝑃1 = (0,0)   

Conv2D* 𝐾2 = 25 𝐾1 ∙ 𝐹2[0] ∙ 𝐾2 Linear 

 𝐹2 = (𝐶, 1)   

 𝑆2 = (1,1)   

 𝑃2 = (0,0)   

BatchNorm2D 𝑚 = 0.9 2 ∙ 𝐾2  

Activation 𝛼 = 1 0 ELU 

MaxPool2D 𝐹𝑝1 = (1,2) 0  

 𝑆𝑝1 = (1,2)   

Dropout 𝑝 = 0.5 0  

Conv2D* 𝐾3 = 50 𝐾2 ∙ 𝐹3[1] ∙ 𝐾3 Linear 

 𝐹3 = (1,10)   

 𝑆3 = (1,1)   

 𝑃3 = (0,0)   

BatchNorm2D 𝑚 = 0.9 2 ∙ 𝐾3  

Activation 𝛼 = 1 0 ELU 

MaxPool2D 𝐹𝑝2 = (1,2) 0  

 𝑆𝑝2 = (1,2)   

Dropout 𝑝 = 0.5 0  

Conv2D* 𝐾4 = 100 𝐾3 ∙ 𝐹4[1] ∙ 𝐾4 Linear 

 𝐹4 = (1,10)   

 𝑆4 = (1,1)   

 𝑃4 = (0,0)   

BatchNorm2D 𝑚 = 0.9 2 ∙ 𝐾4  

Activation 𝛼 = 1 0 ELU 

MaxPool2D 𝐹𝑝3 = (1,2) 0  

 𝑆𝑝3 = (1,2)   

Dropout 𝑝 = 0.5 0  

Conv2D* 𝐾5 = 200 𝐾4 ∙ 𝐹5[1] ∙ 𝐾5 Linear 

 𝐹5 = (1,10)   

 𝑆5 = (1,1)   

 𝑃5 = (0,0)   

BatchNorm2D 𝑚 = 0.9 2 ∙ 𝐾5  

Activation 𝛼 = 1 0 ELU 

MaxPool2D 𝐹𝑝4 = (1,2) 0  

 𝑆𝑝4 = (1,2)   

Flatten  0  

Fully-Connected* 𝑁𝑐 = 4 𝑁𝑐 ∙ 𝑇𝑝4 ∙ 𝐾5 + 𝑁𝑐  

Activation  0 Softmax 
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Table A.3 – Architecture details of ShallowNet. Each layer is provided with its name, main hyper-1 
parameters, number of trainable parameters and activation function. See Section 2.3 for the meaning 2 
of the symbols. *Kernel maximum norm constraint at 2 and 0.5, respectively for the convolutional 3 
and fully-connected layers. For numerical stability, batch normalization 𝜀 parameter was set to 1e-5, 4 
while the log function input was clipped at 𝜀 = 1𝑒 − 6.  5 

Layer name Hyper-

parameters 

Number of parameters Activation 

Input  0  

Conv2D* 𝐾1 = 40 𝐹1[1] ∙ 𝐾1 + 𝐾1 Linear 

 𝐹1 = (1,25)   

 𝑆1 = (1,1)   

 𝑃1 = (0,0)   

Conv2D* 𝐾2 = 40 𝐾1 ∙ 𝐹2[0] ∙ 𝐾2 Linear 

 𝐹2 = (𝐶, 1)   

 𝑆2 = (1,1)   

 𝑃2 = (0,0)   

BatchNorm2D 𝑚 = 0.9 2 ∙ 𝐾2  

Activation 𝛼 = 1 0 Square 

AvgPool2D 𝐹𝑝 = (1,75) 0  

 𝑆𝑝 = (1,15)   

Activation  0 Log 

Dropout 𝑝 = 0.5 0  

Flatten  0  

Fully-Connected* 𝑁𝑐 = 4 𝑁𝑐 ∙ 𝑇𝑝 ∙ 𝐾2 + 𝑁𝑐  

Activation  0 Softmax 
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