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Quantum cellular automata are unitary maps that preserve locality and respect causality. We identify
them, in any dimension, with simple tensor networks (projected entangled pair unitary) whose bond
dimension does not grow with the system size. As a result, they satisfy an area law for the entanglement
entropy they can create. We define other classes of nonunitary maps, the so-called quantum channels, that
either respect causality or preserve locality. We show that, whereas the latter obey an area law for the
number of quantum correlations they can create, as measured by the quantum mutual information, the
former may violate it. We also show that neither of them can be expressed as tensor networks with a bond

dimension that is independent of the system size.
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Causality is a fundamental concept in physics. It states
that physical actions cannot propagate in space at an
arbitrary speed. In quantum physics, this can be mathemati-
cally captured by the notion of quantum cellular automata
(QCA) [1,2]. These are the most general unitary maps
between quantum states that act in discrete space (i.e., in
lattices) and time and respect causality [3—6]. They can be
viewed as the quantum version of classical cellular automata,
which are systems with discrete variables evolving under a
local update rule. In the past years, a great deal of progress
has been made in the characterization of QCA. So far,
complete solutions have been obtained in one [7] and two
spatial dimensions [8—11]. Additionally, in the first case,
QCA have been identified [12-18] with matrix product
operators, a 1D version of tensor networks (TN), which
satisfy an extra condition named simpleness [14] (this has
been recently extended to fermionic systems [19,20]). This
identification connects QCA with TN, a very active area of
research in many-body physics and quantum information.
While most of the progress on QCA has been on unitary
maps, very little is known about quantum channels repre-
senting more general physical actions [3,4,21], for which it is
not even clear how to properly define them.

In this work, we investigate the connections between
QCA and TN [22,23] and characterize them in terms of the
amount of entanglement and correlations they can create.
First, we identify QCA in any dimension as projected
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entangled pair unitary (PEPU) operators that are also
simple and with a bond dimension that does not grow
with the lattice size. We also show that the amount of
entanglement generated by the action of a QCA is limited
by an area law, similar to the one that characterizes the
ground states of local Hamiltonians [24]. Additionally,
we analyze two natural extensions of nonunitary QCA:
causality-preserving quantum channels (CPQC) and
locality-preserving quantum channels (LPQC). While the
former satisfies causality, the latter cannot create long-
range correlations and fulfills an area law for the quantum
mutual information. The LPQC are a strict subset of CPQC,
and, unlike QCA, they cannot be expressed as TN with a
fixed bond dimension.

QCA and quantum channels.—We consider N = M
qudits in a finite regular lattice in d; dimensions. The
lattice is characterized by a graph G = (V, E), where the
qudits are at the vertices V, which are represented by a
vector n € Z%, and the edges e, ,, € E if [n —m| = 1 for
open boundary conditions, and similarly for periodic
boundary conditions. The coordination number is
z = 2d; . The edges define a metric: The distance between
the vertices, §(n, m), is the minimum number of edges that
connects them. The Hilbert space associated with the set of
qudits is H =®,,cv H,, where dim(H,,) = d is the physi-
cal dimension. For r < M /4 and a subset A C V, we define
its r neighborhood: a, = {n € V\A:6(n,A) <r}, and
A, = A U a,. We further define the r-next-nearest neigh-
borhood: b, = a,,\a,, and B, =V\(A,Ub,), so that
B, = B, U b, is the complement of A, (see Fig. 1). We
denote by § all the sets A such that B, is not empty. For a
given A € S and r, the Hilbert space is decomposed as

H=Hs®H, ®Hy, ® Hy, =Hz ®Hp. (1)
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FIG. 1. (a) Example of the different subsets defined in the text
for r = 1: A is in dark blue and its neighborhood a, in light blue.
Their union is A;. B, and b, are in dark and light green,
respectively, and their union is B;. (b)-(d) PEPU representation
of U, U, and graphical notation for the identity UUT = 1,
respectively.

Finally, for C C V, we denote by tr. the trace in H and by
X an operator supported on that space.

Let us now introduce a special type of quantum channels
(QC) & acting on the qudits, i.e., trace-preserving
completely positive maps [25]. We will denote by &
their adjoints with respect to the Hilbert-Schmidt inner
product, describing the action in the Heisenberg
picture. Then

Definition 1: A CPQC on the lattice G with range r is a
channel &€ such that, for any A € § and X,, there exists
some X; such that £7(X,) = Xj .

Our definition is equivalent to that presented in Ref. [2].
It states that, for an observable localized at site x, the
expectation value on the evolved state is determined by the
restriction of the initial state on a neighborhood of x, thus
justifying the name causality preserving. When £ is defined
by a unitary operator U, namely, £(X) = UXU" for all
X € L(H), the set of linear operators acting on H, we will
say that the QC is unitary. Then, QCA are simply unitary
CPQC. In such a case, £7(X) = UTXU, and &' is still a
QCA with the same range as £ [8].

Before proceeding, let us mention that we could have
considered more general graphs G, as long as they have no
double edges nor self-loops. This would include other
lattice geometries or topologies, but it would make the
notation more cumbersome. Thus, in the following, we will
set r = 1, drop the corresponding subindex in the sets a, b,
and B, and take M > 4 [26].

We introduce now another class of QC:

Definition 2. £ is a LPQC if, for any A € S and

Pig =0,

s E0a08)] = JrwalE R E R (2)

This means that, if we act on a product state with the
quantum channel, no correlation is created between the
regions A and B. Intuitively, this corresponds to a form of

localization in the Schrodinger picture, which, as we will see,
represents a stronger condition than causality preservation.

Choi-Jamiolkowski state.—Instead of dealing with
channels, it will be useful to work with the corresponding
Choi-Jamiolkowski states (CJS) [28]. We associate an
extra ancilla with each qudit, so that we get a copy of
the lattice with vertices V. We also take ® = |D)(®]|,
where |®) =" |s), ® |s)y» € H ® H is an (unnormal-
ized) maximally entangled state and |s) = |sy, ..., sy) is an
element of the computational basis, where s, =1, ...,d.
For a channel &, its CJS is defined as R =
(Ey ® 1,)(®) € L(H ® H), where the identity channel
acts on the ancillas. It fulfills R=R" >0, and
try(R) = Ty,. In fact, any R satisfying these conditions
defines a channel, whose action is then given by
E(p) = tryi(pl,R), where the transpose is taken in the
computational basis [28].

Given A € V, we denote by A’ C V' the same set in the
lattice of the ancillas. We can now characterize both CPQC
and LPQC in terms of their CJS [29]:

Proposition 1. Given a channel &, for all A€ S
there exist 0,3 (and opp) such that its CIS R
fulfills (i) tr,3(R) =044 ® 1 iff it is a CPQC;
(i) tr, ,(R) = 044 ® opp iff it is a LPQC.

The ¢’s are determined by the above equations, e.g.,
644 = tr, 53 (R)/dP. This proposition expresses that the
CJS of CPQC and LPQC become decorrelated if we trace
some of the qudits.

Tensor networks.—Let us now briefly recall the TN
description of quantum states, operators, and channels
[22,23]. Given a set of N qudits in a graph G, we associate
with each vertex a tensor A[n] with rank z,, + 1, where z,, is
the coordination number of that vertex. We associate an
index to each of the edges connecting that vertex and the
other one to the corresponding qudit. The latter is called
physical index and runs from 1, ..., d, and the rest are the
auxiliary indices, running from 1, ..., D, the bond dimen-
sion. Then, we say that

) =D cls) (3)

is a TN state of bond dimension D if there exist tensors
Aln] of that bond dimension, such that each ¢, can be
obtained by assigning the value s, to the physical index of
Al[n] and contracting the rest of the indices according to
the lattice [22,23]. For arbitrary lattices, they are called
projected entangled pair states (PEPS). Analogously, TN
can define operators and maps. For operators, we can
replace |s) by |s)(s’|, so that now the tensors B[n] have two
physical indices each, and for maps the tensors C|[n] have
four. They are called PEPO (or PEPU if they are unitary)
and PEPM of bond dimension D, respectively. Any
PEPU (PEPM) has the same TN description as the
PEPS (PEPO) corresponding to its CJS and, thus, the
same bond dimension.
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The graphical representation of TN [22,23] consists in
replacing each tensor by a box, each index by a line, and
contraction of indices by identifying the corresponding
lines. For a graph G, PEPS, PEPO, and PEPM are thus
represented by the same graph where each of the vertices is
replaced by a tensor that has one, two, and four lines with
open ends, respectively, and otherwise they are connected
according to the edges. We can block tensors to represent
blocks of qudits. For instance, the representation of
two PEPU, U and U", acting on sets AabB is shown in
Figs. 1(b) and 1(c). We have written in each box the name
of the set where the tensor acts and used an asterisk to
specify that the tensor is transposed and complex con-
jugated. Figure 1(d) represents UU' = 1, where the multi-
plication is read from bottom to top. The bond dimension
for the tensor corresponding to A is D%, where z, is the
number of edges connecting A with its neighborhood a, and
the physical dimension is d/4|. We can now define a notion
that was introduced in Ref. [14].

Definition 3. We say that a PEPU is simple if for any
AeSsS

Quantum cellular automata.—We establish now the
connection between QCA and PEPU as well as with LPQC.

Theorem 1. Given a unitary channel acting as E(p) =
UpUT on the qudits of a lattice, the following statements
are equivalent: (i) £ is a QCA (namely, a CPQC). (ii) £ is a
LPQC. (iii) U can be represented by a simple PEPU, where
D depends only on d, d;, and z.

While all unitaries can be represented by PEPU, the last
equivalence establishes that for a QCA this can be done
efficiently, namely, with a bond dimension that does not
depend on N. This has strong implications on the amount of
entanglement that a unitary U associated with a QCA can
create between any two regions. If one applies U to a pure
product state |¥), then the entanglement of U|¥) between
any set A and the rest is < D!?l, where |0A| is the number
of edges between A and a. This gives rise to an area law; to
see that, we have to consider a sequence of QCA,
Sg = {En}S_,, each acting on a lattice of M qudits.

Furthermore, we denote by E(A:A¢) the entanglement
entropy [25] between the qudits in A C V and its comple-
ment A = V/A and by OA their boundary.

Definition 4. A sequence of QCA obeys an area law if,
for all A C V, the state obtained by applying any of the
QCA to any pure product state fulfills E(A:A¢) < c|0A],
where ¢ is a constant independent of M.

Thus, Theorem 1 immediately implies that:

Corollary 1. Any sequence of QCA satisfies an
area law.

General CPQC.—General CPQC possess very different
properties than QCA. For instance, the set of CPQC acting
on qudits in a lattice is convex. Note that this is not true for
LPQC. Furthermore, whereas for QCA and any region
A€ES,

EN(XaYg) = EN(XA)EN(Yp), (6)

with £7(X,) = Xz, £7(Y) = Y3, this is not necessarily
true for CPQC.

Any channel (unitary or not) can be written in terms of a
unitary operator through the Stinespring dilation [28]. In
particular, we can consider the channel £ built out of a

QCA, £,:L(H® H) - L(H ® H), as

Elp) = ry{&ulp ® (IN(1))®"]}, (7)

where |1) is a state of the ancilla qudits [32]. Let us now
introduce three other sets of channels:

Definition 5. We define fQC as the set of CPQC
fulfilling the factorization condition (6), while thQC is
the set of CPQC whose CJS has a PEPO description (with
bond dimension bounded by a function of d, d;, and z but
not of M). Finally, we denote by dQC the set of CPQC that
are obtained by a Stinespring dilation in terms of a QCA
[that is, £, in Eq. (7) is a QCA].

Let us give some illustrative examples. We take d = 2,
i.e., qubits, with {|s,)}! _, the local computational basis
and o the Pauli operatonrs.

Example 1: A channel that is a tmQC but not a
LPQC.—Let us define

£0) = 51p + (5)olo)®], Q

£ is a convex combination of two tnQC with bond
dimension D = 1 and, thus, a tnQC with bond dimension
D = 2. Furthermore, it is also a CPQC, since it is a convex
combination of two CPQC. However, it is not a LPQC,
since it does not satisfy Proposition 1.

Example 2: A set of channels that are LPQC but not
mQC.—Let us consider the state (3), where s, = 0, 1 and
each qubit n = (ny,n,,...,n, ) is maximally entangled
with the qubit n' = (n|,n,,....n, ), where |n} —n|=
M /2 with M even. Let us define R =1, ® 1,,/2V + S,
where
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S =kny ¢[®) (oF ® 6%)" (0} ® o3y)' ] (9)

Choosing ky so that ||S||, < 1/2", we have R > 0, and
tracing any system or ancilla qudit we get
tr,,(S) = tr,,(S) = 0. Thus, try(R) = 1+ and, therefore,
R is a valid CJS that defines a channel &,, for each M.
Furthermore, R fulfills the conditions of Proposition 1, and
it is therefore a LPQC. However, we claim that it does not
admit a TN representation with finite bond dimension.
Indeed, the latter is true iff S can be represented as a PEPO
with finite bond dimension. But the (unnormalized) state
|¥) = >, c|s) is such that the rank of the reduced state in
a hypercube of side L < M/2 is dL™), so that its PEPS
representation has a bond dimension that increases expo-
nentially with M. But any PEPO representation of S can be
interpreted as PEPS for |¥) with the same bond dimension.
We conclude that R cannot be represented by a PEPO with
bond dimension independent of M.

We are now in the position to formulate the following:

Theorem 2. For any of the considered lattices,
dQC c fQC = LPQC c CPQC. Furthermore, dQC C tnQC
and tnQC # LPQC, where all inclusions are strict
(see Fig. 2).

Note that this theorem does not say whether the
intersection between tnQC and LPQC coincides with the
set of dQC or simply contains it. This remains an interest-
ing open question.

Finally, let us discuss an area law for the classes of
QC defined above. As irreversible QC will typically
create mixed states out of pure ones, rather than talking
about the entanglement it is more appropriate to investigate
the number of correlations that can be created. The
relevant measure for this is the mutual information:
Given a state p in a qudit lattice, a subset of qudits
A€V, and its complement A¢=V/A, the mutual
information is I(A:A°) =S, + Sy — Sy, where S, is
the von Neumann entropy of the reduced state of the
qudits in A [25]. For Gibbs states of local Hamiltonians or
for PEPO, it is known that the mutual information obeys an
area law [33]. This motivates the following definition:

Definition 6. A sequence of QC obeys an area law if, for
all A € V, the state obtained by applying any of the QC to

CPQC

LPQC
fQC

FIG. 2. Euler diagram for the class of channels defined in the
main text, representing the statement of Theorem 2.

any product state fulfills 7(A:A¢) < c|0A|, where ¢ is a
constant independent of M.

We can now state our third main result:

Theorem 3. Any sequence of LPQC obeys an area law.

Finally, we show that causality is not enough to bound
the number of correlations that can be created when acting
on a product state:

Example 3. Let us consider the dephasing channel
acting on two qubits, n and m:

1
gn,m (,0) = E

o+ (o7 ® oi)p(or ® 07)],  (10)
and define the channel & =®,,cy, &, 4., Where V; con-
tains all n € V with n; <M /2 and e = (M/2,0,0,...,0).
£ is a convex combination of Pauli channels and, thus, a
CPQC. However, the CJS is R =Q,cy, Pun nien'+e- The
mutual information between (n,n’) and (n + e, n’ + e) is
one. Taking into account that the mutual information is
additive under the tensor product, we conclude that, for a
hypercube of side L < M/2, it is L.

Conclusions.—We have investigated the connections
between QCA, TN, and generation of quantum entangle-
ment and correlations. We have shown that QCA can be
efficiently represented by TN, implying an area law for the
entanglement entropy that they generate. We have explored
the implications of causality and locality for irreversible
QC, proving that only the former provides a constraint on
the number of quantum correlations that can be created.
Still, even LPQC cannot be represented efficiently via TN.

Our work opens up several questions and possibilities.
The identification of QCA with PEPU allows one to use the
established techniques based on TN for numerical simu-
lations of their action [34,35]. This also gives us a very
natural framework to investigate the classification of
(symmetry-protected) topological (SPT) phases for QCA
[18] in higher dimensions, with possible implications for
the classification of Floquet SPT phases [13,36-38].
Additionally, QCA inherit the holographic principle of
PEPS [39], which can also be used for their classification.
Let us also mention some questions that our work immedi-
ately raises. Given that CPQC constitute a convex set,
perhaps they can be obtained as the convex hull of either
dQC or, more generally, LPQC. A solution to this problem
would give us a very useful characterization of this set. In
turn, this might be important in order to study equivalence
classes of CPQC under smooth deformations.

We thank Alex Turzillo for discussions. L. P. acknowl-
edges support from the Alexander von Humboldt founda-
tion. J. I. C. acknowledges support by the EU Horizon 2020
program through the ERC Advanced Grant QENOCOBA
No. 742102 and from the DFG (German Research
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