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The Hammersley–Chapman–Robbins inequality
for repeatedly monitored quantum system

Alessandra Luati, Marco Novelli

University of Bologna

Abstract

We derive the Hammersley-Chapman-Robbins inequality for discrete quantum parameter

models in the presence of time dependent measurements. The extension determines a discrete

counterpart of the classical Fisher information. We provide an illustration concerning a

quantum optics problem.

Keywords: Parametric quantum models, Fisher information, Time-dependent

measurements, Discrete parameter space

1. Introduction

Statistical inference when the parameter space is reduced to a lattice was first considered

by Hammersley (1950) who was mainly concerned with the problem of estimating the molec-

ular weight of insulin with a Normal distribution with known variance and unknown integer

mean. Here, chemical theory restricts the unknown molecular weight to be a positive integer.

In Khan (1973, 1978, 2000, 2003) the general admissibility conditions for the mean estimator

proposed by Hammersley (1950) are investigated. Cox and Hinkley (1974) discuss the con-

struction of confidence intervals, LaMotte (2008) treats sufficiency and minimal sufficiency

for models in which the parameter space and the sample space are finite. Teunissen (2007)

extends the theory of minimum mean squared prediction error by introducing new classes of

predictors based on the principle of equivariance. Recently, Choirat and Seri (2012) discuss

consistency, asymptotic theory, information inequalities and their relations with efficiency

and superefficiency for a general class of M-estimators in a discrete parameter setting.

On the side of applications, Baram (1978) and Baram and Sandell Jr (1978a,b) highlight
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the relevance of discrete parameter models in signal processing by deriving the conditions

for consistent selection among a finite set of stationary Gaussian models. Moreover, from

an information theory perspective, Poor and Verdu (1995) establish a lower bound on the

probability of error in multi-hypothesis testing and Kanaya (1995) studies the asymptotic

relation between the posterior entropy and the maximum a posteriori error probability.

This paper is motivated by the physical problem of estimating the state of a quantum sys-

tem. The relevance of quantum state estimation is connected with the possibility to track and

control the dynamics of a quantum system, with possible applications to quantum feedback

control, high-precision measurement and quantum computing, among others (Ramakrishna

and Rabitz, 1996; Wiseman and Milburn, 2009; Dong and Petersen, 2010; Barreiro et al.,

2011; Dunjko and Briegel, 2018). In general, the state of the system is assumed to be a

smooth function of an unknown parameter so that classical inference based on maximum

likelihood theory can be applied. In this framework, tractable lower bounds of the variance

of an unbiased estimator of the parameter of interest have been extensively studied (see

Helstrom 1976; Holevo 1982, and more recently Barndorff-Nielsen et al. 2003; Luati 2004,

2011; Yang et al. 2019). However, there are some practically important examples in which

the smoothness assumptions do not hold, e.g., the photon-number states, the direction the

magnetic field points to, or an atom whose possible oscillation frequency belongs to a finite

set of values. So far, little has been done in order to study such cases, especially in a straight-

forward and tractable way. Tsuda and Matsumoto (2005) introduced a general framework

for quantum state estimation for non differentiable models based on a quantum analogue of

classical Fisher information and in a static setting.

The purpose of this paper is to derive the Hammersley–Chapman–Robbins (HCR) bound

(Hammersley, 1950; Chapman and Robbins, 1951) for discrete parameter models in repeatedly

monitored quantum systems. The bound determines a discrete counterpart of the classical

Fisher information for a time-dependent sequence of quantum measurements. An illustration

concerning a quantum optics problem is also provided.

The paper is organized as follows. The next Section introduces the probabilistic framework
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of time dependent quantum measurements. The main result, the HCR lower bound, is derived

in Section 2, following the approach of Hammersley (1950). Section 3 presents an illustration

and Section 4 concludes the paper.

1.1. Preliminaries

The state of a quantum system can be represented by a density matrix ρ(θ), that is, a

nonnegative, self-adjoint and trace-one linear operator acting on a n-dimensional complex

Hilbert space Hn (Petz, 2007; Nielsen and Chuang, 2010). Note that ρ(θ) depends on an

unknown parameter θ ∈ Θ ⊆ Rk which is the object of our inferential problem. The probability

distribution of a random variable X ∶ (Ω,F , P ) → (G,G, PX), describing the outcome of an

experiment performed on the system in the state ρ(θ), is given by the trace rule for probability

PX(G; θ) = tr{ρ(θ)M(G)},∀G ∈ G,

where M is the measurement applied to the system. The latter is represented by a set of

nonnegative Hermitian matrices defined on the measure space (G,G) and taking values in

Hn, satisfying M(G) = I, the identity matrix, M(∅) =O, the null matrix, and M (
∞

⋃
h=1

Gh) =

∑∞
h=1M(Gh) if G =

∞

⋃
h=1

Gh, Gh ∩ Gk = ∅,∀h, k = 1, . . . ,∞, h ≠ k. If M is dominated by a

σ-finite measure ν on (G,G) such that M(G) = ∫Gm(x)ν(dx),∀G ∈ G, where m(x) is a

non-negative Hermitian matrix-valued function, then the density of X is

pX(x; θ) = tr{ρ(θ)m(x)}, ∀x ∈ G.

By the nature of quantum mechanics, the measurement of a quantum system causes a

change in its state. Therefore, the complete description of a quantum experiment requires

both the probability distribution of X and the specification of the state of the system after

the measurement, and can be obtained through a collection of effect operators O(x) satisfying

∑xO(x)∗O(x) = I. Thus, conditionally on the outcome x, the state of a quantum system is
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ρ(θ;x) = O(x)ρ(θ)O(x)∗
tr{O(x)ρ(θ)O(x)∗} ,

where the denominator gives the probability of observing the outcome x (Barndorff-Nielsen

et al., 2003).

Let ρ0(θ) be the initial state of the system at time t = 0 and consider the experiment

described by X. Let also x1, . . . , xT be the sequence of outcomes indexed by time, with

T ⊆ Z, corresponding to repeated measurements on the system. After the first experiment,

with outcome x1, the normalized state of the system is,

ρ1(θ;x1) =
O(x1)ρ0(θ)O(x1)∗

tr{O(x1)ρ0(θ)O(x1)∗}
,

while, after the second measurement, one has

ρ2(θ;x2∣x1) =
O(x2)ρ1(θ)O(x2)∗

tr{O(x2)ρ1(θ)O(x2)∗}

where the denominator represents the probability of observing the outcome x2 conditionally

on the outcome x1, that is

pX2∣X1
(x2;x1, θ) = tr{O(x2)ρ1(θ;x1)O(x2)∗}

= tr{O(x2)
O(x1)ρ0(θ)O(x1)∗

tr{O(x1)ρ0(θ)O(x1)∗}
O(x2)∗}.

The joint probability of observing x1 and x2 is given by

p(x1, x2; θ) = pX2∣X1
(x2;x1, θ)p(x1; θ)

= tr{O(x2)
O(x1)ρ0(θ)O(x1)∗

tr{O(x1)ρ0(θ)O(x1)∗}
O(x2)∗}tr{O(x1)ρ0(θ)O(x1)∗}

= tr{O(x2)O(x1)ρ0(θ)O(x1)∗O(x2)∗}.
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Following the same reasoning, after the t-th measurement, the state of the system is

ρt(θ;xt∣x1, . . . , xt−1) =
O(xt)ρt−1(θ;xt−1∣x1, . . . , xt−2)O(xt)∗

tr{O(xt)ρt−1(θ;xt−1∣x1, . . . , xt−2)O(xt)∗}
(1)

where ρt−1(θ;xt−1∣x1, . . . , xt−2) represents the state of the system after the (t−1)-th measure-

ment, with outcome xt−1 and conditional on the outcome sequence x1, . . . , xt−2. The joint

probability of the sequence until time t is given by

p(x1, . . . , xt; θ) = pXt∣Xt−1
(xt;x1, . . . , xt−1, θ)p(x1, . . . , xt−1; θ)

and, iterating recursively, this expression can be rewritten as follows

p(x1, . . . , xt; θ) =
t

∏
r=1

p(xr;x1, . . . , xr−1, θ) (2)

= tr{O(xt) . . .O(x1)ρ0(θ)O(x1)∗ . . .O(xt)∗}.

Note that, by using equation (2) it is possible to express ρt(θ;xt∣x1, . . . , xt−1) in (1) as

ρt(θ;xt∣x1, . . . , xt−1) =
O(xt) . . .O(x1)ρ0(θ)O(x1)∗ . . .O(xt)∗

tr{O(xt) . . .O(x1)ρ0(θ)O(x1)∗ . . .O(xt)∗}

= ρ̃t(θ)
tr{ρ̃t(θ)}

where ρ̃t(θ) = O(xt) . . .O(x1)ρ0(θ)O(x1)∗ . . .O(xt)∗ represents the un-normalized state, whose

trace, tr{ρ̃t(θ)}, can be thought of as a generalization of the likelihood function of θ given

the outcome sequence x1, . . . , xt (Gammelmark and Mølmer, 2013),

L(θ;x1, . . . , xt) = tr{O(xt) . . .O(x1)ρ0(θ)O(x1)∗ . . .O(xt)∗} = tr{ρ̃t(θ)}. (3)

Clearly, the above formulation can be easily extended to continuous-time measurements, by

taking the limit as T →∞ for a fixed time span (Gammelmark and Mølmer, 2013).
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2. HCR bound for time-dependent sequences of quantum measurements

In the current setting, the parameter space is an enumerable set of values

Θ = {θ1, θ2, . . . , θp} which makes differentiation of the likelihood function in (3) inadmis-

sible. For this reason, instead of derivatives we shall consider differences of the likelihood

function evaluated at different parameter values. In the following, the derivation of the lower

bound for the scalar parameter θ is presented. The result for the multidimensional vector of

parameters can be obtained in the same fashion.

Theorem 1: Let L(θ;x) = tr{ρ̃T (θ)} represent the likelihood function of θ given the

observation sequence x = (x1, . . . , xT ), where Xt ∶ (Ω,F , P ) → (G,G, PX)∀t = 1, . . . , T .

Then, for θ ∈ Θ = {θ1, θ2, . . . , θp} ⊂ R, θ ≠ θ0, where θ0 is the true unknown parameter value,

the lower bound of the variance of an unbiased estimator θ̂ is

V[θ̂] ≥ sup
θ≠θ0

(θ − θ0)2

∫GT

tr2{ρ̃T (θ)}
tr{ρ̃T (θ0)}

ν(dx) − 1

(4)

where V[θ̂] is the variance of θ̂, and

iT (θ) =∫
GT

tr2{ρ̃T (θ)}
tr{ρ̃T (θ0)}

ν(dx) − 1

represents the Fisher information quantity for T repeated measurements, ∀θ ∈ Θ.

Proof. The expected value of the estimator θ̂ is

E[θ̂] = a = θ + b(θ) = ∫
GT
θ̂ tr{ρ̃T (θ)}ν(dx)

where b(θ) = E[θ̂] − θ indicates the bias of θ̂, and the variance is

V[θ̂] = ∫
GT

(θ̂ − θ0)2 tr{ρ̃T (θ)}ν(dx).

In this framework, differentiating the likelihood function with respect to the parameter θ is
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in general not admissible since the value θ + dθ may not belong to the restricted parameter

space Θ. As a possible solution, we could consider differences of the likelihood function for

different parameter values, i.e. for θ1, θ2 ∈ Θ:

∫
GT

[tr{ρ̃T (θ1)} − tr{ρ̃T (θ2)}]ν(dx) = 0. (5)

Multiplying both sides of equation (5) by θ̂ one has

∫
GT
θ̂ [tr{ρ̃T (θ1)} − tr{ρ̃T (θ2)}]ν(dx) = (a1 − a2), (6)

and subtracting equation (5) multiplied by a2 from equation (6) gives

(a1 − a2) = ∫
GT

(θ̂ − a2) [tr{ρ̃T (θ1)} − tr{ρ̃T (θ2)}]ν(dx)

= ∫
GT

(θ̂ − a2) [tr{ρ̃T (θ2)}1/2]
[tr{ρ̃T (θ1)} − tr{ρ̃T (θ2)}]

tr{ρ̃T (θ2)}1/2
ν(dx).

By the Cauchy−Schwarz inequality, we get

V[θ̂ ∣θ0 = θ2] ≥
(a1 − a2)2

∫GT

[tr{ρ̃T (θ1)} − tr{ρ̃T (θ2)}]2
tr{ρ̃T (θ2)}

ν(dx)
. (7)

The denominator of the previous expression can be rearranged as follows

[tr{ρ̃T (θ1)} − tr{ρ̃T (θ2)}]2
tr{ρ̃T (θ2)}

= [tr{ρ̃T (θ1)}]2
tr{ρ̃T (θ2)}

− 2tr{ρ̃T (θ1)} + tr{ρ̃T (θ2)}. (8)

By integrating equation (8) over GT gives −2 and +1, for the second and third term, respec-

tively. Since the reasoning followed so far holds for all values in Θ, we can rewrite equation

(7) as follows

V[θ̂] ≥ sup
θ≠θ0

(θ − θ0)2

∫GT

tr{ρ̃T ∣ θ}2
tr{ρ̃T ∣ θ0}

ν(dx) − 1

(9)

where we allow θ to vary over the whole parameter space Θ except for θ0, and an unbiased
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estimator is considered. Equation (9) represents the extension of the HCR inequality to the

case of discrete parameter models in repeatedly observed quantum systems ◻

The denominator of equation (4) in Theorem 1, i.e. the Fisher information quantity of

θ ∈ Θ for T repeated measurements, is a Neyman χ2
N divergence, see the left hand side

of equation (8). An interesting research topic, worth of investigation, is concerned with

the existence of quantum analogs of Fisher information in the discrete-parameter setting,

that play the role of Helstrom information or Wigner-Yanase information in the case when

the parameter space is not continuous. These analogs are usually derived based on the

specification of operators that are non-commutative versions of second order derivatives, see

Tsuda and Matsumoto (2005). In the present setting, similar results might be obtained for

the time sequence of effect operators O(xt) based on results of Hansen (2008) and Cai (2018).

3. Application

Nielsen and Mølmer (2008) derive the equation describing the time evolution of a quan-

tum system placed inside a cavity by monitoring the state of the electromagnetic radiations

transmitted through the cavity. Such indirect measurement turns out to be very useful to

prepare a system in a certain quantum mechanical state and to achieve the so called quan-

tum non-demolition measurements of an observable (Nielsen and Mølmer, 2008; Nielsen and

Chuang, 2010). In this regard, in order to prepare the system in the so called Dicke state

(Dicke, 1954), they consider a quantum system with N different photon-number states whose

measurement modifies the probability distribution over the possible states without directly

disturbing the system dynamics.

Specifically, following the notation of Nielsen and Mølmer (2008), section V.C.1, the joint

probability, at time t, to observe the quantum state ρt, along with the observed signal y, is

Pρt =
N

∑
n=1

Cn(0)√
2πt

exp(−(y + θnt)2
2t

). (10)

Here, Cn(t) = Cn(0) exp (−θnŷ − θ2nt/2), n = 1, . . . ,N , the time dependent probability assigned

to each photon-number state n, is a function of the initial condition Cn(0) and the variable
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y, having mean, −θnt, defined in equation (38) of Nielsen and Mølmer (2008). Note that,

assuming that the true value θ0 is an element of the parameter space Θ = {θ1, . . . , θN},

equation (10) consists of a sum in which each term is proportional to a Gaussian density

function with variance t and mean −θnt. The latter quantity is the object of our inferential

problem since it conveys all the available information about the parameter of interest, i.e.

the photon number state.

Following the same reasoning adopted in the proof of Theorem 1, we select one element

of equation (10) at the time, in order to compare signals obtained at different values of the

parameters θn. Let us rewrite the integral in the HCR (9) as follows

∫
G

tr{ρ̃t ∣ θn}2
tr{ρ̃t ∣ θ0}

ν(dx) − 1 =∫
R

[Cn(0)√
2πt

exp (− (y+θnt)
2

2t )]
2

C0(0)√
2πt

exp (− (y+θ0t)22t )
dy − 1. (11)

By considering the right hand side of equation (11), taking the square and completing it with

the term ±t2(2θn − θ0)2, we get:

Cn(0)2
C0(0)

exp [− t
2

2t
(2θ2n − θ20)] exp [ t

2

2t
(2θn − θ0)2]

1√
2πt

exp [− 1

2t
(y + t(2θn − θ0))2].

Taking the integral over R gives

Cn(0)2
C0(0)

exp [− t
2

2t
(2θ2n − θ20)] exp [ t

2

2t
(2θn − θ0)2].

Finally, rearranging terms, the right hand side of equation (11) becomes

Cn(0)2
C0(0)

exp [t(θn − θ0)2] − 1. (12)

Since it is reasonable to assume that the differences in the mean of the integrated signals

are of the form θn = θ0 + αn, where αn is a non zero real number, then the HCR bound in
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equation (9) becomes

V[θ̂] ≥ max
θn≠θ0

(θn − θ0)2
Cn(0)2
C0(0)

exp [t(θn − θ0)2] − 1

= max
αi≠0

Cn(0)α2
n

C0(0)2 exp [tα2
n] − 1

.

The previous expression reaches its maximum when α tends to 0, thus leading to

lim
α→0

C0(0)α2

Cn(0)2 exp [tα2] − 1
= C0(0)2α

Cn(0)2 t2α exp [tα2] =
C0(0)
Cn(0)2t

where the last term represents the lower bound for the variance of the mean estimator, which

is linearly dependent on t.

4. Conclusions

A discrete counterpart of the Cramér–Rao bound in parametric quantum models is derived.

Without relying on classical regularity assumptions, the extension sets the lower bound for

the variance of an unbiased estimator of the parameter of interest. By means of an illustration

related to a quantum optics problem, in which the classical Fisher information quantity is

obtained, we emphasise how the derived results find applications time-dependent sequences

of quantum systems.
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