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Application of a neural network-based algorithm for the real-time correction of the in-

cylinder pressure signal sensed with a piezoelectric washer 

 

Abstract 

The objective of this work is to analyze the signal of a piezoelectric 

washer installed under the spark plug and to compare the combustion 

metrics determined from such signal to the indexes from a standard 

piezoelectric sensor for the in-cylinder pressure measurement, 

considered as the reference in this work.  

In the first part of the paper, the spectrum analysis of the 

piezoelectric washer pressure trace is proposed. It is demonstrated 

how such signal can be used to measure the main combustion and 

knock indexes. Nevertheless, due to intrinsic characteristics of the 

system, the knock index evaluated from the raw pressure trace cannot 

be directly used to estimate the instantaneous knock intensity. For 

this reason, a model-based algorithm for the real-time application is 

developed to calculate a corrective factor of the high-frequency 

content of the signal. With such algorithm, the logarithmic mean 

value of the Maximum Amplitude of Pressure Oscillation can be 

accurately evaluated through an Artificial Neural Network-based 

algorithm to properly scale the indexes calculated from the washer 

signal. Such algorithm is further developed with respect to a 

precedent work of the authors by introducing a new function to 

account for the intake air temperature and the fuel quality effects on 

knock indexes, and it needs both some variables provided by the 

Engine Control Unit and raw washer combustion indexes as inputs.  

In the last part of the work, the algorithm is validated at the engine 

test bench under steady-state and transient conditions by reproducing 

speed and load profiles. 

Keywords: piezoelectric sensors, low-cost piezoelectric sensors, 

piezoelectric washers, knock, knock index, knock modeling, 

combustion, combustion modeling, combustion control, neural 

network, artificial intelligence 

Introduction 

During the last decades, engine manufactures and researchers 

invested significant efforts to increase combustion process efficiency 

and decrease pollutant emissions. One of the widely adopted 

solutions to reach higher values of mechanical and thermal 

efficiencies is the so-called downsizing, applied especially in Spark 

Ignition (SI) engines and coupled with turbocharging and 

supercharging. This solution leads to reach high pressure and 

temperature within the combustion chamber and these 

thermodynamics conditions facilitate abnormal combustions 

occurrence that generates severe pressure oscillations that can cause 

serious damage to the combustion chamber components. As well-

known from literature [1], the Spark Advance (SA) angle that 

guarantees Maximum Brake Torque (MBT) should be applied to 

maximize combustion efficiency, but knock remains one of the main 

limitations to efficiency increase. Enabling robust and cheap in-

cylinder pressure sensing is thus a key step to significantly improve 

on-board combustion efficiency management. Excluding standard 

piezoelectric pressure sensors, which cannot be adopted for real on-

vehicle applications for cost and reliability reasons [2], the main 

technologies applied on production engines are the following ones: 

 Ionization current (ION) 

 Accelerometers  

 Microphones 

The first system is sensitive to the concentration of molecules that get 

ionized by heat, making the in-cylinder charge conductive. By 

applying a voltage difference to the spark plug electrodes, ions 

concentration can be measured, thus obtaining a signal that can 

describe the in-cylinder pressure trace [3]. In literature, several 

authors demonstrated that ION-based controllers can manage 

combustion phase with good accuracy [4, 5]. It was proven that ION 

is reliable even for pre-ignition diagnostic [6, 7], misfire detection [8, 

9], and Exhaust Gas Recirculation (EGR) estimation [10], because of 

the capability to catch the Cycle-to-Cycle Variation (CCV). 

While ION is a technology suitable for SI engines, the accelerometer 

mounted on the engine head or block can be used also for 

Compression Ignition engines. As demonstrated in [11-14], the 

accelerometric signal can be properly treated to determine some 

synthetic indexes that are well correlated to the angle of 50% of Mass 

of Fuel Burnt (MFB50) and the Start of Combustion (SOC). The 

accelerometer is considered as a robust sensor also for knock 

intensity measurement, but integral indexes [15] or a model-based 

approach [16] are needed to reduce the intrinsic noise that 

characterizes the signal.  

Microphone signal is characterized by features that are close to those 

described for the accelerometer and for this reason its signal can be 

treated in a similar way [17, 18]. 

This work presents the development of a model-based, control-

oriented algorithm to adjust knock index calculated from the in-

cylinder pressure signal estimated with a piezoelectric washer placed 

between the cylinder head and the production spark plug. It is 

composed of two thin cases which contain the sensitive part made of 

the piezoelectric material, as explained in [19]. The final aim is to 

obtain robust indexes for knock intensity and combustion phase, 

achieving a good correlation with reference values of Maximum 

Amplitude of Pressure Oscillation (MAPO) and MFB50, 

respectively. It is important to mention that the signal coming from 

the standard piezoelectric sensors and the related combustion and 

knock indexes are taken as the reference in this work. A robust and 

accurate estimation of the combustion phase and the knock intensity 

is the most important step to develop more reliable combustion 

controllers. Authors demonstrated in [20, 21, 22] that once such 

indexes are known, the maximum in-cylinder pressure (PMAX) and 

the Indicated Mean Effective Pressure (IMEP) can be accurately 

modelled on the entire engine operating range (also for non- 

traditional combustion concepts such as using water injection) while 

keeping a high level of accuracy under transient operating conditions, 

due to the strong dependency on engine load and combustion phase. 

The identification of a cheap sensor compatible with production 

requirements can be strategic to deploy innovative combustion 

controllers, such as the piston damage-based algorithm proposed by 

the authors in [23, 24], that needs instantaneous combustion phase 

and knock intensity as inputs. 

In the first part of the work the piezoelectric washer signal is studied 

in the high frequency domain, by analyzing its spectrum. It is shown 

how the signal of such sensor bears knock-relevant information in the 

same frequency range considered for the evaluation of MAPO (for 

frequencies higher than 4 kHz). Nevertheless, due to the intrinsic 

features of the innovative sensor and its position on the engine head, 

the so-called Maximum Amplitude of Washer Oscillation (MAWO) 

knock index, calculated with the same function of MAPO, is not 

numerically comparable with the corresponding values of the latter. 

This is the reason why, after studying the statistical properties of 

MAWO, a model-based algorithm compatible with the Real-Time 

(RT) execution is developed to adjust the instantaneous MAWO and 

to make it directly comparable with MAPO. Such algorithm 
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implements an Artificial Neural Network (ANN) to model the mean 

value 𝜇 of MAPO log-normal distribution [20], and a Feedforward 

Neural Network (FNN) algorithm is deployed. This kind of model 

was selected to capture the effects of all the variables that physically 

affect the abnormal combustion phenomena and their intensity. 

Moreover, FNNs are suitable for RT applications because these 

models are based on the solution of simple algebraic functions [25]. 

In literature, some examples of the implementation of complex ANNs 

into RT codes can be found [26]. The knock model proposed in [27] 

is further developed in this work by introducing a new approach for 

the description of the intake air temperature effects and it is extended 

even to include the influence of the fuel quality (evaluated as the 

Research Octane Number, RON). The model-based approach is 

applied even for PMAX estimation, since the combustion phase is 

evaluated with high robustness and accuracy, as described by the 

authors in [21]. 

In the last section of the paper, the algorithm to scale MAWO values 

is implemented in a Rapid Control Prototyping (RCP) system and 

validated at the engine test bench under steady-state and transient 

conditions. The accuracy of the method is evaluated by correlating 

indexes obtained from the washer signal with those evaluated from 

the reference in-cylinder pressure trace.   

Experimental Campaign 

The experimental campaign is carried out on a V8, 3.9-liter, gasoline 

direct injection, turbo-charged engine, with exhaust side-mounted 

spark plugs. The main features of such engine are reported in Table 1. 

Table 1. Main engine characteristics. 

Displacement 3.9 L (V8 cylinders) - Turbo 

Stroke 82 mm 

Bore 86.5 mm 

Connecting Rod 143 mm 

Compression Ratio 9.4 

Number of valves per cylinder 4 

 

Experimental tests are performed in two main phases. In the first one, 

some spark sweeps are carried out and the engine is equipped with a 

standard piezoelectric sensor for each cylinder. The main features of 

such sensors are reported in Table 2. 

Table 2. Main characteristics of the piezoelectric in-cylinder pressure sensor 
used. 

Sensitivity 37 Pc/bar 

Pressure range 0 – 250 bar 

Overload 300 bar 

Natural frequency > 215 kHz 

Data are collected over the entire engine operating range in different 

conditions of lambda, intake air temperature and with different types 

of gasoline (i.e., RON). Figure 1 shows the operating conditions (in 

the engine speed and load domain) where the engine is operated with 

RON 95 gasoline and the target lambda equal to 0.75, 1, and the 

standard mapped values, respectively. Intake air temperature was 

kept constant and equal to the nominal conditions as defined by the 

engine manufacturer. Y-axis values are normalized with respect to 

their maximum, and the same approach is applied to all other 

combustion indexes for confidentiality reasons. The engine load 

indicates the trapped air mass per cycle, and thus it represents an 

index related to the volumetric efficiency.  

 

Figure 1. Engine operating conditions tested with different lambda values at 

the nominal intake air temperature. 

Since knock intensity is affected by both the fuel quality and the 

intake air temperature [27, 28], some tests are carried out with a RON 

100 gasoline and at a manifold air temperature higher than nominal 

(50°C is chosen). Such operating points are shown in Figure 2. 

 

Figure 2. Engine operating conditions tested with RON 100 gasoline and 

intake air temperature of 50°C (higher than nominal). 

For each engine point shown in Figure 1 and Figure 2, and for each 

spark timing, the in-cylinder pressure signal is recorded for 200 

consecutive cycles under steady-state conditions, with a sampling 

frequency of 200 kHz. Alma Automotive mASTRO charge amplifier 

and OBI indicating system are used. Combustion indexes are 

estimated from the low pass filtered pressure curves, with a cut-off 

frequency of 3 kHz. On the other hand, MAPO index is used to 

evaluate knock intensity and it is calculated with the following 

equation: 

 𝑀𝐴𝑃𝑂 = max(|𝑝𝑓𝑖𝑙𝑡|) (1) 

Where 𝑝𝑓𝑖𝑙𝑡 is the band-pass filtered in-cylinder pressure signal. Cut-

off frequencies are defined together with the engine manufacturer, 

and they are not disclosed for confidentiality reasons. 

In the second phase of the experimental champaign, three cylinders 

of the engine are equipped with both the piezoelectric washers and 

the reference sensors. In this way, the combustion indexes calculated 

from the washer signal are compared to those obtained from the 

reference sensor. Also in this case, some spark sweeps are carried out 

over a wide portion of the engine operating range. These tests are 



Page 3 of 13 

 

carried out at mapped lambda, with RON 95 gasoline and nominal 

intake air temperature. Figure 3 shows such engine operating 

conditions on the normalized engine speed and load domain. 

 

Figure 3. Engine operating conditions tested with the piezoelectric washers 
installed under the production spark plugs. 

Since the washers’ sensitivities are unknown a priori, the calibration 

is carried out starting from the pC/bar ratio of the reference 

piezoelectric sensor mounted on the same cylinder. As shown in the 

left-hand graph of Figure 4, where the pressure curves recorded under 

motored conditions are shown, the gain needs to be recalibrated, as 

reported in [19, 29]. The gain calibration is performed by multiplying 

the first sensitivity value with the ratio between the PMAX estimated 

with the two different sensors. Such ratio is defined by averaging the 

values calculated under motored and fired conditions. The same 

approach is applied to all the washers used for this work. 

 
Figure 4. Average pressure curves under motored conditions sensed with the 

reference sensor and the piezoelectric washer with a pre-calibrated (left-hand 

graph) and an optimized sensitivity (right-hand graph). 

Considering the results achieved with the piezoelectric washer in 

previous works [19, 29], the combustion indexes are calculated from 

the washer signal with the same algorithms applied to the reference 

sensors. Thus, it is possible to define MAWO through the Equation 2: 

 𝑀𝐴𝑊𝑂 = max(|𝑤𝑓𝑖𝑙𝑡|) (2) 

Where 𝑤𝑓𝑖𝑙𝑡is the band-pass filtered washer signal with the same cut-

off frequencies adopted for MAPO. In the following paragraphs, the 

characteristics of the combustion metrics estimated with the 

piezoelectric washers and the algorithms developed to treat such 

indexes are described in detail. 

Spectrum Analysis 

The spectrum of the washer signal is analyzed to verify if the 

frequency range used to calculate MAPO can be considered valid 

also for the estimation of MAWO. This study is carried out for the 

test at 7500 RPM Full-Load, and for the most anticipated SA. This 

engine point is chosen because both the mechanical noise and the 

spectrum peaks are high due to knock contribution. In Figure 5 the 

signal spectrum magnitude of the standard sensors for the considered 

three cylinders (on which the piezoelectric washer is installed) is 

shown. The magnitude is the mean one, calculated by averaging the 

spectrum of 200 cycles. 

 

Figure 5. Mean spectrum magnitude of the reference pressure signals (left) 

and normalized MAPO percentile curves (right). 

As expected, combustion chamber harmonics are clearly recognizable 

for all the in-cylinder pressure sensors. Moreover, it can be noted that 

the higher the magnitude, the higher the knock intensity, as shown in 

the percentile curves in the graph on the right. The same analysis is 

now shown for the piezoelectric washers in Figure 6. 

 

Figure 6. Mean spectrum magnitude of the piezoelectric washer signals (left-

hand graph) and the normalized MAWO percentile curves (right-hand graph). 

Since the piezoelectric washer sensitivity is calibrated to achieve an 

in-cylinder pressure curve comparable with that evaluated through 

the reference sensor, it is expected that even the spectrums are 

similar. Nevertheless, the harmonics related to the washer signal have 

an amplitude 2 or 3 times higher than the reference. Such 

experimental observation can be described with the following 

considerations or with their combination: 

 Since the piezoelectric washer is installed on the engine 

head it works like an accelerometer, amplifying the 

vibrations generated by knocking combustions 

 The sensitivity can change while the engine is running due 

to the thermal expansion of the head. This determines a 
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variation of the spark plug preload, and, consequently, of 

the washer strain [19, 28]. 

While the frequency response of the reference sensor has a 

decreasing trend starting from the first or the second harmonic at 

most, the mechanical system composed of cylinder head, spark plugs, 

and piezoelectric washers amplifies the harmonics in the range 10-25 

kHz. At the same time, the response of both sensors is included in the 

frequency range of 5-30 kHz. Such considerations allow to calculate 

MAWO with the same approach used for MAPO. Moreover, the 

MAWO values are more spread between all the three considered 

cylinders, with respect to the MAPO ones, and this is highlighted by 

the related percentile curves. While the 98th percentile of MAPO 

(MAPO98) remains in a range of 10% for all three cylinders, the 

same percentile of MAWO (MAWO98) is in a range of 40-50 %. In 

other words, due to the different content of the signal of a particular 

washer in the frequency domain, the correlation between MAPO and 

MAWO changes for each sensor. Because of all the experimental 

observations proposed so far, MAWO cannot be directly used to 

replace MAPO. Such considerations are graphically described in 

Figure 7, where knock indexes calculated for spark sweeps performed 

at 7500 RPM full load are shown. Even the knock indexes are 

normalized for confidentiality reasons, and in the following figures 

MAPO is divided by the maximum value of the whole database 

considered in this figure, while MAWO is normalized with respect to 

the same maximum MAPO.  

 

Figure 7. Correlation between normalized MAPO and normalized MAWO for 

the spark sweep carried out at 7500 RPM at full load.  

A model-based, RT algorithm is thus developed to adjust the 

instantaneous MAWO. 

Analysis of the MAWO statistical parameters 

As well known, knock is a stochastic phenomenon [30, 31], and it 

should be analyzed statistically. For fixed engine operating 

conditions (speed, load, SA and lambda) the statistical distribution of 

MAPO can be well described with a Gamma or Log-Normal 

Probability Density Function (PDF) [30]. As described in [20, 22, 

27], the Log-Normal PDF fits with high accuracy the probability 

distribution of such knock intensity index. Moreover, the Log-

Normal PDF inherits the characteristics and the properties of the 

Gaussian PDF and, thus, it needs only two parameters to be 

completely defined. These parameters are the mean value (𝜇) and the 

standard deviation (𝜎), that can be defined as functions of the 50th 

and the 98th percentiles of MAPO (MAPO50 and MAPO98, 

respectively) through the following equations (see the Appendix of 

[20] for further details): 

 𝜇 = log(𝑀𝐴𝑃𝑂 50) (3) 

 𝜎 = log(𝑀𝐴𝑃𝑂 98) − 𝜇2.0057  (4) 

Also, MAWO distribution can be described with a Log-Normal PDF. 

Figure 8 shows MAPO and MAWO histograms, measured for 

cylinder 1, at the earliest SA at 1500 and 7500 RPM full load. The 

figure is zoomed to highlight the highest probability values and the 

lowest MAPO/MAWO.  

 

Figure 8. Histograms and the related Log-Normal PDF of the normalized 

MAPO and MAWO, for the earliest SA value within the spark sweeps carried 
out at 1500 (left) and 7500 RPM (on the right) full load. 

It is important to underline that, increasing the engine speed, the 

shape of MAWO distribution changes significantly, if compared to 

MAPO PDF. This means that moving from 1500 to 7500 RPM the 

coefficients of the correlation function between the instantaneous 

MAPO and MAWO change. Since it was demonstrated that MAWO 

PDF can be fitted by a Log-Normal distribution, a comparison 

between 𝜇 and 𝜎 of MAPO and MAWO PDSs can be carried out. In 

Figure 9 the analysis of the correlation of 𝜎 is presented for all the 

three cylinders on which the piezoelectric washer is mounted. 

 

Figure 9. Correlation between the standard deviation of MAPO and MAWO 

for the spark sweep at 1500 (left) and 7500 RPM (right) full load. 

These results demonstrate that 𝜎 for the two different knock indexes 

is comparable. Moreover, the experimental values for all the 

cylinders are fitted by a first order function that is close to the 

bisector. This means that such relationship can be defined by 

Equation 5: 

 𝜎𝑀𝐴𝑃𝑂  ≈  𝜎𝑀𝐴𝑊𝑂 (5) 

The same analysis is carried out for the mean value and the results 

are reported in Figure 10. 
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Figure 10. Correlation between the mean value of MAPO and MAWO for the 

spark sweeps carried out at 1500 (on the left) and 7500 RPM (on the right) 

full load. 

Considering the results shown in the figures above, the parameter 𝜇 

of MAWO should be analytically corrected to make it numerically 

comparable with the MAPO PDF mean value. In other words, the 

instantaneous MAWO varies as MAPO, accordingly, but each sensor 

has a particular content in the high-frequency domain of its signal, 

and this affects the mean value. The aim is to adjust MAWO mean 

value to make the following equation valid: 

 𝜇𝑀𝐴𝑃𝑂 =  𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅.       (6) 

Where 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. is the corrected mean value of the MAWO PDF. 

Considering Equations 3 and 6, it is possible to define the corrective 

factor 𝐾𝑐𝑜𝑟𝑟 as follows: 

 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. = log (𝑀𝐴𝑊𝑂50𝐾𝑐𝑜𝑟𝑟 ) (7) 

 𝐾𝑐𝑜𝑟𝑟 =  𝑀𝐴𝑊𝑂50𝑒𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. (8) 

Where MAWO50 is the 50th percentile of MAWO index. Thus, by 

applying Equation 6, the resulting formulation for 𝐾𝑐𝑜𝑟𝑟 is defined by 

Equation 9 as: 

 𝐾𝑐𝑜𝑟𝑟 =  𝑀𝐴𝑊𝑂50𝑒𝜇𝑀𝐴𝑃𝑂  (9) 

Finally, by considering Equation 7, the coefficient calculated via 

Equation 9 is used to scale the instantaneous MAWO: 

 𝑀𝐴𝑊𝑂𝑐𝑜𝑟𝑟 =  𝑀𝐴𝑊𝑂𝐾𝑐𝑜𝑟𝑟  (10) 

It is necessary to estimate 𝜇𝑀𝐴𝑃𝑂 to properly adjust the instantaneous 

MAWO value. Since there are several variables that influence the 

MAPO mean value, the proposed approach to model such parameter 

is the application of an FNN [27]. While in the previous activity the 

inputs for the MAPO PDF model were PMAX, engine speed, load, 

intake air temperature, and the target lambda value, in this work fuel 

RON is also included. Moreover, the estimation of the MAPO mean 

value with an intake air temperature different from the nominal value 

is further developed and improved in this work to make it more 

robust and accurate under fast transient maneuvers. 

MAPO PDF Mean Value Modeling: intake air 

temperature effects 

For fixed engine load, speed, and lambda, it can be stated that the 

higher the intake air temperature, the higher 𝜇𝑀𝐴𝑃𝑂. In a previous 

work of the authors [27] an FNN-based model is developed and 

validated to simulate such quantity and it takes PMAX, engine load, 

speed, lambda, and intake air temperature as inputs. Figure 11 shows 

the simulated values of 𝜇𝑀𝐴𝑃𝑂 for the spark sweep carried out at 

7500 RPM full load and with different intake air temperatures and it 

can be stated the intake air temperature affects the output values 

significantly. Nevertheless, the model estimates a higher MAPO 

mean value for a lower intake air temperature when the expected 

trend should be the opposite. In other words, the previously 

developed model is not able to properly capture the effects the air 

temperature has on the knock intensity. 

 

Figure 11. Experimental and simulated values of 𝜇𝑀𝐴𝑃𝑂 for the spark sweep 
carried out at 7500 RPM and full load. 

The issue shown in Figure 11 derives from the overfitting of the 

training dataset [32], for the previous FNN-based model. This 

phenomenon reduces the accuracy of the model especially when it 

operates with inputs that are different from those used for the 

calibration. The main causes of such issue can be divided into two 

main points [33]:  

 Not representative training dataset, or not wide enough  

 Issues related to the choice of the neural network inputs  

In this case, the spark sweep tests with an intake air temperature 

higher than the reference have been performed on a limited number 

of engine points (as shown above in Figure 2) and this is the reason 

for the poor accuracy of the neural network with respect to such input 

variable. 

The solution proposed to face such issue leads to exclude the intake 

air temperature from the inputs of the FNN. In this way, the network 

is trained using as inputs the experimental values of PMAX, engine 

load, engine speed, and lambda related to the engine points reported 

in Figure 1. The sensitivity to the intake air temperature is introduced 

in the 𝜇𝑀𝐴𝑃𝑂 model through the definition of an analytical corrective 

function. Indeed, the FNN network is calibrated for the reference air 

temperature, and this means that when the experimental temperature 

is higher than such reference the calculated output is lower than the 

experimental 𝜇𝑀𝐴𝑃𝑂 values. However, it is possible to correlate the 

simulated and experimental values through a first-degree polynomial 

as shown in Figure 12. 
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Figure 12. Correlation between simulated and experimental 𝜇𝑀𝐴𝑃𝑂 values for 
the spark sweeps carried out with an intake air temperature of 50 C°, for the 

four engine points highlighted in red in Figure 2. 

Figure 12 highlights that the values are well correlated, and this 

means that 𝜇𝑀𝐴𝑃𝑂 for an intake air temperature of 50 C° can be 

estimated through the function represented by the black dashed line 

in Figure 11. The analytical formulation of such function is the 

following: 

 𝐹𝜇 𝑇.𝑎𝑖𝑟 =  1.0398 ∗ 𝜇𝑆𝐼𝑀 + 0.5 (11) 

Where 𝜇𝑆𝐼𝑀 is the output of FNN calibrated for the reference intake 

air temperature. It is then supposed that the mean value of MAPO 

PDF varies linearly with respect to the air temperature, following the 

trend defined by Equation 11, that contains the data for different 

engine operating conditions. In Figure 13 the block scheme of the 𝜇𝑀𝐴𝑃𝑂 model is shown, and the main steps of the calculation are the 

following ones: 

 FNN-based model estimates 𝜇𝑀𝐴𝑃𝑂 value for the reference 

air temperature (𝜇𝑀𝐴𝑃𝑂 T. air Ref.) 

 With Equation 11 𝜇𝑀𝐴𝑃𝑂 is determined for the air 

temperature of 50 C° (𝜇𝑀𝐴𝑃𝑂 50 C°) 

 𝜇𝑀𝐴𝑃𝑂 can be calculated with a first-degree polynomial for 

the measured intake air temperature (T. air Meas.) 

 

Figure 13. Block scheme of the 𝜇𝑀𝐴𝑃𝑂 model with the sensitivity to intake air 

temperature.  

In Figure 14 results of the proposed algorithm are shown for the same 

experimental data reported in Figure 11. 

 

Figure 14 Results of the 𝜇𝑀𝐴𝑃𝑂 model for the spark sweep test carried out at 
7500 RPM full load, at different intake air temperature values 

It can be stated that the model can capture the physical effects of the 

air temperature on the mean value of the knock intensity. The same 

approach can be used to introduce the sensitivity to the intake air 

temperature in the 𝜎𝑀𝐴𝑃𝑂 model. The 𝐹𝜇 𝑇.𝑎𝑖𝑟 function is replaced by 

a 𝐹𝜎 𝑇.𝑎𝑖𝑟 one. 

MAPO PDF Mean Value Modeling: fuel RON 

effects 

This section deals with the introduction of the effect of the fuel 

quality (i.e. RON) in the 𝜇𝑀𝐴𝑃𝑂 model. 

 

Figure 15. Experimental values of 𝜇𝑀𝐴𝑃𝑂 for the spark sweep carried out at 
6000 RPM and full load with RON 95 and with RON 100 fuels. 

When fuel RON increases, 𝜇𝑀𝐴𝑃𝑂 curve maintains the same trend 

and merely translates towards higher PMAX values. This 

experimental observation allows to include the effect of a fuel RON 

variation by changing the value of PMAX used as input for the 𝜇𝑀𝐴𝑃𝑂 model described in the previous paragraph. PMAX is 

modified with the corrective factor 𝐾𝜇, that is calculated with the 

following procedure: 

 𝜇𝑀𝐴𝑃𝑂 is calculated by using the experimental data of the 

spark sweep performed with RON 100 gasoline as inputs, 

and the estimated outputs are thus higher than the 

experimental ones, because higher PMAX values can be 

reached without high knock intensity 

 𝐾𝜇 is the PMAX multiplying factor and it is calculated with 

an automatic optimization procedure that minimizes the 

following objective function: 
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 𝑓𝑜 = ∑ |𝑣𝑎𝑙𝑒𝑥𝑝.(𝑖) − 𝑣𝑎𝑙𝑠𝑖𝑚.(𝑖)|𝑛
𝑖=1  (11) 

Where 𝑣𝑎𝑙𝑒𝑥𝑝. and 𝑣𝑎𝑙𝑠𝑖𝑚. are experimental and simulated 

MAPO PDF mean values, respectively. 

This procedure leads to calibrate a map of 𝐾𝜇 with respect to the 

engine speed and load. Figure 16 shows how such map is 

implemented in the 𝜇𝑀𝐴𝑃𝑂 model to estimate the MAPO PDF mean 

value for the RON 100 gasoline. 

 

Figure 16. Block scheme of the 𝜇𝑀𝐴𝑃𝑂 model for the RON 100 gasoline. 

The complete model incudes both the algorithms calibrated for the 

RON 95 and RON100 gasoline. The resulting 𝜇𝑀𝐴𝑃𝑂 for an 

intermediate fuel RON value is calculated with a linear fitting of 𝜇𝑀𝐴𝑃𝑂 values estimated for the RON 95 and 100 gasoline, 

respectively. Figure 17 presents the correlation between the 

experimental and the simulated 𝜇𝑀𝐴𝑃𝑂 values for all the spark sweeps 

reported in Figure 1 and Figure 2. R-Square (R2) and Root Mean 

Square Error (RMSE) are indicated above the figure. 

 

Figure 17. Correlation between the experimental and the simulated 𝜇𝑀𝐴𝑃𝑂 for 

all spark sweeps. 

As for the intake air temperature, it is possible to apply the same 

method to include the sensitivity to fuel RON in the 𝜎𝑀𝐴𝑃𝑂 model. In 

particular, 𝐾𝜇 map is replaced with 𝐾𝜎, that is calibrated with the 

same procedure described above. 

Maximum In-Cylinder Pressure Modelling 

Inputs for the 𝜇𝑀𝐴𝑃𝑂 model are some engine variables and a synthetic 

combustion index (i.e., PMAX). The value of maximum in-cylinder 

pressure can be evaluated directly from the low-pass filtered washer 

signal. However, as anticipated above, the approach of the direct 

PMAX calculation is not reliable, because of the variation of the 

sensor sensitivity with respect to the head thermal state and the 

position on the engine head (see Figure 18). In the following figure 

the PMAX values are normalized with respect to the maximum of the 

whole experimental database.  

 

Figure 18. Correlation between the normalized PMAX estimated with the 

washer and the reference sensor, for the spark sweep carried out at 7500 RPM 
full load.    

For this reason, a model-based approach is implemented to evaluate 

PMAX and to superpose all the points of Figure 18 on the bisector. 

This model is based on the algorithm developed and validated in [21]. 

Such function uses the engine load (defined as the trapped air mass 

per cycle, per cylinder) and the MFB50. Nevertheless, several washer 

combustion indexes can be directly correlated to the combustion 

phase measured with the reference sensor: 

 MFB50 

 MFB10 

 Angle of PMAX (APMAX) 

It is thus evaluated which is the most robust for the PMAX estimation 

on the entire engine operating range. The block scheme of the 

resulting algorithm, with the PMAX estimation as well, is shown in 

Figure 19. Two buffers are implemented in the algorithm: one is 

needed to calculate MAWO50, while the other is used to calculate a 

filtered value of PMAX to reduce the effect of the CCV. The size of 

these buffers needs to be calibrated to maximize the correlation 

between MAPO and the corrected MAWO values.  

 

Figure 19. The block scheme of the complete algorithm for the 𝐾𝑐𝑜𝑟𝑟 

calculation. 

The three combustion phase indexes mentioned above are calculated 

from the washer signal and they are considered to directly estimate 

the combustion phase (i.e., the MFB50). The values achieved by 

analyzing all the spark sweep tests referred to Figure 3 are 

concatenated for all the cylinders and are reported in Figure 20.  
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Figure 20. Correlation between the piezoelectric washer combustion phase 

indexes obtained for all the spark sweep tests and the MFB50 calculated from 

the reference signal.  

The results show how all the three indexes are reliable for the 

estimation of the MFB50 on the entire engine operating field. In 

Table 3, the RMSE and the R2 are reported for each correlation.  

Table 3. RMSE and R2 of the correlation between the washer combustion 
phase indexes and the reference MFB50. 

Model Layout R2 RMSE 

MFB50 Washer – MFB50 Ref. Sensor 0.9818 1.12 ° 

MFB10 Washer – MFB50 Ref. Sensor 0.9640 1.59 ° 

APMAX Washer – MFB50 Ref. Sensor 0.9826 1.11 ° 

Model performance is evaluated by comparing accuracy of calculated 

PMAX values using the three different combustion phase indexes as 

input. Of course, since PMAX model is calibrated for taking the 

reference MFB50 as input, a linear polynomial is required to convert 

the MFB10 or APMAX into the MFB50. Such functions for MFB10 

and APMAX are obtained by reversing those shown in Figure 20. In 

Figure 21, PMAX values calculated by taking the MFB50 of the 

washer as input are shown for the spark sweep at 7500 RPM full 

load, for the three considered cylinders. 

 
Figure 21. Estimated normalized PMAX using MFB50 from the washer signal 
for the spark sweep performed at 7500 RPM full load, for the three cylinders. 

The calculated PMAX is accurate especially for the cylinder 1 and 

the fitting polynomial is close to the bisector. It is not the same for 

cylinders number 2 and 3 and, for the latter, the PMAX is 

underestimated by 10 %. Such difference has relevant consequences 

on the MAPO PDF mean value model accuracy. Indeed, 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. 
values are not aligned along the bisector of the 𝜇𝑀𝐴𝑃𝑂 - 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. 
graph, as shown in Figure 22. 

 
Figure 22. Correlation between 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. and experimental 𝜇𝑀𝐴𝑃𝑂 achieved 
by feeding the MAPO mean value model with the PMAX estimated directly 
from the washer MFB50, for the spark sweep performed at 7500 RPM full 

load. 

The same analysis is carried out by using alternatively the MFB10 

and the APMAX estimated from the washer pressure signal. In 

Figure 23 the results for the spark sweep at 7500 RPM full load are 

reported and it can be stated that the maximum-in-cylinder pressure is 

underestimated by around 5%, especially at the highest PMAX 

values. At the same time, the differences between correlation 

functions of the three cylinders are lower than the observed in Figure 

21. 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. values are thus well correlated with the 𝜇𝑀𝐴𝑃𝑂 ones 

and superposed along the bisector. This means that Equation 6 is 

verified with this approach, let alone the very highest values of 

PMAX, especially with the MFB10 as input. 

 
Figure 23. Correlation between the estimated and the experimental normalized 

PMAX (graphs on the left) and correlation between 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. and  𝜇𝑀𝐴𝑃𝑂 
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(right-hand side graphs) for the spark sweep carried out at 7500 RPM and full 

load. 

Table 4 reports RMSE between the calculated and the experimental 

PMAX. The values reported in such table are the average between the 

three cylinders for all the spark sweeps and, thus, they represent the 

mean error for the PMAX calculation on the entire engine operating 

field. Since the results achieved with the MFB50 showed the issues 

described above, the MFB10 is selected as the index for the 

combustion phase determination. Although, the accuracy 

improvement is not significative (RMSE is close to the other values) 

and, in this way, the calculation of 𝜇𝑀𝐴𝑊𝑂 𝐶𝑂𝑅𝑅. is more robust (as 

shown by the correlation in Figure 23). 

Table 4. RMSE between the calculated and the experimental PMAX when the 

model is fed with different combustion phase indexes estimated from the 

washer signal. 

Model Layout RMSE 

PMAX MFB50 Washer  2.27 bar 

PMAX MFB10 Washer  3.33 bar 

PMAX APMAX Washer  3.08 bar 

Validation under steady-state conditions 

The resulting algorithm for the RT correction of the combustion and 

knock indexes estimated from the washer signal is implemented in a 

RCP system, for the verification at the engine test bench. Such 

system receives the main engine operating parameters, instantaneous 

combustion indexes (both from reference sensors and washers) via a 

Controller Area Network (CAN) communication protocol, from the 

ECU and the indicating system, respectively. In this way the 

algorithm can be tested online, and the adjusted instantaneous washer 

indexes can be recorded perfectly synchronized with those of the 

reference sensors. For the validation under steady-state conditions, 

the two buffers shown in Figure 19 are composed of 200 elements. A 

new spark sweep is performed on the engine test bench at 7500 RPM 

full load. The results are shown in Figure 24, where the reported 

fitting function is not related to a single cylinder, but it considers all 

the values reported in the figure. 

 

Figure 24. Correlation between the normalized adjusted MAWO and the 
normalized experimental MAPO. 

While the correlation shown in Figure 7 is different for each cylinder, 

the adjusted MAWO values have now the same trend and, moreover, 

the fitting function is closed to the bisector. Figure 25 reports the 

results achieved by applying the described algorithm to all the data 

acquired during the experimental champaign referred to Figure 3. In 

this figure, for each engine operating condition, MAPO and MAWO 

for the three cylinders equipped with the piezoelectric washers are 

indicated with the same color. 

Figure 25. Correlation between the experimental MAPO and the adjusted 

MAWO for other tested engine points. 

The R2 between all the experimental MAPO values and the corrected 

MAWO shown in Figure 25 is equal to 0.82, and it is representative 

for the whole engine operating filed. This value can be considered as 

a confirmation of the high model accuracy. As well-known, due to 

knock stochastic nature, the high-frequency high pressure oscillations 

measurement is strongly affected by the sensor position. Even using 

the same kind of sensor mounted in different positions of the 

combustion chamber, it is common calculating R2 values for the 

correlation between the instantaneous MAPO close to 0.7-0.8 (see the 

Appendix for an analysis of the results achieved with the reference 

sensor and the measuring spark plug). Of course, even in this case, 

the reference sensor and the piezoelectric washer are mounted in 

different positions of the engine head, and this is the reason why an 

R2 equal to 0.82 is considered a demonstration of the robustness and 

the accuracy of the proposed methodology. Considering the results 

reported in [18] in which the same range of the engine speed 

investigated in this work is considered, R2 values equal to 0.86 for 

the accelerometers and 0.79 for microphones are reported. The main 

benefits brought by the application of the washers are related to the 

installation (that does not imply relevant design changes of the engine 

head) and using the signal of each cylinder for the estimation (and the 

control) of all the main combustion metrics (and not only the knock 

intensity). More generally, the cost of the sensor, the impact, and the 

reliability of the installation on the vehicle have to be considered 

when the proposed solution is compared to the other technologies 

mentioned above.   

Validation under transient conditions 

The results presented in this section are achieved by reproducing a 

transient maneuver at the engine test bench, with which the speed and 

the load increase in a very fast way. The algorithm for the RT 

correction of the washer indexes is executed on a RCP system. In 

Figure 26 the profiles of the pedal and the engine speed are shown. 

Also in this case, the combustion and knock indexes estimated from 

the reference sensors and the adjusted values of the piezoelectric 

washers are recorded with the RCP machine. In this way, the 

instantaneous values are directly comparable to validate the 

developed functions.   
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Figure 26. Engine speed and pedal profiles reproduced at the engine test 

bench to validate the developed algorithm under transient conditions. 

As mentioned before, under transient conditions the length of the 

PMAX and MAWO buffers affect the algorithm accuracy. Such 

parameter is calibrated, and the optimization process is carried out 

with a Design of Experiment (DoE) approach, varying the length of 

the buffers. The value that maximizes the R2 between the MAPO and 

the adjusted MAWO is applied.  

In Figure 27 the correlation between MAPO and adjusted MAWO 

recorded during the test is reported. As for Figure 24, the fitting 

function reported in the following figure refers to the total amount of 

engine points and not to a specific cylinder.  

 
Figure 27. Correlation between the experimental MAPO and the corrected 
MAWO for the test under transient conditions. 

The results are very similar to those achieved under steady-state 

conditions. It can be noted that the algorithm is very accurate for the 

lowest normalized MAPO values, while the accuracy is lower for the 

highest levels of knock. This is because the combustion cycles 

characterized by high MAPO values excite the natural frequencies of 

the mechanical system composed by the engine head, the spark plug 

and the piezoelectric washer, generating high oscillations in the high 

frequency range of the signal spectrum, that are superposed to the 

content produced by knock. However, to further verify the accuracy 

of the functions, the curves of the sorted MAPO and MAWO are 

compared for each cylinder, as shown in Figure 28. The values are 

normalized with respect to the maximum MAPO or MAWO recorded 

for each cylinder. 

 

Figure 28. The curves of the sorted MAPO and the adjusted MAWO for the 

tests under transient conditions.  

The following table reports the percentage error between the main 

percentile values of the MAPO and the adjusted MAWO recorded 

during such test. The negative values mean that the corrected MAWO 

is lower than MAPO, and vice versa. 

Table 5. The error between the percentile values of the MAPO and the 

adjusted MAWO.  

Percentile value CYL 1 CYL 2 CYL 3 

50   - 1 %    1 %    1 % 

95   2 %    2 %    2 % 

98   5 %    5 %    8 % 

99   9 %    6 %    9 % 

100 50 % -26 % -11 % 

Only for the 100th percentile the absolute value of the error is higher 

than 10%. Thus, the results demonstrate the developed algorithm is 

robust and accurate and the piezoelectric washers can be applied to 

estimate all the main combustion and knock indexes, independently 

from the sensitivity of the particular sensor and the position on the 

engine head.    

Conclusions 

In the first part of this work a comparison between the spectrum of 

the high-pass filtered signals of the in-cylinder pressure sensors, 

taken as reference, and the piezoelectric washer is performed. Both 

sensors show the content due to knocking combustion in the same 

range of frequencies and this allows to treat both signals in the same 

way, for the calculation of the knock intensity index.  

The statistical properties of the MAWO are analyzed and it is 

demonstrated the Log-Normal PDF can be used to accurately 

describe its trend, for fixed engine operating conditions. The mean 

value and the standard deviation of MAPO and MAWO PDFs are 

compared for fixed engine operating conditions (engine speed, load 

and SA). While the standard deviation is comparable for both such 

indexes, the mean value of MAWO needs to be properly adjusted, 

due to the particular high-frequency content of the signal spectrum. 

The main aim of this paper is the development and the validation of 
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the algorithm to calculate such scaling factor 𝐾𝑐𝑜𝑟𝑟 that is based on 

the MAPO mean value modeling. A Feedforward Neural Network-

based approach has been implemented for the MAPO mean value 

modeling and the algorithm for the calculation of the MAWO scaling 

factor is developed. 

The reliability of the main combustion phase indexes estimated from 

the washer signal is investigated and the MFB10 is finally chosen to 

feed the PMAX model, needed by the MAPO mean value model as 

input. 

In the last part of the work, the proposed algorithm for the correction 

of the instantaneous MAWO is validated for both the steady-state and 

transient conditions. It has been demonstrated that a correlation 

coefficient (R2) equal to 0.82 between the experimental MAPO and 

the adjusted MAWO can be achieved with the described method. 

The algorithm is then validated under transient conditions 

reproducing a real vehicle maneuver at the engine test bench. The 

algorithm for the RT correction of the washer indexes is executed on 

an RCP system and the indexes of the reference sensor are directly 

compared with the adjusted indexes of the washer. The results show 

that the piezoelectric washer can be applied to accurately estimate the 

main combustion metrics. Hence, the reliability of this sensor and the 

low cost (for both the production and the installation on the engine 

head) make the proposed system a viable solution to develop a 

technology suitable for the on-vehicle applications. 

The system composed by the washers and the model-based function 

for the estimation of MAPO, PMAX and MFB50 will be further 

validated by implementing the algorithm in a development ECU and 

testing it on a prototyping vehicle.  
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APPENDIX 

Knock intensity measurement is strongly affected by the position of the sensor in the combustion chamber. Some experimental tests are performed 

with the same experimental setup and with the measuring spark plugs mounted on two cylinders (the main characteristics of these sensors are 

reported in Table 6). 

Table 6. Main features of the piezoelectric sensor installed in the measuring spark plug 

Sensitivity 10 Pc/bar 

Pressure range 0 – 200 bar 

Overload 250 bar 

Natural frequency ≈ 65 kHz 

Such tests consist of spark sweeps and the final aim is that to compare the instantaneous MAPO calculated from the signal of these two kinds of 

commercial sensor. In this way, it has been verified the R2 value of the correlation between the reference MAPO and that estimated with a 

piezoelectric sensor installed in the same position of the washers (i.e., in correspondence of the side-mounted spark plugs).    

During these spark sweep, 300 engine cycles are recorded for each actuated SA. MAPO is calculated for both the signals with the Equation 1 and 

with the same cut-off frequencies. In the following figure, the correlation between the MAPO calculated for both the sensors and for the two 

cylinders is reported. As expected, sensing the knock intensity in different areas of the combustion chamber leads to record different content in the 

high-frequency domain of the signal and, thus, the R2 value is typically close to 0.7-0.8, even for commercial sensors.  

 
Figure A1. Correlation between the MAPO values calculated from the signal of the reference sensor and the measuring Spark Plug (S.P.).  

 


