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Efficient `0 gradient-based super-resolution for
simplified image segmentation

Pasquale Cascarano, Luca Calatroni, Elena Loli Piccolomini

Abstract—We consider a variational model for single-image
super-resolution based on the assumption that the gradient of the
target image is sparse. We enforce this assumption by considering
both an isotropic and an anisotropic `0 regularisation on the
image gradient combined with a quadratic data fidelity, similarly
as studied in [1] for signal recovery problems. For the numerical
realisation of the model, we propose a novel efficient ADMM
splitting algorithm whose substeps solutions are computed effi-
ciently by means of hard-thresholding and standard conjugate-
gradient solvers. We test our model on highly-degraded synthetic
and real-world data and quantitatively compare our results with
several sparsity-promoting variational approaches as well as with
state-of-the-art deep-learning techniques. Our experiments show
that thanks to the `0 smoothing on the gradient, the super-
resolved images can be used to improve the accuracy of standard
segmentation algorithms for applications like QR codes and cell
detection and land-cover classification problems.

Index Terms—Single-image super-resolution, `0-gradient reg-
ularization, image segmentation, ADMM.

I. INTRODUCTION

The task of single-image Super-Resolution (SR) consists
in improving the spatial resolution of an observed Low-
Resolution (LR) imaging data so as to obtain a High-
Resolution (HR) version which, typically, can be used as a
reference for subsequent analysis. Image resolution is limited
in many applications due to the optical characteristics and
the physical limitations of the acquisition devices. Some
standard examples are biomedical and astronomic imaging
where, due to light aberration phenomena, close objects
(molecules, stars. . . ) on LR images cannot be correctly dis-
tinguished/detected, see, e.g. [2], [3]. SR techniques are often
employed also in image recognition problems. This is the
case, for instance, of QR code recognition where images
are often captured by scanning tools (e.g. cell-phones) from
relatively large distances which may affect the accuracy of the
recognition [4]. Analogously, in remote sensing applications
such as land-cover classification, multi- and hyperspectral
measurements often suffer from poor spatial resolution, which
may limit significantly the classification precision [5], [6].

Mathematically, the SR task can be formulated as an ill-
posed inverse problem: for a given vectorised LR image g ∈
RM , we look for its HR version u ∈ RN defined on a space of
dimension N = L2M with magnification factor L > 1 which
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satisfies the following linear degradation model:

g = SHu + η. (1)

Here, S ∈ RM×N stands for the down-sampling operator,
H ∈ RN×N describes blur degradation and η denotes the
realisation of an Additive White Gaussian Noise (AWGN)
random vector with zero mean and covariance matrix σ2

ηI.
Due to the ill-posedness of the operator SH, a standard

approach for solving (1) consists in encoding prior knowledge
about the solution u and on the data statistics via an energy
minimisation approach, so that an approximated solution u∗ ∈
RN is computed by solving

u∗ ∈ arg min
u∈RN

1

2
‖SHu− g‖22 + µR(u), (2)

where the quadratic fidelity term models the presence of
AWGN, while the (possibly non-convex) regularisation term
R : RN → R ∪ {+∞} encodes prior information on the
target image u, thus ensuring the stability of the inversion
process. The two terms are balanced by a regularisation
parameter µ > 0. We refer the reader to [7], [8] and to the
references therein for a review on variational approaches for
SR problems.

In this work, we choose R so as to promote gradient spar-
sity, which is often desirable for subsequent image segmenta-
tion analyses for which a simplified, edge-preserved version
of the original data g is required. In recent years, sparse, non-
convex gradient-based regularisation approaches have become
very popular in the context of image reconstruction due to their
better ability of preserving sharp edges even in low-contrast
scenarios. A significant contribution has been made by Storath
et al. in a series of papers [1], [9], [10] where sparsity on
the image gradient Du ∈ R2N is promoted by means of `0

regularisation which reads

‖Du‖0 := # {(Du)i, i = 1, . . . 2N : (Du)i 6= 0} . (3)

The use of an `0 gradient-smoothing has been shown to
favour a significant image smoothing which preserves salient
image edges and eliminate insignificant details on several
imaging problems such as deconvolution, sparse recovery,
joint reconstruction and segmentation, image cartoonisation
and many more, see, e.g., [11]. In this work, we show that
this feature can further be beneficial for classification and
labelling analysis upon a suitable super-resolution processing
step. To do so, we propose a novel effective numerical scheme
solving (1) endowed with convergence guarantees and validate
it on several imaging examples with high blur and noise
degradation.

mailto:pasquale.cascarano2@unibo.it
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A. Related work

The vast majority of sparse optimisation approaches for SR
problems enforces sparsity either on the signal itself [12] or its
representation w.r.t. some basis/overcomplete dictionary [13].
These methods and their non-convex extensions have been
shown to be very powerful in several applications such as mi-
croscopy imaging [14], where signal-sparsity can be assumed.
Different approaches are based on the use of least squares,
Fourier series and Tikhonov-type gradient regularisations [7],
which favour noise removal at the price of creating smoothing
and ringing artefacts which are undesirable in many appli-
cations such as object detection where images with sharper
edges are preferable for better classification. To overcome this
drawback, the use of edge-preserving regularisations based on
the idea of gradient sparsity, such as Total Variation (TV)
[15]–[18], as well as its fractional [19] and `0 extension [1],
[9], [10], has been proposed. Such methods have shown good
performances in many applications, although their convexity
(in the case of TV) or their challenging numerical realisation
(in the case of its non-convex variants) often limit their
practical use and precision. Different approaches for solving
the SR problem make use of deep architectures encoding prior
information on the desired HR solution from a training set of
examples [20]–[22]. In particular, in [23] the authors present
a Plug-and-Play (PnP) framework [24] which exploits deep
convolutional neural network denoisers embedded in stan-
dard optimisation algorithms, such as Alternating Direction
of Multipliers (ADMM) or Half-Quadratic Splitting (HQS).
Differently from model-based variational approaches, deep
learning-based methods do not require an explicit expression
of the regularisation term R, since this can be learned di-
rectly from the data and adapted to the particular application
considered. Those methods have currently reached state-of-
the-art performances in many image reconstruction problems,
although their theoretical foundation and their stability to noise
perturbations still limits their practical use in the case of
highly-degraded imaging data.

B. Contribution

We consider a variational model for solving (2) where
an `0-gradient regularisation term is considered both in a
coupled (isotropic) and decoupled (anisotropic) form, the latter
being better suited for directionally-biased images, such as QR
scans. To solve the model efficiently, we propose an ADMM
algorithm which decomposes the original problem into sub-
steps cheaply solved by means of direct hard-thresholding and
standard iterative Conjugate Gradient (CG) linear solvers. Our
variable splitting differs from the one introduced by Storath
et al. in [1], [9], [10], where the non-convex substeps are
solved by means either of approximate graph-cuts approaches
[25] or dynamic programming algorithms. For the proposed
ADMM algorithm, fixed-point convergence is proved. Up to
our knowledge, the same variable splitting has been used only
in the case of convex regularisation functions, such as TV, in
[17], [18] where convergence to the global minimum is proved.

The proposed SR model is tested on real-world applications
(QR scanning, cell detection, land-cover labelling, image car-

toonisation) where a simplified HR version of the given LR
image g is required in view of further analysis, showing that
the proposed model improves significantly segmentation and
labelling precision in comparison to competitive model- and
data-driven approaches.

C. Organisation of the paper
In Section II we provide a review of gradient-sparse varia-

tional methods for single-image SR. In Section III we present
a novel converging ADMM scheme for solving the proposed
model along with details on its practical realisation. In Section
IV we report some numerical tests on model parameter sen-
sitivity performed on synthetic data. Finally, in Section V we
apply our model to some real-world applications such as QR
scanning, cell detection, land-cover classification and detail-
preserving image cartoonisation. We report the convergence
proofs of the proposed ADMM schemes in Appendix A to
improve the flow of the manuscript.

II. `0 GRADIENT-BASED SUPER-RESOLUTION

The use of convex gradient-based regularisations for SR
problems dates back to [15], [16], where TV regularisation1

‖Du‖1,p =

N∑
i=1

(‖(Dhu)i‖p + ‖(Dvu)i‖p)1/p , (4)

was employed to promote sparsity on the image gradient
Du = (Dhu,Dvu) ∈ RN×2. Note, that for p ∈ {1, 2}
anisotropic/isotropic regularisation is promoted, respectively.
We remark that fractional generalisations to exponents 1 <
p < 2 are also possible [19].

Gradient-sparsity can be enforced more severely by means
of non-convex `0 gradient smoothing, see, e.g., [11] and [1].
Using an analogous notation as in (4), for p ∈ {1, 2} we thus
consider the functional defined by:

R(u) = ‖Du‖0,p (5)

:=

N∑
i=1

{ ∣∣(Dhu)i
∣∣
0

+
∣∣(Dvu)i

∣∣
0

for p = 1,∣∣‖(Dhu)i, (Dvu)i‖
∣∣
0

for p = 2,

where by | · |0 we denote the function:

|z|0 :=

{
0 z = 0

1 z 6= 0.

The functional (5) counts the number of jumps of u in terms
of the non-zero values of its gradient magnitude. In particular,
in the case p = 1 the regulariser independently counts the
jumps along the two horizontal and vertical Cartesian direc-
tions, whereas for p = 2 the gradient magnitudes are taken into
account jointly. In both cases, the term ‖Du‖0,p penalizes low-
amplitude structures while preserving edges in the images, thus
favouring sharp piece-wise constant reconstructions which are
particularly desirable for image segmentation problems. Notice
that 0 ≤ ‖Du‖0,p ≤ 2N for p ∈ {1, 2}.

In the following, we will refer to (5) with p = 1 as the
anisotropic `0-gradient regularisation model (A-TV0), while
for p = 2 we will refer to isotropic `0-gradient regularisation
model (I-TV0).

1By ‖·‖ we denote the standard Euclidean modulus.
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III. AN EFFICIENT ADMM SPLITTING

For p ∈ {1, 2}, we consider the non-smooth and non-convex
SR model (2) with the choice (5), that is:

u∗ ∈ arg min
u∈RN

{
Φ(u;µ, p) :=

1

2
‖SHu− g‖22+µ‖Du‖0,p

}
.

(6)
Existence of solutions for (6) is guaranteed by the following
theorem whose proof can be found in [1, Theorem 1] for a
general forward operator A.

Theorem 1: The solution set of both the anisotropic (p = 1)
and isotropic (p = 2) problem (6) is non-empty.

To solve numerically problem (6) we propose a novel
iterative alternating direction method of multipliers (ADMM)
based on a suitable variable splitting. We separate the de-
scription for the anisotropic and isotropic case. For both cases
and upon suitable conditions, fixed-point convergence of the
ADMM iterates is proved (Theorems 2 and 3).

A. ADMM for A-TV0

For p = 1, we can rewrite the unconstrained minimisation
problem (6) in the following equivalent constrained form:

arg min
u

1

2
‖SHu− g‖22 + µ(‖t‖0 + ‖s‖0)

s.t. t := Dhu, s := Dvu

where t, s ∈ RN represent the horizontal/vertical gradient
components, respectively. We then define the augmented La-
grangian function:

Lβt,βs
(u; t, s,λt,λs) :=

1

2
‖SHu− g‖22+µ‖t‖0 + µ‖s‖0

+ 〈λt,Dhu− t〉+
βt
2
‖Dhu− t‖22 + 〈λs,Dvu− s〉

+
βs
2
‖Dvu− s‖22 (7)

where βt and βs are two positive penalty parameters and
λt and λs are the vectors of Lagrange multipliers related to
the auxiliary variables t and s, respectively. By letting the
two parameters βt, βs increase along the iterations (we will
provide specific growth conditions in the following Theorem
2), we can then minimise (7) w.r.t. t, s and u by iterating the
following scheme:

tk+1 ∈ arg min
t

µ‖t‖0 +
βkt
2
‖t− (Dhu

k +
λkt
βkt

)‖22 (8)

sk+1 ∈ arg min
s

µ‖s‖0 +
βks
2
‖s− (Dvu

k +
λks
βks

)‖22 (9)

uk+1 = arg min
u

1

2
‖SHu− g‖22+

+
βkt
2
‖Dhu− (tk+1 − λkt

βkt
)‖22 +

βks
2
‖Dvu− (sk+1 − λks

βks
)‖22 (10)

λk+1
t = λkt − βkt (tk+1 −Dhu

k+1) (11)
λk+1
s = λks − βks (sk+1 −Dvu

k+1), (12)

where a gradient ascent update of λt and λs is also applied.
Under suitable growth assumptions, the sequences (8), (9),

(10) converge to a fixed point (see Appendix A for the proof).

Theorem 2: Let the ADMM iterations (8)-(12) be defined
under the following conditions:
A.1 (βkt ),(βks ) are increasing sequences such that∑+∞

k=1

√
k
βk
t

< +∞,
∑+∞
k=1

√
k
βk
s

< +∞ and
βk
s

βk
t
→ c 6= 0.

A.2 Dh and Dv are full rank.
Then, the sequences (tk), (sk), (uk) converge, i.e.:

tk −→ t∗, sk −→ s∗, uk −→ u∗,

with t∗ = Dhu
∗ and s∗ = Dvu

∗.

We remark that the full rank assumption on the operators
Dh and Dv is verified, for instance, if Dirichlet bound-
ary conditions are assumed. A sufficient condition which
guarantees the required growth of the penalty sequences is
βkt = βks = O(k(1 + ε)k), 0 < ε� 1.

B. ADMM for for I-TV0

For p = 2 we can write problem (6) in the following
equivalent constrained form:

arg min
u

1

2
‖SHu− g‖22 + µ

N∑
i=1

∣∣‖zi‖∣∣0 (13)

s.t. z := Du

where zi :=
(
(Dhu)i, (Dvu)i

)
∈ R2, for each i = 1, . . . , N .

The augmented Lagrangian function reads in this case:

Lβ(u; z,λ) :=
1

2
‖SHu− g‖22 + µ

N∑
i=1

∣∣‖zi‖∣∣0
+ 〈λ,Du− z〉+

β

2
‖Du− z‖22 (14)

where β > 0 is a scalar penalty parameter and λ ∈ R2×N

is the Lagrange multiplier vector. As above, by letting the
penalty parameter increases along the iterations at a certain
growth (see the following Theorem 3), we seek for minimisers
of (13) by iterating the following scheme:

zk+1 ∈ arg min
z

µ
∑N
i=1

∣∣‖zi‖∣∣0 +
βk

2
‖z− (Duk +

λk

βk
)‖22 (15)

uk+1 = arg min
u

1

2
‖SHu− g‖22 +

βk

2
‖Du− (zk+1 − λk

βk
)‖22 (16)

λk+1 = λk − βk(zk+1 −Duk+1). (17)

For this scheme, a similar result as the one in Theorem 2 holds
(see Appendix A for a sketch of the proof).

Theorem 3: Let the ADMM iterations (15)-(16) be defined
under the following conditions:

I.1 (βk) is an increasing sequence such that
∑+∞
k

√
k
βk <

+∞
I.2 D is full rank.

Then, (zk) −→ z∗, (uk) −→ u∗ and z∗ = Du∗.
We remark that in order to guarantee the full rank of the

operators Dh and Dv , an artificial image padding of the image
can be considered. Furthermore, our numerical experiments,
however, showed numerical convergence even when periodic
boundary conditions are used. A theoretical convergence proof
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in this case is left for future research. As far as the growth
condition on the penalty parameters is concerned, we remark
that in [1] a geometric growth was assumed. Unfortunately,
this is not enough for our theoretical convergence result to
hold, as oscillations may appear. We comment more on this
in Section V-A.

C. Efficient solution of the ADMM subproblems

We report here some practical details on the the efficient
solutions of the subproblems (8)-(10) and (15)-(16).

Solution of `0 subproblems: Due to decomposability of the
`0 term, solving problems (8),(9) corresponds to solve the N
one-dimensional `2 − `0 problems

arg min
ti∈R

δ|ti|0 + (ti − fi)
2
2 (18)

where δ = 2µ
βk
t

and fi = (Dhu
k +

λk
t

βk
t

)i for (8), while δ = 2µ
βk
s

,

fi = (Dvu
k +

λk
s

βk
s

)i for (9). As far as the problem (15) is
concerned, it similarly reduces to the solution of the N two-
dimensional `0-regularised problems

arg min
zi∈R2

δ
∣∣‖zi‖∣∣0 + ‖zi − fi‖22 (19)

where δ = 2µ
βk and fi = (Dhu

k
i +

(λk)1,i
βk ,Dvu

k
i +

(λk)2,i
βk ).

Solving (18) and (19) corresponds to compute the proximal
mapping of | · |0 with parameter δ evaluated in fi, which
is nothing but the 1D [26] and 2D [11] hard-thresholding
operator, respectively.

Solution of the quadratic subproblems: The first order
optimality conditions of problems (10) and (16) lead to the
solution of large-size linear systems, whose coefficient matrix
is symmetric and positive definite. To solve them efficiently,
we make use of Conjugate Gradient (CG) algorithm with a
warm-start initialisation at every iteration. We remark that,
due to the presence of the downsampling operator S, the
use of more efficient solvers based, for instance, on discrete
Fourier transforms are here not possible, as the product matrix
SH does not have a block-circulant structure. However, under
suitable assumptions on the down-sampling operator S, the
problem admits a closed form solution [27].

D. Comparisons with previous splittings

The variable splitting and the ADMM iterations considered
above are different from the ones considered in [1], [9], [10]
where the choice z = u in (13) is made. Our choice avoids the
presence of the gradient operator in the `0-based problems (8)-
(9) and (15), leading to the faster computation of their solution
by direct solvers without requiring the use of approximate
solvers based on approximate graph-cut algorithms [1]. These
latter algorithms have well-known drawbacks such as strong
dependence on the initialisation and require an approximate
inner solver [9], [28]. As an alternative, in [9], the isotropic
substep is solved by a set of anisotropic problems along the
diagonal or knight-move directions, each of which is computed
by dynamic programming algorithms with computational cost
O(N2) compared to O(N) in our approach.

IV. IMPLEMENTATION NOTES

1) Operators: For the following examples, we simulate the
LR data from ground-truth HR images by applying the forward
model (1) where the action of the blur matrix H is computed
by assuming a Gaussian PSF with zero mean and standard
deviation σH which will be specified later on. As S, we
consider the discretised 2D Lanczos down-sampling operator
[29] inbuilt in the MATLAB function imresize. Finally,
we consider AWGN with zero mean and standard deviation
ση whose values will be made precise in the following.

2) Comparisons: We compare our results with the ones
obtained by gradient-sparse regularisation models such as
convex isotropic TV (I-TV) [16], non-convex capped TV
(c-TV) [30] and anisotropic fractional TV [31] which, for
consistency, have been implemented within the same ADMM
optimisation framework. We also provide comparisons with
standard bicubic interpolation and to the SR approach based on
sparse representation (SrSR) proposed in [13], upon a suitable
training of the dictionaries. Finally, we add comparisons with
the results obtained by two state-of-the-art Deep Learning-
based approaches. The former is the Content Adaptive Re-
sampler (CAR) [22] convolutional neural network, which is
characterised by a downsampler-upsampler structure. For that,
we use a pre-trained model 2 taking into account only the
trained upsampler part. The latter is the Image Restoration
Convolutional Neural Network (IRCNN) [23], which is a Plug
and Play (PnP) method based on HQS optimisation.

3) Initialisation, parameters and evaluation metrics: We
initialise u0 in our model as u0 = STg. Given the non-
convexity of problem (6), the choice of a wise initialisation
is important. We tested several ones (the aforementioned one,
the zero image and the I-TV initialisation) and kept the one
providing the best results. The variables t0, s0, z0 as well
as λ0

t ,λ
0
s,λ

0 in (8)-(12) and in (15)-(17) were set to 0. To
ensure the convergence results provided by Theorems 2 and
3, the penalty sequences are chosen as (βk) = k(1 + ε)k with
ε = 10−4. Note that for such small choice of ε, k(1+ε)k ≈ k,
i.e. the growth of (βk) is almost linear. The process is stopped
when the relative change between consecutive iterates uk is
lower than 10−3.

For simulated data, we evaluate the quality of the SR
outputs by means of Peak-Signal-to-Noise-Ratio (PSNR) and
Structure Similarity index (SSIM) as well as the Jaccard index
(Jac), an evaluation metric in the range [0, 1] measuring the
ratio between correctly detected points and false detections.
We remark that choosing the right evaluation metric for SR
problems is not trivial, see, e.g., [32] for a review. While
PSNR and SSIM are good choices to quantify reconstruction
quality, the Jaccard index is more appropriate for segmentation
purposes as it assesses correct versus false pixel localisation.

V. NUMERICAL EXPERIMENTS

We report here several experiments performed on synthetic
and real data. All the experiments are executed on a PC
Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz 2.40GHz with

2https://github.com/sunwj/CAR

https://github.com/sunwj/CAR
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8.00Gb RAM using Matlab R2018b and Python 3. The codes
are available at https://github.com/pcascarano/PottsSR.

A. Computational analysis on synthetic data

We first validate numerically the convergence properties
of the proposed ADMM algorithms and comment on their
parameter sensitivity.

For this first example, LR data were generated by applying
(1) to the HR 428 × 600 grayscale image in Figure 1 (a).
Namely, Gaussian blur with σH = 1, L = 4 down-sampling
and AGWN with standard deviation ση = 0.01 were applied
to get the LR image in Figure 1 (b). In Figure 1 (c)-(f) we
report the results computed by the anisotropic (A-TV0) and
isotropic (I-TV0) `0-gradient model for two different values of
the regularisation parameter µ ∈ {0.005, 0.01}. As expected,
the jump-sparse regularisation flattens out many details in the
reconstruction, promoting a cartoon-like reconstruction: the
higher the regularisation parameter µ, the more simplified the
reconstruction. We further add a close-up of two ROIs: the blue
square contains both fine details (filaments, yellow arrows)
and corner points (green arrows), the red one textured details.
The directional bias of the A-TV0 regularisation along the
horizontal and vertical direction is here clearly visible. We
report in the captions of Figure 1 (c)-(f) the values ‖Du∗‖0,1
and ‖Du∗‖0,2 which correspond to the number of gradient
jumps on the output image. Clearly, choosing a larger µ
promotes more jump-sparsity, so that the number of jumps
of u∗ is smaller.

We then validate the algorithmic convergence behaviour
w.r.t. the choice of the penalty sequences (βkt ), (βks ), (βk).
Namely, in Figure 2 (a) and 2 (b) we report the behaviour of
the objective functions Φ(uk;µ, p) in (6) along the ADMM
iterations for different choices of the penalty sequences (left).
For both cases p = 1 and p = 2 we choose βk = βkt = βks ≡
10 for all k (blue line), βk = βkt = βks = k0.5 (red line) and
βk = βkt = βks = k(1 + ε)k with ε = 10−4 (yellow line).
On the same plots we further show the decay of the quadratic
data term (right). We observe that when the penalty sequence
fulfil the required growth condition, then the convergence is
nicely monotone, whereas for the other two choices, the decay
exhibits oscillations while preserving a globally decreasing
trend. Numerically, this suggests that possibly less severe
growth conditions may be employed, such as a sufficiently
large constant values of the penalty parameters. A further study
on this is left for future research.

To confirm the improved computational performance of
our ADMM algorithm w.r.t. to the one proposed in [9] and
adapted to solve the SR problem (6), we report in Table I
a comparison table both in terms of number of iterations-to-
convergence and computational times. We stress that the poor
performance of the ADMM algorithm in [9] is due here to
the large computational cost required to solve the `0 gradient
steps via inner optimisation routines. This, combined with
the use of CG solvers (required for the SR problem under
consideration as no Fourier-based approaches can be used in
general) makes the overall cost much higher in comparison to
our more explicit splitting.

Table I: Iterations till convergence (iter) and computational times
(in seconds) for different methods solving (6).

Method [9] A-TV0 I-TV0

iter 1905 63 59
time (s) 2866.31 214.83 195.99

(a) HR (b) LR (x4)

(c) ‖Du∗‖0,1=26822, µ = 0.005 (d) ‖Du∗‖0,2=24067, µ = 0.005

(e) ‖Du∗‖0,1=19059, µ = 0.01 (f) ‖Du∗‖0,2=18547, µ = 0.01

Figure 1: Results obtained for µ ∈ {0.005, 0.01} by A-TV0 and
I-TV0 on a synthetic image.
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Figure 2: Values of the cost function in (6) (left y-axis) and of the fi-
delity term (right y-axis) along iterations in the two cases Φ(uk;µ, 1)
(a) and Φ(uk;µ, 2) (b), for µ = 0.01. The penalty sequences are
chosen as βk = βk

t = βk
s ≡ 10 (blue), βk = βk

t = βk
s = k0.5 (red),

βk = βk
t = βk

s = k(1 + ε)k with ε = 10−4 (yellow).

B. Real-world applications

We now report the results obtained by applying the proposed
model to different real-world applications where a SR version
of the given LR image is required for further image analysis.

1) QR code recognition: The first application we consider
is the problem of QR detection. As described, e.g., in [4],
images of QR codes are often scanned by means of portable
devices with limited resolution. Furthermore, QR scans are
often taken from a distance and in non-optimal optical con-
ditions so that blur and noise further limit the amount of
visible information, thus making the use of artefact-free SR
approaches crucial.

For the following tests, we first generate a binary QR code
image of size 250 × 250 by using a freely available QR

https://github.com/pcascarano/PottsSR
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code generator 3, then we simulate several LR acquisitions for
different levels of degradation. We consider three test cases:
ση = 0.01 and σH = 1 (TEST 1), ση = 0.05 and σH = 1
(TEST 2), and ση = 0.01 and σH = 4 (TEST 3). We compare
the results obtained by our model with the ones obtained by the
models recalled in Section IV-2. For each method, we select
the model parameters maximising the Jaccard index. To avoid
non-binary outputs (required for Jaccard index computations),
for all models we post-process the SR results by means of
an adaptive Otsu thresholding and re-compute the evaluation
metrics on the binarised output, see Table II.

In Figure 3 we report the results obtained by the different
methods for the TEST 2 image before (red frame) and after
(blue frame) binarisation. We observe that due to the sharp
nature of the the TV0 regulariser, the A-TV0 and I-TV0 results
are almost binary so they do not benefit much from the post-
processing step in terms of Jaccard index values as much as
the other methods do. In Figure 4 we report a zoom of the
best results obtained before binarisation by all methods starting
from the highly corrupted TEST 3 LR image.

I-TV0 I-TV0-BA-TV0-BA-TV0IRCNN-BIRCNN

CAR-BCARA-TV1/2-BA-TV1/2I-TV-BI-TV

Figure 3: QR SR results obtained by different methods on TEST2
image before (red frames) and after (blue frames) binarisation.

IRCNN A-TV0I-TVLR (x4) c-TV

Figure 4: Details of QR code SR outputs for TEST 3 image.

The quantitative evaluation of the results in terms of PSNR,
SSIM and Jaccard index for the three different test cases is
reported in Table II. Without any binarisation, the A-TV0

model outperforms all the others as far as the PSNR, SSIM
and Jaccard indices are concerned. The simplified geometry
of the QR images considered (i.e. the sole presence of hori-
zontal/vertical edges) makes in fact this kind of data tailored
for such geometrically-biased regularisations. Furthermore, the
highly non-convex jump-sparsification forces the ouptut to be
almost binary, without the need of any further post-processing
binarisation, as it is required by all the other regularisations
to achieve comparable (if not better) quality scores. This sim-
ple example shows that the image simplification intrinsically

3https://www.qrme.co.uk/

favoured by the use of TV0 regularisers shall limits the need
of post-processing techniques in view of further segmentation
analysis. Concerning the comparison with the SrSR method,
we remark that the dictionaries used have been trained on a
dataset of 40 QR codes. Good results are obtained for this
model only after binarisation. As far as the deep-learning
results are concerned, we remark that the CAR network in
this experiment is used in a transfer learning mode, with no
noisy nor blurred images observed in the training phase. For a
fairer comparison, we thus consider the IRCNN PnP network
which is capable to handle different levels of degradations,
although it is shown to fail in the presence of highly-degraded
data, see Figure 4.

Table II: Quantitative evaluation of SR models performance on QR
for three different TEST images and methods. By “-B” we denote
results after binarisation. In each column we colour red the best
method, blue the second-best.

LR Method PSNR PSNR-B SSIM SSIM-B Jac

TEST 1

I-TV0 22.5199 29.0809 0.9423 0.9873 0.9980
A-TV0 32.5943 35.8478 0.9913 0.9989 0.9999
I-TV 23.3845 26.3357 0.9489 0.9762 0.9963
c-TV 19.4522 36.7496 0.8849 0.9977 0.9997

A-TV1/2 18.6328 36.7496 0.8594 0.9989 0.9997
CAR 20.2460 27.8163 0.8159 0.9801 0.9966

IRCNN 25.0589 35.3363 0.9622 0.9992 0.9995
SrSR 17.8837 26.4318 0.7970 0.9779 0.9964

Bicubic 14.5489 19.9651 0.5974 0.9211 0.9838

TEST 2

I-TV0 19.3318 18.6308 0.8766 0.9156 0.9781
A-TV0 22.6887 22.6256 0.9242 0.9653 0.9912
I-TV 18.1101 18.9848 0.8012 0.9171 0.9798
c-TV 18.7331 21.3473 0.8211 0.9595 0.9882

A-TV1/2 19.2182 22.5108 0.8664 0.9660 0.9910
CAR 18.1320 26.7831 0.7493 0.9805 0.9906

IRCNN 21.4314 26.3968 0.9057 0.9850 0.9902
SrSR 17.4148 21.4698 0.6891 0.9465 0.9886

Bicubic 14.4037 17.8804 0.5346 0.8806 0.9739

TEST 3

I-TV0 18.3763 19.7532 0.8634 0.9294 0.9831
A-TV0 19.2908 21.9341 0.8861 0.9556 0.9897
I-TV 17.9552 20.1585 0.8222 0.9282 0.9846
c-TV 16.9580 22.4648 0.7915 0.9605 0.9917

A-TV1/2 17.0785 20.6874 0.7706 0.9372 0.9863
CAR 11.1809 11.5412 0.4057 0.6342 0.8887

IRCNN 14.2915 12.5640 0.6342 0.6565 0.9133
SrSR 14.5796 19.1445 0.5483 0.9093 0.9806

Bicubic 10.8695 10.1082 0.3838 0.5194 0.8450

2) Cell detection: Standard light-microscopes suffer from
a limited resolving power which often causes blur artefacts
and limits spatial resolution in images. In such conditions,
the performance of simple segmentation algorithms extracting
isolated cells as well as cell clusters is often very limited
and may benefit significantly from the use of a joint super-
resolution image restoration pre-processing. We thus test the
proposed `0-gradient SR model to segment a dataset of 30
light-microscope images extracted from the EVICAN dataset
[33]. We apply the I-TV0 model and its competitors on
LR acquisitions obtained by applying the linear degradation
model (1) to the original images, considered here as Ground
Truth (GT) with the following values of parameters: L = 3,
σH = 2 and ση = 0.02. In Figure 5 we show the results
for one test image in the dataset. Due to our interest in
analysing the effectiveness of the proposed methods in pre-
processing images for segmentation, we compute for each SR
output image a binary mask by applying the cell-segmentation

https://www.qrme.co.uk/
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(a) GT (b) LR(x3) (c) A-TV1/2 - Jac=0.90

(d) IRCNN - Jac=0.70 (e) SrSR - Jac=0.85 (f) I-TV0 - Jac=0.93

Figure 5: Cell detection results. In (b)-(f) the green and red squares
indicate two isolate cells and a cell cluster, respectively. Computed
masks are coloured cyan. The Jaccard index (Jac) is reported.

Matlab toolbox 4 based on edge detection and morphology.
For the different methods, the segmented regions are shown
in Figure 5 (c)-(e), while in Table III the confidence intervals
(95% of confidence) of the PSNR, SSIM and Jaccard values
computed on the whole dataset are reported. Thanks to its
strong smoothing properties, the `0-gradient sparsity enforced
by the I-TV0 method allows for a better detection of the two
isolated cells (green boxes) as well as the cell cluster (red
boxes), resulting in higher Jaccard index values, as expected.

Table III: Quantitative comparisons of SR and segmentation perfor-
mance among different methods on the EVICAN dataset. Confidence
intervals with 95% of confidence.

Method PSNR SSIM Jaccard
Bicubic [30.3383,32.8808] [0.6841,0.7857] [0.3594,0.5434]

I-TV [30.5078,35.6530] [0.6718,0.8796] [0.4265,0.7070]
A-TV1/2 [32.0277,35.6011] [0.7473,0.8775] [0.7767,0.8541]

I-TV0 [31.9137,35.5359] [0.7458,0.8778] [0.7775,0.8622]
SrSR [30.9591,35.8848] [0.6711,0.8855] [0.6594,0.8102]

IRCNN [32.9723,35.9698] [0.7871,0.9070] [0.5501,0.7531]

3) Land-cover classification: Multi-Spectral Imaging
(MSI) is fundamental in the field of land-cover mapping and
classification [34] thanks to its ability of quantify different
types of information about the objects in the recorded scene,
such as their physical composition and their temperature.
Existing MSI segmentation techniques exploit these properties
to label each pixel of the given image within a class, thus
producing a final 2D labelled image. These maps are essential
in many sustainability-related applications and monitoring
purposes for detecting land-cover changes (e.g. deforestation)
over the years at the same geographical location, which
cannot be done directly by simply looking at the raw MSI
data (see [35] and references therein). Among the many
existing open-source MSI datasets, we consider here the
National Agriculture Imagery Program (NAIP) [36] dataset
and the Hamlin Beach State Park (HBSP) [37] dataset and
apply SR methods to increase the spatial resolution of the
given MSI data so as to produce an output image which could
be easily segmented. The need of a SR model in this specific
application is justified by the physical limitations preventing

4https://www.mathworks.com/help/images/detecting-a-cell

(a) NAIP LR (b) k-MEANS LR (x2) (c) k-MEANS I-TV0

Figure 6: k-means segmentation (k = 5) of MSI data. (a) LR
image (x2) (b) k-means classification of LR image (c) k-means
classification of I-TV0 output. The red/green boxes show possible
misclassifications.

HR acquisitions, such as the limited spatial resolution in
the infrared band [38]. Moreover, as shown in the previous
examples, a SR I-TV0 pre-processing step is expected to
improve image classification results, which can be performed
several algorithms. Here, we consider standard k-Means
segmentation and the state-of-the-art U-Net neural network
[39], showing that in both cases the use of a SR I-TV0

significantly improves classification accuracy.
In the first experiment we consider a LR image 5 from

the NAIP dataset (Figure 6 (a)). We first run the k-Means
algorithm directly on this image, choosing empirically the
number of classes to be k = 5. The classification obtained
looks speckled and significant classification errors occur (see
6 (b)). In Figures 6 (c)-(d), the classification result obtained by
applying k-Means to I-TV0 SR reconstructions (with L = 2)
is reported. Note that the classification performed on the SR
image appears much more reliable, with reduced classification
errors (red boxes).

As a second test, we use the SR I-TV0 model to pre-process
an image from the validation set of the HBSP dataset before
applying the unsupervised U-Net segmentation approach for
multi-class segmentation. To do so, we simulate a LR MSI
acquisition of size 440 × 350 × 6 and apply the SR model
(with L = 2) to each individual channel. As above, we
use the U-Net,which has been trained on a dataset of HR
MSIs, both on the given LR MSI and on the computed
SR reconstruction, see Figure 7. The quality of the U-Net
segmentation is significantly improved when a pre-processing
with SR I-TV0 is performed. When applied to the given LR
image, U-Net is indeed not capable to differentiate the group
of trees (blue) from the grass (red) as it happens after the
application of the SR I-TV0 smoothing.

4) Detail-preserving image cartoonisation: In [11] `0-
gradient regularisation was extensively shown to be effec-
tive on several image smoothing applications such as image
cartoonisation and JPG compression artefact removal. Here,
we consider a scenario where analogous tasks are performed
along with a resolution improvement. To do so, we consider
an RGB LR cartoon-type image of size 170 × 170 with not
discernible details due to noise and blur artefacts caused by
image compression and apply gradient-sparse SR models. As
no ground truth is available for this example, for all models
we empirically select the parameters producing the best visual

5Image identification number: M 4207221 NW 18 1 20120709

https://www.mathworks.com/help/images/detecting-a-cell-using-image-segmentation.html
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(a) (b)

Figure 7: Results of MSI segmentation by U-NET. (a) Result on the
given LR image (x2). (b) Result on the I-TV0 reconstruction.

output. In Figure 8 we report two close-ups of the computed
SR reconstructions marked by blue and red boxes. The blue
box highlights small details which are poorly discernible in
the LR image, while the red box considers a patch of the
face with some blunt edges and a small (but meaningful!)
face mole (see green box). We see that both A-TV0 and I-
TV0 reconstructions are sharper and more cartoonised than
the ones obtained by the other models. Furthermore, the well-
known I-TV and c-TV loss of contrast reconstruction artefact
makes small details hardly discernible. Due to the high-level of
compression artefacts, both IRCNN and CAR perform poorly.

VI. CONCLUSIONS

We considered a variational model with `0 gradient-sparsity-
promoting regularisation combined with a quadratic data fi-
delity for single-image super-resolution of images corrupted by
blur and Gaussian noise. The use of non-convex jump-sparse
regularisations has been applied in [1] to general 1D inverse
problems and subsequently applied in [9], [10] to joint image
segmentation and reconstruction problems. To overcome the
computational limitations required by the use of ADMM split-
ting strategies considered in these works, we propose a novel
ADMM algorithm allowing for the efficient numerical solution
of the models by means of direct hard-thresholding or standard
CG solvers. For the proposed schemes, we prove fixed-point
convergence results assuming specific growth conditions on
the sequence of penalty parameters. We validate our model
on synthetic data and test it on real-world examples where
gradient-sparse super-resolved outputs are required in view
of a subsequent accurate detection/segmentation step (such as
QR code recognition [4], cell detection and land-cover clas-
sification [34]). By numerous comparisons with convex and
non-convex variational approaches, and with state-of-the-art
deep learning methods [22], [23], we show that the proposed
approach significantly improves classification precision, while
limiting at the same times smoothing and loss-of-contrast
artefacts in comparison with classical convex regularisations.

Further work should address the use of analogous algo-
rithms for the joint modelling of SR and segmentation prob-
lems via, e.g., Mumford-Shah functionals [9]. Furthermore,
the extension of the convergence results to other gradient
discretisations and to less restrictive growth conditions for the
sequence of penalty parameters is envisaged.

APPENDIX A
CONVERGENCE ANALYSIS

We report here a complete convergence proof of Theorem
2 and a sketch of the proof of Theorem 3, which is based on
similar arguments.

A. Proof of Theorem 2

Proof: We consider the ADMM sequences
(uk), (tk), (sk), defined in (8)-(10). We want to show
that there exists u∗ such that:

uk → u∗, tk → Dhu
∗, sk → Dvu

∗.

To shorten the proof, we remark that everything proved for
the sequences (tk),(βkt ), (λkt ) and (Dhu

k) can be deduced
for (sk), (βks ), (λks) and (Dvu

k) in the same way.
We start defining the following functionals:

Ghk(t) := µ‖t‖0 +
βkt
2
‖t− (Dhu

k +
λkt
βkt

)‖22,

Fk(u) :=
1

2
‖SHu− g‖22 +

βkt
2
‖Dhu− (tk+1 − λkt

βkt
)‖22+

+
βks
2
‖Dvu− (sk+1 − λks

βks
)‖22.

Step 1: There holds:

‖tk+1 −Dhu
k − λkt

βkt
‖2 ≤

√
2µN

βkt
. (20)

This inequality can be trivially shown by the minimality of
tk+1 in (8) which entails Ghk(tk+1) ≤ Ghk(Dhu

k +
λk

t

βk
t

),
therefore we get:

µ‖tk+1‖0 +
βkt
2
‖tk+1 − (Dhu

k +
λkt
βkt

)‖22

≤ µ‖Dhu
k +

λkt
βkt
‖0 ≤ µN,

by definition of ‖·‖0 ,where we recall N is the dimension of
the vector uk. By neglecting the first term on the Left Hand
Side (LHS) of the above inequality, we deduce (20).

Step 2: From the minimality of uk+1 in (10) we have:
Fk(uk+1) ≤ Fk(uk) for every k. By definition of Fk and
applying (20) and its analogous related to the sequences (sk),
(βks ), (λks) and (Dvu

k), we deduce:

1

2
‖SHuk+1 − g‖22 +

βkt
2
‖Dhu

k+1 − tk+1 +
λkt
βkt
‖22 (21)

+
βks
2
‖Dvu

k+1 − sk+1 +
λks
βks
‖22 ≤

1

2
‖SHuk − g‖22 + 2µN.

Since the all the terms on the LHS of (21) are nonnegative,
the following inequality holds:

1

2
‖SHuk+1 − g‖22 ≤

1

2
‖SHuk − g‖22 + 2µN ≤ . . . (22)

≤ 1

2
‖SHu0 − g‖22 + 2µNk
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A-TV0 I-TV0IRCNNCARc-TVI-TVLR (x4)

Figure 8: Detail-preserving image cartoonisation by SR models. For I-TV, c-TV, A-TV0 and I-TV0 the regularisation parameters
are chosen as µ: 0.08, 0.05, 0.02, 0.02, respectively.

From (21) and by the sub-additivity property of the square
root we can also derive the following inequality:

‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 ≤

√
1

βkt
‖SHu0 − g‖2 +

√
4µN

k

βkt
(23)

Step 3: We show that the sequences Dhu
k and Dvu

k

are Cauchy sequences, hence they converge. We prove this
for Dhu

k, the proof for Dvu
k is identical.

‖Dhu
k+1 −Dhu

k‖2 ≤

≤ ‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 + ‖Dhu

k − tk+1 +
λkt
βkt
‖2.

By assumption A.1 applied on the RHS of (23) we deduce:

‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 → 0, (24)

which, combined with (20) and (23) entails that Dhu
k is a

Cauchy sequence. Hence it converges to a point t∗. Similarly,
Dvs

k converges to a point s∗.
Step 4: We prove now the convergence of the sequences

tk and Dhu
k. By writing (11) as:

λk+1
t

βkt
= Dhu

k+1 − tk+1 +
λkt
βkt
, (25)

and from (24) we deduce that ‖λ
k+1
t ‖2√
βk
t

→ 0. By monotonicity

of the (βkt ) we then deduce that ‖λ
k
t ‖2√
βk
t

→ 0. Hence:

‖Dhu
k+1 − tk+1‖2 ≤

‖λk+1
t ‖2 + ‖λkt ‖2√

βkt
,

where both quantities on the RHS tend to 0 as k → ∞.
Therefore, by the uniqueness of the limit, tk −→ t∗ and
Dhu

k −→ t∗.
Step 5: We can now prove convergence of the sequence

(uk) . For simplicity, let us define the quantities A := SH

and Mk :=
1

βkt
ATA + DT

hDh +
βks
βkt

DT
vDv , for every k. By

A.2, we observe that the matrix Mk is invertible for all k and
that the optimality condition of (10) reads:

Mku
k = DT

h (tk+1 − λkt
βk

) +
βks
βkt

DT
v (sk+1 − λks

βk
) +

1

βkt
ATg.

Since tk+1 → t∗, sk+1 → s∗, λk
t

βk
t
→ 0, λk

s

βk
s
→ 0, and by

Assumptions A.1 and A.2, we have that 1
βk
t
ATg → 0 so

that the RHS converges pointwise to z∗ = DT
h t
∗ + cDT

v s
∗.

Additionally, the sequence M−1k converges pointwise to M∗.
We thus have that uk = M−1k Mku

k →M∗z∗ := u∗.
We now want to show that t∗ = Dhu

∗ and, similarly, that
s∗ = Dvu

∗. We show the details only for the former case. By
the triangle inequality we get:

‖t∗ −Dhu
∗‖2 ≤‖t∗ −Dhu

k‖2 + ‖Dhu
k −Dhu

∗‖2
≤ ‖t∗ −Dhu

k‖2 + ‖Dh‖2‖uk − u∗‖2,

where both terms tend to 0 since Dhu
k → t∗ and uk → u∗.

B. Proof of Theorem (3)

Proof: The proof of Theorem (3) follows the same steps
as the previous one. The only main difference in it is the
definiton of Mk, which reads in this case:

Mk :=
1

βk
ATA + DTD =

1

βk
ATA + DT

hDh + DT
vDv.

By proceeding similarly as above the conclusion holds.

ACKNOWLEDGMENTS

LC and PC acknowledge the support received by the
Academy ”Complex Systems” of the JEDI IDEX of the
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