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Extensions and distortions of λ-fuzzy measures

Umberto Cherubini - Sabrina Mulinacci

Abstract

We propose extensions and distorsion techniques to improve the flexibil-
ity of λ-fuzzy measures. As for the extensions, we propose the use of
the family of Archimedean t-conorms as generators of the fuzzy measure.
As for distortions, we propose techniques based on the composition or
patchwork of different generators. As an example of application, we show
that in option pricing the techniques proposed substantially improve the
flexibility of the model in order to reproduce features that are consistent
with evidence expected on the market and that only one Archimedean
generator would not be able to represent.

Keywords. Fuzzy measures, λ-measure, Archimedean t-conorms,
Choquet pricing, Option pricing

1 Introduction

The class of λ-fuzzy measures was introduced by Sugeno in the 70s. Given
a universe of events Ω, λ-measures are defined by the aggregation operator

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B) (1)

for all disjoint sets A and B in Ω, and with λ a constant parameter defined
in [−1,∞).

The advantage of the λ-measure is to provide a nice parametrization
of sub and superaddivity. Applications have been made to clustering
(Leszczinsky et al., 1985), option pricing (Cherubini, 1997), credit risk
valuation (Cherubini and Della Lunga, 2001, Han and Zheng, 2005), and
other industrial problems (see Liginlal and Ow, 2006, for a general review).

For some applications, the advantage of this parametric form is also
that it is closed with respect to the duality between sub and superadditive
measures. It is well known that for any sub-additive measure µ(A), A ∈ Ω
there exists a super-additive one such that µ∗(Ac) = 1− µ(A), where Ac

denotes the complement set of A. We know that, if µ(.) is a fuzzy measure
of the λ class with parameter λ in (0,∞), the dual measure is also of the
same class, with parameter in [−1, 0). More precisely

µ∗(A ∪B) = µ∗(A) + µ∗(B)− λ

1 + λ
µ∗(A)µ∗(B) (2)

While the imposition of this specific functional shape, governed by a
single parameter, is of great help in applications, it may turn out into
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a flaw for some of them which would require more flexibility. So, if for
example we have µ(A) = µ(B) = µ(C) for the disjoint sets A, B and C,
it follows that µ(A ∪ B) = µ(A ∪ C) = µ(B ∪ C). This may be a flaw
for some applications since, for example, it may happen that A and B
are not clearly distinguishable one from the other while they are clearly
separated from C. In this case, we would like to represent the union of
A and B by a subadditive measure, and the union of each one of the two
with event C by an additive one. Moreover, one could also have the need
to represent models in which the uncertainty is mostly relevant in events
that are rare, with respect to others that are more frequent, and for which
therefore we have much more evidence.

In this paper we propose a generalization of the parametric form of the
λ-measures. Resorting to the family of Archimedean t-conorms we will
be able to extend the results of our analysis to a wide range of functional
forms for µ(A ∪ B) of which that in equation (1) is a specific case. In
particular, we will be able to propose distortions of λ-measures to make
the model more flexible for applications.

The plan of the paper is as follows. In section 2 we report the gen-
eral technique to generalise the λ-measure to the class of Archimedean t-
conorms generators. In section 3 we explore alternative parametric forms
available to represent sub-(super-)additivity and the techniques to distort
them. In section 4 we present an option pricing application showing an
example of a case in which more flexibility is needed.

2 A generalization of the λ-measure

2.1 ψ-sum

Here we briefly recall the definition of a binary operator that generalizes
the classical sum among real numbers in order to allow for super(sub)-
additivity and that will be needed for the costruction of the generalization
of the standard λ-measure.

The following is a result introduced in Aczél (1966), at p. 256.

Theorem 2.1. Let us consider a binary operator in R, x ∗ y, such that
x, y and x ∗ y lie in a given (possibly infinite) interval. We assume that
the operator is reducible (x ∗ y = x ∗ z or y ∗ w = z ∗ w only if z = y).
The general continuous solution of the functional equation (x ∗ y) ∗ z =
x ∗ (y ∗ z) (associative poperty) is

x ∗ y = ψ−1(ψ(x) + ψ(y))

where ψ is a continuous and strictly monotone function.

Since ψ is determined up to a multiplicative non zero constant, we may
restrict the analysis to the case in which ψ is strictly increasing. Since we
are interested in extending the sum operator, we require that x ∗ 0 = x,
which implies ψ to be defined in 0 and ψ(0) = 0.

In the sequel we denote with I a generalized interval contained in
[0,+∞] with 0 ∈ I, meaning that or I = [0,+∞] or I is an interval
contained in [0,+∞) with 0 ∈ I.
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Definition 2.2. Let ψ : I → [0,+∞] be strictly increasing, with ψ(0) = 0
and such that ψ(x) + ψ(y) ∈ ψ(I) for all x, y ∈ I. We call ψ-sum on I
with generator ψ the binary operator

x⊕ψ y = ψ−1(ψ(x) + ψ(y)), x, y ∈ I.

The following result is immediate:

Proposition 2.1. The ψ-sum is sub-additive on I, that is

x⊕ψ y ≤ x+ y, for all x, y ∈ I,

if and only if the function ψ is super-additive on I. The ψ-sum is super-
additive that is

x⊕ψ y ≥ x+ y, for all x, y ∈ I,
if and only if the function ψ is sub-additive on I.

Moreover, sub and super-additivity of the operator can be obtained by
selecting concave and convex ψ(x) functions, respectively. The only case
in which the operator is linear(x⊕ψ y = x+ y) corresponds to ψ(x) = cx
for every non zero constant c.

Definition 2.3. Let us assume that a ψ-sum operator is defined on I.
For x, z ∈ I such that x ≥ z, we define the ψ-difference x	ψ z as

x	ψ z = ψ−1(ψ(x)− ψ(z)).

Notice that the ψ-difference is well defined and that it is the inverse
operator of the ψ-sum. In fact

(x	ψ z)⊕ψ z = ψ−1 (ψ(x	ψ z) + ψ(z)) = x.

2.2 Fuzzy measures

Here we briefly introduce the main definitions, concepts and results that
will be needed in the sequel. The reader interested in fuzzy measures is
referred to Klir and Folger (1988), chapter 4, for an introductory treat-
ment, and to Wang and Klir (1992) for a complete development of the
topic.

Throughout the paper (Ω,F) will denote a measurable space.

Definition 2.4. A non-monotonic fuzzy measure on (Ω,F) is a function
µ : F → [0,+∞] such that µ (∅) = 0.

Definition 2.5. A fuzzy measure on (Ω,F) is a function µ : F → [0,+∞]
such that

1. µ (∅) = 0,

2. if A,B ∈ F with A ⊂ B, then µ(A) ≤ µ(B).

3. for every monotonic sequence Ai

lim
i→∞

µ(Ai) = µ
(

lim
i→∞

Ai
)

If µ(Ω) = 1 the fuzzy measure is called regular.
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Definition 2.6. A regular fuzzy measure µ on (Ω,F) is said to be de-
composable if there exists an operator ⊥: [0, 1] × [0, 1] → [0, 1] such that
for all A,B ∈ F with A ∩B = ∅, µ(A ∪B) = µ(A) ⊥ µ(B) and µ is said
to be generated by ⊥.

Definition 2.7. A function ⊥: [0, 1]× [0, 1]→ [0, 1] is called a t-conorm
if

1. a ⊥ b = b ⊥ a for all a, b ∈ [0, 1],

2. a ⊥ 0 = a for all a ∈ [0, 1],

3. (a ⊥ b) ⊥ c = a ⊥ (b ⊥ c) for all a, b, c ∈ [0, 1]

4. it is non-decreasing in each argument.

Moreover, if a ⊥ a > a for all a ∈ (0, 1) then the t-conorm is called
Archimedean and if ⊥ it is strictly increasing in (0, 1)×(0, 1) the t-conorm
is called strict.

The following result is well known (see Schweizer and Sklar, 1961):

Theorem 2.8. A function ⊥: [0, 1] × [0, 1] → [0, 1] is a continuous
Archimedean t-conorm if and only if there exists a strictly increasing func-
tion ψ : [0, 1]→ [0,+∞] with ψ(0) = 0 such that

a ⊥ b = ψ(−1)(ψ(a) + ψ(b))

where ψ(−1) is the pseudo-inverse of ψ defined as

ψ(−1)(x) =

{
ψ−1(x), if x ≤ ψ(1)

1, if x > ψ(1)

Moreover, ψ is called the generator of ⊥ and ⊥ is strict if and only if
ψ(1) = +∞.

Remark 2.1. The following facts are true.

1. A strict t-conorm is a particular specification of the ψ-sum operator.

2. Let ψ be defined on I with 1 ∈ I. The t-conorm generated by ψ
coincides with the ψ-sum on the pairs (x, y) ∈ [0, 1]× [0, 1] such that
ψ(x) + ψ(y) ≤ ψ(1).

3. Let ψ be super-additive on I with 1 ∈ I. If (x, y) ∈ [0, 1]× [0, 1] with
x+ y ≤ 1, then x ⊥ y = x⊕ψ y.

A way to construct fuzzy measures is as distortions of measures.

Definition 2.9. A set function µ on (Ω,F) is called a (non-monotonic)
distorted fuzzy measure if there exists a (non-monotonic) fuzzy measure
ν and a non-decreasing function f : [0, ν(Ω)] → [0, ν(Ω)] with f(0) = 0
and f(ν(Ω)) = ν(Ω) such that µ(A) = f ◦ ν(A), for all A ∈ F .
If ν is a measure (probability) on (Ω,F) then µ is called distorted measure
(probability).

Remark 2.2. Clearly if ν is a measure on (Ω,F) and f is strictly increas-
ing, then µ = f ◦ ν is a strictly monotone fuzzy measure. In particular, if
ν is a probability on (Ω,F), then µ = f ◦ ν is a strictly monotone, regular
and decomposable fuzzy measure generated by the t-conorm generated by
f−1 and, by 2. in Remark 2.1, µ(A ∪B) = µ(A)⊕f−1 µ(B) for A and B
disjoint sets in F .

4



2.3 ψ-fuzzy measure

We now use the ψ-sum operator above to define a fuzzy measure that is
meant to extend the well known λ-fuzzy measure.

Definition 2.10. Let µ be a non-monotonic fuzzy measure on (Ω,F) and
ψ a strictly increasing function with ψ(0) = 0 so that the corresponding
ψ-sum operator is defined on the range of µ. We say that:

• µ satisfies the ψ-rule if

µ(A ∪B) = µ(A)⊕ψ µ(B)

provided that A,B ∈ F and A ∩B = ∅
• µ satisfies the σ − ψ-rule if

µ

(
+∞
∪
n=1

An

)
=

+∞
⊕ψ
n=1

µ(An)

provided that {An}n ⊂ F and Ai ∩Aj = ∅ if j 6= j.

Since ψ(0) = 0, the σ-ψ-rule implies the ψ-rule.

Definition 2.11. µ is called a ψ-fuzzy measure on (Ω,F) if and only if
it satisfies the σ-ψ-rule and it exists at least one set ∅ 6= A ∈ F such that
µ(A) < +∞
A ψ-fuzzy measure is denoted with gψ. It is called regular if gψ(Ω) = 1.

We show that the class of ψ-fuzzy measures gψ coincides with the class of
distorted measures obtained through a strictly increasing distortion.

Proposition 2.2. Let

θψ(x) =
ψ(x)

k
, (3)

where k is an arbitrary positive number.
gψ is a ψ-fuzzy measure on (Ω,F) if and only if θψ ◦ gψ is a measure on
(Ω,F)

Proof. Let {An}n be a disjoint sequence of elements in F . We assume
that gψ is a ψ-fuzzy measure. Then

θψ ◦ gψ
(
∪+∞
n=1An

)
= θψ

(
ψ−1

(
+∞∑
n=1

ψ (gψ(An))

))
=

=

+∞∑
n=1

1

k
ψ (gψ(An)) =

=

+∞∑
n=1

θψ (gψ(An))

that is θψ ◦ gψ is a measure. The converse can be proved similarly.
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Remark 2.3. According to Remark 2.2, every ψ-fuzzy measure is strictly
monotone. Nevertheless the class of ψ-fuzzy measures doesn’t coincide
with the class of strictly monotone fuzzy measures. In fact, if one considers
the case of a fuzzy measure obtained by distorting a measure through a non
strictly increasing distortion, the resulting distorted measure can be still
strictly monotone even if it is not anymore a ψ-fuzzy measure.
As an example in the case of a discrete Ω, one can consider Example
1 in Chateauneuf (1995). Here we will provide a more general example
following the same idea. Let us consider a probability ν on (Ω,F) and
a continuous distortion f such that f(x) = 0 for 0 ≤ x ≤ x̄ < 1, with
x̄ ∈ (0, 1), and f strictly increasing on [x̄, 1] with f(1) = 1. Let µ = f ◦ ν
and B = A ∪ C with µ(C) = f(ν(C)) > 0 (that is ν(C) > x̄). Clearly
ν(A ∪ C) = ν(A) + ν(C) > x̄ and ν(A ∪ C) = ν(A) + ν(C) > ν(A). It
follows that, if ν(A) > x̄, then, by the strict monotonicity of f on [x̄, 1].
we have that

µ(B) = f(ν(A ∪ C)) = f(ν(A) + ν(C)) > f(ν(A)) = µ(A)

while, if ν(A) ≤ x̄, then

µ(B) = f(ν(A ∪ C)) = f(ν(A) + ν(C)) > f(x̄) = 0 = f(ν(A)) = µ(A)

and µ is strictly monotone.

2.4 Construction of a ψ-fuzzy measure on (R,B)
Aim of this section is to construct a ψ-fuzzy measure gψ on the real line
R equipped with the σ-field of Borel sets . Hence, the measurable space
we are dealing with is (R,B)

We start defining gψ on the set of intervals of type [a, b) ⊂ R and then
we extend the definition to the whole B.

Let H(·) be a cumulative distribution function on R and assume the
ψ-sum generator ψ to be defined on an interval I such that 1 ∈ I. We
consider θψ as defined in (3) with k = ψ(1) and we define a new cumulative
distribution function on R as

H ′(y) = θψ ◦H(y) =
ψ ◦H(y)

ψ(1)
.

Let [a, b) ⊂ R. Since

θ−1
ψ (z) = ψ−1 (ψ(1)z) , z ∈ [0, 1],

we define

gψ ([a, b)) = θ−1
ψ

(
H ′(b)−H ′(a)

)
= ψ−1 (ψ ◦H(b)− ψ ◦H(a)) = H(b)	ψH(a)

(4)

Remark 2.4. The function gψ defined on the set of intervals of type [a, b),
satisfies the ψ-rule on the set of contiguous intervals of type [a, b). In fact,
if a ≤ b ≤ c, then

gψ([a, b))⊕ψ gψ([b, c)) = ψ−1 (ψ (gψ([a, b)) + ψ (gψ([b, c)))) =

= ψ−1 (ψ(H(b))− ψ(H(a)) + ψ(H(c))− ψ(H(b))) =

= gψ([a, c)).
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Let us now extend the definition of gψ to the whole B. By definition
(see (4)), θψ ◦ gψ coincides, on the intervals of type [a, b), with the proba-
bility P′ induced by H ′ on (R,B) (see Theorem Theorem 3.3 in Billingsley,
1995). As a consequence, gψ can be uniquely extended to B as a distorted
probability by gψ(A) = θ−1

ψ (P′(A)) for A ∈ B. Clearly, by Proposition
2.2, gψ so defined is a ψ-fuzzy measure on (R,B).

Remark 2.5. gψ is sub-additive if and only if ψ is super-additive.

Remark 2.6. Notice that when ψ is linear, we recover the probabilty
distribution induced by the cumulative distribution function H.

2.5 Duality

Lemma 2.1. Let gψ be a regular ψ-fuzzy measure on (Ω,F). For all
A ∈ F ,

gψ(Ac) = 1	ψ gψ(A). (5)

Proof. It trivially follows from

1 = gψ(A)⊕ψ gψ(Ac).

Definition 2.12. If gψ is a regular ψ-fuzzy measure, its dual measure µ
on (Ω,F) is defined as

µ(A) = 1− gψ(Ac)

for all A ∈ F .

Proposition 2.3. The dual measure of gψ satisfies the σ− ψ̂-rule, where

ψ̂(z) = ψ(1)− ψ(1− z) (6)

for z ∈ [0, 1].

Proof. Thanks to (5) and being ψ̂−1(u) = 1− ψ−1(ψ(1)− u),

µ (∪nAn) = 1− gψ ((∪nAn)c) =

= 1− (1	ψ gψ (∪nAn)) =

= 1−
(

1	ψ
(

+∞
⊕ψ
n=1

gψ(An)

))
=

= 1− ψ−1

(
ψ(1)−

∑
n

ψ (gψ(An))

)
=

= 1− ψ−1

(
ψ(1)−

∑
n

ψ (1	 gψ(Acn))

)
=

= 1− ψ−1

(
ψ(1)−

∑
n

[ψ(1)− ψ (1− µ(An))]

)
=

= ψ̂−1

(∑
n

ψ̂ (µ (An))

)
=

=
+∞
⊕ψ̂
n=1

µ(An)
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Definition 2.13. A family of distortions {ψθ}θ∈Θ where Θ is the param-
eters set, is closed under duality if for every θ ∈ Θ it exists a θ∗ ∈ Θ such
that

z = ψ−1
θ∗ (ψθ(1)− ψθ(1− z))

for all z ∈ [0, 1].

2.6 Symmetry

An interesting question is whether for some distortion ψ(.) one could
define some stronger property than closedness with respect to duality. One
such property could be symmetry, that is the case in which ψ̂(x) = ψ(x)
for all x ∈ [0, 1], that is the case in which both the distortions ψ and ψ̂
belong to the same family and share the same parameter θ.

Proposition 2.4. Let ψ be defined on I ⊇ [0, 1] and ψ̂ given by (6).
ψ̂(x) = ψ(x) for all x ∈ [0, 1] if and only if the graph of ψ is symmetric

around the point
(

1
2
, ψ(1)

2

)
, that is

ψ(z) = ψ(1)− ψ(1− z), for all z ∈ [0, 1].

Proof. Since the dual measure can be recovered up to a constant, ψ̂ ≡ ψ
is equivalent to

cψ(z) = ψ(1)− ψ(1− z)
Now, since the function ψ(0) = 0, we also have

cψ(1) = ψ(1)

that implies c = 1 and we obtain

ψ(z) = ψ(1)− ψ(1− z)

which is the definition of symmetry around
(

1
2
, ψ(1)

2

)
.

In particular, if ψ is convex on
[
0, 1

2

]
, it has to be concave on

[
1
2
, 1
]

and viceversa.

Remark 2.7. If ψ is globally convex or concave, then it satisfies the
simmetry requirement if and only if it is linear.

3 Specific functional forms and general
distortions

We now show examples of the functional forms described above, starting
from the classical λ-measure. This is obtained setting

ψ(x) =
ln(1 + θx)

θ
(7)
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with θ ∈ (−1,∞), where for θ = 0 we have ψ(x) = x. Notice that the
function is increasing and globally concave for θ > 0 and convex for θ < 0.
It is easy to check that in this case

x⊕ψ y = x+ y + θxy (8)

and we obtain the λ-measure in equation (1). We know that this class is
closed with respect to duality, meaning that the dual is the same function
with parameter θ̂. Using (6) we have

ψ̂(x) =
1

θ
log(1 + θ)− 1

θ
log(1 + θ(1− x)) =

= −1

θ
log

(
1− θ

1 + θ
x

)
and since the function ψ̂ is defined up to a positive constant,

ψ̂(x) =
1

θ̂
log(1 + θ̂x), with θ̂ = − θ

θ + 1
.

It is easy to find that other classes of distortions are not closed under
duality. Consider for example the case

ψ(x) = x
1
θ (9)

for θ ∈ (0,∞). In this case the fuzzy measure is generated by the operator

x⊕ψ y =
(
x

1
θ + y

1
θ

)θ
(10)

It can be proved that the dual fuzzy measure is not a member of the same
class. In fact

ψ̂(x) = 1− (1− x)
1
θ

and, for θ 6= 1, ψ̂′(0) = 1
θ
, while, for θ < 1, ψ′(0) = 0 and, for θ > 1,

ψ′(0) = +∞
We can also find an example that proves that the class of distortions

generating the λ-measure is not the only class closed under duality. Con-
sider in fact the case

ψ(x) =
1

θ

(
eθx − 1

)
(11)

In this case,

ψ̂(x) =
1

θ

(
eθ − 1

)
− 1

θ

(
eθ(1−x) − 1

)
=

=
1

θ

(
eθ − eθ−θx

)
=

= −e
θ

θ

(
e−θx − 1

)
and since the function ψ̂ is defined up to a positive constant,

ψ̂(x) =
1

θ̂

(
eθ̂x − 1

)
, with θ̂ = −θ.
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A comment is in order concerning why it may be preferable to work with
ψ-fuzzy measures that are closed under duality. While this is not by
any means a limitation in theoretical analysis, it may make life easier in
applications. In fact, in many examples, including the one presented below
in this paper, me may have to calibrate a set of ψ-fuzzy measures and their
corresponding dual values. If both of them use the same function, this
may simplify and speed up the computation, particularly if we have a
large set of data.

3.1 Distorted parametric ψ-mesures

Starting from the parametric families introduced above we now show a
way to construct more fexible distortions that depend on two parameters.
This can be achieved by compounding or merging different ψ-measures.

For the sake of simplifying notation, we define ψ1(x) = ψθ1(x) and
ψ2(x) = ψθ2(x), and specify θ1 and θ2 in every representation, when
needed. So, for the composition of two distortions, we consider functions
ψ of type

ψ(z) = ψ2 (ψ1(z))

where ψ1 and ψ2 are different distortions, with parameters θ1 and θ2,
respectively. Clearly, the new distortion is well defined if ψ2 is defined on
[0, ψ1(1)].

As an example, let ψ1 be defined as in (7) with parameter θ1 = θ and
ψ2 as in (9) with parameter θ2 = η. Then

ψ(z) =
ln1/η (1 + θx)

θ1/η
.

In the opposite example, if ψ1 defined as in (9) with parameter θ1 = η
and ψ2 is set as in (7) with parameter θ2 = θ we get

ψ(z) =
ln
(

1 + θx1/η
)

θ
.

Another way to allow for more flexibility is by merging different dis-
tortions, that is by considering distortions ψ of type

ψ(z) =

{
ψ1(z), z ≤ α
ψ2(z), z > α

where α ∈ (0, 1) and with ψ1(α) = ψ2(α). As a consequence, if x ≤ y (the
complemetary case is similar)

x⊕ψy =


x⊕ψ1 y, x ≤ y ≤ α and ψ1(x) + ψ1(y) ≤ ψ1(α)

ψ−1
2 (ψ1(x) + ψ1(y)) , x ≤ y ≤ α and ψ1(x) + ψ1(y) > ψ1(α)
ψ−1

2 (ψ1(x) + ψ2(y)) , x < α and y > α
x⊕ψ2 y, α ≤ x ≤ y

10



As an example, if ψ1 is defined as in (7) with parameter θ1 = θ > 0 and
ψ2 as in (9) with parameter θ2 = η = lnα

ln
(

ln(1+θα)
θ

) , we get

x⊕ψy =


x+ y + θxy, x ≤ y ≤ α and x+ y + θxy ≤ α

1
θη

lnη
(
1 + θ(x+ y) + θ2xy

)
, x ≤ y ≤ α and x+ y + θxy > α(

ln(1+θx)
θ

+ y1/η
)η

x < α and y > α(
x1/η + y1/η

)η
, α ≤ x ≤ y

4 Option pricing application

In this section we show that some of the fuzzy measures proposed in the
sections above can be very useful to improve applications. One of the fields
of application is option pricing, where λ-measures have been proposed as a
specific parametric form for Choquet pricing. In other terms, option prices
are obtained as Choquet integrals of super-additive measures. The reader
interested in an in-depth treatment of the Choquet integral is referred to
the Choquet (1953) paper and to Denneberg (1994) for the more general
topic of integration with respect to non additive measures. Formally the
Choquet integral is defined as

(c)

∫
f(x)dµ =

∫ 0

−∞
(µ(f(x) > u)− 1)du+

∫ ∞
0

µ(f(x) > u)du (12)

where µ is a regular fuzzy measure. In our application, the set is restricted
to the class of ψ-fuzzy measures studied in this paper.

These models were mainly introduced to allow for different prices for
purchasing and selling the option (bid-ask prices). Theoretical models ex-
tending the standard no-arbitrage pricing theorem to non-additive pricing
measures, that is fuzzy measures (also called capacities, in the literature),
can be found in Chateauneuf Kast and Lapied (1996) and more recently in
Cerreia-Vioglio, Maccheroni and Marinacci (2015). The λ-measure spec-
ification in option pricing applications was first proposed by Cherubini
(1997).

Just for the sake of illustration, we show that the classical λ-measure
may have features that are well suited for option pricing applications, but
at the cost of other results that may be not consistent with the evidence we
expect to find in the data. On the contrary, it may happen that switching
to other distortion functions of the Archimedean class may solve the lat-
ter requirements, while not being compliant with the former. Hopefully,
combining different Archimedean t-conorm fuzzy measures could blend
the advantages of the individual fuzzy measures, or at last could ease
their flaws.

In an option pricing application it would be natural to expect two
kinds of evidence:

• Smile/Skew effect. A typical evidence that is commonly found in
options markets is that the so called ”implied volatility” is different
for different strike prices. We remind that an option, say a call op-
tion, gives the owner the positive difference between the value of a
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risky asset S, called ”the underlying asset”, and a strike (or exer-
cise) price K at time T , called the exercise date, and zero otherwise:
[S(T ) −K]+. The value of the contract at any time t < T may be
expressed in term of units or currency, or in terms of ”implied volatil-
ity”: this is a parameter in the reference pricing formula, known as
the Black & Scholes formula. While under the pricing model leading
to the Black & Scholes formula the implied volatility should be the
same across all the options with different strike prices K, after the
Black Monday crisis of October 19 1987 a new evidence emerged of
different implied volatility values for different strikes. For some mar-
ket the typical relationship is parabolic, and it is known as ”smile”
and for some other, namely the equity markets, the relationship is
decreasing, and it is known as ”smirk”, or more often as ”skew”, be-
cause it is referred to a skewed distribution of the percentage changes
of S(T ). For the sake of example, in this analysis we focus on the
”skew“ shape.

• High out-of-the-money bid-ask spreads. Many practitioners
observe that the market for options with low probability of being
exercized, that techically are called ”out-of-the-money”, is typically
less liquid than that for options for which the probability of exercize
is in central part the distribution: these options are called ”at-the-
money” and are those with the stike price K around the current
value of the underlying asset, S(t). In our call options example,
this means that the options ”bid-ask spreads”, that is the difference
between prices at which the option is sold and bought, should be
increasing with K. In other words, the higher K, the lower the
probability of exercise of a call option, the higher the uncertainty of
the price. This is also in line with the desired behaviour of the fuzzy
measures that we declared among the motivations of this paper.

Our task is then to find a fuzzy measure model such that, even using
the same reference volatility value,

• The call option implied volatilities computed at the mid-price, that
is the average of bid and ask prices, are decreasing with higher values
of the strike prices K

• The call option percentage bid-ask spreads, that is the bid-ask spread
as a percentage of the mid-price, are increasing with higher values
of the strike prices K

Our application consists in computing the price of a call option using a
reference distribution function H(y) for the underlying S(T ) and a dis-
tortion ψ(.) to represent uncertainty. The bid and ask prices are obtained
using the Choquet integral in equation (12).

Using our Archimedean fuzzy measures and remembering their dual-
ity relationships we find that the bid price of a call option is obtained
computing

Cb(S, t) =

∫ ∞
K

ψ−1 (ψ(1)− ψ ◦H(y)) dy
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and the ask price is

Ca(S, t) =

∫ ∞
K

ψ̂−1
(
ψ̂(1)− ψ̂ ◦H(y)

)
dy.

Since in computation of the smile function it is quite often usual to
resort to put options, we also report here the fuzzy version of it, both for
bid and ask prices. They are simply obtained by substituting the survival
function to the distribution function in the pricing formula.

Pb(S, t) =

∫ K

0

ψ−1 (ψ(1)− ψ ◦ H̄(y)
)
dy

and the ask price is

Pa(S, t) =

∫ K

0

ψ̂−1
(
ψ̂(1)− ψ̂ ◦ H̄(y)

)
dy.

where H̄(x) = 1−H(x).
Since our example is mainly for illustration purposes, we choose the

simplest model for the probability distribution of S(T ), that is the log-
normal that leads to the well known Black and Scholes formula. We then
set

Pr(S(T ) ≤ y) = H(y) = Φ

(
− log(S(t)/y)− 0.5σ2(T − t)

σ
√
T − t

)
where Φ(.) is the standard normal distribution. Without loss of generality,
we assume S(t) = 1. The volatility parameter σ is equal to 16%.

As for the uncertainty model, we use two distortions ψ(x):

• the standard λ-measure model with distortion:

ψ(x) =
ln(1 + θx)

θ

• the power model

ψ(x) = x
1
θ

Finally, having considered the flaws of the two model above, we will con-
sider their composition. More specifically, we will consider

• the composition model

ψ(x) =
ln1/η(1 + θx)

θ1/η

For the analysis below, we used options data for a representative day,
October 9th 2018. Options are referred to the Italian stock index, FTSE-
Mib. We collected bid-ask prices and we computed the implied volatility
of the at-the-money quotes, for a value of 16%. Using this value we are
going to show how the different fuzzy measures can be composed or mixed
to generate different smile shapes and percentage bid ask spraad value.
The parameters of the fuzzy measures were chosen to yield a shape of the
bid-ask spread consistent with that observed for call options.
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It must be stressed at this point that what we do here is for the mere pur-
pose of illustration, without any serious attempt at calibration. Actually,
nobody would ever beleive that the smile effect could be due to bid-ask
spread only. In fact, for 30 years the literature has been proposing distri-
butions to explain the smile (from local volatility, to stochastic volatility
models, to Lévy processes). And indeed, even our data show that fuzzy
measures parameters that are consistent with the bid-ask spreads are too
small to generate the smile observed in the market. Nevertheless, they do
affect the spread. Only for this reason we chose to illustrate this impact
with respect to the standard Black and Scholes model, for which the re-
lationship between strike prices and implied volatility is a flat curve. It
must be however clear that in any meaningful practical application, the
two terms of the problem, the distribution H(x) and the fuzzy measure
distortion, must be chosen and calibrated simultaneously.

In figure 1 we report the smile obtained from the standard λ-measure
model. Notice that the standard λ-measure induces a ”skew” effect on
the smile, increasing the implied volatility for strike prices lower than the
”at-the-money” level, and reducing it for higher strike prices. So, the λ-
measure increases the skew shape that is typical of equity markets, like
that used for our application.

A question is whether fuzzy measures only could be used to design a
proper smile, with implied volatilities higher for both in-the-money and
out-of-the money options, as it is typical in the foreign exchange and
interest rate markets. We show in figure 2 that this smile can be generated
by merging together the λ-fuzzy measure and the power one, as it is shown
at the end of section 3.1. The point at which the two measures are patched
is the at-the-money level. This model should be used if one beleive that
liquidity issues accentuate the symmetric smile shape in markets in which
this shape is typical.

In figure 3 we address the other requirement that we want to fulfil, that
is an increasing relationship of the percentage bid-ask spread for higher
levels of strike, representing higher uncertainty for extreme tail events. We
see that the standard λ-measure model is not endowed with this property.
The percentage bid-ask spread suddenly increases and remains flat for
extreme events. On the contrary, the power model shows an increasing
relationship with a slope that may also appear too steep.

We then report a third schedule, that is made using a composition
of the two models. We see that the increasing percentage bid-ask spread
property is maintained, even though the relationship is less steep than in
the pure power-measure model. The final question is whether the com-
position model preserves the desired decreasing shape of the smile, that
we would like to have in this equity market application. Figure 4 docu-
ments that this is actually the case. The decreasing shape of the smile is
maintained even though the slope is less steep than that of the smile of
the standard λ-measures models.

We may then conclude than in this option pricing applications, while
neither of the fuzzy measure models applied is well suited to generate
the desired features for the equity market application, a composition of
the two model may provide the necessary flexibility to satisfy both the
requirements. Merging the two models may produce symmetric smiles
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that are observed in other markets.

0,1601

0,16015

0,1602

0,16025

0,1603

0,16035

0,1604

0,7 0,8 0,9 1 1,1 1,2 1,3 1,4

Im
p

lie
d

 V
o

la
ti

lit
y

Moneyness

Skew Generated by the lambda-measure

Figure 1: Skew-shaped smile of the λ measure model with parameter θ = 0.1.

5 Conclusions

In this paper we extended the classical λ-measure approach to allow for the
flexibility needed in some applications. The extension is carried out along
the same lines of the standard λ-measure, that is by means of distortion
of a reference probability measure by a function. Our approach is to
extend the choice of the distortion function to the class of Archimedean
t-conorms. Such operators are defined by the relationship

x ∗ y = ψ−1(ψ(x) + ψ(y))

and for this reason we call this the class of ψ-measures or Archimedean
measures. The classical λ-measure is a specific instance of the Archimedean
measure class.

The extension of the fuzzy measure class provides more flexibility in
two ways. The first is the possibility to use a variety of different distortion
functions resorting to the class of Archimedean t-conorms. The second
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Figure 2: Symmetric smile obtained merging the λ-measure with parameter
θ = 0.1 for strikes lower than the at-the-money strike, and power fuzzy measure
with parameter θ = 1.0285 for the lower ones.

is the chance to combine several Archimedean fuzzy measures. The com-
bination can be achieved either by patchwork or composition of different
fuzzy measures.

As an example of the relevance of flexibility for some applications we
show that in option pricing the classical λ-measure is not completely well
suited to represent features that we expect to find in the data. In fact,
on one hand the λ-measure spontaneously generates the phenomenon of
higher ”implied volatility” for options with lower probability of being ex-
ercised, a feature called ”smile” or ”skew” in the option pricing jargon.
On the other hand the uncertainty that is measured by the percentage of
bid-ask spreads, that is the percentage difference of prices for sale and pur-
chase of the option contracts, are not significantly higher for options with
lower exercise probability, as expected by industry practitioners. We show
that another member of the Archimedean fuzzy measure class, the power
fuzzy measure, is able to generate this feature, while generating implied
volatility schedules that are opposite to what is expected. By combin-
ing the two measures by composition we find that we are able to build
a generator that at the same time produces lower volatility and higher
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Figure 3: Market liquidity measured as the percentage bid-ask spread for three
model: λ-measure, power measure and a composition of the two, with two
parameters equal to 0.0814 and 0.995.

uncertainty for call options with lower probability of exercise. Moreover,
we also show that by a simple patchwork of the two fuzzy measures we are
also allowed to generate symmetric smiles that are typical of the foreign
exchange and interest rates markets.

While our option application is only an example, in our opinion the
fact that the degree of uncertainty could be generally higher for very
rare events could be considered a general concept. For this reason, we
expect that this requirement could arise of many other applications, and
could lead to further practical and theoretical developments on this line
of research.

References

[1] J. Aczél (1966): Lectures on Functional Equations and Their Applica-
tions, Academic Press, New York.

[2] P. Billingsley (1995): Probability and Meausre. 3rd edition. John Wi-
ley.

17



0,16

0,16005

0,1601

0,16015

0,1602

0,16025

0,1603

0,8 1 1,2 1,4 1,6 1,8 2 2,2

Im
p

lie
d

 V
o

la
ti

lit
y

Moneyness

Smile

Lambda Measure

Composed measure

Figure 4: Smile of the λ-measure in the model given by the composition of it
with the power model, with the two parameters equal to 0.0814 and 0.995.

[3] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci (2015): Put-Call Par-
ity and Market Frictions, Journal of Economic Theory, 157, 730-762

[4] A. Chateauneuf (1995): Decomposable capacities, distorted probabil-
ities and concave capacities, Mathematical Social Sciences 31, 19-37.

[5] A. Chateauneuf, R. Kast and A. Lapied (1996): Choquet Pricing for
Financial Markets with Frictions, Mathematical Finance 6, 323-330.

[6] U. Cherubini (1997): Fuzzy Measures and Asset Prices: Accounting
for Information Ambiguiry, Applied Mathematical Finance, 4(3), 135-
149.

[7] U. Cherubini, G. Della Lunga (2001): Liquidity and Credit Risk, Ap-
plied Mathematical Finance, 8(2), 79-95

[8] G. Choquet (1953), Theory of Capacities, Annales de l’Institut
Fourier, 5, 131-295

[9] D. Denneberg (1994): Non Additive Measure and Integral, Kluwer
Academic

18



[10] L. Han, C. Zheng : Fuzzy Options with Application to Default Risk
Analysis for Municipal Bonds in China, Non-Linear Analysis: Theory,
Methods and Applications, 63(5-7), 2353-2565

[11] G.J. Klir, T.A. Folger (1988): Fuzzy Sets, Uncertainty and Informa-
tion, Prentice-Hall, Englewood Cliffs, New Jersey.

[12] D. Liginlal, T.T. Ow (2006): Modeling Attitude to Risk in Human
Decision Processes: An Application of Fuzzy Measures, Fuzzy Sets
and Systems, 157, 3040-54

[13] K. Leszczynsky, P. Penczek, W. Grochulski (1985): Sugeno’s Fuzzy
Measure and Fuzzy Clustering, Fuzzy Sets and Systems, 15, 147-158

[14] B. Schweizer, A. Sklar (1961): Associative functions and statistical
triangle inequalities, Publicationes Mathematicae Debrecen, 8, 169-
186

[15] Z. Wang, G.J. Klir (1992): Fuzzy Measure Theory, Springer Science,
New York

19


	COPP.pdf
	Cherubini_Mulinacci_FSS_Final.pdf

