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Abstract
We perform a unified analysis for the boundary
behaviour of solutions to nonlocal fractional equa-
tions posed in bounded domains. Based on previous
findings for some models of the fractional Laplacian
operator, we show how it strongly differs from the
boundary behaviour of solutions to elliptic problems
modelled upon the Laplace–Poisson equation with zero
boundary data.
In the classical case it is known that, at least in a suit-

ableweak sense, solutions of the homogeneousDirichlet
problemwith a forcing term tend to zero at the boundary.
Limits of these solutions then produce solutions of some
non-homogeneousDirichlet problemas the interior data
concentrate suitably to the boundary.
Here, we show that, for equations driven by a wide

class of nonlocal fractional operators, different blow-
up phenomena may occur at the boundary of the
domain. We describe such explosive behaviours and
obtain precise quantitative estimates depending on sim-
ple parameters of the nonlocal operators. Our unifying
technique is based on a careful study of the inverse
operator in terms of the corresponding Green function.
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1 INTRODUCTION

In recent years, there have been many studies on boundary value problems driven by nonlocal
operators L obtained as fractional powers of uniformly elliptic operators, such as the Laplacian.
In this context, according to the ‘degree of nonlocality’ of the leading operator in the differential
equation, additional values need to be prescribed either on the boundary of the underlying domain
or on its whole complement. So, given a regular bounded domain Ω ⊆ ℝ𝑛, the simplest Dirichlet
problems take the form of an equation

L𝑢 = 𝑓 in Ω, (1.1)

complemented by homogeneous values

𝑢 = 0 on 𝜕Ω, or in ℝ𝑛 ⧵ Ω, (1.2)

the last choice depending on the nonlocal operator L. Sometimes, (1.1) is written in some weak
formwhich also encodes (1.2). In the standard elliptic theory, (1.2) can be replaced by 𝑢 = g on 𝜕Ω,
for g an𝐿𝑝 function and therefore a.e. finite on 𝜕Ω. In this paper,we study solutions to equations of
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570 ABATANGELO et al.

the form (1.1) that develop an explosive behaviour at the boundary, that is, solutions satisfying

𝑢(𝑥) → +∞, as 𝑥 → 𝑥0, for almost all 𝑥0 ∈ 𝜕Ω.

They are usually called large solutions and they account for a new phenomenon, not appear-
ing in the classical elliptic theory. We will show that large solutions are tightly connected to the
solutions of the homogeneous problem via a natural limiting process. Finally, they exhibit quite
peculiar divergence rates that we will derive. All of this will be done for a specific class of nonlocal
operators L that includes the usual examples and more.
The present research is motivated by two striking results involving singular behaviour near

the boundary for the solutions of (1.1) in the case where L is the so-called restricted fractional
Laplacian (RFL; for which one has to prescribe data on ℝ𝑛 ⧵ Ω).
One of these striking results is the existence of nontrivial solutions of (1.1) such that 𝑓 = 0

in Ω which, moreover, are positive everywhere and blow up on the boundary. Explicit examples
on the ball were constructed in [33] (see also [6, 8]). The existence of this kind of solutions was
systematised independently in [30] (which also contains a thorough regularity theory, see also [29]
for related results and [31] for a review) and in [1] for the RFL, and extended in [2] for the spectral
fractional Laplacian (SFL; which requires prescribed data at the boundary). These correspond to
positive harmonic functions in the theory of the standard Laplacian, although the classical theory
does not admit any harmonic function with uniform blow-up at the boundary.
The second striking result, described in [1] when L is the RFL and in [2] when L is the SFL, is

that some admissible functions 𝑓 produce solutions 𝑢 blowing-up at the boundary, although they
are limits of solutions with ‘nice’ 𝑓 and zero boundary data. This is as well a new behaviour of the
nonlocal problem, not present for the usual Laplacian.
For the case of the usual Laplacian, it is known that the wider classes of weak or very weak

solutions obtained as limits of the variational solutions satisfy the boundary condition either in
the sense of traces or in a more generalised sense, described in [36] as the average condition

𝜂−1 ∫{dist(𝑥,𝜕Ω)<𝜂} |𝑢| → 0 as 𝜂 ↓ 0. (1.3)

The aim of the present work is to show that these two blow-up phenomena occur for a large
class of nonlocal operators of elliptic type. We treat in a unified way the typical nonlocal elliptic
equations, in particular the different fractional Laplacians on bounded domains. Our distinctive
technique is based on the use of the Green kernel which gives a common roof to the several
different cases. This approach extends previous work in [10, 28].
We consider a general family of operators indexed on two parameters: one describing the inte-

rior point singularity of the Green kernel, the other one the kernel’s boundary behaviour. This
requires serious technical work, that justifies the extension of the paper.
First, we want to study and classify the explosive (or large) solutions whose singularity is,

in some sense, generated by the right-hand side 𝑓. In particular, we compute explicitly the
asymptotic boundary behaviour of 𝑢 for the family of power-like data 𝑓 ≍ 𝛿𝛽 near the boundary,
where 𝛿(𝑥) ∶= dist(𝑥, 𝜕Ω). Here, we say that 𝑓 ≍ g on a set if there exists 𝐶 > 0 such that 𝐶−1g ⩽

𝑓 ⩽ 𝐶g on that set. Our main formula (1.5) gives the behaviour of 𝑢 in terms of 𝑓 and the kernel
of L in simple algebraic terms. The formula covers the whole range of behaviours, explosive or
not. We also translate estimate (1.3) to our context by introducing a suitable weight, taking care of
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 571

the singular profiles (see Lemma 3.8). We provide some careful numerical computations, to show
the formation of the boundary singularity due to the right-hand side (see Figures 3 and 4).
Even if the solution operator for the Dirichlet problem acting on a class of good functions 𝑓

produces solutions with Dirichlet boundary data, we show that the natural closure of that solu-
tion operator to its maximal domain of definition produces solutions which no longer satisfy
the Dirichlet condition and could reach a range of boundary blow-up that we describe. In the
case of problems in which the boundary condition is set (for example, the SFL), this is counter-
intuitive. The occurrence of boundary blow-up is a very important fact, that does not happen for
the usual Laplacian.
Second, we remark how there is a different class of explosive solutions whose singularity is

not generated by any right-hand side. In fact, they can be chosen as ‘L-harmonic in Ω’ in the
sense L𝑤 = 0. This class relies on some hidden information in the form of singular behaviour
that can be prescribed on the boundary. Moreover, this second class can be obtained as a limit
of singular solutions of the previous class as the support of 𝑓 concentrates at the boundary in a
convenient way. This means they cannot be disregarded in any complete theory of the problem.
See the detailed results in Section 4.
We conclude this introduction with an important remark. If a definition of solution of (1.1) is

‘too weak’, then the combination of the two classes seems to pose a problem to uniqueness, as
it happens in the classical elliptic theory. This highlights the importance of a suitable definition
of weak solution of (1.1) preserving uniqueness and including the classical solutions. We provide
this definition in Section 2 under the name of weak-dual solution, and show that the problem is
then well-posed. We also detect the optimal class of admissible data 𝑓. To take care of the second
class, we construct a ‘singular boundary data’ problem. We give a well-posed notion of solution
for this second problem: uniqueness is the easy part.

1.1 Main topics and results

Existence and uniqueness results for (1.1)
To begin with, we need to produce a general existence theory for data 𝑓 in good classes, that is,
compactly supported and bounded. We want to treat a general class of operators such that the
unique solution of (1.1)–(1.2) is given by the formula

(𝑓)(𝑥) = ∫Ω 𝔾(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦, for 𝑥 ∈ Ω, (K0)

with kernels 𝔾 ∶ Ω × Ω → ℝ such that, for any 𝑥, 𝑦 ∈ Ω,

𝔾(𝑥, 𝑦) = 𝔾(𝑦, 𝑥), 𝜕Ω ∈ 𝐶1,1, and (K1)

𝔾(𝑥, 𝑦) ≍
1|𝑥 − 𝑦|𝑛−2𝑠

(
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)𝛾

. (K2)

The two exponents 𝑠 and 𝛾 take values

𝑠, 𝛾 ∈ (0, 1], with 2𝑠 ⩽ 𝑛. (K3)
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572 ABATANGELO et al.

F IGURE 1 Relation of parameters 𝛼 and 𝛽 such that (𝛿𝛽) ≍ 𝛿𝛼

Their relative values will play an important role in the results. Note that hypothesis (K1) means
that  is self-adjoint. This allows to cover a large class of self-adjoint operators L, as we will
describe in Subsection 1.2.
Throughout this note, we use the notation 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}, 𝑎 ∨ 𝑏 = max{𝑎, 𝑏}.
The main structural assumption on 𝔾 is (K2). This general assumption was introduced in [11]

to cover some notable examples of this general class of operators given by the three most known
fractional Laplacian operators:

(i) The RFL: in this case 𝛾 = 𝑠 ∈ (0, 1).
(ii) The SFL, for which 𝛾 = 1 and 𝑠 ∈ (0, 1).
(iii) The regional or censored fractional Laplacian (CFL) which has 𝛾 = 2𝑠 − 1 and 𝑠 ∈ (1∕2, 1).

These examples will be presented in some more detail in Subsection 1.2, so that we can adapt
to them the general results. As we will explain, the estimate (K2) in each of these examples is
recovered by ad hoc techniques in different papers. In Section 5, we will make a brief discussion
on the general setting.
In Section 2, we prove existence, uniqueness, a priori estimates, and some regularity for prob-

lem (1.1). In Section 3, we prove that the optimal class of data 𝑓 such that (K0) is well-defined
(meaning (|𝑓|) ≢ +∞) is

𝑓 ∈ 𝐿1(Ω, 𝛿𝛾) = {𝑓 measurable in Ω ∶ 𝑓𝛿𝛾 ∈ 𝐿1(Ω)}. (1.4)

Boundary behaviour
As wementioned, for the standard Laplacian−Δ, the zero boundary data are taken in some sense
even when 𝑓 is taken in the optimal class of data. The sense depends on how good is 𝑓, see the
general results in [36]. A quite novel property of the RFL on bounded domains shows that this
is not true for admissible 𝑓 even if they are not so badly behaved. This is explained in [1] and
we want to extend the analysis to our general class of operators and show the detailed relation
between the operators, the boundary behaviour of 𝑓, and the singular boundary behaviour of the
solution. The main information about the operators will be the values of 𝛾 and 𝑠.
In Theorem 3.4, we establish the explicit estimate

(𝛿𝛽) ≍ 𝛿𝛾∧(𝛽+2𝑠) whenever 𝛾 + 𝛽 > −1 and 𝛽 ≠ 𝛾 − 2𝑠 (1.5)

that needs a delicate computation using the properties of the kernel. This is depicted in Figure 1.
Note that 𝛾 + 𝛽 > −1 is the condition, so that 𝑓 = 𝛿𝛽 belongs to the admissible class given by (1.4).
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F IGURE 2 Different relations between 𝛾 and 𝑠

In many cases, the existence of eigenfunctions is known, and their boundary behaviour is well-
understood. Under (K0), (K2), and some extra assumptions on the operator L, the authors in [10]
proved that the operator  admits an eigendecomposition and its first eigenfunction Φ1 satisfies

Φ1 ≍ 𝛿𝛾 in Ω.

The boundary behaviour is clear from the algebraic point of view, since 𝛾 is the only exponent
fixed by .
Solutions with singular behaviour
We observe that, according to formula (1.5), there are values of 𝛽 for which the solution associated
to datum 𝛿𝛽 is singular at the boundary: this happens whenever 𝛽 ∈ (−1 − 𝛾,−2𝑠) is allowed, and
therefore when 𝛾 > 2𝑠 − 1. In particular, it comes out that if 𝛾 > 2𝑠 − 1 , then there exist solutions
of theDirichlet problemnot complyingwith the condition𝑢 = 0 on the boundary. Thiswas known
for the RFL [1, Proposition 3] and the SFL [23, Proposition 7], whereas this phenomenon does not
take place for the CFL (as we show below).
The behaviour 𝛿𝛾∧(2𝑠−𝛾−1), corresponding to the limit case 𝛽 = −1 − 𝛾, serves somehow as an

upper bound for solutions. In Lemma 3.8, we will prove that

(a) if 𝛾 > 𝑠 − 1∕2, then for any 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾)

1

𝜂 ∫{𝛿<𝜂}
(𝑓)

𝛿2𝑠−𝛾−1
⟶ 0 as 𝜂 ↓ 0;

(b) if 𝛾 < 𝑠 − 1∕2, then for any nonnegative 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾) and 𝜂 > 0

1

𝜂 ∫{𝛿<𝜂}
(𝑓)
𝛿𝛾

≍ 1.

We also prove that, in the case 𝛾 = 𝑠 − 1∕2, there is a logarithmic correction.
For the usual Laplacian,when 𝑠 = 𝛾 = 1, we have 0 = 2𝑠 − 𝛾 − 1 < 𝛾: this reproduces (1.3). This

same fact holds for theCFL, because 𝛾 = 2𝑠 − 1. If 2𝑠 − 𝛾 − 1 > 0, then all solutions tend to 0 upon
approaching the boundary.
The two conditions 𝛾 > 2𝑠 − 1 and 𝛾 > 𝑠 − 1

2
allow us to split the parameter 𝑠, 𝛾 in three regions

as in Figure 2.
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Normal derivatives
A sharper study of the boundary behaviour of solution with data 𝑓 ∈ 𝐿∞𝑐 (Ω) consists of the
analysis of the limit

𝐷𝛾𝑢(𝑧) ∶= lim
𝑥→𝑧
𝑥∈Ω

𝑢(𝑥)

𝛿(𝑥)𝛾
, 𝑧 ∈ 𝜕Ω.

We will call this limit 𝛾-normal derivative. We devote Subsection 3.3 to the study of these normal
derivatives (see Theorem 3.15).

Large solutions
In [8], the authors introduce a surprising singular solution of the homogeneous problem 𝑓 = 0

that shows very precise asymptotics at the boundary. It is the type known as large solution in other
situations for nonlinear equations. For example, the function

𝑢(𝑥) ∶=

{
(1 − |𝑥|2)𝑠−1 for |𝑥| < 1

0 for |𝑥| ⩾ 1
(1.6)

is known to satisfy (−Δ)𝑠RFL𝑢(𝑥) = 0 for |𝑥| < 1, see [6, Example 1] and [33]. In [1], there is a
complete description of the singular boundary value problem for the RFL, while in [2] there is
the analogue for the SFL. Note that, in the limit 𝑠 → 1, the 𝑢 in (1.6) becomes the characteristic
function of the ball.
We prove that this theorymay be obtained as a limit of interior problems.We construct one such

particular large solution 𝑢⋆ which is L-harmonic on the interior (L𝑢⋆ = 0 inΩ). In Section 4, we
show that there exists a sequence of admissible functions (𝑓𝑗)𝑗∈ℕ (with dist(supp 𝑓𝑗, 𝜕Ω) < 2∕𝑗)
such that

(𝑓𝑗) ⇀ 𝑢⋆ in 𝐿1loc(Ω), as 𝑗 ↑ ∞.

This limit function has the boundary behaviour

𝑢⋆ ≍ 𝛿(2𝑠−𝛾−1)∧𝛾 in Ω, (1.7)

except in the case 𝛾 = 𝑠 − 1∕2 when a logarithmic correction is in order.
Note that the exponent is the upper bound of the range in (1.5). We will prove that the

problems†

∫Ω 𝑢 𝜓 = ∫𝜕Ω ℎ 𝐷𝛾[(𝜓)] for any 𝜓 ∈ 𝐿∞𝑐 (Ω).

have a unique solution 𝑢, which is comparable to 𝑢⋆ at the boundary. Going back to the
representation in L, this would mean that 𝜑 = [𝜓] and then formally

∫Ω 𝑢 L𝜑 = ∫𝜕Ω ℎ 𝐷𝛾[𝜑].

Note that this is the formulation of the Dirichlet boundary value problem when L = −Δ so 𝑠 =
𝛾 = 1. When 𝛾 > 𝑠 − 1

2
, this is even the unique (see Theorems 4.6 and 4.13) weak-dual solution of

† The space 𝐿∞𝑐 (Ω) is the subspace of 𝐿
∞(Ω)made up of functions with compact support in Ω.
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problem

⎧⎪⎪⎨⎪⎪⎩

L𝑢 = 0 in Ω,

𝑢 = 0 in ℝ𝑁 ⧵ Ω (if applicable),

𝑢

𝑢⋆
= ℎ on 𝜕Ω.

(1.8)

Comments
Our presentation unifies in a single theory previous results for the RFL (𝑢⋆ ≍ 𝛿𝑠−1, see [1]), the
SFL (𝑢⋆ ≍ 𝛿2(𝑠−1), see [2]), the CFL (𝑢⋆ ≍ 1, see [14]), and even the classical Laplacian (𝑢⋆ ≍ 1).
The case 𝛾 < 𝑠 − 1

2
, which does not include any of themain known examples, is somewhat par-

ticular. In this case, due to (1.7), 0 < 𝑢⋆(𝑥) → 0 as 𝑥 → 𝜕Ω and it is a non-trivial solution of (1.1)
with data 𝑓 = 0. This yields some doubt about the uniqueness of solutions to (1.1)–(1.2). Further-
more, if 𝛾 ⩽ 𝑠 − 1

2
, then 𝑢⋆ ≍ 𝛿𝛾, which in turn means that the critical solutions have the same

boundary behaviour as the solutions for regular data 𝑓. This does not seem to be consistent with
elliptic problems like (1.1).

1.2 Some examples

Large classes of operators L have Green operators  given by (K0)–(K3): here are some notorious
examples that are reviewed, for instance, in [3, 10, 40].

The restricted fractional Laplacian

The RFL is defined as the singular integral operator

(−Δ)𝑠RFL𝑢(𝑥) = p.v.∫ℝ𝑛
𝑢(𝑥) − 𝑢(𝑦)|𝑥 − 𝑦|𝑛+2𝑠 𝑑𝑦,

up to a multiplicative constant only depending on 𝑛 and 𝑠, and corresponds to the 𝑠 power of the
Laplacian operator defined in ℝ𝑛 (which can be equivalently defined via the Fourier transform).
The natural boundary conditions are given in ℝ𝑛 ⧵ Ω

{
(−Δ)𝑠

RFL
𝑢 = 𝑓 in Ω

𝑢 = 0 in ℝ𝑛 ⧵ Ω

and also have a stochastic interpretation corresponding to killing a Lévy flight upon leaving Ω.
Here we can consider all 𝑠 ∈ (0, 1) and we have the precise value

𝛾 = 𝑠.

Details can be consulted in many references, see, for instance, [11, 37].

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



576 ABATANGELO et al.

Perturbations of the RFL

Using the above one, it is possible to build other examples. Here are a couple of interesting
operators which are included in our analysis and the corresponding references:

∙ (−Δ)𝑠
RFL

+ 𝑏 ⋅∇ for 𝑠 ∈ (1∕2, 1) and 𝑏 ∈ 𝐿∞(Ω): in this case (see [9]);

𝛾 = 𝑠.

∙ (−Δ)
𝑠1
RFL

+ (−Δ)
𝑠2
RFL

with 0 < 𝑠2 < 𝑠1 ⩽ 1: in this case

𝑠 = 𝛾 = 𝑠1 for 𝑠1 < 1 and 𝑛 > 2𝑠1,

𝑠 = 𝛾 = 1 for 𝑠1 = 1 and 𝑛 ⩾ 3,

see, respectively, [16] and [17].

The spectral fractional Laplacian

A different way of considering the 𝑠 power of the Laplacian consists in taking the power of the
Dirichlet Laplacian, that is, the Laplacian coupled with homogeneous boundary conditions. This
approach typically makes use of an eigenbasis expansion. Let (𝜑𝑚)𝑚∈ℕ be the eigenfunctions of
the Laplacian linked to the nondecreasing sequence of eigenvalues 0 < 𝜆1 < 𝜆2 ⩽ … (repeated
according to their multiplicity) {

−Δ𝜑𝑚 = 𝜆𝑚𝜑𝑚 in Ω,
𝜑𝑚 = 0 on 𝜕Ω.

Let 𝑢 ∈ 𝐻2 ∩ 𝐻1
0
(Ω). Letting 𝑢𝑚 = ∫Ω 𝑢𝜑𝑚, we have the representation

−Δ𝑢 =

+∞∑
𝑚=1

𝜆𝑚𝑢𝑚𝜑𝑚.

The SFL is the operator with eigenvalues 𝜆𝑠𝑚 corresponding to eigenfunctions 𝜑𝑚. Hence, we
define

(−Δ)𝑠SFL𝑢 =

+∞∑
𝑚=1

𝜆𝑠𝑚𝑢𝑚𝜑𝑚.

Since this is an operator-wise definition we provide the boundary conditions given from the
classical operator, and hence the problem is{

(−Δ)𝑠
SFL

𝑢 = 𝑓 in Ω,
𝑢 = 0 on 𝜕Ω.

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 577

We underline how this is not the only possible representation and it is also possible to write it as
the singular integral operator

(−Δ)𝑠SFL𝑢(𝑥) = p.v.∫Ω (𝑢(𝑥) − 𝑢(𝑦)) 𝐽(𝑥, 𝑦) 𝑑𝑡 + 𝜅(𝑥) 𝑢(𝑥), 𝑥 ∈ Ω,

for

𝐽(𝑥, 𝑦) =
𝑠

Γ(1 − 𝑠) ∫
+∞

0
𝑝Ω(𝑡, 𝑥, 𝑦)

𝑑𝑡

𝑡1+𝑠
,

𝜅(𝑥) =
𝑠

Γ(1 − 𝑠) ∫
+∞

0

(
1 − ∫Ω 𝑝Ω(𝑡, 𝑥, 𝑦) 𝑑𝑦

)
𝑑𝑡

𝑡1+𝑠
,

and 𝑝Ω the Dirichlet heat kernel on Ω. It is possible to prove that, when 𝜕Ω ∈ 𝐶1,1,

𝐽(𝑥, 𝑦) ≍
1|𝑥 − 𝑦|𝑛+2𝑠

(
𝛿(𝑥) 𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)
, 𝜅(𝑥) ≍ 𝛿(𝑥)−2𝑠, 𝑥, 𝑦 ∈ Ω, (1.9)

see [8, Theorem 5.92].
Stochastically speaking, this operator generates a subordinate killed Brownian motion, which

is a Brownian motion killed upon hitting 𝜕Ω and which is then evaluated at random times dis-
tributed as an increasing 𝛼-stable process in (0,∞), see [39]. The killing of the Brownian motion
as it touches the boundary is encoded in the homogeneous boundary conditions.
Here again 𝑠 ∈ (0, 1) and in this case,

𝛾 = 1.

Details can be consulted in many references, see, for instance, [11, 13].

An interpolation of the RFL and the SFL

A family of ‘intermediate’ operators between the RFL and the SFL has been built in [35].
For 𝜎1, 𝜎2 ∈ (0, 1], one can consider the spectral 𝜎2 power of a RFL of exponent 𝜎1

L𝜎1,𝜎2 =
(
(−Δ)

𝜎1
RFL

)𝜎2
SFL

.

It is formally clear that

L𝜎1,1 = (−Δ)
𝜎1
RFL

and L1,𝜎2 = (−Δ)
𝜎2
SFL

.

The Green function associated to this operator satisfies (K2) with

𝑠 = 𝜎1𝜎2 and 𝛾 = 𝜎1,

see [35, Theorem 6.4].
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578 ABATANGELO et al.

The censored fractional Laplacian

This operator is defined as

(−Δ)𝑠CFL𝑢(𝑥) = p.v.∫Ω
𝑢(𝑥) − 𝑢(𝑦)|𝑥 − 𝑦|𝑛+2𝑠 𝑑𝑦,

so that we have identity

(−Δ)𝑠CFL𝑢 = (−Δ)𝑠RFL𝑢 − 𝑢 (−Δ)𝑠RFL𝜒Ω

(recall that the RFL is evaluated only on functions satisfying 𝑢 = 0 in ℝ𝑛 ⧵ Ω).
This operator generates a censored stable process, introduced in [7], a stable process which is

confined in Ω and finally killed upon hitting 𝜕Ω. For this reason, a suitable boundary condition
is

𝑢 = 0 on 𝜕Ω.

Here 𝑠 ∈ (1∕2, 1) and

𝛾 = 2𝑠 − 1,

see [7, 15]. A class of operators which generalises and includes the CFL is covered by the analysis
in [18].

2 INTERIOR DIRICHLET PROBLEM: EXISTENCE, UNIQUENESS
AND INTEGRABILITY

2.1 Functional properties of the Green operator

Theorem 2.1. Assume (K0)–(K3). Then  is a continuous operator
𝐿∞(Ω) ⟶ 𝐿∞(Ω), (2.1)

𝐿∞𝑐 (Ω) ⟶ 𝛿𝛾𝐿∞(Ω), (2.2)

𝐿1(Ω) ⟶ 𝐿1(Ω), (2.3)

𝐿1(Ω, 𝛿𝛾) ⟶ 𝐿1loc(Ω). (2.4)

Moreover, for 𝑓 ∈ 𝐿1𝑐 (Ω),

|(𝑓)(𝑥)| ⩽ 𝐶 𝛿(𝑥)𝛾 dist(𝑥, supp(𝑓))2𝑠−𝑛−𝛾 ∫Ω |𝑓|𝛿𝛾, 𝑥 ∈ Ω ⧵ supp(𝑓). (2.5)

In particular, if 𝑓 ∈ 𝐿1𝑐 (Ω), then 𝛿
−𝛾(𝑓) is bounded in a neighbourhood of the boundary.

Proof. We are going to extensively use assumptions (K0)–(K3) without further notice.
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 579

As to (2.1), we simply estimate, for any 𝑓 ∈ 𝐿∞(Ω) and 𝑥 ∈ Ω,

||(𝑓)(𝑥)|| ⩽ ‖𝑓‖𝐿∞(Ω) ∫Ω 𝔾(𝑥, 𝑦) 𝑑𝑦 ⩽ 𝐶‖𝑓‖𝐿∞(Ω) ∫Ω |𝑥 − 𝑦|2𝑠−𝑛 𝑑𝑦 ⩽ 𝐶‖𝑓‖𝐿∞(Ω).
Concerning (2.2), for 𝑥 ∈ Ω ⧵ supp(𝑓), we deduce

|(𝑓)(𝑥)| ⩽ ‖𝑓‖𝐿∞(Ω) ∫supp(𝑓) 𝔾(𝑥, 𝑦) 𝑑𝑦
⩽ 𝐶‖𝑓‖𝐿∞(Ω)𝛿(𝑥)𝛾 ∫supp(𝑓) |𝑥 − 𝑦|2𝑠−𝑛−2𝛾𝛿(𝑦)𝛾 𝑑𝑦

and this proves the result.
For (2.3), we estimate for 𝑓 ∈ 𝐿1(Ω) and using (K1),

∫Ω
||(𝑓)|| ⩽ ∫Ω ∫Ω 𝔾(𝑥, 𝑦)|𝑓(𝑦)| 𝑑𝑦 𝑑𝑥 = ∫Ω |𝑓|(𝜒Ω) ⩽ 𝐶‖𝑓‖𝐿1(Ω),

where we have used (2.1) on (𝜒Ω).
To prove (2.4), we note that, for any 𝐾 ⋐ Ω and 𝑓 ∈ 𝐿1(Ω, 𝛿), we have

∫𝐾
||(𝑓)|| ⩽ ∫𝐾 ∫Ω 𝔾(𝑥, 𝑦)|𝑓(𝑦)| 𝑑𝑦 𝑑𝑥 = ∫Ω |𝑓|(𝜒𝐾) ⩽ 𝐶 ∫Ω |𝑓| 𝛿𝛾

where we have used (2.2) on (𝜒𝐾).
Finally, we prove (2.5). For 𝑥 ∈ Ω ⧵ supp(𝑓) we have

|(𝑓)(𝑥)| ⩽ ∫Ω 𝔾(𝑥, 𝑦)|𝑓(𝑦)| 𝑑𝑦
⩽ 𝐶𝛿(𝑥)𝛾 ∫Ω |𝑓(𝑦)|𝛿(𝑦)𝛾 𝑑𝑦 sup

𝑦∈supp(𝑓)
|𝑥 − 𝑦|2𝑠−𝑛−𝛾

⩽ 𝐶𝛿(𝑥)𝛾‖𝑓𝛿𝛾‖𝐿1(Ω) dist(𝑥, supp(𝑓))2𝑠−𝑛−𝛾
and this proves the result. □

Remark 2.2. In Subsection 3.3, we will give a sharper characterisation of the image of map  in
terms of weighted 𝐿1 spaces.

Remark 2.3. Formally, one could take 𝜇 ∈ (Ω) and estimate

∫Ω
||(𝜇)|| ⩽ ∫Ω ∫Ω 𝔾(𝑥, 𝑦) 𝑑|𝜇|(𝑦) 𝑑𝑥 = ∫Ω (𝜒Ω) 𝑑|𝜇| ⩽ 𝐶|𝜇|(Ω) (2.6)

where we have used (2.1) on (𝜒Ω) or take 𝜇 ∈ (Ω, 𝛿𝛾) and estimate, for any 𝐾 ⋐ Ω

∫𝐾
||(𝜇)|| ⩽ ∫𝐾 ∫Ω 𝔾(𝑥, 𝑦) 𝑑|𝜇|(𝑦) 𝑑𝑥 = ∫Ω (𝜒𝐾) 𝑑|𝜇| ⩽ 𝐶 ∫Ω 𝛿

𝛾𝑑|𝜇| (2.7)

where we have used (2.2) on (𝜒𝐾). This computation is justified in the typical examples where 𝔾
is continuous. However, since we have made no continuity assumptions for 𝔾, it is possible
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580 ABATANGELO et al.

that integration against a measure is not defined. We will give more details on this case in
Subsection 2.5.

2.2 Weak-dual formulation

If L is self-adjoint, equations of type (1.1) are typically written in very weak form as

∫Ω 𝑢 L𝜑 = ∫Ω 𝑓𝜑 (2.8)

for all test functions 𝜑 in some adequate space given by the operator and the boundary conditions.
Since we want to tackle multiple types of operators and boundary conditions, we focus instead on
the weak-dual formulation (see, for example, [10]). This is formulated instead in terms of the
inverse operator , which is taken as an a priori. This allows to avoid giving a meaning to L𝜑.
Definition 2.4. Given 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾), a function 𝑢 ∈ 𝐿1loc(Ω) is a weak-dual solution of
problem (1.1) if

∫Ω 𝑢𝜓 = ∫Ω 𝑓 (𝜓), for any 𝜓 ∈ 𝐿∞𝑐 (Ω). (2.9)

Note that this weak-dual formulation is equivalent to take test functions 𝜑 ∈ (𝐿∞𝑐 (Ω)) in (2.8).
Also, we underline how the integral in the right-hand side of (2.9) is finite in view of (2.2).

Theorem 2.5. Assume (K0)–(K3) and let 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾). Then, there exists a unique function 𝑢 ∈
𝐿1loc(Ω) satisfying

∫Ω 𝑢𝜓 = ∫Ω 𝑓 (𝜓) for any 𝜓 ∈ 𝐿∞𝑐 (Ω). (2.10)

This function is precisely 𝑢 = (𝑓) and it satisfies

∫𝐾 |𝑢| ⩽ ‖𝑓𝛿𝛾‖𝐿1(Ω)‖‖‖‖‖(𝜒𝐾)𝛿𝛾

‖‖‖‖‖𝐿∞(Ω) for any 𝐾 ⋐ Ω.

Proof. Let us first note that 𝑢 = (𝑓) ∈ 𝐿1loc(Ω) in view of (2.4). It formally satisfies (2.10) as a
consequence of (K1) by the Fubini’s theorem. This formal bounds are indeed rigourous for 𝑓 ∈

𝐿∞𝑐 (Ω). Furthermore, due to the bounds provided by Theorem 2.1 one can pass to the limit
in approximations.
We now focus on uniqueness. Let 𝑢1, 𝑢2 be two solutions to (2.10). Then

∫Ω(𝑢1 − 𝑢2) 𝜓 = 0, for any 𝜓 ∈ 𝐿∞𝑐 (Ω).

Let 𝐾 ⋐ Ω and 𝜓 = sign(𝑢1 − 𝑢2)𝜒𝐾 ∈ 𝐿∞𝑐 (Ω). Using this as a test function, we deduce

∫𝐾 |𝑢1 − 𝑢2| = 0.
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 581

Since this holds for every 𝐾 ⋐ Ω, we have that 𝑢1 = 𝑢2 a.e. in Ω. Also, we have that

∫𝐾 |𝑢| ⩽ ∫𝐾
||(𝑓)|| ⩽ ∫Ω |𝑓|(𝜒𝐾) ⩽ ‖𝑓𝛿𝛾‖𝐿1(Ω)‖‖‖‖‖(𝜒𝐾)𝛿𝛾

‖‖‖‖‖𝐿∞(Ω)
which is a nontrivial inequality thanks to (2.2). □

2.3 Optimal class of data and a lower Hopf estimate

Theorem 2.6 (Lower Hopf). Assume (K0)–(K3). There exists 𝑐 > 0 such that, for all 𝑓 ⩾ 0,

(𝑓)(𝑥) ⩾ 𝑐 𝛿(𝑥)𝛾 ∫Ω 𝑓(𝑦) 𝛿(𝑦)
𝛾 𝑑𝑦, 𝑥 ∈ Ω.

Proof. By assumption (K0), it is sufficient to prove that

𝔾(𝑥, 𝑦) ⩾ 𝑐(𝛿(𝑥)𝛿(𝑦))𝛾, 𝑥, 𝑦 ∈ Ω. (2.11)

Assume, towards a contradiction, this is not true. Then, there exist sequences of
points (𝑥𝑗)𝑗∈ℕ, (𝑦𝑗)𝑗∈ℕ ⊆ Ω such that

𝔾(𝑥𝑗, 𝑦𝑗)

𝛿(𝑥𝑗)
𝛾𝛿(𝑦𝑗)

𝛾
→ 0, as 𝑗 ↑ ∞.

By assumption (K2), either

|𝑥𝑗 − 𝑦𝑗|2𝑠−𝑛−2𝛾 → 0, as 𝑗 ↑ ∞,

which is not possible since Ω is bounded and 2𝑠 − 𝑛 − 2𝛾 ⩽ 0 (cf. (K3)), or

|𝑥𝑗 − 𝑦𝑗|2𝑠−𝑛
𝛿(𝑥𝑗)

𝛾𝛿(𝑦𝑗)
𝛾
→ 0, as 𝑗 ↑ ∞.

Since Ω is bounded, 𝛿 is bounded, and hence we should have that |𝑥𝑗 − 𝑦𝑗|2𝑠−𝑛 → 0 as 𝑗 ↑ ∞
(cf. (K3)). Again, this is not possible. We arrive to a contradiction and (2.11) is proven. □

Corollary 2.7. Assume (K0)–(K3) and let 𝐾 ⋐ Ω. Then

(𝜒𝐾)(𝑥) ≍ 𝛿(𝑥)𝛾, 𝑥 ∈ Ω.

Proof. It follows from Theorem 2.6 and (2.2). □

Remark 2.8. If 0 ⩽ 𝑓 ∉ 𝐿1(Ω, 𝛿𝛾) and 𝑓𝑘 = 𝑓 ∧ 𝑘, 𝑘 ∈ ℕ, then, for every 𝑥 ∈ Ω,

(𝑓𝑘)(𝑥) ⩾ 𝑐𝛿(𝑥)𝛾 ∫Ω 𝑓𝑘(𝑦)𝛿(𝑦)
𝛾 𝑑𝑦 → +∞, as 𝑘 ↑ +∞,

due to the monotone convergence theorem.
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582 ABATANGELO et al.

Thanks to Theorem 2.6 and Remark 2.8, we have shown that 𝐿1(Ω, 𝛿𝛾) is the optimal class of
data.

2.4 Uniform integrability over compacts

Let us show that maps 𝐿1-bounded sequences into 𝐿1-weakly pre-compact sequences.
Lemma 2.9. Assume (K0)–(K3) and let 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾), 𝐾 ⋐ Ω. Then, for 𝐴 ⊂ 𝐾,

∫𝐴 |(𝑓)| ⩽ 𝐶𝐾,𝛽|𝐴|𝛽‖𝑓𝛿𝛾‖𝐿1(Ω), for any 0 < 𝛽 <
2𝑠

𝑛
.

In particular, for any 𝐾 ⋐ Ω,  maps bounded sequences in 𝐿1(Ω, 𝛿𝛾) into uniformly integrable
sequences in 𝐾.

Proof. We have that

∫𝐴 |(𝑓)| ⩽ ∫𝐴 ∫Ω 𝔾(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦 𝑑𝑥 = ∫Ω |𝑓(𝑦)|(∫𝐴 𝔾(𝑥, 𝑦)𝑑𝑥
)
𝑑𝑦

= ∫Ω |𝑓(𝑦)|𝛿(𝑦)𝛾(∫𝐴
𝔾(𝑥, 𝑦)

𝛿(𝑦)𝛾
𝑑𝑥

)
𝑑𝑦

We take 1 < 𝑝 < 𝑛

𝑛−2𝑠
. Due to the Hölder’s inequality,

∫𝐴
𝔾(𝑥, 𝑦)

𝛿(𝑦)𝛾
𝑑𝑥 ⩽ |𝐴| 1

𝑝′

(
∫𝐾

||||𝔾(𝑥, 𝑦)𝛿(𝑦)𝛾

||||
𝑝

𝑑𝑥

) 1
𝑝

, 𝑝′ =
𝑝

𝑝 − 1
>

𝑛

2𝑠
.

We estimate this last integral to recover 𝐶𝐾 . For any 𝑦 ∈ Ω such that dist(𝑦, 𝐾) < dist(𝐾, 𝜕Ω)∕2

we have that

𝛿(𝑦) = dist(𝑦, 𝜕Ω) > dist(𝐾, 𝜕Ω) − dist(𝑦, 𝐾) >
1

2
dist(𝐾, 𝜕Ω)

and hence

∫𝐾
||||𝔾(𝑥, 𝑦)𝛿(𝑦)𝛾

||||
𝑝

𝑑𝑥 ⩽

(
dist(𝐾, 𝜕Ω)

2

)−𝛾𝑝

∫𝐾 𝔾(𝑥, 𝑦)
𝑝𝑑𝑦

⩽ 𝐶

(
dist(𝐾, 𝜕Ω)

2

)−𝛾𝑝

∫𝐾 |𝑥 − 𝑦|−𝑝(𝑛−2𝑠)𝑑𝑥 ⩽ 𝐶

(
dist(𝐾, 𝜕Ω)

2

)−𝛾𝑝

since 𝑝(𝑛 − 2𝑠) < 𝑛, where 𝐶 depends only on 𝑝 and Ω. One the other hand, if 𝑦 is such
that dist(𝑦, 𝐾) ⩾ dist(𝐾, 𝜕Ω)∕2, for 𝑥 ∈ 𝐾 we have |𝑥 − 𝑦| > dist(𝑦, 𝐾) and so we compute

∫𝐾
||||𝔾(𝑥, 𝑦)𝛿(𝑦)𝛾

||||
𝑝

𝑑𝑥 ⩽ 𝐶 ∫𝐾
𝛿(𝑥)𝛾𝑝|𝑥 − 𝑦|𝑝(𝑛−2𝑠+2𝛾) 𝑑𝑥

⩽ 𝐶

(
dist(𝐾, 𝜕Ω)

2

)𝑝(−𝑛+2𝑠−2𝛾)

∫𝐾 𝛿(𝑥)
𝛾𝑝𝑑𝑥 ⩽ 𝐶

(
dist(𝐾, 𝜕Ω)

2

)𝑝(−𝑛+2𝑠−2𝛾)

,

where 𝐶 depends only on 𝑝 and Ω. This completes the proof. □
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 583

2.5 Measure data and continuous solutions

Under mild assumptions on the Green kernel 𝔾, it is possible to improve (2.1) and (2.2) to higher
regularity of solutions. By duality, this allows more general data in (1.1) and we are particularly
interested in measure data. For this reason, let us assume that

For any sequence Ω ∋ 𝑥𝑗 → 𝑥 as 𝑗 ↑ ∞ we have lim
𝑗↑∞

𝔾(𝑥𝑗, ⋅) = 𝔾(𝑥, ⋅) a.e. in Ω. (K4)

Theorem 2.10. Assume (K0)–(K4). Then the operator maps
𝐿∞(Ω) ⟶ 𝐶(Ω)

𝐿∞𝑐 (Ω) ⟶ 𝛿𝛾𝐶(Ω).

Proof. In view of (2.1) and (2.2), we just need to justify the continuity claim. Let us con-
sider 𝑓 ∈ 𝐿∞(Ω). To prove continuity we select an 𝑥 ∈ Ω, and (𝑥𝑗)𝑗∈ℕ ⊂ Ω such that 𝑥𝑗 →
𝑥 as 𝑗 ↑ ∞. By assumption (K4) we know that 𝔾(𝑥𝑗, ⋅) → 𝔾(𝑥, ⋅) a.e. in Ω. Moreover, let us note
that (𝔾(𝑥𝑗, ⋅))𝑗∈ℕ ⊂ 𝐿𝑝(Ω), 𝑝 ∈ [1, 𝑛∕(𝑛 − 2𝑠)) is uniformly bounded, since

∫Ω 𝔾(𝑥𝑗, 𝑦)
𝑝 𝑑𝑦 ⩽ ∫Ω

𝑑𝑦|𝑥𝑗 − 𝑦|(𝑛−2𝑠)𝑝
andΩ is bounded. Therefore, so is (𝔾(𝑥𝑗, ⋅)𝑓)𝑗∈ℕ. Due to theweak compactness in reflexive spaces
it is convergent. Applying (K4) we can compute the pointwise limit

(𝑓)(𝑥𝑗) = ∫Ω 𝔾(𝑥𝑗, 𝑦) 𝑓(𝑦) 𝑑𝑦 ⟶ ∫Ω 𝔾(𝑥, 𝑦) 𝑓(𝑦) 𝑑𝑦 = (𝑓)(𝑥) as 𝑗 ↑ ∞.

This proves that (𝑓) ∈ 𝐶(Ω).
Let 𝑓 ∈ 𝐿∞𝑐 (Ω). Since we have already proven that (𝑓) ∈ 𝐶(Ω), we only need to prove

that 𝛿−𝛾(𝑓) is continuous on some small neighbourhood of 𝜕Ω. Consider 𝜀 > 0 small enough
so that 𝐾 = supp(𝑓) ⊂ {𝛿 ⩾ 2𝜀} ⋐ Ω. Let𝑈 = {𝛿 < 𝜀} be the small neighbourhood of 𝜕Ω. We have
that

∫𝐾
𝔾(𝑥, 𝑦)𝑝

𝛿(𝑥𝑗)
𝛾𝑝

𝑑𝑦 ⩽ ∫𝐾
𝛿(𝑦)𝛾𝑝|𝑥 − 𝑦|(𝑛−2𝑠+2𝛾)𝑝 𝑑𝑦 ⩽ 𝐶𝜀, ∀𝑥 ∈ 𝑈.

Select now an 𝑥 ∈ 𝑈 and let Ω ∈ 𝑥𝑗 → 𝑥 as 𝑗 ↑ +∞. Since 𝑈 is open, then 𝑥𝑗 ∈ 𝑈 for 𝑗 large
enough. Again, by weak compactness,

𝛿(𝑥𝑗)
−𝛾(𝑓)(𝑥𝑗) = ∫𝐾

𝔾(𝑥𝑗, 𝑦)

𝛿(𝑥𝑗)
𝛾 𝑓(𝑦) 𝑑𝑦 ⟶ ∫𝐾

𝔾(𝑥, 𝑦)

𝛿(𝑥)𝛾
𝑓(𝑦) 𝑑𝑦 = 𝛿(𝑥)−𝛾(𝑓)(𝑥) as 𝑗 ↑ ∞.

This completes the proof. □

With this new machinery, we can justify the intuition given by Remark 2.3.
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584 ABATANGELO et al.

Theorem 2.11. Assume (K0)–(K4). Then, maps
(Ω) ⟶ 𝐿1(Ω)

(Ω, 𝛿𝛾) ⟶ 𝐿1loc(Ω).

Furthermore, for every 𝜇 ∈ (Ω, 𝛿𝛾), 𝑢 = (𝜇) is the unique 𝑢 ∈ 𝐿1loc(Ω) such that

∫Ω 𝑢𝜓 = ∫Ω (𝜓) 𝑑𝜇 for any 𝜓 ∈ 𝐿∞𝑐 (Ω). (2.12)

holds. Moreover, it satisfies

∫𝐾 |𝑢| ⩽ (
∫Ω 𝛿

𝛾𝑑|𝜇|)‖‖‖‖‖(𝜒𝐾)𝛿𝛾

‖‖‖‖‖𝐿∞(Ω) for any 𝐾 ⋐ Ω.

Proof. Due to (K4), (𝜇) is now a well-defined integral. Now we can apply (2.6) and (2.7).
Moreover, also ∫Ω (𝜇) 𝜓 is well-defined for any 𝜓 ∈ 𝐿∞𝑐 (Ω). Note that, in view of (2.2), we have

∫Ω ∫Ω 𝔾(𝑥, 𝑦) |𝜓(𝑥)| 𝑑𝑥 𝑑|𝜇|(𝑦) ⩽ 𝐶𝜓 ∫Ω 𝛿(𝑦)
𝛾 𝑑|𝜇|(𝑦) < +∞,

so that we can apply the Fubini’s theorem and (K1) to deduce

∫Ω (𝜇) 𝜓 = ∫Ω (𝜓) 𝑑𝜇
which proves (2.12). We now show uniqueness. Let 𝑢1, 𝑢2 be two solutions to (2.12). Then

∫Ω(𝑢1 − 𝑢2) 𝜓 = 0, for any 𝜓 ∈ 𝐿∞𝑐 (Ω).

Let 𝐾 ⋐ Ω and 𝜓 = sign(𝑢1 − 𝑢2)𝜒𝐾 ∈ 𝐿∞𝑐 (Ω). Using this as a test function, we deduce

∫𝐾 |𝑢1 − 𝑢2| = 0.

Since this holds for every 𝐾 ⋐ Ω, we have that 𝑢1 = 𝑢2 a.e. in Ω. Also, we have that

∫𝐾 |𝑢| ⩽ ∫𝐾
||(𝜇)|| ⩽ ∫Ω (𝜒𝐾) 𝑑|𝜇| ⩽ (

∫Ω 𝛿
𝛾𝑑|𝜇|)‖‖‖‖‖(𝜒𝐾)𝛿𝛾

‖‖‖‖‖𝐿∞(Ω)
which is a nontrivial inequality thanks to (2.2). □

3 BREAKDOWNOF THE BOUNDARY CONDITION IN THE
INTERIOR PROBLEM

We address now the main question of this paper, which is the violation of the boundary data in
the optimal theory for the interior problem. We give precise answers of the anomalous boundary
behaviour in terms of the behaviour of the forcing data.
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 585

3.1 Range of exponents

Before stating and proving the main result of this paragraph, we need to state a couple of techni-
cal estimates on which the result is based. Since the proofs of these estimates is rather long and
technical, we defer them to Appendix B. The first one gives some interior estimates; the second
one is describing the sharp behaviour of solutions at the boundary.

Remark 3.1. In what follows, we use without further note 𝜀 > 0 to denote the fixedwidth onwhich
the tubular neighbourhood theorem can be rightfully applied, that is, the map

Φ ∶ 𝜕Ω × (−𝜀, 𝜀) ⟶ ℝ𝑛

(𝑧, 𝛿) ⟼ 𝑧 + 𝛿𝐧(𝑧)

defines a diffeomorphism to its image. Here, 𝐧 represents the interior unit normal. This is
well-known for smooth manifolds (see [21]), and holds also for 𝐶1,1 open sets of ℝ𝑛. The nota-
tion 𝛿 might seem like an abuse of notation, but it will lead to no confusion since, in this
setting, dist(Φ(𝑧, 𝛿), 𝜕Ω) = 𝛿 for 𝜀 sufficiently small.

Lemma 3.2. Assume that (K0)–(K3) hold. Moreover, assume 𝛽 + 𝛾 > −1 and let 𝜂 < 𝜀 be fixed.
Then there exists a constant 𝑐(𝜂) > 0 such that, for any 𝑥 ∈ {𝛿 > 𝜂∕2}, it holds

(𝛿𝛽𝜒{𝛿<𝜂})(𝑥) ⩽ 𝑐(𝜂). (3.1)

Moreover, if 𝛾 < 𝑠 − 1

2
and 𝑥 ∈ {𝛿 > 𝜂∕2}, then

(𝛿𝛽𝜒{𝛿<𝜂})(𝑥) ⩽ 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾 (3.2)

up to constants not depending on 𝜂.

In Figure 3 we have included numerical simulations of 𝐿𝑢 = 𝛿𝛾−1+0.1 ∧ 𝑗 for different examples
of 𝐿

Lemma 3.3. Assume that (K0)–(K3) hold. Moreover, assume 𝛽 + 𝛾 > −1 and let† 𝜂 < 𝜀 be fixed.
Then for any 𝑥 ∈ {𝛿 < 𝜂∕2} it holds

(𝛿𝛽𝜒{𝛿<𝜂})(𝑥) ≍ 𝛿(𝑥)𝛽+2𝑠 + 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾 + Θ(𝜂, 𝑥), (3.3)

where the Θ is defined as follows:

(a) if 𝛾 < 𝑠 − 1

2
, then

Θ(𝜂, 𝑥) ∶= 𝛿(𝑥)𝛽+2𝛾+1; (3.4)

(b) if 𝛾 = 𝑠 − 1

2
, then

Θ(𝜂, 𝑥) ∶= 𝛿(𝑥)𝛽+2𝑠 |ln 𝛿(𝑥)| + 𝜂𝛽+𝛾+1 |ln 𝜂| 𝛿(𝑥)𝛾; (3.5)

†Recall Remark 3.1 for the definition of 𝜀.
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586 ABATANGELO et al.

F IGURE 3 Numerical solutions of L𝑢 = 𝛿−𝛾−1+𝜀 ∧ 𝑗 in dimension 𝑛 = 1 for different operators. All
computations correspond to Finite Difference numerical schemes. For the RFL we take the weights for the finite
difference discretisation of the fractional Laplacian in ℝ𝑛 in [22] (see also [19]). The discretisation for smooth
functions is rigorously shown to be 𝑂(ℎ2). A previous approach by Finite Differences is given in [34].
Experimental results in [34] suggest that the restriction for RFL is of order 𝑂(ℎ𝑠). For the SFL we use as a
discretisation the fractional power of the finite differences matrix of the usual Laplacian (−Δ): it is known that
the eigenvalues of this matrix converge to those of the usual Laplacian, and hence its fractional power produces a
convergent scheme for the SFL. A different scheme can be found in [20]. For the CFL we have used a novel
approach, which we will describe in an upcoming paper.
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 587

(c) if 𝛾 > 𝑠 − 1

2
, then

Θ(𝜂, 𝑥) ∶=

⎧⎪⎪⎨⎪⎪⎩
0 if 𝛽 < 𝛾 − 2𝑠,

𝛿(𝑥)𝛽+2𝑠 |ln(𝛿(𝑥)∕𝜂)| if 𝛽 = 𝛾 − 2𝑠,

𝜂𝛽+2𝑠−𝛾𝛿(𝑥)𝛾 if 𝛽 > 𝛾 − 2𝑠.

(3.6)

We are now ready to prove the following estimate.

Theorem 3.4. Assume that (K0)–(K3) hold. Moreover, assume 𝛽 + 𝛾 > −1. Then 𝛿𝛽 ∈ 𝐿1(Ω, 𝛿𝛾)

and

(𝛿𝛽) ≍ 𝛿𝛼

with

𝛼 =

⎧⎪⎪⎨⎪⎪⎩

𝛾 if 𝛽 > 𝛾 − 2𝑠

𝛾 (and log. weight) if 𝛽 = 𝛾 − 2𝑠 and 𝛾 > 𝑠 −
1

2

𝛽 + 2𝑠 if 𝛽 < 𝛾 − 2𝑠 and 𝛾 > 𝑠 −
1

2
,

(3.7)

where by logarithmic weight we mean that (𝛿𝛾−2𝑠) ≍ 𝛿𝛾 (1 + |ln 𝛿|).
Equation (3.7) can be interpreted by means of formula (1.5) and Figure 1.

Proof. Let us first note that conditions 𝛽 ⩽ 𝛾 − 2𝑠 and 𝛾 ⩽ 𝑠 − 1

2
are not compatible: indeed, if they

both held, then it would be 𝛽 + 𝛾 ⩽ 2𝛾 − 2𝑠 ⩽ −1 contradicting our standing assumption on 𝛽.
We pick some fixed 𝜂 < 𝜀 and we write

(𝛿𝛽) = (𝛿𝛽𝜒{𝛿⩽𝜂}) + (𝛿𝛽𝜒{𝛿>𝜂}).
Note that

(𝛿𝛽𝜒{𝛿>𝜂}) ≍ 𝛿𝛾

as 𝛿𝛽𝜒{𝛿>𝜂} ∈ 𝐿∞𝑐 (Ω). For the other term, we exploit Lemma 3.3 and (3.1) to say

(𝛿𝛽𝜒{𝛿⩽𝜂}) ≍ 𝛿(𝑥)𝛽+2𝑠 + 𝛿(𝑥)𝛾 + Θ(1, 𝑥),

whereΘ is defined as in Lemma 3.3. Now, the asymptotic behaviour is driven by the least exponent
on 𝛿, yielding the situation depicted in (3.7). □

Remark 3.5. Let us look at the ranges for 𝛼 and 𝛽 as in Theorem 3.4, disregarding the logarithmic
cases, to better understand the possible boundary behaviours of solutions to (1.1). When 𝛾 > 𝑠 − 1

2
the admissible range for 𝛽 is (−1 − 𝛾,+∞); in this case 𝛼 runs in (2𝑠 − 𝛾 − 1, 𝛾]: note that 2𝑠 − 𝛾 −

1might be negative, meaning that also 𝛼 is allowed to be negative in some cases. This translates

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



588 ABATANGELO et al.

in particular into a rebuttal of (𝛿𝛽) = 0 on 𝜕Ω, despite the fact that this would be the solution to
a homogeneous boundary (or exterior problem) value problem. For exterior problem, this shows
solutions are discontinuous on the boundary for some singular data (possibly outside 𝐿1(Ω)). For
boundary value problems, this is a breakdownof the boundary condition.However, this behaviour
intrinsic to the problem, since we are only constructing the closure of the solution operator , to
its maximal domain of definition.
If instead 𝛾 < 𝑠 − 1

2
, then again 𝛽 ranges in (−𝛾 − 1,+∞), but this time 𝛼 is bound to be equal

to 𝛾, meaning that there is no range for 𝛼.

Example 3.6. Let us exemplify the statement of Theorem 3.4. If we consider 𝛽 = 0, we deduce

(𝜒Ω) ≍
⎧⎪⎪⎨⎪⎪⎩
𝛿𝛾 if 𝛾 < 2𝑠

𝛿𝛾 (1 + |ln 𝛿|) if 𝛾 = 2𝑠

𝛿2𝑠 if 𝛾 > 2𝑠

in Ω.

Setting 𝛽 = 𝛾 gives

(𝛿𝛾) ≍ 𝛿𝛾, in Ω.

Taking 𝛽 = ±𝑠 returns, respectively,

(𝛿𝑠) ≍
⎧⎪⎪⎨⎪⎪⎩
𝛿𝛾 if 𝛾 < 3𝑠

𝛿𝛾 (1 + |ln 𝛿|) if 𝛾 = 3𝑠

𝛿3𝑠 if 𝛾 > 3𝑠

and (𝛿−𝑠) ≍
⎧⎪⎪⎨⎪⎪⎩
𝛿𝛾 if 𝛾 < 𝑠

𝛿𝛾 (1 + |ln 𝛿|) if 𝛾 = 𝑠

𝛿𝑠 if 𝛾 > 𝑠.

The value 𝛽 = −2𝑠 is a somewhat critical value for the boundary behaviour (if 𝛾 > 2𝑠 − 1,
otherwise  is not defined), since

(𝛿−2𝑠) ≍ 1.

Below this value, if 𝛽 is of the form 𝛽 = −2𝑠 − 𝜀, 𝜀 ∈ (0, 𝛾 − 2𝑠 + 1) ⧵ {−𝛾}, one has

(𝛿−2𝑠−𝜀) ≍ 𝛿−𝜀.

Remark 3.7. Note that, if 𝛽 ∈ (−1∕2, −2𝑠) we have that 𝛿𝛽 ∈ 𝐿2(Ω) and (𝛿𝛽) ∉ 𝐿∞(Ω). This is
possible if 𝑠 ∈ (0, 1∕4). Hence, this breakdown of the boundary conditions happens inside the vari-
ational (energy) theory. This should not be surprising since, for 𝑠 < 1∕2, 𝐻𝑠

0
= 𝐻𝑠 (the space has

no trace). This points to an essential difference between the properties of the classical Laplacian
and the fractional Laplacian for small values of 𝑠.

3.2 Subcritical boundary behaviour in average terms

We have an extension of the result for the classical Laplacian on averaged convergence to the
boundary, see [36].
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 589

Lemma 3.8. Assume that (K0)–(K3) hold and let 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾).

(a) If 𝛾 > 𝑠 − 1∕2,

1

𝜂 ∫{𝛿<𝜂}
|(𝑓)|
𝛿2𝑠−𝛾−1

⟶ 0 as 𝜂 ↓ 0.

(b) If 𝛾 = 𝑠 − 1∕2,

1

𝜂 |ln 𝜂| ∫{𝛿<𝜂} |(𝑓)|𝛿𝛾
⟶ 0 as 𝜂 ↓ 0.

(c) If 𝛾 < 𝑠 − 1∕2,

1

𝜂 ∫{𝛿<𝜂}
|(𝑓)|
𝛿𝛾

⩽ 𝐶.

Proof. Assume that 𝑓 ⩾ 0. Let us start from (a). It is clear that, by duality,

𝜂−1 ∫{𝛿<𝜂}
(𝑓)

𝛿2𝑠−𝛾−1
= ∫Ω 𝑓𝛿

𝛾
(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})

𝜂𝛿𝛾
.

We decompose this last integral into two

∫Ω 𝑓𝛿
𝛾
(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})

𝜂𝛿𝛾
= ∫{𝛿⩽𝜂∕2} 𝑓𝛿

𝛾
(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})

𝜂𝛿𝛾
+ ∫{𝛿>𝜂∕2} 𝑓𝛿

𝛾
(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})

𝜂𝛿𝛾
.

Using (3.3) and (3.6), in {𝛿 < 𝜂∕2} we get

(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})
𝜂𝛿𝛾

≍
𝛿

𝜂
+ 𝜂−2𝑠+2𝛾+1 + 1 ⩽ 3

and therefore

∫{𝛿⩽𝜂∕2} 𝑓𝛿
𝛾
(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})

𝜂𝛿𝛾
⟶ 0 as 𝜂 ↓ 0

by dominated convergence. On the other hand, in {𝛿 > 𝜂∕2} we have, for 𝜎 ∈ (0, 2𝛾 − 2𝑠 + 1),

(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂}) ⩽ 𝜂1+𝜎(𝛿−2𝑠+𝛾−𝜎𝜒{𝛿<𝜂}) ⩽ 𝜂1+𝜎(𝛿−2𝑠+𝛾−𝜎) ≍ 𝜂1+𝜎𝛿𝛾−𝜎

where we have used Theorem 3.4. As a consequence

∫{𝛿>𝜂∕2} 𝑓𝛿
𝛾
(𝛿−2𝑠+𝛾+1𝜒{𝛿<𝜂})

𝜂𝛿𝛾
⩽ 𝜂𝜎 ∫{𝛿>𝜂∕2} 𝑓𝛿

𝛾−𝜎 ⟶ 0

again by dominated convergence.
The proof of (b) is analogous by using (3.5).
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590 ABATANGELO et al.

Let us now consider (c). As above, by duality,

𝜂−1∫{𝛿<𝜂}
(𝑓)
𝛿𝛾

=∫Ω 𝑓𝛿
𝛾
(𝛿−𝛾𝜒{𝛿<𝜂})

𝜂 𝛿𝛾
=∫{𝛿>𝜂∕2} 𝑓𝛿

𝛾
(𝛿−𝛾𝜒{𝛿<𝜂})

𝜂 𝛿𝛾
+∫{𝛿<𝜂∕2} 𝑓𝛿

𝛾
(𝛿−𝛾𝜒{𝛿<𝜂})

𝜂 𝛿𝛾
.

For the first integral, we use (3.2) with 𝛽 = −𝛾 to deduce

∫{𝛿>𝜂∕2} 𝑓𝛿
𝛾
(𝛿−𝛾𝜒{𝛿<𝜂})

𝜂 𝛿𝛾
⩽ ∫{𝛿>𝜂∕2} 𝑓 𝛿

𝛾

up to constants not depending on 𝜂. For the second one we use (3.3) and (3.4) which give

(𝛿−𝛾𝜒{𝛿<𝜂})
𝜂 𝛿𝛾

≍
𝛿−2𝛾+2𝑠

𝜂
+ 1 +

𝛿(𝑥)

𝜂
⩽ 3, in {𝛿 < 𝜂},

and therefore

∫{𝛿<𝜂∕2} 𝑓𝛿
𝛾
(𝛿−𝛾𝜒{𝛿<𝜂})

𝜂 𝛿𝛾
⩽ 𝐶 ∫Ω |𝑓| 𝛿𝛾.

This completes the proof for 𝑓 ⩾ 0.
If 𝑓 changes sign, then can we apply the result have to 𝑓+ and 𝑓−. □

3.3 Sharp weighted spaces for the Green operator

The computations above allow to complement the analysis carried out in Theorem 2.1, and
improve the estimate for the optimal data from 𝐿1loc to a weighted space. It follows the general
philosophy that, due to (2.10), for any 𝜇 ∈ (Ω, 𝛿𝛾) we have

 ∶ 𝐿1(Ω,(𝜇)) → 𝐿1(Ω, 𝜇).

The result is as follows.

Theorem 3.9. Assume that (K0)–(K3) hold and let 𝛼 > (𝛾 − 2𝑠) ∨ (−𝛾 − 1). We have that

 ∶ 𝐿1(Ω, 𝛿𝛾) → 𝐿1(Ω, 𝛿𝛼)

is well-defined and continuous.

Proof. Take 𝑓 ∈ 𝐿1(Ω, 𝛿𝛾). Then

∫Ω
||(𝑓)||𝛿𝛼 ⩽ ∫Ω |𝑓|(𝛿𝛼).

As 𝛼 > −𝛾 − 1 by assumption, we can apply Theorem 3.4. Since 𝛼 > 𝛾 − 2𝑠, then (𝛿𝛼) ≍ 𝛿𝛾 and,
therefore,

∫Ω
||(𝑓)|| 𝛿𝛼 ⩽ 𝐶 ∫Ω |𝑓| 𝛿𝛾.

This completes the proof. □
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 591

Corollary 3.10. Under the assumptions of Theorem 3.9, if 𝛾 < 2𝑠, then solutions for any admissible
data are in 𝐿1(Ω).

Proof. In the notations of Theorem 3.9, note that, if 𝛾 < 2𝑠, then𝛼 = 0 is an admissible choice. □

For 𝑓 ∈ 𝐿∞𝑐 (Ω), we have shown that (𝑓) ≍ 𝛿𝛾. To study the sharp boundary behaviour, we
want to study (𝑓)∕𝛿𝛾. For this reason, we introduce the following definition.
Definition 3.11. We denote by

𝐷𝛾𝑢(𝑧) ∶= lim
𝑥→𝑧
𝑥∈Ω

𝑢(𝑥)

𝛿(𝑥)𝛾
𝑧 ∈ 𝜕Ω,

and we call it 𝛾-normal derivative of 𝑢.

To prove sharp boundary behaviour we assume that the Green kernel has a 𝛾-normal
derivative 𝐷𝛾𝔾.

There exists 𝐷𝛾𝔾 ∶ 𝜕Ω × Ω → ℝ, such that, for every sequence Ω ∋ 𝑥𝑗 → 𝑧 ∈ 𝜕Ω

we have lim
𝑗

𝔾(𝑥𝑗, ⋅)

𝛿(𝑥𝑗)
𝛾
= 𝐷𝛾𝔾(𝑧, ⋅) a.e. in Ω. (K5)

Remark 3.12. Note that 𝐷𝛾𝔾(𝑧, 𝑦) = 𝐷𝛾(𝔾(⋅, 𝑦))(𝑧).

Remark 3.13. As a consequence of (K2) we have, for a.e. 𝑦 ∈ Ω and 𝑧 ∈ 𝜕Ω,

𝐷𝛾𝔾(𝑧, 𝑦) ≍ lim
𝑥→𝑧
𝑥∈Ω

1|𝑥 − 𝑦|𝑛−2𝑠
(

𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

𝛿(𝑥)

)𝛾

=
𝛿(𝑦)𝛾|𝑧 − 𝑦|𝑛−2𝑠+2𝛾 . (3.8)

Remark 3.14. Assumption (K5) is satisfied in our three reference examples.

∙ For the RFL, it follows from the Boundary Harnack Principle [5] and the boundary regularity
of solutions on smooth domains [37]; for 𝑦 ∈ Ω, 𝜓 ∈ 𝐶∞𝑐 (Ω) fixed and 𝛾 = 𝑠, we have

𝔾(𝑥, 𝑦)

𝛿(𝑥)𝑠
=

𝔾(𝑥, 𝑦)

(𝜓)(𝑥)
(𝜓)(𝑥)
𝛿(𝑥)𝑠

, 𝑥 ∈ Ω.

Both factors lie in 𝐶𝛼(Ω ⧵ 𝐵𝑟(𝑦)), at least for 𝛼, 𝑟 > 0 small enough. Indeed, the first one is due
to [5, Theorem 1] and is a consequence of the 𝑠-harmonicity of the two involved functions close
to the boundary; the second factor, instead, is more related to the smoothness of the boundary
and a more classical Schauder regularity, see [37, Theorem 1.2]. The kernel 𝐷𝛾𝔾 has been first
introduced in [1], although it is strongly related to the Martin kernel, see, for example, [6].

∙ For the SFL, the well-definition of 𝐷𝛾𝔾 is contained in [2, Lemma 14]; in this case, the proof
relies on a computation on an explicit representation formula for 𝔾 in terms of the classical
Dirichlet heat kernel.

∙ For the CFL, a Boundary Harnack Inequality is available (see [7, section 6]), so we can repeat
the argument for the RFL. To this regard see, in particular, [7, Remark 6.1 and equation (6.35)].
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592 ABATANGELO et al.

Theorem 3.15. Assume (K0)–(K3) and (K5) and let 𝑓 ∈ 𝐿1𝑐 (Ω). For 𝑢 = (𝑓), 𝐷𝛾𝑢 is well-defined
on 𝜕Ω. Furthermore,

𝐷𝛾𝑢(𝑧) = ∫Ω 𝐷𝛾𝔾(𝑧, 𝑦) 𝑓(𝑦) 𝑑𝑦, 𝑧 ∈ 𝜕Ω,

and

|𝐷𝛾𝑢(𝑧)| ⩽ 𝐶‖𝑓‖𝐿1(Ω) dist(𝑧, supp(𝑓))2𝑠−2𝛾−𝑛, 𝑧 ∈ 𝜕Ω.

Proof. We write

𝑢(𝑥)

𝛿(𝑥)𝛾
= ∫Ω

𝔾(𝑥, 𝑦)

𝛿(𝑥)𝛾
𝑓(𝑦) 𝑑𝑦, 𝑥 ∈ Ω.

Let 𝑧 ∈ 𝜕Ω, (𝑥𝑗)𝑗∈ℕ ⊂ Ω such that 𝑥𝑗 → 𝑧 as 𝑗 ↑ ∞, and𝐾 = supp(𝑓) ⋐ Ω. Then, up to constants,
for 𝑗 sufficiently large

𝔾(𝑥𝑗, 𝑦)

𝛿(𝑥𝑗)
𝛾 ⩽ dist(𝑥𝑗, 𝐾)2𝑠−𝑛−2𝛾𝛿(𝑦)𝛾 ⩽ dist(𝐾, 𝜕Ω)2𝑠−𝑛−2𝛾 𝑦 ∈ 𝐾.

Therefore, since convergence a.e. in 𝑦 is given by (K5), by dominated convergence

𝔾(𝑥𝑗, ⋅)

𝛿(𝑥𝑗)
𝛾
𝑓 → 𝐷𝛾𝔾(𝑧, ⋅)𝑓 in 𝐿1(Ω), as 𝑗 ↑ ∞.

Thus,

𝑢(𝑥𝑗)

𝛿(𝑥𝑗)
𝛾 = ∫Ω

𝔾(𝑥𝑗, 𝑦)

𝛿(𝑥𝑗)
𝛾 𝑓(𝑦) 𝑑𝑦 → ∫Ω 𝐷𝛾𝔾(𝑧, 𝑦)𝑓(𝑦) 𝑑𝑦 as 𝑗 ↑ ∞.

The limit is, by definition, 𝐷𝛾𝑢(𝑧). The pointwise estimate is a consequence of (3.8). □

Remark 3.16. One needs to be careful with pathological cases that do not satisfy (K5), including

𝔾(𝑥, 𝑦) =

(
2 + sin

1

𝛿(𝑥)

)(
2 + sin

1

𝛿(𝑦)

)
1|𝑥 − 𝑦|𝑛−2𝑠

(
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)𝛾

.

Remark 3.17. Due to the lower Hopf estimates in Theorem 2.6, if 𝑓 ⩾ 0 we have

𝐷𝛾𝑢(𝑧) ⩾ 𝑐 ∫Ω 𝑓(𝑦) 𝛿(𝑦)
𝛾 𝑑𝑦, 𝑧 ∈ 𝜕Ω.

Proposition 3.18. Assume (K0)–(K3) and (K5). Let 𝑗 ∈ ℕ, 𝐴𝑗 = {1∕𝑗 < 𝛿 < 2∕𝑗}, 𝑢 = (𝑓) for
some 𝑓 ∈ 𝐿∞𝑐 (Ω), and ℎ be continuous on a neighbourhood of 𝜕Ω. Then

1|𝐴𝑗| ∫𝐴𝑗 ℎ(𝑥) 𝑢(𝑥)𝛿(𝑥)𝛾
𝑑𝑥 ⟶

1|𝜕Ω| ∫𝜕Ω ℎ(𝑧)𝐷𝛾𝑢(𝑧) 𝑑𝑧, as 𝑗 ↑ ∞.
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 593

Proof. We write

1|𝐴𝑗| ∫𝐴𝑗 ℎ(𝑥) 𝑢(𝑥)𝛿(𝑥)𝛾
𝑑𝑥 =

𝑗|𝐴𝑗| ∫𝜕Ω 1

𝑗 ∫
2∕𝑗

1∕𝑗
ℎ(𝑧 + 𝜌𝐧(𝑧))

𝑢(𝑧 + 𝜌𝐧(𝑧))

𝜌𝛾
𝑑𝜌 𝑑𝑧.

Therefore, for every 𝑧 ∈ 𝜕Ω,

𝐼𝑗(𝑧) =
1

𝑗 ∫
2∕𝑗

1∕𝑗
ℎ(𝑧 + 𝜌𝐧(𝑧))

𝑢(𝑧 + 𝜌𝐧(𝑧))

𝜌𝛾
𝑑𝜌 ⟶ ℎ(𝑧)𝐷𝛾𝑢(𝑧), as 𝑗 ↑ ∞.

Since 𝐼𝑗 is a bounded function in 𝜕Ω and pointwise convergent, by the dominated convergence
theorem as 𝑗 ↑ ∞

𝑗|𝐴𝑗| ∫𝜕Ω 1

𝑗 ∫
2∕𝑗

1∕𝑗
ℎ(𝑧 + 𝜌𝐧(𝑧))

𝑢(𝑧 + 𝜌𝐧(𝑧))

𝜌𝛾
𝑑𝜌 𝑑𝑧 ⟶

1|𝜕Ω| ∫𝜕Ω ℎ(𝑧)𝐷𝛾𝑢(𝑧) 𝑑𝑧.

This completes the proof. □

4 LIMIT OF THE INTERIOR THEORY: THE L-HARMONIC
PROBLEM

4.1 Limit of the interior theory

A classical approach known for the usual Laplacian to recover the non-homogeneous Dirichlet
boundary problem is to concentrate all mass towards the boundary.
Let us recall a classical argument in the case of the usual Laplacian on the ball of radius 1. To

construct a harmonic function such that 𝑢 = 1 on the boundary of the ball we can proceed as
follows. Taking a well-chosen sequence 𝑓𝑗 of radial functions such that ‖𝑓𝑗𝛿‖𝐿1(Ω) → |𝜕Ω| but
such that support of 𝑓𝑗 is contained in the strip {1 −

1

𝑗
< 𝑟 < 1}, one can pass to the limit (𝑓𝑗)

by compactness. Looking at the very-weak formulation (or weak-dual one) we can check that the
limit is the desired function. We now extend this argument to our general setting, and generalΩ.

Theorem 4.1. Let  satisfy (K0)–(K3) and (K5). Let 𝐴𝑗 = {1∕𝑗 < 𝛿 < 2∕𝑗}, 𝑗 ∈ ℕ, and

𝑓𝑗 =
|𝜕Ω|𝜒𝐴𝑗|𝐴𝑗| 𝛿𝛾

such that ‖𝑓𝑗𝛿𝛾‖𝐿1 = |𝜕Ω|. Then, there exists a function in 𝑢⋆ ∈ 𝐿1loc(Ω) such that

(𝑓𝑗) ⇀ 𝑢⋆, in 𝐿1(𝐾) for every 𝐾 ⋐ Ω.

Furthermore, 𝑢⋆ is a solution of

∫Ω 𝑢
⋆𝜓 = ∫𝜕Ω 𝐷𝛾((𝜓)), for any 𝜓 ∈ 𝐿∞𝑐 (Ω)

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



594 ABATANGELO et al.

and is given by

𝑢⋆(𝑥) = ∫𝜕Ω 𝐷𝛾𝔾(𝑧, 𝑥) 𝑑𝑧, 𝑥 ∈ Ω. (4.1)

Proof. It is clear that supp(𝑓𝑗) = 𝐴𝑗 and ‖𝑓𝑗𝛿𝛾‖𝐿1(Ω) = |𝜕Ω|. Therefore, due to Lemma 2.9,
a subsequence of (𝑓𝑗), (𝑓(1)𝑗

), is weakly convergent in 𝐿1({𝛿 ⩾ 1}) to a function 𝑢1. A fur-

ther subsequence, (𝑓(2)
𝑗
), converges in 𝐿1({𝛿 ⩾

1

2
}) to a function 𝑢2. Iterating the process, we

construct sequences 𝑓(𝑚)
𝑗

and functions 𝑢𝑚 defined on {𝛿 > 1∕𝑚}, for every 𝑚 ∈ ℕ. Applying
Proposition 3.18 we have that

∫Ω (𝑓𝑗)𝜓 = ∫Ω (𝜓) |𝜕Ω|𝜒𝐴𝑗|𝐴𝑗| 𝛿𝛾 =
|𝜕Ω||𝐴𝑗| ∫𝐴𝑗 (𝜓)𝛿𝛾

→ ∫𝜕Ω 𝐷𝛾[(𝜓)]

for any 𝜓 ∈ 𝐿∞𝑐 (Ω). Therefore,

∫Ω 𝑢𝑚𝜓 = ∫𝜕Ω 𝐷𝛾[(𝜓)], for any 𝜓 ∈ 𝐿∞𝑐 (Ω) such that supp𝜓 ⊆ {𝛿 ⩾ 1∕𝑚}.

For 𝑚 > 𝑘, using 𝜓 = sign(𝑢𝑚 − 𝑢𝑘)𝜒{𝛿⩾1∕𝑘} as a test function, we check that 𝑢𝑚|𝛿⩾1∕𝑘 = 𝑢𝑘.
We define 𝑢⋆(𝑥) = 𝑢𝑚(𝑥) for any 𝑚 > 1∕𝛿(𝑥). Given 𝜓 ∈ 𝐿∞𝑐 (Ω), we 𝑢

⋆𝜓 = 𝑢𝑚𝜓 for any 𝑚 >

1∕dist(supp𝜓, 𝜕Ω). Therefore,

∫Ω 𝑢
⋆𝜓 = ∫𝜕Ω 𝐷𝛾[(𝜓)] for any 𝜓 ∈ 𝐿∞𝑐 (Ω).

If we now consider the Green representation, we get

∫𝜕Ω 𝐷𝛾[(𝜓)] 𝑑𝑧 = ∫𝜕Ω
(
∫Ω 𝐷𝛾𝔾(𝑧, 𝑥) 𝜓(𝑥) 𝑑𝑥

)
𝑑𝑧 = ∫Ω 𝜓(𝑥)

(
∫𝜕Ω 𝐷𝛾𝔾(𝑧, 𝑥) 𝑑𝑧

)
𝑑𝑥.

With this representation formula, we show that all convergent subsequences share a limit, and
therefore the whole sequence converges. □

Remark 4.2. In Figure 4, we show a numerical simulation of the behaviour of the approximating
sequence for the case of the SFL, under different values of 𝑠.

Corollary 4.3. Under the assumptions and notations of Theorem 4.1, it holds

𝑢⋆ ≍

⎧⎪⎨⎪⎩
𝛿2𝑠−𝛾−1 𝛾 > 𝑠 − 1

2

𝛿𝛾 (1 + |ln 𝛿|) 𝛾 = 𝑠 − 1

2

𝛿𝛾 𝛾 < 𝑠 − 1

2

inΩ. (4.2)

Proof. This follows by plugging (3.8) into (4.1). Indeed,

𝑢⋆(𝑥) ≍ 𝛿(𝑥)𝛾 ∫𝜕Ω
𝑑𝑧|𝑧 − 𝑥|𝑛−2𝑠+2𝛾 , 𝑥 ∈ Ω,
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 595

F IGURE 4 Numerical solutions of L𝑢 = (
𝑗

2
)1+𝛾𝜒 1

𝑗
<𝛿< 2

𝑗

in dimension 𝑛 = 1. In the limit as 𝑗 ↑ +∞, we
recover the profile of solutions to the L-harmonic problem. We implement the schemes introduced in Figure 3.

where

∫𝜕Ω
𝑑𝑧|𝑧 − 𝑥|𝑛−2𝑠+2𝛾 ≍

⎧⎪⎨⎪⎩
𝛿(𝑥)2𝑠−2𝛾−1 2𝑠 − 2𝛾 − 1 < 0

1 + |ln 𝛿(𝑥)| 2𝑠 − 2𝛾 − 1 = 0

1 2𝑠 − 2𝛾 − 1 > 0

𝑥 ∈ Ω,

which completes the proof. □

Remark 4.4. Note that, for 𝛾 > 𝑠 − 1

2
, 𝑢⋆ has the limit rate 𝛿2𝑠−𝛾−1 which is not accessible to

solutions of the interior problem.
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596 ABATANGELO et al.

Remark 4.5. The function 𝑢⋆ is a large solution (that is, 𝑢⋆(𝑥) ↑ +∞ as 𝛿(𝑥) ↓ 0) if and only
if 2𝑠 − 𝛾 − 1 < 0. We have:

(1) in the RFL case 𝛾 = 𝑠, so 2𝑠 − 𝛾 − 1 = 𝑠 − 1 < 0;
(2) in the SFL case 𝛾 = 1, so 2𝑠 − 𝛾 − 1 = 2(𝑠 − 1) < 0;
(3) in the CFL case 𝛾 = 𝑠 − 1

2
, so 2𝑠 − 𝛾 − 1 = 0 for 1

2
< 𝑠 < 1; in this case 𝑢⋆ is not singular.

4.2 The L-harmonic problem

For a self-adjoint operator in our class of study it makes sense to consider the following boundary
problem

∫Ω 𝑢 L𝜑 = ∫𝜕Ω ℎ 𝐷𝛾𝜑 (4.3)

for some suitable test functions 𝜑. In the case of the usual Laplacian, this is the non-homogeneous
Dirichlet problem with data ℎ. This very weak formulation was first studied in [12].
Passing to our weak-dual formulation, (4.3) is written

∫Ω 𝑢𝜓 = ∫𝜕Ω ℎ 𝐷𝛾[(𝜓)] for any 𝜓 ∈ 𝐿∞𝑐 (Ω). (4.4)

Heuristically, (4.4) can be read as the L-harmonicity of 𝑢 in Ω, that is, L𝑢 = 0 in Ω.
To understand this weak-dual problem, we proceed informally. If one takes 𝜓 = 𝜇𝑥, the Dirac

delta, we obtain

𝑢(𝑥) = ∫𝜕Ω ℎ(𝑧)𝐷𝛾𝔾(𝑧, 𝑥) 𝑑𝑧.

We will see in Theorem 4.13 that

𝑢(𝑥)

𝑢⋆(𝑥)
= ∫𝜕Ω ℎ(𝑧)

𝐷𝛾𝔾(𝑧, 𝑥)

𝑢⋆(𝑥)
𝑑𝑧 ⟶ ℎ(𝜃).

Hence, in some sense (4.4) is a formulation of problem (1.8). We will devote the next paragraphs
of this section to rigorously proving these intuitions.

4.3 Existence, uniqueness, and kernel representation

We have the following theorem of well-posedness.

Theorem4.6. LetΩ be a smooth domain, assume (K0)–(K3) and (K5) and ℎ ∈ 𝐿1(𝜕Ω). Then, there
exists a unique 𝑢 ∈ 𝐿1loc(Ω) satisfying (4.4). Furthermore,

(1) this unique solution can be represented by

𝑢(𝑥) = ∫𝜕Ω 𝐷𝛾𝔾(𝑧, 𝑥) ℎ(𝑧) 𝑑𝑧, for 𝑥 ∈ Ω; (4.5)
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 597

(2) we have the estimate

‖𝑢‖𝐿∞(𝐾) ⩽ 𝐶 dist(𝐾, 𝜕Ω)2𝑠−𝑛−𝛾‖ℎ‖𝐿1(𝜕Ω); (4.6)

(3) if ℎ ∈ 𝐶(𝜕Ω), then there exists a sequence (𝑓𝑗)𝑗∈ℕ ⊂ 𝐿1(Ω, 𝛿𝛾) such that

(𝑓𝑗) ⇀ 𝑢 in 𝐿1loc(Ω), as 𝑗 ↑ ∞. (4.7)

Proof. The uniqueness is immediate to prove. Let 𝑢1, 𝑢2 be two solutions, then 𝑢 = 𝑢1 − 𝑢2
satisfies

∫Ω 𝑢𝜓 = 0 for any 𝜓 ∈ 𝐿∞𝑐 (Ω).

In particular, let 𝐾 ⋐ Ω and take 𝜓 = sign(𝑢)𝜒𝐾 . Then

∫𝐾 |𝑢| = 0.

Since this is true for all 𝐾, we have that 𝑢 = 0 a.e. in Ω. Hence 𝑢1 = 𝑢2.
The kernel representation (4.5) follows as in the proof of Theorem 4.1, by exchanging the order

of integration in (4.4). Note that this kernel representation can be rigorously justified on its own
and therefore grant uniqueness. Nevertheless, since we will construct it as a limit of the interior
theory, this is not needed.
We prove existence, (4.6), and (4.7) simultaneously. We split the proof into different steps.
Let us first assume that 0 ⩽ ℎ ∈ 𝐶(𝜕Ω). Using the notations defined in Remark 3.1, we extend

the definition of ℎ to the interior by setting

𝐻(𝑥) = ℎ(𝑧(𝑥)).

Recall that 𝛿(𝑥) = |𝑥 − 𝑧(𝑥)|, 𝑧(𝑥) ∈ 𝜕Ω, and note that𝐻 ∈ 𝐶({𝛿 < 𝜀}).
Let us define, for 𝑗 > 1

𝜀
, the sequence

𝑓𝑗 = 𝐻
|𝜕Ω|𝜒𝐴𝑗|𝐴𝑗|𝛿𝛾 ∈ 𝐿1(Ω).

We check that this sequence is bounded in 𝐿1(Ω, 𝛿𝛾) by estimating

∫Ω 𝑓𝑗𝛿
𝛾 = ∫𝐴𝑗

|𝜕Ω||𝐴𝑗|𝐻 =
|𝜕Ω||𝐴𝑗| ∫𝐴𝑗 𝐻 ⩽ |𝜕Ω|‖𝐻‖𝐿∞(Ω).

We define 𝑢𝑗 = (𝑓𝑗).
We now show local 𝐿1-weak convergence. Let 𝐾 ⋐ Ω. For any 𝐴 ⊂ 𝐾 we have that

∫𝐴 𝑢𝑗 ⩽ 𝐶𝐾,𝛽|𝐴|𝛽‖𝑓𝑗𝛿𝛾‖𝐿1(Ω) ⩽ 𝐶𝐾,𝛽‖𝐻‖𝐿∞(Ω)|𝐴|𝛽,
for some 𝛽 > 0, by Lemma 2.9. Therefore, the sequence 𝑢𝑗 is equi-integrable in 𝐾 and it admits
a subsequence 𝑢𝑗𝑘 weakly convergent to some 𝑢𝐾 ∈ 𝐿1(𝐾). That is, if we consider 𝜓 ∈ 𝐿∞(Ω),
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598 ABATANGELO et al.

with supp𝜓 ⊆ 𝐾, we have that

∫Ω 𝑢𝑗𝑘𝜓 → ∫Ω 𝑢𝐾𝜓, as 𝑘 ↑ ∞.

On the other hand, by Proposition 3.18, we have that

∫Ω (𝜓)𝑓𝑗 = |𝜕Ω||𝐴𝑗| ∫𝐴𝑗 (𝜓)𝛿𝛾
𝐻 ⟶ ∫𝜕Ω 𝐷𝛾[(𝜓)] ℎ.

Therefore,

∫Ω 𝑢𝐾𝜓 = ∫𝜕Ω 𝐷𝛾[(𝜓)]ℎ, for any 𝜓 ∈ 𝐿∞, with supp𝜓 ⊆ 𝐾.

For two compacts 𝐾,𝐾′ ⋐ Ω and the corresponding 𝑢𝐾, 𝑢𝐾′ built as above, we actually have
𝑢𝐾 = 𝑢𝐾′ in 𝐾 ∩ 𝐾′. Indeed, let us consider the test function

𝜓 =

{
sign(𝑢𝐾 − 𝑢𝐾′) in 𝐾 ∩ 𝐾′,

0 in Ω ⧵ (𝐾 ∩ 𝐾′).

It is an admissible test function for both 𝑢𝐾 and 𝑢𝐾′ . Therefore,

∫𝐾∩𝐾′
|𝑢𝐾 − 𝑢𝐾′ | = 0.

We define now

𝑢(𝑥) = 𝑢𝐾(𝑥)(𝑥) 𝑥 ∈ Ω, where 𝐾(𝑥) = {𝑦 ∈ Ω ∶ 𝛿(𝑦) ⩾ 𝛿(𝑥)∕2}.

We have shown above that any converging subsequence of 𝑢𝑗 converges weakly to 𝑢 over
compacts. In particular, 𝑢𝑗 ⇀ 𝑢 in 𝐿1loc. By construction 𝑢 solves (4.4).
Passing to the limit the estimate in Theorem 2.5

∫𝐾 𝑢𝑗 ⩽ 𝐶𝐾‖𝑓𝑗𝛿𝛾‖𝐿1(Ω),
we deduce that, as 𝑗 ↑ ∞,

∫𝐾 𝑢 ⩽ 𝐶𝐾‖ℎ‖𝐿1(𝜕Ω).
Moreover, in view of (2.5) we have that

‖𝑢𝑗‖𝐿∞(𝐾) ⩽ 𝐶dist(𝐾,𝐴𝑗)
2𝑠−𝑛−𝛾‖𝑓𝑗𝛿𝛾‖𝐿1(Ω).

We deduce that the sequence 𝑢𝑗 converges weak-⋆ in 𝐿∞(𝐾) to 𝑢, and that

‖𝑢‖𝐿∞(𝐾) ⩽ 𝐶dist(𝐾, 𝜕Ω)2𝑠−𝑛−𝛾‖ℎ‖𝐿1(𝜕Ω).
We now consider 0 ⩽ ℎ ∈ 𝐿1(𝜕Ω). We take an approximation sequence 0 ⩽ ℎ𝑘 ∈ 𝐶(𝜕Ω) con-

verging to ℎ in 𝐿1(𝜕Ω). The sequence 𝑢𝑘 of solutions corresponding to ℎ𝑘 can be constructed
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 599

through the previous step. Due to the estimates, we can pass to the limit over compacts and apply
the uniqueness reasoning above to recover a function 𝑢 ∈ 𝐿∞loc solution of (4.4) with data ℎ.
For ℎ ∈ 𝐿1(𝜕Ω), we can decompose it as ℎ = ℎ+ − ℎ−, construct solutions 𝑢1 and 𝑢2

corresponding to ℎ+ and ℎ− and recover 𝑢 = 𝑢1 − 𝑢2 satisfying all properties.
This completes the proof. □

Corollary 4.7. In the assumptions of Theorem 4.6 and for 𝑢 defined as in (4.5), we have that‖‖‖‖ 𝑢

𝑢⋆

‖‖‖‖𝐿1(Ω) ⩽ 𝐶‖ℎ‖𝐿1(𝜕Ω).
Proof. It holds

∫Ω
|𝑢(𝑥)|
𝑢⋆(𝑥)

𝑑𝑥 ⩽ ∫𝜕Ω |ℎ(𝑧)|∫Ω 𝐷𝛾𝔾(𝑧, 𝑥)

𝑢⋆(𝑥)
𝑑𝑥 𝑑𝑧.

In view of (3.8) and (4.2), for 𝑧 ∈ 𝜕Ω,

∫Ω
𝐷𝛾𝔾(𝑧, 𝑥)

𝑢⋆(𝑥)
𝑑𝑥 ≍

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫Ω
𝛿(𝑥)2𝛾−2𝑠+1|𝑥 − 𝑧|𝑛−2𝑠+2𝛾 𝑑𝑥 if 𝛾 > 𝑠 −

1

2
,

∫Ω
𝑑𝑥|𝑥 − 𝑧|𝑛−1 (1 + |ln 𝛿(𝑥)|) if 𝛾 = 𝑠 −

1

2
,

∫Ω
𝑑𝑥|𝑥 − 𝑧|𝑛−2𝑠+2𝛾 if 𝛾 < 𝑠 −

1

2
.

When 𝛾 < 𝑠 − 1∕2, then 2𝛾 − 2𝑠 < −1, which implies

∫Ω
𝑑𝑥|𝑥 − 𝑧|𝑛−2𝑠+2𝛾 ≍ 1, on 𝜕Ω.

When 𝛾 ⩾ 𝑠 − 1∕2, it suffices to use relation 𝛿(𝑥) ⩽ |𝑥 − 𝑧| for any 𝑥 ∈ Ω, 𝑧 ∈ 𝜕Ω in order to
deduce

∫Ω
𝛿(𝑥)2𝛾−2𝑠+1|𝑥 − 𝑧|𝑛−2𝑠+2𝛾 𝑑𝑥 ⩽ ∫Ω

𝑑𝑥|𝑥 − 𝑧|𝑛−1 ≍ 1, on 𝜕Ω,

and

∫Ω
𝑑𝑥|𝑥 − 𝑧|𝑛−1 (1 + |ln 𝛿(𝑥)|) ⩽ ∫Ω

𝑑𝑥|𝑥 − 𝑧|𝑛−1 (1 + ||ln |𝑥 − 𝑧|||) ≍ 1, on 𝜕Ω.
□

Corollary 4.8. Under the assumptions of Theorem 4.6, the solution operator to problem (4.4)

 ∶ 𝐿1(𝜕Ω) → 𝐿∞loc(Ω) (4.8)

is linear, continuous, and it admits the kernel representation

(ℎ)(𝑥) = ∫𝜕Ω 𝕄(𝑥, 𝑧) ℎ(𝑧) 𝑑𝑧, 𝑥 ∈ Ω, (4.9)

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



600 ABATANGELO et al.

where𝕄 is given by

𝕄(𝑥, 𝑧) = 𝐷𝛾𝔾(𝑧, 𝑥). (4.10)

Furthermore, for any 𝛼 > (𝛾 − 2𝑠) ∨ (−𝛾 − 1)

 ∶ 𝐿1(𝜕Ω) → 𝐿1(Ω, 𝛿𝛼) is continuous (4.11)

with operator norm

‖‖𝐿1(𝜕Ω);𝐿1(Ω,𝛿𝛼) ⩽ ‖‖𝐿1(Ω,𝛿𝛾);𝐿1(Ω,𝛿𝛼).
Proof. The results (4.8), (4.9), and (4.10) follow immediately from Theorem 4.6.
Now, let us prove (4.11). First, let 0 ⩽ ℎ ∈ 𝐶(𝜕Ω). By recalling the construction in Theorem 4.6,

there is a sequence 𝑓𝑗 ⩾ 0 such that 0 ⩽ 𝑢𝑗 = (𝑓𝑗)with ‖𝑓𝑗𝛿𝛾‖𝐿1(Ω) = ‖ℎ‖𝐿1(𝜕Ω) such that 𝑢𝑗 ⇀
𝑢 in 𝐿1loc(Ω). Going back to the proof of Theorem 3.9 we observe that

∫Ω 𝑢𝑗𝛿
𝛼 ⩽ 𝐶 ∫Ω 𝑓𝑗 𝛿

𝛾 = 𝐶 ∫𝜕Ω ℎ,
where 𝐶 ∶= ‖‖𝐿1(Ω,𝛿𝛾);𝐿1(Ω,𝛿𝛼). Since we only have convergence over compact sets, we assure
that, for any 𝐾 ⋐ Ω,

∫𝐾 𝑢𝑗𝛿
𝛼 ⩽ 𝐶 ∫𝜕Ω ℎ.

Since 𝜒𝐾𝛿𝛼 ∈ 𝐿∞𝑐 (Ω) and 𝑢𝑗 converges weakly in 𝐿
1
loc(Ω)

∫𝐾 𝑢𝛿
𝛼 = lim

𝑗↑+∞∫𝐾 𝑢𝑗𝛿
𝛼 ⩽ 𝐶 ∫𝜕Ω ℎ.

Since this holds for any 𝐾 ⋐ Ω and 𝐶 does not depend on 𝐾, then 𝑢𝛿𝛼 ∈ 𝐿1(Ω) and

∫Ω 𝑢𝛿
𝛼 ⩽ 𝐶 ∫𝜕Ω ℎ. (4.12)

If 0 ⩽ ℎ ∈ 𝐿1(𝜕Ω), we can construct an approximating sequence 0 ⩽ ℎ𝑗 ∈ 𝐶(𝜕Ω) and we
recover (4.12) by passing to the limit.
If ℎ ∈ 𝐿1(𝜕Ω) is sign-changing, we repeat the argument for ℎ+ and ℎ− and apply (4.12) to

deduce

∫Ω |𝑢|𝛿𝛼 ⩽ 𝐶 ∫𝜕Ω |ℎ|.
This completes the proof. □

Remark 4.9. Let 𝑢 = (ℎ). Note that, since 2𝑠 − 𝛾 − 1 < 0, (4.11) shows that 𝑢𝛿𝜀+𝛾−2𝑠 ∈ 𝐿1(Ω)

for any 𝜀 > 0. This is sharper than Corollary 4.7, which only guarantees that 𝑢𝛿1+𝛾−2𝑠 ≍ 𝑢∕𝑢∗ ∈

𝐿1(Ω).
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 601

Remark 4.10. Due to the estimates for 𝐷𝛾𝔾, we know that

𝕄(𝑥, 𝑧) ≍
𝛿(𝑥)𝛾|𝑥 − 𝑧|𝑛+𝛾−(2𝑠−𝛾) 𝑥 ∈ Ω, 𝑧 ∈ 𝜕Ω.

Remark 4.11. In the classical case, this corresponds to the usual Poisson kernel. For L = (−Δ)𝑠
RFL

,
this somehow corresponds to the existing notion of Martin kernel (see [1, 6]).

Remark 4.12. Note that

||||| 𝕄(𝑥, 𝑧)

∫𝜕Ω 𝕄(𝑥, 𝑧′)𝑑𝑧′

||||| ⩽ 𝐶
𝛿(𝑥)2𝛾+1−2𝑠|𝑥 − 𝑧|𝑛−2𝑠+2𝛾 𝑥 ∈ Ω, 𝑧 ∈ 𝜕Ω.

4.4 Boundary behaviour of solutions of the L-harmonic problem

4.4.1 Bounded data

Theorem 4.13. Let us assume (K0)–(K3) and (K5). Let ℎ ∈ 𝐶(𝜕Ω) and 𝛾 > 𝑠 − 1

2
. Then, the unique

solution 𝑢 ∈ 𝐿1loc(Ω) of (4.4) satisfies

lim
𝑥→𝜃
𝑥∈Ω

𝑢(𝑥)

𝑢⋆(𝑥)
= ℎ(𝜃)

uniformly in 𝜃 ∈ 𝜕Ω.

Proof. We estimate, for 𝑥 ∈ Ω and up to multiplicative constants,

|||| 𝑢(𝑥)𝑢⋆(𝑥)
− ℎ(𝜃)

|||| = |||||∫𝜕Ω 𝕄(𝑥, 𝑧)ℎ(𝑧) 𝑑𝑧

∫𝜕Ω 𝕄(𝑥, 𝑧′) 𝑑𝑧′
−

∫𝜕Ω 𝕄(𝑥, 𝑧)ℎ(𝜃) 𝑑𝑧

∫𝜕Ω 𝕄(𝑥, 𝑧′) 𝑑𝑧′

|||||
=

|||||∫𝜕Ω 𝕄(𝑥, 𝑧)

∫𝜕Ω 𝕄(𝑥, 𝑧′)𝑑𝑧′
(ℎ(𝑧) − ℎ(𝜃)) 𝑑𝑧

||||| ⩽ 𝛿(𝑥)−2𝑠+2𝛾+1 ∫𝜕Ω
|ℎ(𝑧) − ℎ(𝜃)||𝑥 − 𝑧|𝑛+2𝛾−2𝑠 𝑑𝑧,

where we have used Lemma 4.10. Fix now 𝜀 > 0 arbitrarily small and let 𝜂 > 0 small enough in
order to have |ℎ(𝑧) − ℎ(𝜃)| < 𝜀 for any 𝑧 ∈ 𝜕Ω ∩ 𝐵(𝜃, 𝜂). Note that, since 𝜕Ω is compact and ℎ is
continuous, then 𝜂 is independent of 𝜃 by uniform continuity. Then we have

𝛿(𝑥)−2𝑠+2𝛾+1 ∫𝜕Ω∩𝐵(𝜃,𝜂)
|ℎ(𝑧) − ℎ(𝜃)||𝑥 − 𝑧|𝑛+2𝛾−2𝑠 𝑑𝑧 ⩽ 𝛿(𝑥)−2𝑠+2𝛾+1 ∫𝜕Ω

𝜀|𝑥 − 𝑧|𝑛+2𝛾−2𝑠 𝑑𝑧 ⩽ 𝜀

and

𝛿(𝑥)−2𝑠+2𝛾+1 ∫𝜕Ω⧵𝐵(𝜃,𝜂)
|ℎ(𝑧) − ℎ(𝜃)||𝑥 − 𝑧|𝑛+2𝛾−2𝑠 𝑑𝑧 ⩽ 𝜀−𝑛−2𝛾+2𝑠‖ℎ‖𝐿∞(𝜕Ω)𝛿(𝑥)−2𝑠+2𝛾+1 ⟶ 0
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602 ABATANGELO et al.

as 𝑥 → 𝜃. The above yields that

lim sup
𝑥→𝜃

|||| 𝑢(𝑥)𝑢⋆(𝑥)
− ℎ(𝜃)

|||| ⩽ 𝜀,

but, since 𝜀 is arbitrary, our claim is proved. □

Remark 4.14. The reasoning above also holds for 𝛾 = 𝑠 − 1

2
under suitable modifications. For 𝛾 <

𝑠 − 1

2
the integration

∫𝜕Ω |𝜃 − 𝑧|−𝑛−2𝛾+2𝑠 ℎ(𝑧) 𝑑𝑧
makes perfect sense for 𝜃 ∈ 𝜕Ω, so no normalisation will ever be able to improve

lim
𝑥→𝜃

𝛿(𝑥)−𝛾𝑢(𝑥) ≍ ∫𝜕Ω |𝜃 − 𝑧|−𝑛−2𝛾+2𝑠 ℎ(𝑧) 𝑑𝑧.
Heuristically, it seems like that the Martin kernel is not singular enough to select only the values
of ℎ around 𝜃 when passing to the limit. The kernel seems to be too ‘spread around’.

4.4.2 Integrable data

Theorem 4.15. Let ℎ ∈ 𝐿1(𝜕Ω) and 𝛾 ⩾ 𝑠 − 1

2
. Then, for any 𝜙 ∈ 𝐶(Ω), it holds

1

𝜂 ∫{𝛿<𝜂}
(ℎ)

𝑢⋆
𝜙 ⟶ ∫𝜕Ω ℎ 𝜙 as 𝜂 ↓ 0.

Proof. Note that the claim holds for ℎ ∈ 𝐶(𝜕Ω) by Theorem 4.13. For a general ℎ ∈ 𝐿1(𝜕Ω), let us
consider a sequence (ℎ𝑘)𝑘∈ℕ ⊂ 𝐶(𝜕Ω) such that ‖ℎ𝑘 − ℎ‖𝐿1(𝜕Ω) ↓ 0 as 𝑘 ↑ ∞. Then split

|||||𝜂−1 ∫{𝛿<𝜂} (ℎ)

𝑢⋆
𝜙 − ∫𝜕Ω ℎ 𝜙

||||| ⩽
|||||𝜂−1 ∫{𝛿<𝜂} (ℎ) −(ℎ𝑘)

𝑢⋆
𝜙
|||||

+
|||||𝜂−1 ∫{𝛿<𝜂} (ℎ𝑘)

𝑢⋆
𝜙 − ∫𝜕Ω ℎ𝑘 𝜙

||||| + ||||∫𝜕Ω(ℎ𝑘 − ℎ) 𝜙
||||.

Fix 𝜀 > 0 arbitrarily small and let 𝑘 ∈ ℕ large enough to have ‖ℎ𝑘 − ℎ‖𝐿1(𝜕Ω) < 𝜀. The above
inequality and Theorem 4.13 entail

lim sup
𝜂↓0

|||||𝜂−1 ∫{𝛿<𝜂} (ℎ)

𝑢⋆
𝜙 − ∫𝜕Ω ℎ 𝜙

||||| ⩽ lim sup
𝜂↓0

|||||𝜂−1 ∫{𝛿<𝜂} (ℎ) −(ℎ𝑘)

𝑢⋆
𝜙
||||| + 𝜀,

for any 𝑘 ∈ ℕ large enough. Write

𝜂−1 ∫{𝛿<𝜂}
(ℎ) −(ℎ𝑘)

𝑢⋆
𝜙

= 𝜂−1 ∫{𝛿<𝜂}
𝜙(𝑥)

𝑢⋆(𝑥) ∫𝜕Ω 𝕄(𝑥, 𝑧) (ℎ𝑘(𝑧) − ℎ(𝑧)) 𝑑𝑧 𝑑𝑥
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 603

= ∫𝜕Ω (ℎ𝑘(𝑧) − ℎ(𝑧))𝜂−1 ∫{𝛿<𝜂} 𝕄(𝑥, 𝑧)
𝜙(𝑥)

𝑢⋆(𝑥)
𝑑𝑥 𝑑𝑧,

in order to deduce that, up to constants, it holds

|||||𝜂−1 ∫{𝛿<𝜂} (ℎ) −(ℎ𝑘)

𝑢⋆
𝜙
|||||

⩽ ‖𝜙‖𝐿∞(Ω)‖ℎ𝑘 − ℎ‖𝐿1(𝜕Ω) sup
𝑧∈𝜕Ω

𝜂−1 ∫{𝛿<𝜂}
𝕄(𝑥, 𝑧)

𝑢⋆(𝑥)
𝑑𝑥

⩽ ‖𝜙‖𝐿∞(Ω)‖ℎ𝑘 − ℎ‖𝐿1(𝜕Ω) sup
𝑧∈𝜕Ω

𝜂−1 ∫{𝛿<𝜂}
𝛿(𝑥)−2𝑠+2𝛾+1|𝑥 − 𝑧|𝑛+2𝛾−2𝑠 𝑑𝑥.

By the co-area formula, it holds

∫{𝛿<𝜂}
𝛿(𝑥)−2𝑠+2𝛾+1|𝑥 − 𝑧|𝑛+2𝛾−2𝑠 𝑑𝑥 = ∫

𝜂

0
𝑡−2𝑠+2𝛾+1 ∫{𝑥∶𝛿(𝑥)=𝑡} |𝑥 − 𝑧|−𝑛−2𝛾+2𝑠 𝑑𝑥

= ∫
𝜂

0
𝑡−2𝑠+2𝛾+1 𝑡−1−2𝛾+2𝑠 𝑑𝑡 = 𝜂

and therefore |||||𝜂−1 ∫{𝛿<𝜂} (ℎ) −(ℎ𝑘)

𝑢⋆
𝜙
||||| ⩽ 𝜀‖𝜙‖𝐿∞(Ω).

The case 𝛾 = 𝑠 − 1

2
follows by a similar argument. □

5 COMMENTS AND OPEN PROBLEMS

(1) Let 𝑢 = 0 in Ω𝑐 and let L𝑢 = 𝑓 and ℎ = lim𝑥→𝜕Ω 𝑢(𝑥)∕𝑢
⋆(𝑥). For 𝜓 ∈ 𝐿∞𝑐 (Ω), we have

∫Ω 𝑢𝜓 = ∫Ω 𝑓 (𝜓) + ∫𝜕Ω ℎ 𝐷𝛾[(𝜓)].

Let 𝜑 = [𝜓]. The above formally gives the integration by parts formula

∫Ω 𝑢 L𝜑 = ∫Ω 𝜑 L𝑢 + ∫𝜕Ω
(
lim
𝑥→𝜕Ω

𝑢(𝑥)

𝑢⋆(𝑥)

𝜑(𝑥)

𝛿(𝑥)𝛾

)
.

Note that 𝑢⋆(𝑥)𝛿(𝑥)𝛾 ≍ 𝛿(𝑥)2𝑠−1.
(2) An interesting question is what general classes of operators L lead to Green functions with

estimates of type (K2). The examples presented in Subsection 1.2 come from Markov pro-
cesses, in particular Lévy-flight processes with different conditions outside Ω. However, as
we presented above, their pointwise formulae are significantly different.More general exam-
ples may exist. It would be interesting to see if strange examples could be constructed, for
example, an operator L such that 𝔾 is given by the example in Remark 3.16.

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



604 ABATANGELO et al.

(3) The case 2𝑠 − 𝛾 − 1 > 𝛾 (that is, 𝛾 < 𝑠 − 1

2
) seems to pose problems to uniqueness. Indeed in

this case

𝑀(1) ≍ 𝛿(2𝑠−𝛾−1)∧𝛾 ⟶ 0 as 𝑥 → 𝜕Ω.

It seems that problem {
L𝑢 = 𝑓 in Ω
𝑢 = 0 on 𝜕Ω

does not have a unique solution, as (𝑓) +(ℎ) is also a solution for any ℎ ∈ 𝐶(𝜕Ω).
Therefore, the construction of the Green operator assumed at the beginning (which chooses
a single solution), seems to be made by applying some additional selection criteria. This
phenomenon should be studied.

(4) In trying to construct an example satisfying 𝛾 < 𝑠 − 1

2
relation, we have considered the

following example: let 𝑓 ∈ 𝐿∞𝑐 (Ω) and consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−Δ)
𝑠
𝑘

RFL
𝑣1 = 𝑓 in Ω

(−Δ)
𝑠
𝑘

RFL
𝑣1 = 𝑣2 in Ω

⋮

(−Δ)
𝑠
𝑘

RFL
𝑣𝑘−1 = 𝑣𝑘−2 in Ω

(−Δ)
𝑠
𝑘

RFL
𝑢 = 𝑣𝑘−1 in Ω

𝑣1 = ⋯ = 𝑣𝑘−1 = 𝑢 = 0 in ℝ𝑛 ⧵ Ω.

Then

𝑢 = (𝑓) =  𝑠
𝑘
◦… ◦ 𝑠

𝑘
(𝑓),

where 𝑠
𝑘
is theGreen operator of (−Δ)

𝑠
𝑘

RFL
. It seems that is self-adjoint and, for 1∕2 < 𝑠 < 1,

we expect its kernel to be of the form

𝔾(𝑥, 𝑦) ≍ |𝑥 − 𝑦|2𝑠−𝑛(𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

) 𝑠
𝑘

, 𝑥, 𝑦 ∈ Ω.

(5) The operators that admit exterior data 𝑢 = g in ℝ𝑛 ⧵ Ω (for example, the RFL) have an exte-
rior kernel, that is sometimes denoted by ℙ(𝑥, 𝑦), 𝑥 ∈ Ω, 𝑦 ∈ ℝ𝑛 ⧵ Ω (in the case of the RFL
it holds that ℙ(𝑥, 𝑦) = −(−Δ)𝑠𝑦𝔾(𝑥, 𝑦)). It seems reasonable that the singular solutions of
type 𝑢⋆ can also be detected from the outside, as it has been done, for instance, in [6, Lemma
7] and [1, Lemma 3.6].
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 605

(6) Note that, so far, we have given all our estimates in terms of 𝑢∕𝑢⋆. However, it would be nice
to give an operator ̂ such that

lim
𝑥→𝑧

̂(ℎ)(𝑥)

𝛿(𝑥)2𝑠−𝛾−1
= ℎ(𝑧), 𝑧 ∈ 𝜕Ω.

Nevertheless, the boundary behaviour of 𝑢⋆ is only known in terms of rate. An interesting
question is if the following limit is defined

𝐾(𝑧) = lim
𝑥→𝑧

𝑢⋆(𝑥)

𝛿(𝑥)2𝑠−𝛾−1
, 𝑧 ∈ 𝜕Ω. (5.1)

This seems to be a further assumption on the kernel. If it is, then 𝐾 ≍ 1, we can set

̂(ℎ) = 
(
ℎ

𝐾

)
,

so that

lim
𝑥→𝑧

̂(ℎ)(𝑥)

𝛿(𝑥)2𝑠−𝛾−1
= lim

𝑥→𝑧

(ℎ∕𝐾)(𝑥)

𝑢⋆(𝑥)

𝑢⋆(𝑥)

𝛿(𝑥)2𝑠−𝛾−1
=

ℎ(𝑧)

𝐾(𝑧)
𝐾(𝑧) = ℎ(𝑧).

As it was pointed to us by Grubb, such operator ̂ for the RFL has been provided in [30,
Corollary 6.2 and Theorem 7.1]. Also, as a matter of fact, always in the RFL case, the func-
tion 𝐾 defined in (5.1) is constant: this is a consequence of the equivalence between the
integration by parts formula in [32, Corollary 4.5] and the one in [1, Proposition 2].

(7) In the case of the RFL, the existence of solutions which are singular at boundary can be
obtained by taking the derivative of regular solutions. In Appendix A, we include an account
of how positive singular solutions can be obtained, which was explained to us by Ros-Oton.
It is based on a very interesting formula of chain-rule type, see (A.1).
However, this argument does not seem to apply in general. In particular, it could fail in

those examples where the commutation with the derivative does not hold, so that the sin-
gular rates cannot be predicted by such means. For the SFL it is easy to see that we cannot
repeat the reasoning: in one dimension (say Ω = (−1, 1)), we take the first eigenfunction
for the SFL 𝑢(𝑥) = cos 𝜋𝑥

2
. Then, all derivatives are bounded functions and no singularity

appears. However, we have shown that the blow-up rate of the critical solution is 𝛿2(𝑠−1).
(8) It is interesting to point out that, when 𝑓 ≍ 𝛿−2𝑠 (and it is admissible in the sense of (1.4),

that is, 2𝑠 < 𝛾 + 1), then our main result Theorem 3.4 says that (𝑓) ≍ 1.
Given g ∈ 𝐿∞(𝜕Ω) it is therefore natural to ask whether there exists a function 𝑓 such

that (𝑓)(𝑥) → g(𝑧) as 𝑥 → 𝑧 ∈ 𝜕Ω.
This would amount to studying whether the non-homogeneous Dirichlet problem

⎧⎪⎪⎨⎪⎪⎩
L𝑢 = 𝑓 in Ω

𝑢 = g on 𝜕Ω

𝑢 = 0 in ℝ𝑛 ⧵ Ω (if applicable)

has solutions for g bounded. When 2𝑠 − 𝛾 − 1 < 0 the solution of such problem will sat-
isfy lim𝑥→𝜕Ω 𝑢∕𝑢

⋆ = 0 on 𝜕Ω. This would indicate that 𝑢 = (𝑓). If such 𝑢 exists, it will
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606 ABATANGELO et al.

never be unique since, taking𝑓2 ∈ 𝐶∞𝑐 (Ω), �̂� = (𝑓 + 𝑓2) = 𝑢 + 𝐺(𝑓2)will also go to g at the
boundary. Hence, it seems that, for operators L with a Green kernel satisfying 2𝑠 − 𝛾 − 1 <

0, 𝑓 and g cannot be chosen independently. In fact, for compactly supported 𝑓 the only
possible bounded g is zero, in complete contrast to the problem for the classical Laplacian.
Inmany cases, this inverse task of finding one or several𝑓 given g turns out to be simple. If,

for instance, the direct operator L is given by a singular integral, then given some bounded
smooth boundary data g we can extend them to the interior of Ω as a smooth function g̃ ,
and by zero outside. Then, we can take 𝑢 = g̃ and compute 𝑓 = L𝑢 in Ω explicitly, for Ω of
class 𝐶1,1. This construction is particularly enlightening when g = 1. The natural extension
to the inside is

𝑢(𝑥) = g̃(𝑥) =

{
1 in 𝑥 ∈ Ω,

0 in 𝑥 ∈ ℝ𝑛 ⧵ Ω.

When L is the RFL, the computation yields, for 𝑥 ∈ Ω,

𝑓RFL(𝑥) = (−Δ)𝑠RFL𝑢(𝑥) = 𝑐𝑛,𝑠 p.v.∫Ω
1 − 1|𝑥 − 𝑦|𝑛+2𝑠 𝑑𝑦 + 𝑐𝑛,𝑠 ∫ℝ𝑛⧵Ω

1 − 0|𝑥 − 𝑦|𝑛+2𝑠 𝑑𝑦 ≍ 𝛿(𝑥)−2𝑠.

The last computation is a simple although technical exercise. Note that 𝑓 is in 𝐿1(Ω) if 𝑠 <
1∕2 and in 𝐿2(Ω) if 𝑠 < 1∕4.
For the SFL, we use the kernel representation and deduce, for 𝑥 ∈ Ω,

𝑓SFL(𝑥) = (−Δ)𝑠SFL𝑢(𝑥) = p.v.∫Ω(1 − 1) 𝐽(𝑥, 𝑦) 𝑑𝑦 + 𝜅(𝑥) = 𝜅(𝑥) ≍ 𝛿(𝑥)−2𝑠,

cf. (1.9). Curiously, in the CFL (which satisfies 2𝑠 − 𝛾 − 1 = 0) case, the L-harmonic problem
has 𝑢⋆ ≍ 1 andwe get the non-homogeneousDirichlet problem. Thus, for 𝑢 = 1 one trivially
has for all 𝑥 ∈ Ω,

𝑓CFL(𝑥) = (−Δ)𝑠CFL𝑢(𝑥) = 𝑐𝑛,𝑠 p.v.∫Ω
(1 − 1)|𝑥 − 𝑦|𝑛+2𝑠 𝑑𝑦 = 0.

This shows, in particular, that 𝑢 = 1 is CFL-harmonic.
(9) In this paper, we present optimal function data (and, under additional assumptions, mea-

sures). It is known that the RFL, SFL, and CFL not only improve integrability, but also
differentiability, that is, solutions for 𝐿𝑝 data are in Sobolev spaces 𝑊𝑡,𝑞 for some 𝑡 > 0

and 𝑝 ⩾ 𝑞. Then, it is natural to consider distributional data 𝑓 ∈ 𝑊−𝑡,𝑞 in the weak-dual
formulation. Some results in this direction are due to Grubb [29, 30].
Our techniques do not extend to distributional solutions, since we have used a theory of

non-negative data: in particular, we make use of the positive part 𝑓+ which is not defined on
distributions. This is not surprising, for our assumptions on the kernel are upper and lower
bounds (and possibly continuity) but never differentiability.

(10) It would interesting to see under which conditions the results that hold for ℎ ∈ 𝐿1(𝜕Ω)

(notably, Theorems 4.6 and 4.15) can be extended to ℎ ∈ (𝜕Ω).
(11) Finally, we would like to stress that we have dealt here only with linear equations. In a non-

linear setting the situation may be even richer, as boundary singularities could be generated
by the nonlinearity as remarked, for example, in [1] for the RFL and in [2] for the SFL: typ-
ically this type of behaviour is not captured by a Green-Martin representation as the one in
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 607

(K0) and (4.9), because the boundary blow-up rate of these solutions exceeds the one of the
reference function 𝑢∗ as built in Theorem 4.1.

APPENDIX A: DERIVATION OF AN EXPLICIT SINGULAR SOLUTION BY X.
ROS-OTON

This section is the result of conversations with Prof. X. Ros-Oton who had indicated to the
authors that, at least in the RFL case, some singular solutions could be obtained by differenti-
ating the continuous solutions of the standard theory as developed in [38], see also comment
number 7 in Section 5. The objection we made that the solutions obtained by plain differentia-
tion may change sign was taken into account. In this section, for the sake of clarity we drop the
subindex RFL: (−Δ)𝑠 = (−Δ)𝑠

RFL
.

This is the way his argument proceeds in four steps. Working in arbitrary dimension, we
consider functions 𝑢 ∈ 𝑊1,1(ℝ𝑁). First, we need the interesting identity

(−Δ)𝑠(𝑥 ⋅∇𝑢) = 𝑥 ⋅∇(−Δ)𝑠𝑢 + 2𝑠(−Δ)𝑠𝑢, in ℝ𝑛. (A.1)

This identity is proved in [38, Proof of Lemma5.1] by calculationswith integrals, butwe suggest the
reader to do it as an exercise, by takingFourier transforms andmanipulating the resulting formula.
Then we need the result by Getoor (see [27, section 3] or [4]) that applies to a very particular

continuous solution

(−Δ)𝑠(1 − |𝑥|2)𝑠+ = 𝐶 > 0 in 𝐵1 ⊂ ℝ𝑛

with 𝐶 = 𝐶(𝑛, 𝑠) > 0 (see also [24, 25]). The next step is new and goes as follows. If we call𝑈(𝑥) =
(1 − |𝑥|2)𝑠+ and put 𝑉 = 𝑥 ⋅∇𝑈 we conclude that

(−Δ)𝑠𝑉 = (−Δ)𝑠(𝑥 ⋅∇𝑈) = 𝑥 ⋅∇𝐶 + 2𝑠𝐶 = 2𝑠𝐶 in 𝐵1.

Finally, we consider𝑊 = 2𝑠𝑈 − 𝑉 and get (−Δ)𝑠𝑊 = 0 in 𝐵1. Moreover,

𝑊 = 2𝑠𝑈 − 𝑥 ⋅∇𝑈 =
2𝑠(1 − |𝑥|2)
(1 − |𝑥|2)1−𝑠 + 2𝑠|𝑥|2

(1 − |𝑥|2)1−𝑠 = 2𝑠

(1 − |𝑥|2)1−𝑠 in 𝐵1,

and this is a singular solution up to a harmless constant. This is precisely the singular solution
provided by Hmissi [33] and Bogdan [6].

APPENDIX B: PROOFS OF LEMMAS 3.2 AND 3.3

Proof of Lemma 3.2. We estimate

(𝛿𝛽𝜒{𝛿<𝜂})(𝑥) ≍ ∫{𝛿(𝑦)<𝜂}
𝛿(𝑦)𝛽|𝑥 − 𝑦|𝑛−2𝑠

(
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)𝛾

𝑑𝑦

≍ 𝛿(𝑥)𝛾 ∫{𝛿(𝑦)<𝜂∕4}
𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦 + ∫{𝜂∕4<𝛿(𝑦)<𝜂}

𝛿(𝑦)𝛽|𝑥 − 𝑦|𝑛−2𝑠 𝑑𝑦.
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608 ABATANGELO et al.

Using the co-area formula (see, for example, [26]), we have that

∫{𝛿(𝑦)<𝜂∕4}
𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦 = ∫

𝜂∕4

0
𝑡𝛽+𝛾 ∫{𝛿(𝑦)=𝑡}

𝑑𝑦|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑡, (B.1)

∫{𝜂∕4<𝛿(𝑦)<𝜂}
𝛿(𝑦)𝛽|𝑥 − 𝑦|𝑛−2𝑠 𝑑𝑦 = ∫

𝜂

𝜂∕4
𝑡𝛽 ∫{𝛿(𝑦)=𝑡}

𝑑𝑦|𝑥 − 𝑦|𝑛−2𝑠 𝑑𝑡. (B.2)

Let us first deal with (B.1). The inner (𝑛 − 1)-dimensional integral is uniformly bounded in 𝜂

whenever−2𝑠 + 2𝛾 < −1, which is 𝛾 < 𝑠 − 1

2
. The integration in the 𝑡 variable concludes then the

claimed estimate. If instead 𝛾 > 𝑠 − 1

2
, then we have

∫{𝛿(𝑦)<𝜂∕4}
𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦 ≍ ∫

𝜂∕4

0
𝑡𝛽+𝛾(𝛿(𝑥) − 𝑡)2𝑠−2𝛾−1 𝑑𝑡

≍ 𝛿(𝑥)𝛽−𝛾+2𝑠 ∫
𝜂∕𝛿(𝑥)

0
𝑡𝛽+𝛾(4 − 𝑡)2𝑠−2𝛾−1𝑑𝑡

≍ 𝛿(𝑥)𝛽−𝛾+2𝑠
(

𝜂

𝛿(𝑥)

)𝛽+𝛾+1

= 𝜂𝛽+𝛾+1𝛿(𝑥)2𝑠−2𝛾−1;

as in this case it is 2𝑠 − 2𝛾 − 1 < 0, then we conclude

∫{𝛿(𝑦)<𝜂∕4}
𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦 ⩽ 𝜂𝛽+2𝑠−𝛾

up to universal constants. Needless to say, the above also holds when 𝛾 = 𝑠 − 1

2
with the suitable

modifications and we get

∫{𝛿(𝑦)<𝜂∕4}
𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦 ⩽ 𝜂𝛽+𝛾+1 |ln 𝜂|.

Let us now give a close look at (B.2). The inner (𝑛 − 1)-dimensional integral is uniformly
bounded in 𝜂 whenever 𝑠 > 1

2
, then the integration in 𝑡 is elementary. If 𝑠 < 1∕2, reasoning as

above we get

∫{𝜂∕4<𝛿(𝑦)<𝜂}
𝛿(𝑦)𝛽|𝑥 − 𝑦|𝑛−2𝑠 𝑑𝑦 ≍ ∫

𝜂

𝜂∕4
𝑡𝛽||𝛿(𝑥) − 𝑡||2𝑠−1 𝑑𝑡 ≍ 𝜂𝛽𝛿(𝑥)2𝑠,

and, in case 𝑠 = 1∕2,

∫{𝜂∕4<𝛿(𝑦)<𝜂}
𝛿(𝑦)𝛽|𝑥 − 𝑦|𝑛−2𝑠 𝑑𝑦 ≍ 𝜂𝛽𝛿(𝑥) |ln 𝛿(𝑥)|.

The above proves the first claim in the statement.
Mind now that in the case 𝛾 < 𝑠 − 1

2
we could simply estimate

(𝛿𝛽𝜒{𝛿<𝜂})(𝑥) ⩽ 𝛿(𝑥)𝛾 ∫{𝛿(𝑦)<𝜂}
𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 609

and the above analysis would then bear

(𝛿𝛽𝜒{𝛿<𝜂})(𝑥) ⩽ 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾, for 𝛿(𝑥) > 𝜂∕2. □

Proof of Lemma 3.3. From now on let 𝑥 ∈ {𝛿 < 𝜂∕2} be fixed. Call Φ ∶ 𝐵(𝑥, 1) → 𝐵(0, 1) a
diffeomorphism satisfying

Φ(Ω ∩ 𝐵(𝑥, 1)) = 𝐵(0, 1) ∩ {𝑦 ∈ ℝ𝑛 ∶ 𝑦 ⋅ 𝑒𝑛 > 0}

Φ(𝑦) ⋅ 𝑒𝑛 = 𝛿(𝑦) for any 𝑦 ∈ 𝐵(𝑥, 1), Φ(𝑥) = 𝛿(𝑥)𝑒𝑛.
(B.3)

Also, we are going to intensively use (K0), (K1), and (K2). We split the estimate into the five
regions

Ω1 ∶= 𝐵(𝑥, 𝛿(𝑥)∕2), Ω2 ∶= {𝑦 ∶ 𝛿(𝑦) < 𝜂} ⧵ 𝐵(𝑥, 1),

Ω3 ∶= {𝑦 ∶ 𝛿(𝑦) < 𝛿(𝑥)∕2} ∩ 𝐵(𝑥, 1), Ω4 ∶= {𝑦 ∶ 3𝛿(𝑥)∕2 < 𝛿(𝑦) < 𝜂} ∩ 𝐵(𝑥, 1),

Ω5 ∶= {𝑦 ∶ 𝛿(𝑥)∕2 < 𝛿(𝑦) < 3𝛿(𝑥)∕2} ∩ (𝐵(𝑥, 1) ⧵ 𝐵(𝑥, 𝛿(𝑥)∕2)).

∙ For 𝑦 ∈ Ω1 we use that (
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)
≍ 1,

so that

∫Ω1

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ ∫Ω1

𝛿(𝑦)𝛽|𝑥 − 𝑦|𝑛−2𝑠 𝑑𝑦
≍ 𝛿(𝑥)𝛽 ∫𝐵(𝑥,𝛿(𝑥)∕2)

𝑑𝑦|𝑥 − 𝑦|𝑛−2𝑠 ≍ 𝛿(𝑥)𝛽+2𝑠.

∙ For 𝑦 ∈ Ω2 we use that (
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)
≍
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ,

so that

∫Ω2

𝔾(𝑥, 𝑦)𝛿(𝑦)𝛽𝑑𝑦 ≍ 𝛿(𝑥)𝛾 ∫Ω2

𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦
≍ 𝛿(𝑥)𝛾 ∫Ω2

𝛿(𝑦)𝛽+𝛾𝑑𝑦 ≍ 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾.

∙ For 𝑦 ∈ Ω3 we use that (
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)
≍
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ,
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610 ABATANGELO et al.

so that

∫Ω3

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛾 ∫Ω3

𝛿(𝑦)𝛽+𝛾|𝑥 − 𝑦|𝑛−2𝑠+2𝛾 𝑑𝑦.
Applying the change of variable entailed by Φ— as defined in (B.3) — we get

∫Ω3

𝔾(𝑥, 𝑦)𝛿(𝑦)𝛽𝑑𝑦 ≍ 𝛿(𝑥)𝛾 ∫{0<𝑧𝑛<𝛿(𝑥)∕2}∩𝐵(0,1)
𝑧
𝛽+𝛾
𝑛

(|𝛿(𝑥) − 𝑧𝑛| + |𝑧′|)𝑛−2𝑠+2𝛾 𝑑𝑧
≍ 𝛿(𝑥)𝛾 ∫{|𝑧′|<1} ∫

𝛿(𝑥)∕2

0

𝑧
𝛽+𝛾
𝑛

(|𝛿(𝑥) − 𝑧𝑛| + |𝑧′|)𝑛−2𝑠+2𝛾 𝑑𝑧𝑛 𝑑𝑧′
≍ 𝛿(𝑥)𝛾 ∫

1

0
𝑡𝑛−2 ∫

𝛿(𝑥)∕2

0

𝑧
𝛽+𝛾
𝑛

((𝛿(𝑥) − 𝑧𝑛) + 𝑡)𝑛−2𝑠+2𝛾
𝑑𝑧𝑛 𝑑𝑡

≍ 𝛿(𝑥)𝛽+2𝑠 ∫
1∕𝛿(𝑥)

0
𝑡𝑛−2 ∫

1∕2

0

ℎ𝛽+𝛾

((1 − ℎ) + 𝑡)𝑛−2𝑠+2𝛾
𝑑ℎ 𝑑𝑡

≍ 𝛿(𝑥)𝛽+2𝑠 ∫
1∕𝛿(𝑥)

0

𝑡𝑛−2

(1 + 𝑡)𝑛−2𝑠+2𝛾
𝑑𝑡 ≍ 𝛿(𝑥)𝛽+2𝑠 ∫

1∕𝛿(𝑥)

0

𝑑𝑡

(1 + 𝑡)2−2𝑠+2𝛾

≍ 𝛿(𝑥)𝛽+2𝑠

⎧⎪⎪⎨⎪⎪⎩
1 if 1 − 2𝑠 + 2𝛾 > 0

|ln(𝛿(𝑥))| if 1 − 2𝑠 + 2𝛾 = 0

𝛿(𝑥)1−2𝑠+2𝛾 if 1 − 2𝑠 + 2𝛾 < 0,

which, rephrased, means

∫Ω3

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿(𝑥)𝛽+2𝑠 if 𝛾 > 𝑠 −
1

2
,

𝛿(𝑥)𝛽+2𝑠 |ln(𝛿(𝑥))| if 𝛾 = 𝑠 −
1

2
,

𝛿(𝑥)𝛽+2𝛾+1 if 𝛾 < 𝑠 −
1

2
.

∙ For the integration in Ω4, we use that, for 𝑦 ∈ Ω4,(
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)
≍
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ,

so that

∫Ω4

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛾 ∫{3𝛿(𝑥)∕2<𝛿(𝑦)<𝜂}∩𝐵(𝑥,1)
𝛿(𝑦)𝛽+𝛾||𝑥 − 𝑦||𝑛−2𝑠+2𝛾 𝑑𝑦
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 611

and, changing variables at the aid of Φ as above,

∫Ω3

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛾 ∫{3𝛿(𝑥)∕2<𝑧𝑛<𝜂}∩𝐵(0,1)
𝑧
𝛽+𝛾
𝑛

(|𝛿(𝑥) − 𝑧𝑛| + |𝑧′|)𝑛−2𝑠+2𝛾 𝑑𝑧
≍ 𝛿(𝑥)𝛽+2𝑠 ∫

𝜂∕𝛿(𝑥)

3∕2 ∫
1∕𝛿(𝑥)

0

ℎ𝛽+𝛾 𝑡𝑛−2

((ℎ − 1) + 𝑡)𝑛−2𝑠+2𝛾
𝑑𝑡 𝑑ℎ

≍ 𝛿(𝑥)𝛽+2𝑠 ∫
𝜂∕𝛿(𝑥)

3∕2 ∫
1∕((ℎ−1)𝛿(𝑥))

0

ℎ𝛽+𝛾 𝑟𝑛−2

(ℎ − 1)1−2𝑠+2𝛾(1 + 𝑟)𝑛−2𝑠+2𝛾
𝑑𝑟 𝑑ℎ

≍ 𝛿(𝑥)𝛽+2𝑠 ∫
𝜂∕𝛿(𝑥)

3∕2

ℎ𝛽+𝛾

(ℎ − 1)1−2𝑠+2𝛾 ∫
1∕((ℎ−1)𝛿(𝑥))

1

𝑑𝑟

(1 + 𝑟)2−2𝑠+2𝛾
𝑑ℎ.

At this point we need to separate into different cases, since

∫
1∕((ℎ−1)𝛿(𝑥))

1

𝑑𝑟

(1 + 𝑟)2−2𝑠+2𝛾
≍

⎧⎪⎪⎨⎪⎪⎩
1 if 1 − 2𝑠 + 2𝛾 > 0

|ln((ℎ − 1)𝛿(𝑥))| if 1 − 2𝑠 + 2𝛾 = 0

(ℎ − 1)1−2𝑠+2𝛾𝛿(𝑥)1−2𝑠+2𝛾 if 1 − 2𝑠 + 2𝛾 < 0,

which, rephrased, gives

∫Ω3

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛽+2𝑠

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
𝜂∕𝛿(𝑥)

3∕2

ℎ𝛽+𝛾

(ℎ − 1)1−2𝑠+2𝛾
𝑑ℎ if 𝛾 > 𝑠 −

1

2

∫
𝜂∕𝛿(𝑥)

3∕2
ℎ𝛽+𝛾|ln((ℎ − 1)𝛿(𝑥))|𝑑ℎ if 𝛾 = 𝑠 −

1

2

𝛿(𝑥)1−2𝑠+2𝛾 ∫
𝜂∕𝛿(𝑥)

3∕2
ℎ𝛽+𝛾 𝑑ℎ if 𝛾 < 𝑠 −

1

2

≍

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛿(𝑥)𝛽+2𝑠 ∫
𝜂∕𝛿(𝑥)

3∕2
ℎ𝛽−𝛾+2𝑠−1𝑑ℎ if 𝛾 > 𝑠 −

1

2

𝛿(𝑥)𝛽+2𝑠 ∫
𝜂∕𝛿(𝑥)

3∕2
ℎ𝛽+𝛾|ln((ℎ − 1)𝛿(𝑥))|𝑑ℎ if 𝛾 = 𝑠 −

1

2

𝛿(𝑥)𝛽+2𝛾+1 ∫
𝜂∕𝛿(𝑥)

3∕2
ℎ𝛽+𝛾 𝑑ℎ if 𝛾 < 𝑠 −

1

2
.

Now, in the case 𝛾 > 𝑠 − 1

2
we have

∫Ω3

𝔾(𝑥, 𝑦)𝛿(𝑦)𝛽𝑑𝑦 ≍ 𝛿(𝑥)𝛽+2𝑠

⎧⎪⎪⎨⎪⎪⎩
𝜂𝛽−2𝛾+2𝑠𝛿(𝑥)−𝛽+𝛾−2𝑠 if 𝛽 − 𝛾 + 2𝑠 > 0

|ln(𝜂∕𝛿(𝑥))| if 𝛽 − 𝛾 + 2𝑠 = 0

1 if 𝛽 − 𝛾 + 2𝑠 < 0
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612 ABATANGELO et al.

TABLE B . 1 The integration over Ω4

𝜸 < 𝒔 − 𝟏

𝟐
𝜸 = 𝒔 − 𝟏

𝟐
𝜸 > 𝒔 − 𝟏

𝟐

𝛽 < 𝛾 − 2𝑠 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾 𝜂𝛽+𝛾+1 |ln 𝜂| 𝛿(𝑥)𝛾 𝛿(𝑥)𝛽+2𝑠

𝛽 = 𝛾 − 2𝑠 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾 𝜂𝛽+𝛾+1 |ln 𝜂| 𝛿(𝑥)𝛾 𝛿(𝑥)𝛽+2𝑠|ln(𝜂∕𝛿(𝑥))|
𝛽 > 𝛾 − 2𝑠 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾 𝜂𝛽+𝛾+1 |ln 𝜂| 𝛿(𝑥)𝛾 𝜂𝛽−2𝛾+2𝑠𝛿(𝑥)𝛾

=

⎧⎪⎪⎨⎪⎪⎩
𝜂𝛽−2𝛾+2𝑠𝛿(𝑥)𝛾 if 𝛽 − 𝛾 + 2𝑠 > 0

𝛿(𝑥)𝛽+2𝑠|ln(𝜂∕𝛿(𝑥))| if 𝛽 − 𝛾 + 2𝑠 = 0

𝛿(𝑥)𝛽+2𝑠 if 𝛽 − 𝛾 + 2𝑠 < 0,

when 𝛾 = 𝑠 − 1

2

∫Ω3

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛽+2𝑠 ∫
𝜂∕𝛿(𝑥)

3∕2
ℎ𝛽+𝛾|ln((ℎ − 1)𝛿(𝑥))|𝑑ℎ

≍ 𝛿(𝑥)2𝑠−𝛾−1𝜂𝛽+𝛾+1||ln((𝜂∕𝛿(𝑥) − 1)𝛿(𝑥))|| ≍ 𝜂𝛽+𝛾+1 |ln 𝜂| 𝛿(𝑥)𝛾,
whereas for 𝛾 < 𝑠 − 1

2
we have

∫Ω3

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛽+2𝛾+1
(

𝜂

𝛿(𝑥)

)𝛽+𝛾+1

= 𝜂𝛽+𝛾+1𝛿(𝑥)𝛾.

Resuming the information collected about the integral over Ω4, we have the behaviour
described in Table B.1.

∙ For 𝑦 ∈ Ω5 we use that (
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ∧ 1

)
≍
𝛿(𝑥)𝛿(𝑦)|𝑥 − 𝑦|2 ,

so that

∫Ω5

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛾 ∫{𝛿(𝑥)∕2<𝛿(𝑦)<3𝛿(𝑥)∕2}∩(𝐵(𝑥,1)⧵𝐵(𝑥,𝛿(𝑥)∕2))
𝛿(𝑦)𝛽+𝛾||𝑥 − 𝑦||𝑛−2𝑠+2𝛾 𝑑𝑦

≍ 𝛿(𝑥)𝛽+2𝛾 ∫{𝛿(𝑥)∕2<𝛿(𝑦)<3𝛿(𝑥)∕2}∩(𝐵(𝑥,1)⧵𝐵(𝑥,𝛿(𝑥)∕2))
||𝑥 − 𝑦||−𝑛+2𝑠−2𝛾 𝑑𝑦

and, applying the change of variable induced by the Φ defined in (B.3),

∫Ω5

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍ 𝛿(𝑥)𝛽+2𝛾 ∫
3𝛿(𝑥)∕2

𝛿(𝑥)∕2 ∫
1

𝛿(𝑥)∕2
𝑟𝑛−2(|𝛿(𝑥) − ℎ| + 𝑟)−𝑛+2𝑠−2𝛾 𝑑𝑟 𝑑ℎ

≍ 𝛿(𝑥)𝛽+2𝛾 ∫
1

𝛿(𝑥)∕2
𝑟2𝑠−2𝛾−1 ∫

𝛿(𝑥)∕(2𝑟)

−𝛿(𝑥)∕(2𝑟)
(|𝑡| + 1)−𝑛+2𝑠−2𝛾 𝑑𝑡 𝑑𝑟

≍ 𝛿(𝑥)𝛽+2𝑠 ∫
1∕𝛿(𝑥)

1∕2
𝜌2𝑠−2𝛾−1 ∫

1∕𝜌

0
(𝑡 + 1)−𝑛+2𝑠−2𝛾 𝑑𝑡 𝑑𝜌
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SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 613

≍ 𝛿(𝑥)𝛽+2𝑠 ∫
1∕𝛿(𝑥)

1∕2
𝜌2𝑠−2𝛾−2 𝑑𝜌

≍ 𝛿(𝑥)𝛽+2𝑠

⎧⎪⎪⎨⎪⎪⎩
𝛿(𝑥)−2𝑠+2𝛾+1 if 2𝑠 − 2𝛾 − 1 > 0

|ln 𝛿(𝑥)| if 2𝑠 − 2𝛾 − 1 = 0

1 if 2𝑠 − 2𝛾 − 1 < 0

meaning

∫Ω5

𝔾(𝑥, 𝑦) 𝛿(𝑦)𝛽 𝑑𝑦 ≍

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿(𝑥)𝛽+2𝛾+1 if 𝛾 < 𝑠 −
1

2

𝛿(𝑥)𝛽+2𝑠|ln 𝛿(𝑥)| if 𝛾 = 𝑠 −
1

2

𝛿(𝑥)𝛽+2𝑠 if 𝛾 > 𝑠 −
1

2
.

□

ACKNOWLEDGEMENTS
The research of David Gómez-Castro and Juan Luis Vázquez was partially supported by grant
PGC2018-098440-B-I00 from the Ministerio de Ciencia, Innovación y Universidades of the
Spanish Government. Nicola Abatangelo was partially supported by the Alexander von Hum-
boldt Foundation. The research of David Gómez-Castro was supported by the Advanced Grant
Nonlocal-CPD (Nonlocal PDEs for Complex Particle Dynamics: Phase Transitions, Patterns and
Synchronization) of the EuropeanResearchCouncil ExecutiveAgency (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant Agreement Number: 883363).
The authors would like to thank the Instituto of Matemática Interdisciplinar at UCM, for sup-
porting a visit of Nicola Abatangelo to Madrid. Juan Luis Vázquez is grateful for the hospitality
of Prof. Figalli during his visit to ETH and Prof. Ros-Oton for fruitful conversations. The authors
are grateful to Prof. Vondraček and Prof. Grubb for comments that improved the paper. Finally,
the authors would like to thank Dr. del Teso for his advice on the numerics.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. N. Abatangelo, Large 𝑠-harmonic functions and boundary blow-up solutions for the fractional Laplacian,

Discrete Contin. Dyn. Syst. A 35 (2015), no. 12, 5555–5607.
2. N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian,

Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 2, 439–467.
3. N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, Contemporary research in

elliptic PDEs and related topics, Springer INdAM Ser., vol. 33, Springer, Cham, 2019, pp. 1–105.

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



614 ABATANGELO et al.

4. P. Biler and G. Karch, and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions,
Comm. Math. Phys. 294 (2010), no. 1, 145–168.

5. K. Bogdan.,The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), no. 1, 43–80.
6. K. Bogdan, Representation of 𝛼-harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), no. 2,

227–243.
7. K. Bogdan, K. Burdzy, and Z.-Q. Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003),

no. 1, 89–152.
8. K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondracek, Potential analysis of stable

processes and its extensions, Springer, Berlin, 2009.
9. K. Bogdan andT. Jakubowski,Estimates of theGreen function for the fractional Laplacian perturbed by gradient,

Potential Anal. 36 (2012), no. 3, 455–481.
10. M. Bonforte, A. Figalli, and J.L. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic

equations, Calc. Var. Partial Differential Equations 57 (2018), no. 2, 1–34.
11. M. Bonforte, Y. Sire, and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous

medium equations on bounded domains, Discrete Contin. Dyn. Syst. A 35 (2015), no. 12, 5725–5767.
12. H. Brézis, Une équation non linéaire avec conditions aux limites dans 𝐿1, Unpublished, 1971.
13. X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv.

Math. 224 (2010), no. 5, 2052–2093.
14. H. Chen, The Dirichlet elliptic problem involving regional fractional Laplacian, J. Math. Phys. 59 (2018), no. 7,

1–19.
15. Z.-Q. Chen, P. Kim, and R. Song, Two-sided heat kernel estimates for censored stable-like processes, Probab.

Theory Related Fields 146 (2009), no. 3, 361–399.
16. Z.-Q. Chen, P. Kim, and R. Song, Dirichlet heat kernel estimates for Δ𝛼∕2 + Δ𝛽∕2, Illinois J. Math. 54 (2010), no.

4 (2012), 1357–1392.
17. Z.-Q. Chen, P. Kim, and R. Song,Global heat kernel estimates forΔ + Δ𝛼∕2 in half-space-like domains, Electron.

J. Probab. 17 (2012), no. 32, 1–32.
18. Z.-Q. Chen, P. Kim, and R. Song, Potential theory of Dirichlet forms degenerate at the boundary: the case of no

killing potential, arXiv:2110.11653, 2021.
19. Ó. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona, Nonlocal discrete diffusion equations and the

fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018), 688–738.
20. N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini, Discretizations of the spectral fractional Lapla-

cian on general domains with dirichlet, neumann, and robin boundary conditions, SIAM J. Numerical Anal. 56
(2018), no. 3, 1243–1272.

21. A. C. da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer, Berlin,
Heidelberg, 2008.

22. F. del Teso, J. Endal, and E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous
medium type. Part II: Schemes and experiments, SIAM J. Numerical Anal. 56 (2018), no. 6, 3611–3647.

23. A. Dhifli, H. Mâagli, and M. Zribi, On the subordinate killed B.M in bounded domains and existence results for
nonlinear fractional Dirichlet problems, Math. Ann. 352 (2012), no. 2, 259–291.

24. B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl.
Anal. 15 (2012), no. 4, 536–555.

25. B. Dyda, A. Kuznetsov, andM. Kwaśnicki, Fractional Laplace operator andMeijer G-function, Constr. Approx.
45 (2017), no. 3, 427–448.

26. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153,
Springer, New York, 1969.

27. R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc. 101 (1961),
75–90.

28. D. Gómez-Castro and J. L. Vázquez, The fractional Schrödinger equation with singular potential and measure
data, Discrete Contin. Dyn. Syst. 39 (2019), no. 12, 7113–7139.

29. G. Grubb, Local and nonlocal boundary conditions for 𝜇-transmission and fractional elliptic pseudodifferential
operators, Anal. PDE 7 (2014), no. 7, 1649–1682.

30. G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of 𝜇-transmission
pseudodifferential operators, Adv. Math. 268 (2015), 478–528.

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SINGULAR BOUNDARY BEHAVIOUR AND LARGE SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS 615

31. G. Grubb, Fractional-order operators: boundary problems, heat equations, Mathematical analysis and
applications—plenary lectures, Springer Proc. Math. Stat., vol. 262, Springer, Cham, 2018, pp. 51–81.

32. G. Grubb, Green’s formula and a Dirichlet-to-Neumann operator for fractional-order pseudodifferential
operators, Comm. Part. Diff. Equ. 43 (2018), 750–789.

33. F. Hmissi, Fonctions harmoniques pour les potentiels de Riesz sur la boule unité, Exposition. Math. 12 (1994),
no. 3, 281–288.

34. Y. Huang and A. Oberman, Numerical methods for the fractional Laplacian: A finite difference-quadrature
approach, SIAM J. Numerical Anal. 52 (2014), no. 6, 3056–3084.

35. P. Kim, R. Song, and Z. Vondraček,On the boundary theory of subordinate killed Lévy processes, Potential Anal.
53 (2020), no. 1, 131–181.

36. A. Ponce, Elliptic PDEs, measures and capacities, European Mathematical Society Publishing House, Zürich,
Switzerland, 2016.

37. X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J.
Math. Pures Appl. 101 (2014), no. 3, 275–302.

38. X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213
(2014), no. 2, 587–628.

39. R. Song and Z. Vondraček, Potential theory of subordinate killed Brownianmotion in a domain, Probab. Theory
Related Fields 125 (2003), no. 4, 578–592.

40. J. L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion, Nonlocal and non-
linear diffusions and interactions: new methods and directions, Lecture Notes in Mathematics, vol. 2186,
Springer, Cham, 2017, pp. 205–278.

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12692 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Singular boundary behaviour and large solutions for fractional elliptic equations
	1 | INTRODUCTION
	1.1 | Main topics and results
	1.2 | Some examples
	The restricted fractional Laplacian
	Perturbations of the RFL
	The spectral fractional Laplacian
	An interpolation of the RFL and the SFL
	The censored fractional Laplacian


	2 | INTERIOR DIRICHLET PROBLEM: EXISTENCE, UNIQUENESS AND INTEGRABILITY
	2.1 | Functional properties of the Green operator
	2.2 | Weak-dual formulation
	2.3 | Optimal class of data and a lower Hopf estimate
	2.4 | Uniform integrability over compacts
	2.5 | Measure data and continuous solutions

	3 | BREAKDOWN OF THE BOUNDARY CONDITION IN THE INTERIOR PROBLEM
	3.1 | Range of exponents
	3.2 | Subcritical boundary behaviour in average terms
	3.3 | Sharp weighted spaces for the Green operator

	4 | LIMIT OF THE INTERIOR THEORY: THE L-HARMONIC PROBLEM
	4.1 | Limit of the interior theory
	4.2 | The L-harmonic problem
	4.3 | Existence, uniqueness, and kernel representation
	4.4 | Boundary behaviour of solutions of the L-harmonic problem
	4.4.1 | Bounded data
	4.4.2 | Integrable data


	5 | COMMENTS AND OPEN PROBLEMS
	APPENDIX A: DERIVATION OF AN EXPLICIT SINGULAR SOLUTION BY X. ROS-OTON
	APPENDIX B: PROOFS OF LEMMAS 3.2 AND 3.3
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


